| Index | P. No. |
| :--- | :---: |
| 1. Ratio and Proportion, Indices, Logarithms | $1-8$ |
| Equations and Matrices | $9-14$ |
| Linear Inequalities | $15-18$ |
| Time Value of Money | $19-25$ |
| Basic Concepts of Permutations and Combinations | $26-34$ |
| Sequence and Series - Arithmetic and Geometric <br> Progressions | $35-42$ |
| Sets, Functions and Relations | $43-47$ |
| Basic Concepts of Differential and Integral Calculus | $48-52$ |
| Statistical Description of Data | $53-54$ |
| Measures of Central Tendency and Dispersion | $55-68$ |
| Probability | $69-74$ |
| Theoretical Distributions | $75-79$ |
| Correlation And Regression | $80-84$ |
| Index Number and Time Series | N4 |

Chapter 1

1. Ratio

A Basic
Que.1. The monthly incomes of two persons are in the ratio 4:5 and their monthly expenditures are in the ratio 7:9. If each saves RS. 50 per month, find their monthly incomes.
a. 600 and 7000
b. 500 and 400
c. 900 and 700
d. 400 and 500

Answer: D
Solution: Let the monthly incomes of two persons be Rs. $4 x$ and RS. $5 x$ so that the ratio is RS. $4 x:$ RS. $5 x=4: 5$. If each saves RS. 50 per month, then the expenditures of two persons are Rs. ( $4 x$ -50) and Rs. ( $5 x-50$ ).

$$
\begin{aligned}
& \frac{36 \times 450}{5 \times 50}=\frac{35 \times 350}{9} \text { or, } 36 x-35 x=450-350 \\
& \text { or, } x=100^{9}
\end{aligned}
$$

Hence, the monthly incomes of the two persons are RS. $4 \times 100$ and RS. $5 \times 100$ i.e. RS. 400 and RS. 500
B. Inverse Ratio

Que.2. The inverse ratio of $11: 15$ is
a. 15:11
b. 11:11
c. 15:15
d. $\sqrt{11}:^{V_{15}}$

Answer: A
Solution: One ratio is the inverse of another if their product is 1.
Thus $a: b$ is the inverse of $b: a$ and vice-versa
C. Duplicate Ratio

Que.3. $\frac{3 X-2}{5 X++6}$ is the duplicate ratio of $\frac{2}{3}$ then find the value of $x$ :
a. 2
b. 6
C. 5
d. 9

Answer: B
Solution: $\frac{3 X-2}{5 X++6}$ is the duplicate ratio of $\frac{2}{3}$

$$
\begin{aligned}
& \text { i.e., } \frac{3 x-2}{5 x++6}=\frac{2^{2}}{3^{2}} \\
& \frac{3 x-2}{5 x++6}=\frac{4}{9} \\
& 27 x-18=20 x+24 \\
& 27 x-20 x=24+18 \\
& 7 x=42 \\
& x=6
\end{aligned}
$$

D. Sub duplicate Ratio

Que.4.If $p: q$ is the sub-duplicate ratio of $p-x^{2}: q-x^{2}$, then $x^{2}$ is:
a. $\frac{p}{p+q}$
b. $\frac{p}{p+q}$
c. $\frac{p q}{p+q}$
d. none

Answer: C
Solution: Sub duplicate ratio of $\left(p-x^{2}\right):\left(q-x^{2}\right)=$

$$
\begin{aligned}
& \sqrt{p-x^{2}}: \sqrt{q-x^{2}} \\
& p: q=\sqrt{p-x^{2}}: \sqrt{q-x^{2}} \\
& \frac{p}{q}=\sqrt{\frac{p-x^{2}}{q-x^{2}}}
\end{aligned}
$$

An squaring both side

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}=\frac{p-x^{2}}{q-x^{2}}=p^{2}\left(q-x^{2}\right)=q^{2}\left(p-x^{2}\right) \\
& p^{2} q-q^{2} p=p^{2} x^{2}-q^{2} x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& p q(p-q)=\left(p^{2} q^{2}\right) x^{2} \\
& x^{2}=\frac{p q(p-q)}{(p+q)(p-q)} \\
& x^{2}=\frac{p q}{(p+q)}
\end{aligned}
$$

E. Triplicate Ratio

Que.5. The Triplicate ratio of $4: 7$
a. 4:7
b. $64: 16$
c. $16: 343$
d. $64: 343$

Answer: D
Solution: $4^{3}: 7^{3}=64: 343$
F. Sub-triplicate Ratio

Que.6. The sub triplicate ratio of 125:729
a. $5: 9$
b. 4:16
c. $16: 343$
d. $64: 343$

Answer: A
Solution: $125: 729 \sqrt[3]{125}: \sqrt[3]{729}=64: 343$
G. Compound Ratio

Que.7. The ratio of the number of boys and girls in a college is 7:
8. If the percentage increase in the number of boys and girls be $20 \%$ and $10 \%$ respectively, what will be the new ratio?
a. $8: 9$
b. 17:18
c. 121:22
d. None

Answer: C
Solution: Originally, let the number of boys and girls in the college be $7 x$ and $8 x$ respectively.

$$
\left(\frac{120}{100} \times 7 x\right) \text { and }\left(\frac{110}{100} \times 8 x\right)=\frac{42 x}{5} \text { and } \frac{44 x}{5}
$$

Chapter 1
$\therefore$ The required ratio $=\left(\frac{42 x}{5}: \frac{44 x}{5}\right)=21: 22$
Their increased number is ( $120 \%$ of $7 x$ ) and ( $110 \%$ of $8 x$ ).
Que.8. A sum of money is to be distributed among $A, B, C$, and $D$ in the proportion of $5: 2: 4: 3$. If $C$ gets RS. 1000 more than $D$, what is B's share?
a. 500
b. 1500
c. 2000
d. None of these

Answer: C
Solution: Let the shares of $A, B, C$ and $D$ be RS. $5 x, R S .2 x, R S .4 x$ and RS. $3 x$ respectively Then, $4 x-3 x=1000 x=1000$ B's'share $=$ RS. $2 x=R S .(2 \times 1000)=R S .2000$.
2. Proportions
A. Properties of Proportion
i. Incuertenda

Que.9. The ratio of the number of boys and girls in a college is $7: 8$. If the percentage increase in the number of boys and girls be $20 \%$ and $10 \%$ respectively, what will be the new ratio?
a. $3: 5=6: 10$
b. $10: 6=5: 3$
c. $6: 10=9: 15$
d. None

Answer: B
Solution: $a: b:: c: d$

$$
\begin{aligned}
& \frac{a}{b}: \frac{c}{d}=\frac{b}{a}=\frac{d}{c} \\
& 10: 6=5: 3=15: 9
\end{aligned}
$$

ii. Alternenda

Chapter 1

Que.10. If $a: b=c: d=e: f=$ $\qquad$ then each of these ratios is equal
a. $(a+c+e+\ldots \ldots .):.(b+d+f+\ldots . .$.$) is equal to each ratio$
b. $(a+c+e+\ldots \ldots .):.(b+d+f+\ldots \ldots .$.$) is greater to each ratio$
c. $(a+c+e+\ldots \ldots .):.(b+d+f+\ldots \ldots$.$) is zero ratio$
d. None

Answer: A
Solution: Due to addendo property.
iii. Componenda

Que.11. $4: 5=8: 10$
a. 1:1
b. $4: 5$
c. Both
d. None

Answer: A
Solution: $\Rightarrow \frac{a}{b}=\frac{c}{d}$
Adding 1 to both sides, we get

$$
\begin{aligned}
& \Rightarrow \frac{a}{b}+1=\frac{c}{d}+1 \\
& \Rightarrow \frac{a+b}{b}=\frac{c+d}{d} \\
& \Rightarrow(a+b): b=(c+d): d
\end{aligned}
$$

Therefore, $(4+5): 5=9: 5=18: 10$

$$
=(8+10): 10
$$

iii. Dicuidenda

Que.12. $5: 4=10: 8$
a. $(5-4): 4=1: 4=(10-8): 8$
b. $(5+4): 4=1: 4=(10-8): 8$
c. Both
d. None

Chapter 1

Answer: A
Solution: $\Rightarrow \frac{a}{b}=\frac{c}{d}$
subtracting 1 from both sides., we get

$$
\begin{aligned}
& \Rightarrow \frac{a}{b}-1=\frac{c}{d}-1 \\
& \Rightarrow \frac{a-b}{b}=\frac{c-d}{d} \\
& \Rightarrow(a-b): b=(c-d): d \\
& \text { Therefore, }(5-4): 4=1: 4=(10-8): 8
\end{aligned}
$$

B. Third Proportion

Que.13. Find the third proportion to 2.4 kg .9 .6 kg .
a. 384 kg
b. 38.4 kg
c. 3804 kg
d. 3.84 kg

Answer: $B$
Solution: Let the third proportion to 2.4 kg .9 .6 kg be kkg .
Then 2.4 kg .9 .6 kg and xkg are in continued proportion since b2

$$
=a c
$$

so, $2.4 / 9.6=9.6 / x$ or, $x=(9.6 \times 9.6) / 2.4=38.4$
C. Fourth Proportion

Que.14. The fourth proportional to $5,8,15$ is:

| $a .18$ | 6.24 |
| :--- | :--- |
| $c .19$ | $d .20$ |

Answer: $B$
Solution: Let the fourth proportional to $5,8,15$ be $x$.
Then, 5:8:15:x

$$
\begin{aligned}
& \Rightarrow 5 x=(8 \times 15) \\
& \Rightarrow x=((8 \times 15) / 5)=24
\end{aligned}
$$

View Answer Discuss in Forum Workspace Report

Chapter 1
3. Indices

Que. 15. Find the value of $k$ from $(\sqrt{ } g)-7 \times(\sqrt{3})^{-5} \quad 3 k$
a.19/2
b.19/3
c. $-19 / 3$
d. $-19 / 2$

Answer: D
Solution: $\Rightarrow(32 \times 1 / 2)-7 \times\left(3^{1 / 2}\right)-5=3 k$
$\Rightarrow 3-19 / 2=3 k \quad k_{k}=-19 / 2$

Que. 16. If $x: y: z=7: 4: 11$ then $(x+y+z / 2)$ is:
a. 2
b. 4
c. 3
d. 5

Answer: A
Solution: $\Rightarrow$ If $x: y: z=7: 4: 11$, Let $x=7 k, y=4 k, z=11 k$

$$
\frac{x+y+z}{2}=\frac{7 k+4 k+11 k}{11 k}=\frac{22 k}{11 k}=2
$$

3. Logarithms

Que.17. $\log _{2} \log _{2} \log _{2} 16=$ ?
a. 0
6.3
c. 1 d. 2

Answer: C
Solution: $\log _{2} \log _{2} \log _{2} 16$
$\Rightarrow \log _{2} \log _{2}\left(\log _{2} 2^{4}\right)$
$\Rightarrow \log _{2} \log _{2}^{4} \log _{2}^{2}$
$\Rightarrow \log _{2} \log _{2}^{4}$
$\Rightarrow \log _{2}^{2} \log _{2}^{2}$

$$
\Rightarrow 1 \times 1 \quad \Rightarrow 1
$$

Chapter 1
Que.18. The value of the expression: $\boldsymbol{a}^{\log _{a}^{b} \cdot \log _{b}^{c} \cdot \log _{c}^{d} \cdot \log _{d}^{t}}$
att
c. $(a+b+c+d+t)$

Answer: A
Solution:

$$
\begin{aligned}
& \Rightarrow a^{\log _{a}^{b} \cdot \log _{b}^{c} \cdot \log _{c}^{d} \cdot \log _{d}^{t}} \\
& \Rightarrow a \frac{\log ^{b}}{\log ^{a}} \cdot \frac{\log ^{c}}{\log ^{b}} \cdot \frac{\log ^{t}}{\log ^{d}} \\
& \Rightarrow a \frac{\log ^{t}}{\log ^{a}} \\
& \Rightarrow a \log _{a}^{t} \\
& \Rightarrow t
\end{aligned}
$$

1. Simultaneous Linear Equations:
A. Properties of Proportion

Que.1.A man went to the Reserve Bank of India with $\cdot 1,000$. He asked the cashier to give him .5 and 10 notes only in return. The man got 175 notes in all. Find how many notes of 5 and $f 10$ did he receive?
a. $(2,150)$
b. $(40,110)$
c $(150,25)$
d. None

Answer: C
Solution:
Let the number of notes of, 5 be $x$ and notes of 10 be $y$.

$$
\begin{align*}
& \text { Then, } x+y=175 \cdots \cdots \cdots \cdots . . . .(1) \\
& 5 x+10 y=1000 \ldots \ldots \ldots \ldots . . .(2) \tag{2}
\end{align*}
$$

solving (1) and (2) simultaneously. we get

$$
\begin{aligned}
& x+5 y=875 \\
& 5 x+10 y=1000 \\
& (-)(-) \quad(-) \\
& -5 y=-125 \\
& y=25
\end{aligned}
$$

B. Cross Multiplication Method

Que.2. Find the value of $x$ and $y$ by using the using crossmultiplication method:

$$
\begin{aligned}
& 3 x+4 y-17=0 \\
& a \cdot x=3, y=2 \\
& \text { c. } x=5, y=2
\end{aligned}
$$

$$
4 x-3 y-6=0
$$

$$
\text { b. } x=2, y=2
$$

d. None

Answer: A

Solution:
Two given equations are:

$$
\begin{aligned}
& 3 x+4 y-17=0 \\
& 4 x-3 y-6=0
\end{aligned}
$$

By cross-multiplication, we get:

$$
\begin{aligned}
& \frac{x /(4)(-6)-(-3)(-17)}{(-17)(4)-(-6)(3)=1 /(3)(-3)-(4)(4)}=y \\
& \text { or, } x /(-24-51)=y /(-68+18)=1 /(-9-16) \\
& \text { or, } x /-75=y /-50=1 /-25 \\
& \text { or, } x / 3=y / 2=1 \text { (multiplying by }-25) \\
& \text { or, } x=3, y=2
\end{aligned}
$$

Therefore, required solution: $x=3, y=2$.
C. QUADRATIC EQUATION METHOD

Que.3. Which of the following is correct?
i. If $b^{2}-4 a c=0$ the roots are real and equal;
ii. If $b^{2}-4 a c>0$ then the roots are imaginary;
iii. If $b^{2}-4 a c<0$ then the roots are equal;
iv. If $b^{2}-4 a c$ is a perfect square ( 0 ) the roots are real, rational and unequal
v. If $b^{2}-4 a c>0$ but not a perfect square the rots are real, irrational and unequal.
a. All are correct
b. ic Gi il
c. all are correct except iii Gi iii
d.ígiil Givis correct

Answer: C
Solution:
i. If $b^{2}-4 a c=0$ the roots are real and equal;
ii. If $b^{2}-4 a c>0$ then the roots are real and unequal (or distinct);

Chapter 2
iii. If $b^{2}-4 a c<0$ then the roots are imaginary;
iv. If $b^{2}-4 a c$ is a perfect square ( 0 ) the roots are real, rational and unequal( distinct);
v. If $b^{2}-4 a c>0$ but not a perfect square the rots are real, irrational and unequal
since $b_{2}-4 a c$ discriminates the roots $b_{2}-4 a c$ is called the discriminant in the equation $a \times 2+b x+c=0$ as it actually discriminates between the roots.

