Chapter - 9
 Sequences and Series

Exercise 9.1

Question 1

Write the first five terms of each of the sequences in Exercises 1 to 6 whose nth terms are:
$\mathbf{a}_{\mathrm{n}}=\mathbf{n}(\mathrm{n}+2)$

Answer:

Given,
$n^{\text {th }}$ term of a sequence an $=n(n+2)$
On substituting $\mathrm{n}=1,2,3,4$, and 5 , we get the first five terms
$a_{1}=1(1+2)=3$
$a_{2}=2(2+2)=8$
$a_{3}=3(3+2)=15$
$a_{4}=4(4+2)=24$
$a_{5}=5(5+2)=35$
Hence, the required terms are $3,8,15,24$, and 35 .
Question 2
$\mathrm{a}_{\mathrm{n}}=\mathbf{n} / \mathbf{n + 1}$

Answer:

Given nth term, an $=\mathrm{n} / \mathrm{n}+1$
On substituting $n=1,2,3,4,5$, we get
Hence, the required terms are $1 / 2,2 / 3,3 / 4,4 / 5$ and $5 / 6$.
$a_{1}=\frac{1}{1+1}=\frac{1}{2}, a_{2} \frac{2}{2+1}=\frac{2}{3}, a_{3}=\frac{3}{3+1}=\frac{3}{4} a_{4}=\frac{4}{4+1}=\frac{4}{5}, a_{5}=\frac{5}{5+1}=\frac{5}{6}$
Hence the required are $1 / 2,2 / 3,3 / 4,4 / 5$ and $5 / 6$

Question 3

$\mathrm{a}_{\mathrm{n}}=\mathbf{2}^{\mathrm{n}}$
Answer:

Given nth term, $\mathrm{a}_{\mathrm{n}}=2^{\mathrm{n}}$
On substituting $n=1,2,3,4,5$, we get
a1 $=21=2$
a2 $=22=4$
a3 $=23=8$
a4 $=24=16$
a5 $=25=32$
Hence, the required terms are $2,4,8,16$, and 32 .

Question 4

$a_{n}=(2 n-3) / 6$

Answer:

Given $n^{\text {th }}$ term, $\mathrm{a}_{\mathrm{n}}=(2 \mathrm{n}-3) / 6$
On substituting $n=1,2,3,4,5$, we get
$\mathrm{a}_{1}=\frac{2 \times 1-3}{6}=\frac{-1}{6}$
$\mathrm{a}_{2}=\frac{2 \times 2-3}{6}=\frac{1}{6}$
$\mathrm{a}_{3}=\frac{2 \times 3-3}{6}=\frac{3}{6}=\frac{1}{2}$
$\mathrm{a}_{4}=\frac{2 \times 4-3}{6}=\frac{5}{6}$
$\mathrm{a}_{5}=\frac{2 \times 5-3}{6}=\frac{7}{6}$
Hence the required term are $-1 / 6,1 / 6,1 / 2,5 / 6$, and $7 / 6 \ldots . .$.

Question 5

$a_{n}=(-1)^{n-1} 5^{n+1}$
Answer:
Given nth term, an $=(-1) n-15 n+1$
On substituting $\mathrm{n}=1,2,3,4,5$, we get
$a_{1}=(-1)^{1-1} 5^{1+1}=5^{2}=25$
$a_{2}=(-1)^{2-