Que.4. Find the roots of the quadratic equation: $x 2+2 x-15=0$ ?
a. 5, 3
b. $3,-5$
c. $-3,5$
d. $-3,-5$

Answer: B
Solution:

$$
\begin{aligned}
& x^{2}+5 x-3 x-15=0 \\
& x(x+5)-3(x+5)=0 \\
& (x-3)(x+5)=0 \\
& =>x=3 \text { or } x=-5
\end{aligned}
$$

D. CUBIC EQUATION METHOD

Que.5. $x^{3}+x^{2}-16 x=16$
a. 4
b. +1
c. 1
d. -4

Answer: D
Solution:

$$
\begin{aligned}
& x^{3}+x^{2}-16 x=16 \\
& x^{3}+x^{2}-16 x-16=0 \\
& \text { Let } a(x)=x^{3}+x^{2}-16 x-16 \\
& a(-1)=(-1) 3+(-1) 2-16(-1)-16 \\
& =-1+1+16-16=0
\end{aligned}
$$

Chapter 2

$$
\begin{aligned}
\therefore a(x) & =(x+1)\left(x^{2}-16\right) \\
& =(x+1)(x-4)(x+4) \\
\therefore 0= & (x+1)(x-4)(x+4) \\
\therefore x= & -1 \text { or } x=4 \text { or } x=-4
\end{aligned}
$$

A. COLLINEAR

Que.1. The value of $K$ for which the points $(k, 1) .,(5,5)$ and $(10,7)$ may be collinear is:
a. $k-5$
b. $k=7$
c. $k=9$
d. $k=1$

Answer: A
Solution:
Points are $(k, 1)(5,5)$ and $(10,7)$

$$
x_{1}=k, x_{2}=5, x_{3}=7 \quad y_{1}=1, y_{2}=5, y_{3}=7
$$

Points are collinear then area of $\Delta=0$
Area of $\Delta=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}=\left(y_{3}-y_{1}\right)+x_{3}=\left(y_{1}-y_{2}\right)\right.$

$$
\begin{aligned}
& 0=-2 k+30-40 \\
& 0=-2 k-10 \\
& -2 k=10 \\
& K=-5
\end{aligned}
$$

B. ROOTS OF EQUATION

Que.2. If $\boldsymbol{\alpha}+\boldsymbol{\beta}=-2$ and $\boldsymbol{\alpha} \boldsymbol{\beta}=-3$, then $\boldsymbol{\alpha}, \boldsymbol{\beta}$ are two roots of the equation, which is:
a. $x^{2}-2 x-3=0$
b. $x^{2}+2 x-3=0$
c. $x^{2}+2 x+3=0$
d. $x^{2}-2 x+3=0$

> Answer: $B$
> Solution:
> If $\boldsymbol{\alpha}+\boldsymbol{\beta}=-2$
> Q.E. is $x^{2}-(\boldsymbol{\alpha}+\boldsymbol{\beta}) x+\boldsymbol{\alpha} \cdot \boldsymbol{\beta}=0$
> $x^{2}-(-2) x+(-3)=0$
> $x^{2}+2 x-3=0$
c. TYPES OF MATRICES

Que. If $A=\left[\begin{array}{cc}-5 & 2 \\ 1 & -3\end{array}\right]$, then $\operatorname{adj} A$ is:
a. $\left[\begin{array}{ll}-3 & -2 \\ -1 & -5\end{array}\right]$
b. $\left[\begin{array}{cc}3 & -2 \\ -1 & 5\end{array}\right]$
c. $\left[\begin{array}{ll}5 & 1 \\ 2 & 3\end{array}\right]$
d. $\left[\begin{array}{ll}3 & 2 \\ 1 & 5\end{array}\right]$

Answer: A
Solution:
Given $A=\left[\begin{array}{cc}-5 & 2 \\ 1 & -3\end{array}\right]$
The co-factor of $A$
$A_{11}=(-1)^{1+1} \cdot(-3)=(-1)^{2} \cdot(-3)=-3$
$A_{12}=(-1)^{1+2} \cdot(1)=(-1)^{3} \cdot(-1)=-1$
$A_{21}=(-1)^{2+1} \cdot(2)=(-1)^{3} \cdot(-2)=-2$
$A_{22}=(-1)^{1+2} \cdot(5)=(-1)^{4} \cdot(-5)=-5$
Matrix made by co-factor of $A$
$B=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]=\left[\begin{array}{ll}-3 & -1 \\ -2 & -5\end{array}\right]$
$\operatorname{Adj} A=B^{\top}$
$\left[\begin{array}{ll}-3 & -1 \\ -2 & -5\end{array}\right]^{T}$
$\left[\begin{array}{ll}-3 & -2 \\ -1 & -5\end{array}\right]$

Que4.If $A$ if $A=\left[\begin{array}{lll}2 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 2 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 2\end{array}\right]$, then $A^{5}=$

| a. 5 A | b. 10 A |
| :--- | :--- |
| c. 16 A | d. 32 A |

Answer: C
Solution:

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \\
& A^{5}=\left[\begin{array}{ccc}
2^{5} & 0 & 0 \\
0 & 2^{5} & 0 \\
0 & 0 & 2^{5}
\end{array}\right] 2^{4}\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \\
& =16 \mathrm{~A}
\end{aligned}
$$

1. LINEAR INEQUALITIES IN ONE VARIABLE:

Que.1. Solve $\frac{x}{2}>8$
a. $x<8$
b. $x>16$
c. $x=8$
d. $x=4$

Answer: C
Solution:

$$
\begin{aligned}
& \frac{x}{2}>8 \\
& =x>8 \times 2 \\
& =x>16
\end{aligned}
$$

2. LINEAR INEQUALITIES IN TWO VARIABLE:

Que.2. The Linear relationship between two variables in an inequality
a. $x+b y$.5.c
b. axby.c
c. $a x y+b y$.5..c
d. $a x+b x y . c$

Answer: A
Solution:
The linear relationship between two variables in an inequality is given by ax +by.5.c
Any linear function that involves an inequality sign is a linear inequality. It may be of one variable, or, of more than one variable

$$
\text { Ex: } 3 x+y<6, x-y-2 \text {, etc }
$$

Que.3. Solve $-1<2 x+3<6$
a. $-2<x<3 / 2$
b. $2<x<23 / 2$
c. $2<x<3 / 2$
d. $-3<x<23 / 3$

Answer: A
Solution:

$$
=-1<2 x+3<6
$$

Subtract 3 from all 3 sides

$$
\begin{aligned}
& =-1-3<2 x+3-3<6-3 \\
& =-4<2 x<3
\end{aligned}
$$

Divide all sides by 2

$$
=-2<x<23
$$

Que.4. The inequalities $5 \times 1+4 \times 2 \geq 9, \times 1+\times 2 \geq 3, \times 1 \geq 0$ and $\times 2 \geq 0$ is correct?
a. True
b. False
c. Not sure
d. None

Answer: A
Solution:
We draw the straight lines $5 \times 1+4 \times 2=9$ and $\times 1+\times 2=3$.

Table for $5 \times 1+4 \times 2=9$

| $x_{1}$ | 0 | $9 / 5$ |
| :---: | :---: | :---: |
| 2 | $9 / 4$ | 0 |

Table for $\times 1+x_{2}=3$

| $x_{1}$ | 0 | 3 |
| :---: | :---: | :---: |
| $x_{2}$ | 3 | 0 |

Now, if we take the point $(4,4)$, we find

$$
\begin{aligned}
& 5 \times 1+4 \times 2 * 9 \text { or, } 36^{*} 9 \text { (True) } \\
& \times 1+\times 2 * 3 \\
& \text { i.e. } 4+4^{*} 3 \\
& 8 * 3 \text { (True) }
\end{aligned}
$$

Hence $(4,4)$ is in the region which satisfies the inequalities
3. ABSOLUTE INEQUALITY:

Chapter 3
Que.5. Solve the absolute value inequality $2|3 x+9|<36$
a. $-9<x>3$
b. $-9<x<3$
c. $9<x>3$
d. $9<x<3$

Answer: $B$
Solution:

$$
\begin{aligned}
& 2|3 x+9| 2<3622|3 x+9| 2<362 \\
& |3 x+9|<18|3 x+9|<18 \\
& -18<3 x+9<18-18<3 x+9<18 \\
& -18-9<3 x+9-9<18-9-18-9<3 x+9-9<18-9 \\
& -27<3 x<9-27<3 x<9 \\
& -273<3 \times 3<93-273<3 \times 3<93 \\
& -9<x<3 .
\end{aligned}
$$

Que.6. On solving the inequalities $5 x+y \leq 100, x+y \leq 60, x \geq 0, y \geq$, we get the following solution:
a. $(0,0),(20,0),(10,50)$ \& $(0,60)$
b. $(0,0),(60,0),(10,50)$ \& $(0,60)$
c. $(0,0),(20,0),(0,100)$ \& $(10,50)$
d. None

Answer: B
Solution:
On Solving the inequalities $5 x+y \leq 100, x+y \leq 60, x \geq 0, y \geq$, we get $(0,0),(20,0),(10,50)$ \& $(0,60)$ all satisfies above inequalities
4. GRAPHICAL METHOD

Que.7. The graph to express the inequality $x+y 56$ is:
$a$.

b.

c. Either a or b
d. None of these

Chapter 3

Answer: A
Solution:
$x+y=56$ is graphically represent by


Que. 8. common region of the inequalities is:

a. BCDB and DEFD
b. unbounded
c. HFGH
d. ABDFHKA

Answer: A
Solution: common Region of the inequalities is $A B D F H K A$

1. SIMPLE INTEREST

Que. 1. Rohika invested ' 70,000 in a bank at the rate of $6.5 \%$ p.a. simple interest rate. He received ` 85,925 after the end of term. Find out the period for which sum was invested by Rahul.
a. 3.5 years
b. 35 years
c. 0.35 years
d. 36 years

Answer: A
Solution:

$$
\begin{aligned}
& \text { We know A }=P(1+i t) \\
& \text { ie. } 85925=70000\left(1+\frac{6.5}{100} \times t\right) \\
& \frac{85925}{70000}=\frac{\mathbf{1 0 0}+6.5 t}{100} \\
& \frac{85925 \times 100}{\mathbf{7 0 0 0 0}}=100=6.5 t \\
& 22.75=6.5 t, \\
& =>t=3.5 \\
& \text { time }=3.5 \text { years }
\end{aligned}
$$

Que. 2. Sonia deposited '50,000 in a bank for two years with the interest rate of $5.5 \%$ p.a. How much interest would she earn?
a. 550
b. 55000
c. 55
d. 5500

Answer: D
Solution:
Required interest amount is given by

$$
\begin{aligned}
& 1=P \times i \times t \\
& 50000 \times \frac{5.5}{100} \times 2=5500 \\
& =>\text { interest }=5500
\end{aligned}
$$

Chapter 4

Que. 3. Shíla has a sum of 46,875 was lent out at simple interest and at the end of 1 year 8 months the total amount was` 50,000. Find the rate of interest percent per annum.
a. $0.4 \%$
b. $4 \%$
c. $40 \%$
d. $0.04 \%$

Answer: B
Solution:
We know $A=P(1+$ ti $)$
i.e. $50,000=46875(1+i \times(8) / 12)$
$(1.067-1) \times 3 / 5=i$
$i=0.04=>$ rate $=4 \%$
2. COMPOUND INTEREST

Que. 4. Ascertain the compound value and compound interest of an amount of 75,000 at 8 percent compounded semiannually for 5 years.
a. 30615
b. 36051
c. 36501
d. 36015

Answer: D
Solution:
computation of compound value and compound interest
semiannual Rate of interest $(i)=8 / 2=4 \%$

$$
n=5 \times 2=10, P=75,000
$$

$$
\begin{aligned}
& \text { Compound value }=P(1+i) n \\
& =75,000(1+4 \%) 10 \\
& =75,000 \times 1.4802={ }^{\prime} 1,11,015 \\
& \text { compound Interest }=` 1,11,015 `^{\prime} 75,000=` 36,015
\end{aligned}
$$

Que. 5. Calculate if ' 10,000 is invested at interest rate of $12 \%$ per

Chapter 4
annum, what is the amount after 3 years if the compounding of interest is done?
a. 14049.28
b. 14185.19
c. 14857.61
d. 14094.28

Answer: $B$
Solution:

$$
\begin{aligned}
& 10,000[1+12 /(100 \times 2)]^{3 \times 2} \\
& =10,000(1+0.06)^{6} \\
& =10,000 \times 1.418519 \\
& ={ }^{`} 14,185.19
\end{aligned}
$$

Que. 6. RS. 2000 is invested at annual rate of interest off $10 \%$. What is the amount after two years if compounding is done:
(i) ANNUALLY
a. 2420
b. 2431
c. 2440
d. 2469

Answer: A
Solution:

$$
\begin{aligned}
A_{n} & =P(1+i)^{n} \\
A_{2} & =2000(1+0.1)^{2} \\
& =2000 \times(1.1)^{2} \\
& =\text { RS. } 2000 \times 1.21 \\
& =\text { RS. } 2420
\end{aligned}
$$

(ii)SEMI-ANNUALLY
a. 2420
b. 2431
c. 2440
d. 2469

Answer: A

Chapter 4

Solution:

$$
\begin{aligned}
& \begin{array}{l}
A_{n}=P(1+i)^{n} \\
n=2 \times 2=4 \\
i=0.1 / 2=0.05 \\
\hline A_{4}=2000(1+0.05)^{4} \\
\quad=2000 \times 1.2155=\text { RS. } 2,431
\end{array}
\end{aligned}
$$

(iii) QUARTERLY
a. 2420
b. 2431
c. 2440
d. 2436.80

Answer: D
Solution:

$$
\begin{aligned}
& n=4 \times 2=8 \\
& \begin{array}{l}
i=0.1 / 4=0.025 \\
A_{8}=2000(1+0.025) 8 \\
\\
=2000 \times 1.2184 \\
\\
=\text { RS. } 2,436.80
\end{array}
\end{aligned}
$$

(iv )MONTHLY
a. 2420
b. 2431
c. 2440.58
d. 2436.80

Answer: C
Solution:

$$
\begin{aligned}
& n=12 \times 2=24 \\
& \begin{array}{l}
i=0.1 / 12=0.00833 \\
\hline A 24=2000(1+0.00833) 24 \\
\quad=2000 \times 1.22029=\text { RS. } 2440.58 \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

3. EFFECTIVE INTEREST

Que. 7. Relationship between annual nominal rate of interest and annual effective rate of interest, if frequency of compounding is greater than one:
a. Effective rate > Nominal rate
b. Effective rate < Nominal rate
c. Effective rate $=$ Nominal rate
d. None of the above

Answer: A
Solution:
Effective rate > Nominal rate

Que. 8. Which is a better investment $3 \%$ per year compounded monthly or $33.2 \%$ per year simple interest? Given that

$$
(1+0.0025)^{12}=1.0304 .
$$

a. $3.04 \%$
b. $3.4 \%$
c. $30.4 \%$
d. $0.34 \%$

Answer: A
Solution:

$$
\begin{aligned}
& i=3 / 12=0.25 \% \\
& =0.0025 \\
& n=12 \\
& E=(1+i) n-1 \\
& =(1+0.0025)^{12-1} \\
& =1.0304-1=0.0304 \\
& =3.04 \% \\
& \hline
\end{aligned}
$$

Effective rate of interest being less than $3.2 \%$, the simple interest $3.2 \%$ per year is the better investment.
4. ANNUITY
(a) FUTURE VALUE
(i) ORDINARY/ NORMAL

Que. 9. Bichara invest` 3000 in a two year investment that pays you $12 \%$ per annum. Calculate the future value of the investment.
a. 3,763.20
b. 376.320
c. 37632.00
d. 37.6320

Answer: A
Solution:

$$
\begin{aligned}
& \text { We know } F=\text { C.F. }(1+i)^{n} \\
& \text { Where } F=\text { Future value } \\
& \text { C.F. }=\text { Cash flow }=` 3,000 \\
& i=\text { rate of interest }=0.12, n=\text { time period }=2 \\
& F=R S .3,000(1+0.12)^{2} \\
& =\text { RS. } 3,000 \times 1.2544=` 3,763.20
\end{aligned}
$$

(ii )DUE
Que. 10. Me. X invest Rs. 10,000 every year starting from today for next: 10 years suppose interest rate is $8 \%$ per annual compounded annually. $8 \%$ per annual compounded annually. calculate future value of the annuity.
a. RS. 1,56,454.88
b. RS.1,56,554.88
c. RS. $1,44,865.625$
d. None

Answer: A
Solution:
Annual Installment (A) $=10,000 A=? R=8 \%$ p.a.c.í $n=10$ years
Future value of Annuity due
$=A_{n, i}=\frac{A}{I}\left[(1+i)^{n}-1\right](1+i)$
$=\frac{10,000}{0.08}\left[(1+0.08)^{10}-1\right](1+0.08)$
$=\frac{10,000}{0.08}\left[(1.08)^{10}-1\right](1+0.08)$
$=1,56454.88$

## (b) PRESENT VALUE

## (i) ORDINARY

Que. 11. A builder borrows Rs. 2550 to be paid back with compound interest at the rate of $4 \%$ per annum by the end of 2 years in two equal yearly installments. How much will each installment be?
a. RS. 1352
b. RS. 1377
c.RS. 1275
d. RS. 1283

Answer: A
Solution:
Amount $=$ RS 2550
Rate $=4 \%$ per annum
Time $=2$ years
Applying the formula

Here we have two equal installments, so
$P=\frac{X}{\left[1+\frac{r}{100}\right]^{2}}+\frac{X}{\left[1+\frac{r}{100}\right]}$
$=2550=\frac{X}{\left[\frac{4}{100}\right]^{2}}+\frac{X}{\left[1+\frac{4}{100}\right]}$
=RS. 1352

1. FACTORIAL

Que. 1. The value of $N$ in $\frac{1}{7!}+\frac{1}{8!}=\frac{N}{9!}$ is.
a. RS. 81
b. RS. 78
c. RS. 89
d. RS. 64

Answer: A
Solution:

$$
\begin{aligned}
& \text { If } \frac{1}{7!}+\frac{1}{8!}=\frac{N}{9!} \\
& =\frac{9 \times 8 \times 1}{9 \times 8 \times 7!}-\frac{9 \times 1}{9 \times 8!}=\frac{N}{9!} \\
& =\frac{72}{9!}+\frac{9}{9!}=\frac{N}{9!} \\
& =\frac{81}{9!}=\frac{N}{9!}
\end{aligned}
$$

Que. 2. Evaluate: $6!/(2!\times 4!)$
a. 15
b. 78
c. 8
d. 4

Answer: A
Solution:

$$
\begin{aligned}
& 6!/(2!\times 4!) \\
& =(1 \times 2 \times 3 \times 4 \times 5 \times 6) /[(1 \times 2) \times(1 \times 2 \times 3 \times 4)] \\
& =15
\end{aligned}
$$

2. PERMUTATION

Que. 3. If $\boldsymbol{n}_{\boldsymbol{P} \boldsymbol{r}}=720, \boldsymbol{n}_{\boldsymbol{C}_{\boldsymbol{r}}}=120$, then $r$ is
a. 3
b. 4
c. 5
d. 6

Answer: A
Solution:
Given $\boldsymbol{n}_{\boldsymbol{P}_{r}}=720, \boldsymbol{n}_{C_{r}}=\mathbf{1 2 0}$
We know that
$\frac{\boldsymbol{n}_{C_{r}}}{\boldsymbol{n}_{\boldsymbol{P}_{r}}}=\frac{\mathbf{1}}{\boldsymbol{r}}$
$\frac{120}{720}=\frac{1}{r}$
$\frac{1}{6}=\frac{1}{\cdot L}$
$R=3$

## (A) NUMBER SYSTEM

Que. 4. A bag contains 4 red, 3 black, and 2 white balls. In how many ways 3 balls can be drawn from this bag so that they include at least one black ball?

| a. 64 | b. 46 |
| :--- | :--- |
| c. 85 | d. None |

Answer: A
Solution:
No. of Total balls $=4$ Red +3 Black +2 white $=9$ balls
2. If 3 are drawn from this bag getting at least one black balls.

It may be following cases:
(a) $1 B$ \& 2 other $=3_{C_{1} \times 6_{C_{2}}}=3 \times 15=45$
(b) $2 B$ \& 1 other $=3_{C_{2} \times} 6_{C_{1}}=3 \times 6=18$
(c) $3 B$ \& $O$ other $=3_{C_{3} \times 6} C_{C_{0}}=1 \times 1=1$

Total ways $=45+18+1$

$$
=64
$$

Que. 5. Compute the sum of 4 digit numbers which can be formed with the four digits 1,3,5,7, if each digit is used only once in each arrangement.
a. 1,06,656
b. 1,46,800
c. 7,19,500
d. 4,10,800

Answer: A
Solution:
The number of arrangements of 4 different digits taken 4 at a time is given by 4P4 $=4!=24$.
All the four digits will occur equal number of times at each of the posítions, namely ones, tens, hundreds, thousands.
Thus, each digit will occur $24 / 4=6$ times in each of the positions. The sum of digits in one's position will be $6 \times(1+3+5+7)=96$.
similar is the case in ten's, hundred's and thousand's places. Therefore the sum will be $96+96 \times 10+96 \times 100+96 \times 1000$ $=1,06,656$.
(B) LETTER SYSTEM

Que. 6. How many arrangements can be made out of the letters of the word 'DRAUGHT', the vowels never beings separated?
a. 1440
b. 720
c. 740
d. 750

Answer: A
Solution:
The word 'DRAUGHT' consists of 7 letters of which 5 are consonants and two are vowels.
in the arrangement we are to take all the 7 letters but the restriction is that the two vowels should not be separated. We can view the two vowels as one letter.
The two vowels $A$ and $U$ in this one letter can be arranged in $2!=$

2 ways. (i) Au or (ii) WA. Further, we can arrange the six letters: 5 consonants and one letter compound letter consisting of two vowels. The total number of ways of arranging them is $6 P 6=6$ ! $=720$ ways.
Hence, by the fundamental principle, the total number of arrangements of the letters of the word DRAUGHT, the vowels never being separated

$$
=2 \times 720=1440 \text { ways. }
$$

Que. 7. A person has ten friends of whom six are relatives. If $h$ invites five guests 'SUCH' that three of them are his relatives, then the tot number of ways in which he can invite them are:
a. 30
b. 60
c. 120
d. 75

Answer: C
Solution:
Total Friend $=10$
No. of Relative $=6$
No. of Friend $=4$
No. of ways to invite five guest such that three of them are his relatives.

$$
\begin{aligned}
& =\mathbf{6}_{C_{3}} \times \mathbf{4}_{\boldsymbol{C}_{2}} \\
& =6 \times 5 \times 4 \times 4 \times 3 \\
& =3 \times 2 \times 12 \times 1 \\
& =20 \times 6=120
\end{aligned}
$$

Que. 8. The number of words from the letter of word BHARAT, in which $B$ and $H$ will never come together, is
a. 360
b. 240
c. 120
d. None

## Answer: B

Solution:
Given Word
'BHARAT'
123456
Total No. of ways arrange the letter of word $=6!/ 2!=720 / 2=360$ If Letter ' $B$ ' and ' $H$ ' are never taken together

$$
=360-120=240
$$

## 3. CIRCULAR PERMUTATION

Que. 9.m men and $n$ women are to be seated in a row so that no two women sit together. If $m>n$, then the number of ways in which they can be seated is
a. $\frac{m!(m+1)!}{(m-n+1)!}$
b. $\frac{m!(m-1)!}{(m-n+1)!}$
C. $\frac{(m-1)!(m+1)!}{(m-n+1)!}$
d. none

## Answer: A

## Solution:

First arrange $m$ men, in a row in $m$ ! ways. Since $n<m$ and no two women can sit together, in any one of the $m$ ! arrangement, there are places in which $n$ women can be arranged in
$\boldsymbol{m}+\mathbf{1}_{P_{\boldsymbol{n}}}=\frac{\boldsymbol{m}!\cdot(m+1)!}{\{(m+1)-n\}!}=\frac{m!(m+1)!}{(m-n+1)!}$

Que. 10. Six persons $A, B, C, D, E$ and Fare to be seated at a circular table. In how many ways can this be done, if A must always have either $B$ or $C$ on his right and $B$ must always have either $C$ or $D$ on his right?
a. 3
b. 6
c. 12
d. 18

Answer: D
Solution:
using the given restrictions, we must have $A B$ or $A C$ and $B C$ or $B D$.
Therefore, we have the following alternatives
$A, B, C, D, E, F$ which gives (4-1)! Or 31 ways.
$A B D, C, E, F$ which gives (4-1)!'Or 31 ways.
$A C, D B, E, F$ which gives $\left(4^{\prime}-1\right.$ ) or 31 ways.
Hence, the total number of ways are

$$
\begin{aligned}
& =3!+3!+3! \\
& =6+6+6=18 \text { ways }
\end{aligned}
$$

Que. 11. Find the number of ways in which 5 people $A, B, C, D, E$ can be seated at a round table, such that: $A$ and $B$ must always sit together.
a. 20
b. 22
c. 12
d. 56

Answer: C
Solution:
If we wish to seat $A$ and $B$ together in all arrangements, we can, consider these two as one unit, along with 3 others.
So effectively we've to arrange 4 people in a circle, the number of ways being (4-1)! or 6 .
But in each of these arrangements, A and B can themselves interchange places in 2 ways
Therefore, the total number of ways will be $6 \times 2=12$.

Que. 12. In how many ways can the top 3 ranks be awarded for a particular Exam/competition involving 12 participants?
a. 85 ways
b. 1320 ways.
c. 1230 ways
d. none

Answer: C
Solution:
There are 12 participants and 3 ranks, hence if a person secures the first rank then he cannot get the second rank,
Likewise, if a person secures the second rank he cannot secure the third rank. So, $12 \times 11 \times 10=1320$ ways.
Therefore, there are 1230 ways in which the top 3 ranks can be awarded.
4. COMBINATION

Que. $1^{3.1000} C_{98}-\mathbf{9 9 9}_{C_{97}}+x_{C_{901}}$, Find $x$ :
a. 999
b. 998
c. 997
d. 1000

Answer: A
Solution:

$$
\begin{aligned}
& 1 / 1000_{C_{98}}-\text { 999 }_{C_{97}}+x_{C_{901}} \\
& \therefore n_{C_{r}}+n_{C_{r-1}}=n+1_{C_{r}} \\
& \text { Then } x=999\left[999_{C_{901}}+{ }^{999}{ }_{C_{98}}\right]
\end{aligned}
$$

Que. 14. The number of triangle that can be formed by choosing the vertices from a set of 12 points, seven of which lie on the same straight line, is:
a. 185
b. 175
c. 115
d. 105

Answer: A
Solution:
Here $n=12, k=7$
No. of triangle are formed from ' $n$ ' point
in which ( $k$ ) points are collinear $=\boldsymbol{n}_{C_{3}}-\boldsymbol{k}_{C_{3}}$
$12_{C_{3}}-7_{C_{3}}$
$\frac{12 \times 11 \times 10}{3 \times 2 \times 1}-\frac{7 \times 6 \times 5}{3 \times 2 \times 1}$
$=220-35=185$

Que. 15. A boy has 3 library tickets and 8 books of his interest in the library of these 8 , he does not want to borrow Mathematics part-11 unless Mathematics part-1 is also borrowed? In how many ways can he choose the three books to be borrowed?

| a. 41 | b. 51 |
| :--- | :--- |
| c. 61 | d. 71 |

Answer: A
Solution:
There are two cases possible
CASE 1: When Mathematics Part - 11 is borrowed (i.e. it means Mathematics Part-1 has also been borrowed) Number of ways $=$ 6 CI $=6$ ways
CASE 2: When Mathematics part-11 is not borrowed (i.e. 3 books are to be selected out of 7) Number of ways $=7$ cz $=35$ ways Therefore, total number ways $35+6=41$ ways

Que. 16. An examination paper consists of 12 questions divided into parts $A$ and $B$. Part $A$ contains 7 -questions and part $B$ contains 5 questions. A candidate is required to attempt 8 questions selecting at least from each part. In how many
maximum ways can the candidate select the questions?

| a. 35 | b. 175 |
| :--- | :--- |
| c. 210 | d. 420 |

Answer: D
Solution:

The candidate can select 8 Questions.by selecting at last" three from each part in the following ways: 3 questions from part $A$ and 5 questions from part $B=7 C 3 \times 5 C 5=35$ ways 4 questions from part $A$ and part $B$ each $=7 C 4 \times 5 C 4=175$ ways.
Questions from part $A$ and 3 questions from part $B \cdot=7 C 5 \times 5 C_{3}$ $=210$ ways.
Hence, the total number of ways in which the candidate can select the question will be $=35+175+210=420$ ways

1. SEQUENCE

Que. 1. A sequence of odd positive integers within 11 is
a. 1,3,5,7,9
b. $2,4,6,10$
c. Both
d. None

Answer: A
Solution:
A sequence of odd positive integers within 11 is $1,3,5,7,9$

Que. 2. A sequence of numbers is called?
a. geometric progression
b. Arithmetic Progression (AP)
c. Harmonic Progression (HP)
d. All

Answer: D
Solution:
Harmonic Progression (HP)
A sequence of numbers is called a harmonic progression if the reciprocal of the terms are in AP. In simple terms, $a, b, c, d, e, f$ are in $H P$ if $1 / a, 1 / b, 1 / c, 1 / d, 1 / e, 1 / f$ are in $A P$.

Arithmetic Progression (AP)
A sequence of numbers is called an arithmetic progression if the difference between any two consecutive terms is always same.

Geometric Progression (GP)
A sequence of numbers is called a geometric progression if the ratio of any two consecutive terms is always same.
2. SERIES

Que. 3. Find the sum of the series $-2,6,-18 \ldots . .7$ terms?
a. 1554
b. -1094
c. 1094
d. -8223

Answer: B
Solution:
Here $a=-2, r=-3, n=7$

$$
\begin{aligned}
& S_{n}=a \cdot\left(1-r^{n}\right) /(1-r) \text { when } r<1 \\
& s_{7}=(-2)\left[1-(-3)^{7}\right] /[1-(-3)] \\
& =(-2)(1+2187) / 4 \\
& =(-2)(2188) / 4 \\
& S_{7}=-1094
\end{aligned}
$$

Que. 4. If the sum of $n$ terms of an $A P$ is $3 n^{2}-n$ and its common difference is 6 , then its first term is:
a. 3
b. 2
c. 1
d. 4

Answer: C
Solution:

$$
\begin{aligned}
& \text { Given } S_{n}=\left(3 n^{2}-n\right) \\
& n=1, S_{1}=3(1)^{2}-1=3-1=2 \\
& n=2, S_{2}=3(2)^{2}-1=12-1=11 \\
& n=3, S_{3}=3(3)^{2}-1=27-1=26 \\
& T_{1}=S_{1}=2 \\
& T_{2}=S_{2}=2-S_{1}=11-2=9 \\
& T_{3}=S_{3}-S_{2}=26-11=15 \\
& \text { First term of series } \\
& T_{1}=2
\end{aligned}
$$

3. ARITHMETIC PROGRESSION

Que.5. If $5^{\text {th }}$ and $12^{\text {th }}$ terms of an A.P. are 14 and 35 respectively, find the A.P.
a. $2,5,8,11,14$,
b. $2,3,8,11,12$,
c. $2,3,4,11,14$,
d. $2,5,8,1,4$

Answer: A
Solution:
Let a be the first term $\mathcal{E} d$ be the common difference of A.P.

$$
\begin{aligned}
& t_{5}=a+4 d=14 \\
& t_{12}=a+11 d=35
\end{aligned}
$$

On solving the above two equations,

$$
7 d=21=\text { i.e., } d=3
$$

and $a=14-(4 \times 3)=14-12=2$
Hence, the required A.P. is $2,5,8,11,14$,

Que.6. The $10^{\text {th }}$ term of an A. P. is -15 and $31^{\text {st }}$ term is -57 , find the $15^{\text {th }}$ term.
a. -20
b. 20
c. -25
d 25
Answer: C
Solution:
Let a be the first term and d be the common difference of the A.P.
Then from the formula:
$t_{n}=a+(n-1) d$, we have
$t_{10}=a+(10-1) d=a+9 d t_{31}=a+(31-1) d=a+30 d$
We have,

$$
\begin{aligned}
& a+9 d=-15 \ldots(1) \\
& a+30 d=-57 \ldots(2)
\end{aligned}
$$

Solve equations (1) and (2) to get the values of a and $d$.
subtracting (1) from (2), we have

$$
\begin{aligned}
& 21 d=-57+15=-42 \\
& \text { Again from (1), a=-15-gd }=-15-9(-2)=-15+18=3
\end{aligned}
$$

Now t15 $=a+(15-1) d=3+14(-2)=-25$

Que.7. Which term of the A. P.: $5,11,17 \ldots$ is 119 ?
a. $n=20$
b. $n=2$
c. $n=30$
d. $n=19$

Answer: A
Solution:
Here $a=5, d=11-5=6$
$t_{n}=119 \mathrm{We}$ know that
$t_{n}=a+(n-1) d 119=5+(n-1) \times 6$
$(n-1)=(119-5) / 6=19$
$n=20$,
Therefore, 119 is the 20th term of the given A.P.
Que.8. The sum of the series $-8,-6,-4 \ldots n$ terms is 52 . The number of terms $n$ is:
a. 11
b. 12
c. 13
d. 10

Answer: C
Solution:
Given series
$-8,-6,-4, \ldots . .$. n term
Let term $(a)=-8$
common difference $(d)=(-6)-(-8)$

$$
=-6+8=2
$$

sum of ' $n$ ' term $\left(S_{n}\right)=52, n=$ ?
We know that $S_{n}=n / 2(2 a+(n-1) d)$

$$
\begin{aligned}
& 52=\frac{n}{2}[2 \times(-8)+(n-1)(2)] \\
& 104=n[2 n-18] \\
& 104=2 n^{2}-18 n
\end{aligned}
$$

Chapter 6

$$
\begin{aligned}
& 2 n^{2}-18 n-104=0 \\
& n^{2}-9 n-52=0 \\
& (n-13)(n+4)=0 \\
& \text { If } n-13=0 \rightarrow n=13 \text { and } n+4=0 \rightarrow n=-4
\end{aligned}
$$

Que.g. If the $P^{\text {th }}$ term of an A.P. is ' $q$ ' and the $q^{\text {th }}$ term is ' $p$ ', then its $r^{\text {th }}$ term is
a. $p+q-r$
b. $p+q+r$
c. $p-q-r$
d. $p-q$

Answer: A
Solution:
Let $1^{\text {st }}$ term of AP is ' $a$ ' And common difference is ' $d$ '
Given $T_{p}=q$

$$
\begin{equation*}
a+(p-1) d=q \tag{i}
\end{equation*}
$$

$a+p d-d=q$ $\qquad$
and $T_{p}=P$

$$
\begin{equation*}
a+(q-1) d=p \tag{}
\end{equation*}
$$

$a+a d-d=p$ $\qquad$
equation ( $i$ ) and equation ( ( $i i$ )

$$
\begin{aligned}
& a+p d-d=p \\
& a+q d-d=p \\
& --+- \\
& p d-q d=q-p \\
& d(p-q)=-(p-q) \\
& d=-1
\end{aligned}
$$

Putting $d=-1$ in equation ( $i$ )

$$
a+p(-1)-(-1)=q a-p+1=q a=p+q-1
$$

Then, $T_{r}=a+(r-1) d$

$$
=p+q-1+(r-1)(-1)
$$

$$
=p+q-1-r+1
$$

4. GEOMETRIC PROGRESSION

Que.10. Which term of the G. P.: $5,-10,20,-40, \ldots$ is 320 ?
a. $7^{\text {th }}$
b. $8^{\text {th }}$
c. $10^{\text {th }}$
d. $1^{\text {st }}$

Answer: A
Solution:
In this case, $a=5 ; r=\frac{-10}{5}=-2$.
suppose that 320 is the nth term of the G.P. By the formula,

$$
\begin{aligned}
& t n=a r^{n-1}, \text { we get } \\
& t_{n}=5 \cdot(-2)^{n-1} \\
& \therefore 5 \cdot(-2)^{n-1}=320 \quad \text { (Given) } \\
& \therefore(-2)^{n-1}=64=(-2)^{6} \\
& \therefore n-1=6 \\
& \therefore n=7
\end{aligned}
$$

Hence, 320 is the 7 th term of the G.P.

Que.11. The sum of three numbers in a GP is 26 and their product is 216. and the numbers.
a.2,6 and 18
b. 3, 7, and 11
c. Both
d. None of these

Answer: C
Solution:
Let the numbers be $a / r, a$, ar.

$$
=>(a / r)+a+a r=26
$$

$$
=>a(1+r+r 2) / r=26
$$

Also, it is given that product $=216$

$$
\begin{aligned}
& =>(a / r) \times(a) \times(a r)=216 \\
& =>a^{3}=216 \\
& =>a=6 \\
& =>6(1+r+r 2) / r=26 \\
& =>(1+r+r 2) / r=26 / 6=13 / 3 \\
& =>3+3 r+3 r 2=13 r \\
& =>3 r 2-10 r+3=0 \\
& =>(r-3)(r-(1 / 3))=0 \\
& =>r=3 \text { or } r=1 / 3
\end{aligned}
$$

Thus, the required numbers are 2,6 and 18 .

Que.12. Find the sum of $1^{\text {st }} 8$ terms of G.P series $1+2+4+8+\ldots .$.
a. 155
b. 255
c. 185
d. -822

Answer: B
Solution:
Here $a=1, r=2, n=8$

$$
\begin{aligned}
& S_{n}=a \cdot\left(r^{n}-1\right) /(r-1) \text { when } r>1 \\
& S_{8}=1 \cdot\left(2^{8}-1\right) /(2-1) \\
& =1(256-1)=255
\end{aligned}
$$

Thus $S_{8}=255$

Que.13. If $n$ geometric means between $a$ and $b$ be $G_{1}, G_{12}, \ldots . G_{n}$ and a geometric mean be $c$, then the true relation is
a. $G_{11}, G_{2}, \ldots . G_{n}=G_{1}$
b. $G_{1}, G_{12}, \ldots G_{n}=G_{1}^{1 / n}$
c. $G_{11}, G_{22}, \ldots . G_{n}=G_{1}^{n}$
d. None

Chapter 6

Answer: C
Solution:
Here $G_{1}=(a b)^{\frac{1}{2}}$ and

$$
\begin{aligned}
& G_{1}=a r^{1}, G_{2}=a r^{2}, \ldots G_{n}=a r^{n} . \text { Therefore } \\
& G_{1} \cdot G_{2} \cdot G_{3} \ldots . G_{n}=a^{n} r^{1+2+\cdots+n}=a^{n} r^{n(n+1) / 2} \text { but } \\
& a r^{n+1}=b \\
& r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}
\end{aligned}
$$

Therefore, the required product is $a^{n}\left(\frac{b}{a}\right)^{\frac{1}{I(n+1)}} n(n+1) 2$

$$
\begin{aligned}
& =(a b)^{\frac{n}{2}} \\
& =\left\{(a b)^{\frac{1}{2}}\right\}^{n} \\
& =c^{n}
\end{aligned}
$$

Note: It is a well-known fact.

Chapter 7

1. SET

Que.1. If $A=\{1,2,3,4,5,6,7\}$ and $s=\{2,4,6,8\}$. cardinal number of $A$ - $B$ is:
a. 4
b. 9
c. 9
d. 7

Answer: A
Solution:

$$
\begin{aligned}
& A=\{1,2,3,4,5,6,7\} \\
& B=\{2,4,6,8\} \\
& A-B=\{1,2,3,4,5,6,7\}-\{2,4,6,8\} \\
& =\{1,3,5,7\} \\
& n(A-B)=4
\end{aligned}
$$

Que.2. If $A=\{1,2\}$ and $B:::\{3,4\}$. Determine the number of relations from $A$ and $B$
a. 3
b. 16
c. 5
d. 6

Answer: B
Solution:

$$
\begin{aligned}
& \text { Given } A=\{1,2\} \\
& B=\{3,4\} \\
& \begin{array}{l}
A \times B=\{1,2\} \times\{3,4\} \\
=\{(1,3)(1,4)(2,3)(2,4)\} \\
n(A \times B)=4
\end{array}
\end{aligned}
$$

No. of relation from $A$ and $B=2^{\prime \prime}$
$=2^{4}=16$ or A liter Shortcut:
$A=\{1,2\}, n(A)=2$
$B=\{3,4\}, n(B)=2$
No. of Relation from $A$ and $B=2 m^{*} n$

$$
=22^{*} 2=24=16
$$

Que.3. The cartesian Product $B \times A$ is equal to the cartesian product $A \times B$. Is it True or False?
a. True
b. False
c. partial true
d. not sure

Answer: B
Solution:
Let $A=\{1,2\}$ and $B=\{a, b\}$.
The cartesian product $A \times B=\{(1, a),(1, b),(2, a),(2, b)\}$
and the cartesian product $B \times A=\{(a, 1),(a, 2),(b, 1),(b, 2)\}$.
This is not equal to $A \times B$.

Que.4. The numbers of proper sub set of the set $\{3,4,5,6,7\}$ is:
a. 32
b. 31
c. 30
d. 25

Answer: B
Solution:
Given

$$
\begin{aligned}
& A=\{3,4,5,6,7\} \\
& n(A)=5 \\
& \text { No. of proper subset }=2^{n}-1=2^{5}-1 \\
& =32-1 \\
& =31
\end{aligned}
$$

2. DE' MORGAN'S LAW

Que.5. If $A$ and $B$ be any two sets, then ( $A \cap B$ )' is equal to
a. $A^{\prime} \cap B^{\prime}$
b. $A^{\prime} \cup B^{\prime}$
c. $A \cap B$
d. $A \cup B$

Chapter 7

Answer: D
Solution:
From De' Morgan's Law, $A \cap B)^{\prime}=A^{\prime} U B^{\prime}$
Que.6. If $A=\{1,2,3,4,5\}, B=\{2,4,6\}, C=\{3,4,6\}$, then $(A \cup B) \cap C$ is
a. $\{3,4,6\}$
b. $\{1,2,3\}$
c. $\{1,4,3\}$
d. None of these

Answer: A
Solution:

$$
A \cup B=\{1,2,3,4,5,6\} \backslash(A \cup B) \cap C=\{3,4,6\}
$$

3. VENN DIAGRAMS

Que.7. Let $A$ and $B$ be two sets then ( $A \cup B)^{\prime} U$ ( $A^{\prime} \cap B$ ) is equal to
a. $A^{\prime}$
b. A
c. $B^{\prime}$
d. None of these

Answer: A
Solution:
From Venn-Euler's Diagram,

$$
\therefore(A \cup B)^{\prime} \cup\left(A^{\prime} \cap B\right)=A^{\prime}
$$



Que.8. The shaded region in the given figure is
a. $A \cap(B \cup C)$
b. $A \cup(B \cap C)$
c. $A \cap(B-C)$
d. $A-(B \cup C)$

Answer: D
Solution:
From Venn-Euler's diagram, $A-(B \cup C)$
3. FUNCTION

Que.9. Identity the function from the following:
a. $\{(1,1),(1,2),(1,3)\}$
b. $\{(1,1),(2,1),(2,3)\}$
c. $\{(1,2),(2,2),(3,2),(4,2)\}$
d. None of these

Answer: C
Solution:
$\{(1,2)(2,2)(3,2)(4,2)\}$ is the function Many one function

Que.10. Let $N$ be the set of all natural numbers; $E$ be the set of all even natural numbers then the function $F: N=E$ defined as $f(x)$ $=2 x-V \times E N$ is $=$
a. One-one-into
b. Many-one-into
c. One-one onto
d. Many-one-onto

Answer: C
Solution:
Given

$$
\begin{aligned}
& N=\{1,2,3,4,5,6 \ldots \ldots \ldots \ldots \ldots \ldots .00\} \\
& E=\{2,4,6,8, \ldots \ldots \ldots \ldots \ldots .00\} \\
& F: N \rightarrow E \\
& V \times \in N \\
& f(x)=,-2 x \\
& f(1)=2 \times 1=2 \\
& f(2)=2 \times 2=4 \\
& f(3)=2 \times 3=6 \\
& \text { Range of function }=\{2,4,6, \ldots \ldots\}=E \\
& \text { and } /(\times 1)=f(\times 2) \\
& 2 x_{1}=2 x_{2}=x_{2} \\
& \hline
\end{aligned}
$$

so $f(x)$ function is one-one and one to.

Que.11. Identity the function from the following:
a. $\{(1,1),(1,2),(1,3)\}$
b. $\{(1,1),(2,1),(2,3)\}$
c. $\{(1,2),(2,2),(3,2) .,(4,2)\}$
d. None of these

Answer: C
Solution:
$\{(1,2)(2,2)(3,2)(4,2)\}$
is the function Many one function

## DIFFERENTIAL COEFFICIENT

## 1. DIFFERENTIAL COEFFICIENT

Que.1. $\lim _{n \rightarrow \infty} \frac{1^{P}+2^{P}+3^{P}+\cdots+n^{P}}{n^{P+1}}$
a. $\frac{1}{p=1}$
b. $\frac{1}{1-p}$
c. $\frac{1}{p}-\frac{1}{p-1}$
d. None

Answer: A
Solution:

$$
\lim _{n \rightarrow \infty} \frac{1^{p}+2^{p}+3^{p}+\ldots \ldots+n^{p}}{n^{p+1}}=\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left[\frac{r^{p}}{n^{p+1}}\right]
$$

$$
=
$$

$\lim _{n \rightarrow \infty} 1 \sum_{r=1}^{n}\binom{r}{n}^{p}=\int_{0}^{1} x^{p} d x=\left[\begin{array}{c}x^{p+1} \\ p+1\end{array}\right]_{0}^{1}=\frac{1}{p+1}$.

Que.2. $\lim _{n \rightarrow \infty}\left[\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}\right]=$
a. o
c. $\log _{e} 3$

$$
\frac{\text { b. } \log _{e} 4}{\text { d. } \log _{e} 2}
$$

Answer: D

## Solution:

$\lim _{n \rightarrow \infty}\left[\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}\right]$
$=\frac{1}{n} \lim _{n \rightarrow \infty}\left[1+\frac{1}{1+\frac{1}{n}}+\frac{1}{1+\frac{2}{n}}+\cdots+\frac{1}{1+\frac{n}{n}}\right]$
$\frac{1}{n} \lim _{n \rightarrow \infty} \sum_{r=0}^{n}\left[\frac{1}{1+\frac{r}{n}}\right]$
$\int_{0}^{1} \frac{1}{1+x} d x$
$\left[\log _{e}(1+x)\right]_{0}^{1} \quad=>\log _{e} 2-\log _{e} 1=\log _{e} 2$
2. DERIVATIVE OF A FUNCTION OF FUNCTION

Que.3. Differentiate $\log \left(1+x^{2}\right)$ wit. $x$
a. $\frac{2 x}{\left(1+x^{2}\right)}$
b. $\frac{2 x}{\left(1-x^{2}\right)}$
c. $\frac{2 x}{(1+x)}$
d. None

Answer: A
Solution:

Let $y=\log \left(1+x^{2}\right)=$ log when $t=1+x^{2}$

$$
\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}=\frac{1}{t} \times(0+2 x)=\frac{2 x}{t}=\frac{2 x}{\left(1+x^{2}\right)}
$$

The rule is called chain Rule
3. IMPLICIT FUNCTIONS

Que.4. The value of $\int_{1}^{2} \frac{1-x}{1+x} d x$ is equal to:
a. $\log \frac{3}{2}-1$
b. $2 \log \frac{3}{2}-1$
c. $\frac{1}{2} \log \frac{3}{2}-x$
d. $\frac{1}{2} \log \frac{3}{2}-1$

Answer: B
Solution:

$$
\begin{aligned}
& \int_{1}^{2}\left(\frac{1-x}{1+x}\right) d x=\int_{1}^{2}\left(\frac{1}{1+x}-\frac{x}{1+x}\right) d x \\
& \int_{1}^{2} \frac{1}{1+X} d x-\int_{1}^{2} \frac{x}{x+1} d x \\
& \int_{1}^{2} \frac{1}{1+x} d x-\int_{1}^{2}\left(\frac{1+x-1}{1+x}\right) d x \\
& \int_{1}^{2} \frac{1}{(1+x)} d x-\int_{1}^{2}\left(\frac{1}{1+x}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& \int_{1}^{2} \frac{1}{1+x} d x-\int_{1}^{2} 1 x d x+\int_{1}^{2} \frac{1}{1+x} d x \\
& 2 \int_{1}^{2} \frac{1}{1+x}-\int_{1}^{2} 1 d x \\
& 2[\log (1+x)]_{1}^{2}-[x]_{1}^{2} \\
& 2[\log (2+1)-\log (1+1)]-[2-1] \\
& 2[\log 3-\log 2]-1
\end{aligned}
$$

$2 \log \frac{3}{2}-1$

## 4. LOGARITHMIC DIFFERENTIATION

Que.5. The rate of increase of bacteria in a certain culture is proportional to the number present. If it double in 5 hours then in 25 hours, its number would be

| a. 8 times the original | b. 16 times the original |
| :--- | :--- |
| c. 32 times the original | d. 64 times the original |

Answer: C
Solution:
Let Pe be the initial population and let the population after years be
Then $\frac{d p}{d t}=k p=\frac{d p}{p}=k d t$
On intergrating we have log $P=k t+\log P o$
$\log P O=k t$
When t $=5 \mathrm{hrs}, \mathrm{p}=2 \mathrm{Po}$
$\log \frac{2 P o}{p o}=5 k=k=\frac{\log 2}{5}: \log \frac{p}{P o}=\frac{\log 2}{5} t$

$$
\begin{aligned}
& \left(\frac{d y}{d x}\right)^{2} y\left(\frac{d y}{d x}\right)^{3}-x^{2}\left(\frac{d y}{d x}\right)^{2}+x y\left(\frac{d y}{d x}\right)^{1}-\frac{y^{2}}{4}-0 \text { When } T=25 \text { hours, we have } \\
& \log \frac{p}{\text { Po }}=\frac{\log 2}{5} X 25=5 \log 2=\log 32: p=32 P o
\end{aligned}
$$

5. DEGREE OF DIFFRENTIAL EQUATION

Que.6.The degree of the differential equation $3 \frac{d^{2} y}{d x^{2}}=\left\{1+\left(\frac{d y}{d x}\right)^{2}\right)^{3 / 2}$
a. 1
b. 2
c. 3
d. 6

Answer: B
Solution:

$$
3 \frac{d^{2} y}{d x^{2}}=\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{\frac{3}{2}}
$$

On square we get, $9\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{3}$
Obviously the Highest derivative $\frac{d^{2} y}{d x^{2}}$

Que.7. The differential equation representing the family of curves $y^{2}=2 c(x+\sqrt{ })$, where $c$ is a positive parameter, is of
a. Order 1
b. Order 2
c. Degree 2
d. Degree 4

Answer: A
Solution:
Given curve is $y^{2}=2 c(x+\sqrt{c})$
Differentiate w.r.t.x, $2 y \frac{d y}{d x}=2 c=c=y \frac{d y}{d x}$
Hence Differencial Equationis $y^{2}=2 y \frac{d y}{d x}\left(x+\sqrt{y \frac{d y}{d x}}\right)$

Chapter 8
$y \frac{2 d y}{d x}-x \sqrt{y \frac{d y}{d x}}$ squaring and Multiplying By

$$
\left(\frac{d y}{d x}\right)^{2} y\left(\frac{d y}{d x}\right)^{3}-x^{2}\left(\frac{d y}{d x}\right)^{2}+x y\left(\frac{d y}{d x}\right)^{1}-\frac{y^{2}}{4}-0
$$

6. PARAMETRIC EQUATION

Que.8. $\int_{0}^{2} \frac{3^{\sqrt{x}}}{\sqrt{x}}$ is equal to
a. $\frac{\sqrt[2]{2}}{\log _{e} 3}$

$$
\frac{b .0}{- \text { d. } \frac{3 \sqrt{2}}{\sqrt{2}}}
$$

Answer: C
Solution:

$$
\begin{aligned}
& \int_{0}^{2} \frac{3^{\sqrt{x}}}{\sqrt{x}} d x \\
& \text { Let } \sqrt{x}=t \\
& \int_{0}^{2} 3^{\sqrt{x}} \cdot \frac{1}{\sqrt{x}} d x \frac{1}{2 \sqrt{x}} d x=d t \\
& \frac{1}{\sqrt{x}} d x=2 d t \\
& x \quad 0 \quad 2 \\
& t \quad 0 \quad \sqrt{\mathbf{2}} \\
& t \quad 0 \quad \\
& \begin{array}{lll}
\int_{0}^{\sqrt{2}} 3^{t} \cdot 2 d t=\int_{0}^{\sqrt{2}} 3^{t} d t \\
\hline\left[\frac{3^{t}}{\log ^{t}}\right]_{0}^{\sqrt{2}} & =2\left[\frac{3 \sqrt{2}}{\log _{3}}-\frac{3^{0}}{\log ^{0}}\right]
\end{array} \\
& \hline \frac{2\left(3^{\sqrt{2}}-3^{0}\right)}{\log _{e} 3}
\end{aligned}
$$

Chapter 14

Que.1. Frequency density is used in the construction of
a. Histogram
b. ogive
c. Frequency polygon
d. None when the classes are of unequal width
Answer: A
Solution:
Frequency density is used in the construction of Histogram
Que.2. Which of the following is not a measure of central tendency?
a. Mean
b. Median
c. Mode
d. Standard deviation

Answer: D
Solution:
Mean, median and mode are the measures of central tendency.

Que.3.The following frequency distribution is classified as:

is classified as Discrete distribution.
Que.4. An ogive is a graphical representation of
a. cumulative frequency distribution b. A frequency distribution
c. Ungrouped data
d. None of the above

Chapter 14

Answer: A
Solution:
An 'O' give is a graphical representation of cumulative frequency distribution.

Que. 5.

| Class | $0-10$ | $10-20$ | $20-30$ | $30-10$ |
| :--- | :--- | :--- | :--- | :--- |
| Frequency | 4 | 6 | 20 | 8 |
| For the class | $20-30 . ~ C u m u l a t i v e ~ f r e q u e n c y ~ i s: ~$ |  |  |  |

a. 10
b. 26
c. 30
d. 41

Answer: C
Solution:
C. 1

0-10
4
10-20
10
20-30
30
30-40 8

20
38
40-50
3
cumulative frequency of class interval ' $20-30$ ' is 30

| MEASURES OF |
| :--- | :--- |
| CENTRAL TENDENCY |



Chapter 15
$=(5 x+30) / 5$ According to the problem, mean $=16$ (given).
Therefore, $(5 x+30) / 5=16$

$$
\begin{aligned}
& \Rightarrow 5 x+30=16 \times 5 \Rightarrow 5 x+30=80 \\
& \Rightarrow 5 x+30-30=80-30 \\
& \Rightarrow 5 x=50 \Rightarrow x=50 / 5 \\
& \Rightarrow x=10
\end{aligned}
$$

Hence, $x=10$.

$$
148+153+146+147+154
$$

(C) CORRECTED MEAN

Que.4. The mean of 40 numbers was found to be 38. Later on, it was detected that a number 56 was misread as 36 . Find the correct mean of given numbers.
a. 38.5
b. 0.369
c. 3.25
d. 3.85

Answer: C
Solution:
calculated mean of 40 numbers $=38$.
Therefore, calculated sum of these numbers $=(38 \times 40)=1520$ correct sum of these numbers

$$
=[1520-(\text { wrong item })+(\text { correct item })]
$$

$$
=(1520-36+56)
$$

$$
=1540
$$

Therefore, the correct mean $=1540 / 40=38.5$.
(D) REPLACING VALUE

Que.5. Mean of twenty observations is 15. If two observations 3 and

14 replaced by 8 and 9 respectively, then the new mean will be
a. 14
b. 15
c. 16
d. 17

Answer: D
Solution:
Mean of 20 observations $=15$
$\therefore$ Sum of 20 observations $=15 \times 20=300$
Replacing 3 and 14 by 8 and 9 will mean that $3+14=17$ is replaced by $8+9=17$
Hence there will be no effect on the sum. It will still remain 300, so the mean will not change and will remain 15.
(E) GEOMETRIC MEAN

Que.6. The Geometric mean of $3,6,24$ and 48 is
a. 8
b. 12
c. 24
d. 6

Answer: $B$
Solution:

$$
\begin{aligned}
& \text { G.M. }=\left(x_{1} x_{2} . X_{3} . x_{4}\right) 1 / 4 \\
& \text { Here, } n=4\} \\
& (3 \times 6 \times 24 \times 48)^{1 / 4} \\
& \sqrt{ }(3 \times 6 \times 24 \times 48) \\
& =4 \sqrt{ }(3 \times 3 \times 2 \times 2 \times 2 \times 2 \times 3 \times 2 \times 2 \times 2 \times 2 \times 3) \\
& =2 \times 2 \times 3 \\
& =12
\end{aligned}
$$

2. MEDIAN
(A) REPLACING VALUE

Que.7. The height of 30 boys of a class are given in the following table:

| Heigifat in am | Fm |
| :--- | :--- |
| $120-129$ | 2 |
| $130-139$ | 8 |
| $140-149$ | 10 |
| $150-159$ | 7 |
| $160-169$ | 3 |

If by joining of a boy of height 140 cm , the median of the heights is changed from $M_{1}$ to $M_{2}$ then $M_{1}-M_{2}$ in cm is
a. 0.1
b. -0.1
c. 0
d. 0.2

Answer: C
Solution:

| Height In cm | Frequency | Cumulative <br> Frequency | Actual class <br> limit |
| :--- | :--- | :---: | :---: |
| $120-129$ | 2 | 2 | $119.5-129.5$ |
| $130-139$ | 8 | 10 | $129.5-139.5$ |
| $140-149$ | 10 | 20 | $139.5-149.5$ |
| $150-159$ | 7 | 27 | $149.5-159.5$ |
| $160-169$ | 3 | 30 | $159.5-169.5$ |
| $n=30$ |  |  |  |

Here $n=30 \quad: \therefore \frac{n}{2}+1=15+1=16$
$\therefore 16$ is under cumulative frequency 20 . So median class be $140-149 L_{1}=139.5, L_{2}=149.5$,

Chapter 15

$$
\begin{aligned}
& f=10, n=30, c=10 . \\
& \text { Median } M_{1}=L_{1}+\frac{\mathrm{L}_{2}-\mathrm{L}_{1}}{\mathrm{f}}\left(\frac{\mathrm{n}}{2}-\mathrm{c}\right) \\
& =139.5+\frac{10}{10}(15-10) \\
& =139.5+\frac{10}{10} \times 5=144.5 \\
& \text { If by joining fa boy of height } 140 \mathrm{cms}, \text { the } n=31, f=11 \\
& \therefore \text { Median } \mathrm{M}_{2}=139.5+\frac{149.5-139.5}{11}(15.5-10) \\
& =139.5+\frac{10}{11} \times 5.5=144.5 \mathrm{cms} \\
& \text { Then } M_{1}-M_{2}=144.5-144.5=0
\end{aligned}
$$

Que.8. The mean of 20 items of data is 5 and if each item is multiplied by 3 , then the new mean will be
a. 5
b. 10
c. 15
d. 20

Answer: C
Solution:
By shifting the scale Mean is changed
New Mean $=K x$ original mean $=5$
$k=3$
New Mean $=3 \times 5=15$
3. MODE

Que.9. Identify the mode of the given distribution.
Maw es
Number of Students
a. 7
b. 1
c. 8
d. 6

Answer: D
Solution:
Mode is 6 as it has the highest frequency

Que.10. Find the mode for the following data.

| Age | $0-6$ | $6-12$ | $12-18$ | $18-24$ | $24-30$ | $30-36$ | $36-12$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frequency | 6 | 11 | 25 | 35 | 18 | 12 | 6 |
| a. 19.41 |  |  |  | b. 21.12 |  |  |  |
| c. 20.14 |  |  |  |  |  |  |  |

Answer: D
Solution:
Since, maximum class frequency is 35 , so the mode class is 18-24.

$$
\begin{aligned}
& \text { Now, Mode }=L+\frac{f_{1-}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h \\
& 18+\left(\frac{35-25}{2 \times 35-25-18}\right) \times 6 \\
& =18+2.22=20.22
\end{aligned}
$$

4. RELATION OF MEAN MEDIAN \& MODE

Que.11. Relationship between Mean, Median and Mode
a. Mean - Mode $=3$ (Mea n-Median)
b. Mode $=3$ Median -2 Mean
c. Both
d. None of these

Answer: C
Solution:
If a frequency distribution is positively skewed, the mean is greater than median and median is greater than mode.

Que.12. If median - 20, and mean-22.5 in a moderately skewed
distribution then compute approximate value of mode
a. 15
b. 20
c. 25
d. 30

Answer: A
Solution:
Mean -Mode $=3$ (Mean-Median)
22.5 - Mode $=3(22.5-20)$
$22.5-$ Mode $=7.5$
Mode $=22.5-7.5$
Mode $=15$

Que.13. Median and mode of the wage distribution are known to be RS. 33.5 and 34 respectively. Find the third missing values.
wages (Rs.)

## No. of Workers

| $0-10$ | 4 |
| :--- | :--- |
| $10-20$ | $\frac{16}{?}$ |
| $20-30$ | $\frac{?}{?}$ |
| $30-40$ | $\frac{?}{6}$ |
| $40-50$ | $\frac{4}{230}$ |
| $60-60$ | $\frac{3}{4}$ |
| Total |  |


| a. 6 | b. 10 |
| :--- | :--- |
| c. 9 | d. 60 |

Answer: D
Solution:
We assume the missing frequencies as 20-30 as $x, 30-40$ as $y$, and
$40-50$ as $230-(4+16+x+y+6+4)=200-x-y$.

Chapter 15

We now proceed further to compute missing frequencies:


Apply, Median

$$
\begin{aligned}
& =33.5=y(33.5-30)=(115-20-x) 10 \\
& 3.5 y=1150-200-10 x \\
& 10 x+3.5 y=950 \ldots \text { (i) } \\
& \text { Apply, Mode }=34 \\
& =4(3 y-200)=10(y-x) \\
& 10 x+2 y=800 \ldots \text { (in) }
\end{aligned}
$$

subtract equation (ii) from equation (i),

$$
1.5 y=150, y=15
$$

substitute the value of $y=100$ in equation (i),
we get

$$
\begin{aligned}
& 10 x+3.5(100)=950 \\
& 10 x=950-350 \\
& x=600 / 10=60
\end{aligned}
$$

Third missing frequency $=200-x-y=200-60-100=40$.

Que.14.
If in a moderately skewed distribution the values of mode and

Chapter 15
mean are 32.1 and 35.4 respectively, then the value of the median is
a. 34.3
b. 33.3
c. 34
d. 33

Answer: A
Solution:
Given:

```
Mode \(=32.1\),
Median \(=\) ?
Mean =35.4
Mode \(=3\) Median -2 Mean
\(32.1=3\) Median \(-2 \times 35.4\)
\(32.1=3\) Median - 70.83
Median \(=32.1+70.83\) Median \(=102.9\)
\(=>\) Median \(\frac{102.9}{3}=34.3\)
```

DISPERSION

1. RANGE

Que.15. What is the coefficient of Range for the following distribution of weights?
weights in kegs: 50-54
No. of Students: 12
a. 20
c. 20.16
b. 21

Answer: C
Solution:
The lowest class boundary is 49.50 kgs .
and the highest class boundary is 74.50 kgs .
Thus we have Range $=74.50 \mathrm{kgs} .-49.50 \mathrm{kgs} .=25 \mathrm{kgs}$.

$$
\begin{aligned}
& =\text { coefficient of Range }=\frac{74.50-49.50}{74.50+49.50} \times 100 \\
& =\frac{25}{124} \times 100 \\
& =20.16
\end{aligned}
$$

2. MEAN DEVIATION

Que.16. What is the mean deviation about mean for the following numbers? 5, 8,
a.1.74,123
b. $1.67,12.45$
c. $1.8,989$
d. 1.47, None

Answer: B
Solution:
The mean is given by

$$
\begin{aligned}
& \bar{X}=\frac{5+8+10+10+12+9}{6} \\
& =9
\end{aligned}
$$

computation of MD about AM

|  | $X_{i}$ |
| :--- | :--- |
| 5 | 4 |
| 8 | 1 |
| 10 | 1 |
| 10 | 1 |
| 12 | 3 |
| 9 | 0 |
| Total | 10 |

## Chapter 15

Thus mean deviation about mean is given by
$x_{i}-x=\frac{\sum 10}{6}$
$=1.67$
coefficient of mean deviation $=\frac{\text { MD about Median }}{\text { Median }} \times 100$
$\frac{8714.28}{70000} \times 100$
$=12.45$

## 3. QUARTILE DEVIATION

Que.17. The wheat production (in Kg ) of 20 acres is given as:, $1320,1040,1080,1200,1440,1360,1680,1730,1785,1342$, $1960,1880,1755,1720,1600,1470,1750,1120,1240$ and 1885. Find the quartile deviation.

| a. 246.875 | b. 246 |
| :--- | :--- |
| c. 246.89 | d. 1750 |

Answer: A

## Solution:

After arranging the observations in ascending order, we get 1040, $1080,1120,1200,1240,1320,1342,1360,1440,1470,1600$, $1680,1720,1730,1750,1755,1785,1880,1885,1960$. Q1 = value of $\left(\frac{\mathrm{n}+1}{4}\right)$ th item
$=$ value of $\left(\frac{20+1}{4}\right)$ th
$=$ value of (5.25) th item
$=5$ th item $+0.25(6$ th item -5 th item $)=1240+0.25(1320-1240)$
$Q 1=1240+20=1260$
Qu $=$ value of $3\left(\frac{\mathrm{n}+1}{4}\right)$ th item
$=$ value of $3\left(\frac{20+1}{4}\right)$ th item

$$
\begin{aligned}
& =\text { value of }(15.75) \text { th item } \\
& =15 \text { th item }+0.75(16 \text { th item }-15 \text { th item })=1750 \\
& Q 3=1750+3.75=1753.75 \\
& \text { Q.D. }=\frac{Q_{3}-Q_{1}}{2}=\frac{1753.75-1260}{2}=\frac{492.75}{2} \\
& =246.875
\end{aligned}
$$

4. STANDARD DEVIATION

Que.18. If the S.D. of the 1st $n$ natural Nos. is $\sqrt{30}$, Then the value of $n$ is
a. 19
b. 20
c. 21
d. None

Answer: A
Solution:
S.D of First ' $n$ ' natural

$$
\begin{aligned}
& =\sqrt{\frac{\mathrm{n}^{2}-1}{12}} \\
& \sqrt{\mathbf{3 0}}=\sqrt{\frac{\boldsymbol{n}^{2}-\mathbf{1}}{\mathbf{1 2}}}
\end{aligned}
$$

On squaring both side $30=\frac{n^{2}-1}{12}$
Numbers $360=n^{2}-1$

$$
\begin{aligned}
& n^{2}=360+1 \\
& n^{2}=361 \\
& n=\sqrt{361} \\
& n=19
\end{aligned}
$$

Que.19. Standard Deviation for the marks obtained by a student in test in mathematic (out of 50 ) as $30,35,25,20,15$ is

Chapter 15
a. 25
b. $\sqrt{ } 50$
c. $\sqrt{ } 30$
d. 50

Answer: B
Solution:
Given data's are

$$
\begin{aligned}
& 15,20,25,30,35 \\
& \operatorname{Mean}(\bar{X})=\frac{\sum x}{N}=\frac{15+20+25+30+35}{5}=\frac{125}{5}=5
\end{aligned}
$$

For S.D

| $x$ |  |
| :--- | :--- |
| 15 | 25 |
| 20 | 25 |
| 25 | 25 |
| 30 | 25 |
| 35 | 25 |
| $N=5$ |  |
| $S D=\sqrt{\frac{\sum d^{2}}{N}}=\sqrt{\frac{250}{5}}$ |  |
| $=\sqrt{50}$ |  |

$$
=\sqrt{50}
$$

Chapter 16

1. RANDOM EXPERIMENT

Que.1. What is the probability of having at least one' six' years throws of a project die?
a. 5/6
b. $(5 / 6) 3$
c. 1-(1/6)3
d. 1-(5/6)3

Answer: D
Solution:
For a die Probability of getting Six

$$
\begin{aligned}
& P(A)=\frac{1}{6} \rightarrow p \\
& P(\bar{A})=1-\frac{1}{6}=\frac{5}{6} \rightarrow q
\end{aligned}
$$

Here $n=3$
$P($ getting at least ' 1 ' Six $)=P(x>1)$

$$
\begin{aligned}
& =1-P(X<1) \\
& =1-P(X=0) \\
& =1-3 C_{0} \cdot\left[\frac{1}{6}\right]^{0} \cdot\left(\frac{1}{6}\right)^{3-0} \\
& =1-1 \times 1 \times\left[\frac{5}{6}\right]^{3}=1-\left[\frac{5}{6}\right]^{3}
\end{aligned}
$$

Que.2. A coin is tossed six times, then the probability of obtaining heads and tells alternatively is
a.1/2
b. $1 / 64$
c. $1 / 32$
d. 1/16

Answer: C
Solution:
If one coin is tossed '6' times

$$
P(H)=1 / 2, P(T)=1 / 2
$$

$P($ Alternate getting 'H' $\mathcal{G} ' T)=P(H T H T H T)+P(T H T H T H)$

$$
\begin{aligned}
& \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}+\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \\
& \frac{1}{64}+\frac{1}{64}=\frac{2}{64}=\frac{1}{32}
\end{aligned}
$$

2. CLASSICAL DEFINITION OF PROBABILITY OR A PRIOR DEFINITION

Que.3. Tickets numbered 1 to 20 are mixed up and then a ticket is drawn at random. What is the probability that the ticket drawn has a number which is a multiple of 3 or 5 ?
a. $1 / 2$
b. $3 / 5$
c. $9 / 20$
d. $8 / 15$

Answer: C
Solution:
Here, $S=\{1,2,3,4, \ldots, 19,20\}$.
Let $E=$ event of getting a multiple of 3 or 5

$$
=\{3,6,9,12,15,18,5,10,20\}
$$

$$
P(E)=n(E) / n(S)=9 / 20
$$

Que.4. One card is drawn at random from a pack of 52 cards. What is the probability that the card drawn is a face card (Jack, Queen and King only)?
a. 3/13
b. 1/13
c. $3 / 52$
d. $9 / 52$

Answer: D
Solution:
clearly, there are 52 cards, out of which there are 12 face cards. $P($ getting a face card $)=12 / 52=3 / 13$.

Chapter 16

Que.5. Fifteen persons among whom are $A$ and $B$, sit down at random at a round table. The probability that there are 4 persons between $A$ and $B$, is
a. 1/3
b. 2/3
c. 2/7
d.1/7

Answer: D
Solution:
Let A occupy any seat at the round table.
Then there are 14 seats available for $B$.
If there are to be four persons between $A$ and $B$
Then $B$ has only two ways to sit, as show in the fig.
Hence required probability $2 / 14=1 / 7$

Que.6. A bag contains 8 red and 7 black balls. Two balls are drawn at random. The probability that both the balls are of the same colour is
a. 14/15
b. 11/15
c. $7 / 15$
d. $4 / 15$

Answer: C
Solution:
Required probability $=$ Either the balls are red or the balls are black

$$
\begin{aligned}
& -\frac{8_{C_{2}}}{15_{C_{2}}}+\frac{7_{C_{2}}}{15_{C_{2}}}=\frac{28+21}{105} \\
& -\frac{49}{105}=\frac{7}{15}
\end{aligned}
$$

2. MUTUALLY \& NON- MTUALLY EXCLUSIVE EVENT

Que.7. The theorem of compound probability states that for any two $A$ and $B$

Chapter 16

$$
\begin{aligned}
& a \cdot P(A \cap B)=P(A) \times P(B / A) \\
& b \cdot P(A \cup B)=P(A) \times P(B / A) \\
& \text { c.P } P(A \cap B)=P(A) \times P(B) \\
& d \cdot P(A \cup B)=P(A)+P(B)-P(A \cap B)
\end{aligned}
$$

Answer: A
Solution:
The theorem of compound probability states that for only events $A$ an $B$ given by $P(A \cap B)=P(A) \times P(B / A)$

Que.8. If $P(A)=\frac{1}{2}, P(B)=\frac{1}{3}$, and $P(A \cap B)=\frac{1}{4}$, then $P(A \cup B)$ is equal to
a.11/12
b. 10/12
c. $7 / 12$
d. 1/6

Answer: C
Solution:

$$
P(A)=\frac{1}{2}, P(B)=\frac{1}{3}, \text { and } P(A \cap B)=\frac{1}{4}
$$

We know that $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$$
\begin{aligned}
& \frac{1}{2}+\frac{1}{3}-\frac{1}{4} \\
& \frac{6+4-3}{12}-\frac{7}{12}
\end{aligned}
$$

Que.9. If $P(A \cup B)=0.8$ and $P(A \cap B)=0.3$, then $P(\bar{A})+P(\bar{B})$ is equal to
a. 0.3
b. 0.5
c. 0.7
d. 0.9

Answer: D
Solution:

Chapter 16

Given
$P(A \cup B)=0.8$ and $P(A \cap B)=0.3$
We know that, $P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$$
\begin{aligned}
& 0.8=\left[1-P\left(A^{-}\right)\right]+\left[1-P\left(B^{-}\right)\right]-0.3 \\
& P(\bar{A})+P(\bar{B})=2-0.3-0.8 \\
& P(\bar{A})+P(\bar{B})=0.9
\end{aligned}
$$

Que.10. Sum of all probabilities mutually exclusive and exhaustive events is equal to
a. 0
b. 1/2
c. 1/4
d. 1

Answer: D
Solution:
sum of all probabilities mutually exclusive and exhaustive events is equal to 1
3. RANDOM VARIABLE

Que.11. variance of a random variable $x$ is given by
a. $E(X-\mu)^{2}$
b. $E[X-E(X)]^{2}$
c. $E(X 2-\mu)$
d. (a )or (b)

Answer: D
Solution:
variance of a random variable $x$ is given by $v(x)=E(x-\mu)^{2}$ or

$$
V(x)=\left[E(X-E(x)]^{2}\right.
$$

Que.12. If two random variables $x$ and $y$ are related by $Y=2-3 x$, then the SD of $y$ is given by
a. $-3 \times$ SD of $x$
b. $3 \times$ SD of $x$
c. $9 \times$ SD of $x$
d. $2 \times$ SD of $x$

Chapter 16

Answer: $B$
Solution:
Given Equation

$$
\begin{aligned}
& y=2-3 x \\
& b=\frac{- \text { coefficient of } x}{\text { coefficient of } y}=\frac{-3}{1}=-3 \\
& \text { S.D of } y=|b| \text { S.D of } x \\
& =|-3| . S D \text { of } x \\
& =3 x \text { SD of } x
\end{aligned}
$$

1. BINOMIAL DISTRIBUTION

Que.1. The variance of a binomial distribution with parameters $n$ and $p$ is:
a. $n p^{2}(1-p)$
b. $n q(1-q)$
c. $\sqrt{n p-(1-p)}$
d. $n^{2} p^{2}(1-p)^{2}$

Answer: $C$
solution:
= up
=nap

$$
=n q(1-q)
$$

Que.2. In a Binomial Distribution, if $p, q$ and $n$ are probability of success, failure and number of trials respectively then variance is given by
a. np
b. up
c. $n p^{2} q$
d. npq2

Answer: c
Solution:
For a discrete probability function, the variance is given by

$$
\operatorname{Variance}(V)=\sum_{x=0}^{n} x^{2} p(x)-\mu^{2}
$$

Where $\mu$ is the mean, substitute $p(x)=n c x p x q(n-x)$ in the above equation
and put $\mu=$ up to obtain
$v=u p q$

Que.3. In a Binomial Distribution, if $p=q$, then $P(x=x)$ is given by

Chapter 17
a. ${ }^{n} C_{x}(0.5)^{n}$
b. ${ }^{n} C_{n}(0.5)^{n}$
c. ${ }^{n} C_{x} p^{(n-x)}$
d. ${ }^{n} C_{n} P^{(n-x)}$

Answer: A
Solution:
If $p=q$, then $p=0.5$
Substituting in $P(x)={ }^{n} C_{x} p^{x} q^{(n-x)}$ we get ${ }^{n} C_{n}(0.5)^{n}$.
2. POISSION DISTRIBUTION

Que.4. For a poisson variate $x, P(x=2)=3 P(x=4)$, then the standard deviation of $x$ is
a. 2
b. 4
c. $\sqrt{2}$
d. 3

Answer: C
Solution:
For Poisson Variate $x$,

$$
\frac{e^{m} m^{2}}{2!}=\frac{3 e^{-m} m^{4}}{4!}
$$

$\frac{m^{2}}{2}=\frac{3 m^{4}}{24}$
$6 m^{4}=24 m^{2}$
$m^{2}=\frac{24}{6}$
$m^{2}=4$
$m=2$

$$
S_{.} D_{.}=\sqrt{m}=\sqrt{2}
$$

Que.5. A man was able to complete 3 files a day on an average. Find the probability that he can complete 5 files the next day
a. 0.108
b. 0.1008
c. 0.008
d. None

Answer: C
Solution:
Here we know this is a Poisson experiment with following values given:
$\mu=3$, average number of files completed a day
$x=5$, the number of files required to be completed next day
And $e=2.71828$ being a constant
On substituting the values in the Poisson distribution formula mentioned above
we get the Poisson probability in this case
we get,

$$
\begin{aligned}
& \mathbb{P}\left(x_{,}, \mu\right)=\frac{\left(e^{-1}\right)\left(\mu^{x}\right)}{x 1} \\
& \rightarrow \mathbb{P}^{\prime}(5,3)=\frac{(2.71828)^{-2}\left(3^{5}\right)}{51} \\
& =0.1008 \text { approximately. }
\end{aligned}
$$

Hence the probability for the person to complete 5 files the next day is 0.1008 approximately.
3. NORMAL DISTRIBUTION

Que.6. Using the table of areas under the standard normal curve, find the following probabilities:

$$
\begin{aligned}
& P(0 \leq z \leq 1.3) \\
& P(-1 \leq z \leq 0) \\
& P(-1 \leq z \leq 12) \\
& \text { a. } 0.4032,0.3413,0.8185 \\
& \text { b. } 0.4072,0.4413,0.8185 \\
& \text { c. } 0.40456,0.3456,0.8155
\end{aligned}
$$

d. None

Answer: A
Solution:
The required probability, in each question, is indicated by the shaded are of the corresponding figure.
A. From the table,
B. (i )we can write $P(0 \leq z \leq 1.3)=0.4032$.
ii) We can write $P(-1 \leq z \leq 0)=P(0 \leq z \leq 1)$, because the distribution is symmetrical.

(i)

(ii)

From the table, we can write $\mathrm{P}(-1 \leq z \leq 0)=\mathrm{P}(\mathrm{O} \leq \mathrm{z} \leq 1)=0.3413$.
(iii) We can write $\mathrm{P}(-1 \leq \mathrm{z} \leq 2)=\mathrm{P}(-1 \leq \mathrm{z} \leq 0)+\mathrm{P}(0 \leq z \leq 2)$

$$
=\mathrm{P}(\mathrm{O} \leq \mathrm{z} \leq 1)+\mathrm{P}(\mathrm{O} \leq \mathrm{z} \leq 2)=0.3413+0.4772
$$



$\qquad$
$\qquad$

Que.7. What is the first quartile of $x$ having the following probability of function? $f(x) \frac{1}{\sqrt{72 x}} e^{-(x-10)^{2} / 72}$ for $-\infty<x<\infty$ a. 4
b. 5
c. 5.95
d. 6.75

Answer: C
Solution:

$$
\begin{aligned}
& \text { Given: } f(x) \frac{1}{\sqrt{72 x}} e^{\frac{-(x-10)^{2}}{72}} \text { for }-\infty<x<\infty \\
& f(x) \frac{1}{\sqrt[6]{2 x}} e^{\frac{-(x-10)^{2}}{72}}
\end{aligned}
$$

Chapter 17

$$
f(x) \frac{1}{\sqrt[6]{2 x}} e^{\frac{-(x-\mu)^{2}}{20^{-2}}}
$$

We get

$$
\sigma=6, \mu=10
$$

First quartile $Q_{1}=\mu-0.675 \sigma$

$$
\begin{aligned}
& =10-0.675 \times 6 \\
& =10-4.05 \\
& =5.95
\end{aligned}
$$

Que.8. If for a normal distribution $Q_{1}=54.52$ and $Q_{3}=78.86$, then the median of the distribution is
a. 12.17
b. 39.43
c. 66.69
d. None

Answer: C
Solution:
Q1 $=54.52 \quad$ and $\quad$ Q3 $=78.86$

We know that

$$
\begin{aligned}
& Q 1=\mu-0.675= \\
& Q 3=\mu-0.675= \\
& \text { on Adding } \\
& 2 \mu=133.38 \\
& \mu=133.38 / 2 \\
& \mu=66.69
\end{aligned}
$$

In normal Distribution Mean, Median and Mode are equal.

$$
\text { So }, \text { Median }=\text { Mean }=66.369
$$

1. CORRELATION
(A) CORRELATION COEFFICIENT

Que.1. The table below shows the height, $x$, in inches and the pulse rate, $y$, per minute, for 9 people. Find the correlation coefficient and interpret your result

$65 \quad 70$
a. 0.15
b. 0.56
c. -0.15
d. 0.69

Answer: C
Solution:
You may use the facts that (double check this for practice)

$$
\sum x=622, \quad \sum y=773, \quad \sum x^{2}=43,206, \quad \sum y^{2}=68,007, \quad \sum x y=53,336 .
$$

Calculate the numerator:

$$
\begin{aligned}
& n \sum(x y)-\left(\sum x\right)\left(\sum y\right)=9 \cdot 53336-622 \cdot 773=-782 \\
& \sqrt{n \sum^{2}-\left(\sum \mathrm{x}\right)^{2}} \sqrt{n \sum \mathrm{y}^{2}-\left(\sum \mathrm{y}\right)^{2}} \\
& =\sqrt{9.43206-(622)^{2}} \cdot \sqrt{9.68007-(773)^{2}} \\
& =\sqrt{1970} \cdot \sqrt{14534}=5350.89
\end{aligned}
$$

Now, divide to get $r=\frac{-782}{5350.89}=-0.15$
Que.2. If the correlation coefficient between the variable $x$ and $Y$ is 0.5 , then the correlation between the variable $2 x-4$ and $3-2 y$ is
a. 1
b. 0.5
c. -0.5
d. 0

Answer: B

Solution:
If coefficient of correlation ry $=0.5$
Given $u=2 x-4$ and $v=3-2 y$
$2 x-u-4=0$ and $2 y+v-30$
$b=\frac{- \text { coefficient of } u}{\text { coefficient of } x} \quad$ and $\quad d=\frac{- \text { coefficient of } v}{\text { coefficient of } y}$
$b=\frac{1}{2} \quad d=\frac{-1}{2}$
Here, $b$ and $d$ both have different sign so $r_{u v}=-r_{x y}=0.5$

## (B) PEARSON'S CORRELATION COEFFICIENT

Que.3. The following data relate to the test scores obtained by eight salesmen in an aptitude test and their daily sales in thousands of rupees:


Since correlation coefficient remains unchanged due to change of origin, we have

$$
=\frac{8 \times 90-(-13) \times(-14)}{\sqrt{8 \times 221-(-13)^{2}} \times \sqrt{8 \times 122-(-14)^{2}}}=\frac{538}{\sqrt{1768-169} \times \sqrt{976-196}}=0.48
$$

(C) PROBABLE ERROR

Que.4. If $r=0.7$; and $n=64$ find out the probable error of the coefficient of correlation
a. 0.043

$$
\text { b. } 0.43
$$

0.0 .043
c. $0.747,0.657$
d. 0.7

Answer: A
Solution:

$$
\begin{aligned}
& r=0.7 ; n=64 \text { Probable Error }(\text { P.E. })=0.6745 \times \frac{1-(0.7)^{2}}{\sqrt{64}} \\
& =(0.6745) \times(0.06375)=0.043
\end{aligned}
$$

(D) RANK CORRELATION

Que.5. Three competitors in a contest are ranked by two judges in the order 1,2,3 and 2,3,1 respectively. calculate the Spearman's rank correlation coefficient.
a. -0.5
b. -0.8
c. 0.8
d. 0.5

Answer: A
Solution

Rank by
${ }^{\text {st t }}$ judge $\mathrm{R}_{1}$
1
2

| Rank by ll nd <br> Judge R2 | Diff $\mathrm{D}=$ <br> $\mathrm{R}_{1}-\mathrm{H}_{2}$ | 02 |
| :--- | :--- | :--- |
| $\mathbf{2}$ | $\mathbf{- 1}$ | 1 |
| $\mathbf{3}$ | $\mathbf{- 1}$ | 1 |
| $\mathbf{1}$ | $\mathbf{+ 2}$ | 4 |
|  |  | $\sum \boldsymbol{d}^{\mathbf{2}=6}$ |

Here $n=3$

$$
\begin{aligned}
& \text { Spearman's Rank Correlation coefficient }
\end{aligned} \begin{aligned}
& =1-6 \frac{\sum d^{2}}{n\left(n^{2}-1\right)} \\
& =1-\frac{6 \times 6}{3\left(3^{2}-1\right)}
\end{aligned}
$$

(E) REGRESSION

Que.6. If the two regression lines are $3 x=y$ and $8 y=6 x$, then the value of correlation coefficient is
a. 0.5
b. -0.5
c. 0.75
d. -0.80

Answer: A
Solution
Given Regression line
$3 x=y$ and $8 y=6 x$
$3 x-y=0$ and $6 x-8 y=0$
$b \times x=\frac{- \text { coeff.of } y}{\text { coeff.of } x}$ and $b \times y=\frac{- \text { coeff.of } x}{\text { coeff.of } y}$
$\frac{-(-1)}{3}=\frac{-6}{-8}=\frac{3}{4}$
$b x y=\frac{1}{3}$
coeff. Of correlation is given by
$r= \pm \sqrt{b y x \times b x y}$
$= \pm \sqrt{\frac{3}{4} \times \frac{1}{3}}$

$$
=+\sqrt{\frac{1}{4}}=+1 / 2=0.5
$$

Que.7. If the two line of regression are $x+2 y-5=0$ and $2 x+3 y-8$ $=0$, then the regression line of $y$ on $x \mathrm{~s}$ :
a. $x+2 y-5=0$

$$
\text { b. } 2 x+3 y-8=0
$$

Chapter 18
c. $x+2 y=0$
d. $2 x+3 y=0$

Answer: A
Solution
Given two regression lines are

$$
\begin{aligned}
& x+2 y-5=0 \text { and } 2 x+3 y-8=0 \\
& \text { by x }=\frac{- \text { coeff.of } x}{\text { coeff.of } y}=\frac{-1}{2} \text { and } b x y=\frac{- \text { coeff.of } y}{\text { coeff.of } x}=\frac{-3}{2}
\end{aligned}
$$

Here, by $\times b x y \leq 1$ which is satisfied.
So $1^{\text {st }}$ equation $x+2 y-5=0$ is the regression equation $y$ on $x$.
Que.8. A relationship $\boldsymbol{r}^{\mathbf{2}}=1-\frac{\mathbf{5 0 0}}{\mathbf{3 0 0}}$ is not possible
a. True
b. False
c. Both
d. None

Answer: A
Solution
Given
$r^{2}=1-\frac{500}{300}$ is possible
$r^{2}=-\frac{-200}{300}$ is not possible
so, it is true.

Chapter 19

INDEX NUMBER

1. PRICE RELATIVE

Que.1. The most appropriate average in averaging the price relatives is
a. Median
b. Harmonic mean
c. Arithmetic mean
d. Geometric mean

Answer: D
Solution
Geometric mean index numbers are a multiplicative aggregation of (price or quantity) ratios with their importance exponents/weights derived from one or more observed budget shares. ... This approach is directly inspired by the literature on index number theory.
2. SIMPLE AGGREGATIVE PRICE INDEX

Que.2. Construct the following indices by taking 1997 as the base:
(i) simple Aggregative price Index Items

| Items | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Prices Rs. (1997) | 6 | 2 | 4 | 10 | 8 |
| Prices Rs. (1998) | 10 | 2 | 6 | 12 | 12 |
| Prices Rs. (1999) | 15 | 3 | 8 | 14 | 16 |

a. 140, 186.67
b. $120.90,140.6$
c. $140,120.90$
d. 56,420

Answer: A
Solution
Simple Aggregative Price Index:


Answer: C Solution
commodity

| $A$ | 2 | 10 | 4 | 5 | 20 | 40 | 10 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $B$ | 5 | 12 | 6 | 10 | 60 | 72 | 50 | 60 |
| $C$ | 4 | 20 | 5 | 15 | 80 | 100 | 60 | 75 |
| $D$ | 2 | 15 | 3 | 10 | 30 | 45 | 20 | 30 |
|  |  |  |  |  | $\sum P_{0} q_{0}=19 \sum_{1} P_{1} q_{0}=257$ | $\sum P_{0} q_{1}=140$ | $\sum P_{1} q_{1}=185$ |  |

Que.4. $\sum \sum P_{0} Q_{0}=240 \sum P_{1} Q_{1}=480, \sum p_{1} Q_{0}=600, \sum P_{0} Q_{1}=$ 192 then the Laspeyre's. Index number is
a. 250
b. 300
c. 350
d. 200

Answer: A
Solution:
If $\sum \sum P_{0} Q_{0}=240 \sum P_{1} Q_{1}=480, \sum p_{1} Q_{0}=600, \sum P_{0} Q_{1}=192$
Laspeyra's.Index No, $\frac{\sum P_{1} Q_{0}}{\sum P_{0} Q_{0}}=\frac{600}{240} \times 100=250$

## (B) PASSCHE'S METHOD

Que.5. Calculate weighted aggregative price index number from the following data by using Passche's method:

| Commodity | Base Year |  | Current |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Price | Quantity | Price | Quantity |
| A | 10 | 30 | 12 | 50 |
| B | 8 | 15 | 10 | 25 |
| C | 6 | 20 | 6 | 30 |
| D | 4 | 10 | 6 | 20 |



Chapter 19
3. CONSUMER PRICE INDEX

Que.7. An enquiry into the budgets of the middle class families in a certain city gave the following information:


$$
C P 1=\frac{\sum R W}{\sum W}=\frac{13450}{100}=134.5
$$

4. COST OF LIVING INDEX

Que.9. What will be the real wage of the consumer if his money wage is RS. 10,000 and the cost of living index is 526?
a. 1900
b. 1901
c. 2186
d. 4664

Answer: $B$

Chapter 19

Solution:

$$
\begin{aligned}
& \text { Real wages }=\frac{\text { Money Wages }}{\text { Cost of living Index }} \times 100 \\
& \frac{10,000}{526} \times 100=\text { RS. } 1901
\end{aligned}
$$

5. TIME REVERSAL

Que.9. Which of the following formula satisfy the time reversal test?

$$
\begin{aligned}
& \text { a. } p_{01}=\frac{\sum P_{1} q_{0}}{\sum P_{0} Q_{0}} \\
& \text { c. } p_{01}=\sqrt{\frac{\sum P_{1} q_{0}}{\sum P_{0} Q_{0}} \times p_{01}=\frac{\sum P_{1} q_{1}}{\sum P_{0} Q_{1}}}
\end{aligned}
$$

$$
\text { b. } p_{01}=\frac{\sum P_{1} q_{1}}{\sum P_{0} Q_{1}}
$$

Answer: C
Solution:
Time reversal test. This test is proposed by Irving Fisher. According to him, an index number (formula) should be such that when the base year and current year are interchanged (reversed) the resulting index number should be the reciprocal of the earlier.

Que.10. Time reversal $\xi$ 'factor reversal are:
a. Quantíty index
b. Ideal Index
c. Price Index
d. Test of consistency

Answer: C
Solution:
Time reversal and factor reversal test are test of consistency.
6. INFLATION RATE

Que.11. Given the following data: Year 1995-961996-971997-98

## Chapter 19



## Answer: A <br> Solution:

Inflation rate for different years are calculated as:
Year $1996-97=\frac{x_{t}-X_{t-1}}{x_{t-1}} \times 100=\frac{127.2-121.6}{121.6} \times 100=4.6 \%$
Year 1997-98 $=\frac{X_{t}-X_{t-1}}{X_{t-1}} \times 100=\frac{132.8-127.2}{127.2} \times 100=4.40 \%$
Year 1998-99 $=\frac{X_{t}-X_{t-1}}{X_{t-1}} \times 100=\frac{140.7-132.8}{132.8} \times 100=5.94 \%$

## 7. CIRCULAR TEST

Que.12. Circular test is satisfied by
a. Lespeyre's Index Number
b. Paasche's Index Number
c. The simple geometric mean of price relatives and the weighted aggregative with fixed weights.
d. None of these

## Answer: C

## Solution:

Circular test is satisfied by the simple geometric $m$ an of price relatives and weighted aggregative with fixed weights.

## 8. TEST OF ADEQUACY

 Que.13. The number of test of Adequacy is a. 2$$
\text { b. } 5
$$

Chapter 19
C. 3
d. 4

Answer: D
Solution:
The Number of test of Adequacy is 4.
TIME SERIES

Que.1. Methods of Measuring Trend?
a. Free hand curve method
b. Average method
c. Geographical method
d. None

Answer: A
Solution:
Trend can be determined:
(i) free hand curve method;
(ii) moving averages method;
(iii) semi averages method; and
(iv) least-squares method.

Que.2. Which of these is a method of least square?
a. Linear Trend
b. Exponential Trend
c. Parabolic Trend
d. All of the above.

Answer: D
Solution:
There will be many straight lines which can meet the first condition. Among all different lines, only one line will satisfy the second condition. It is because of this second condition that this method is known as method of least squares.

Que.3. Additive model of time series is

$$
\text { a. } 0=T+S+C+1
$$

$$
\text { b. } O=\mathrm{TSCl}
$$

Chapter 19
c. $O=a+b x$
d. none

Answer: A
Solution:

$$
0=T \times S \times c \times 1
$$

where $O$ refers to original data,
Trefers to trend
$s$ refers to seasonal variations,
c refers to cyclical variations and
1 refers lo irregular variations.
This is the most commonly used model in the decomposition of time series.
This model is called Additive model.

Que.4. The multiplicative time series model is
a. $y=T+S+C+1$
b. $y=\mathrm{TSCl}$
c. $y=a+b x$
d. $y=a+b x+c x^{2}$

Answer: A
Solution:

$$
y=T \times S \times c \times 1
$$

where,
Trefers to Trend Variation
s refers to seasonal variations,
c refers to cyclical variations and 1 refers lo irregular variations.

Que.5. The sale of cold Drink would go up in summers and go down in the winters is an example of
a. Trend variation
b. Seasonal variation
c. Cyclical variation

Answer: b
Solution:
The sale of cold drink would go up in summers end go down in the winder is an example of seasonal variation.

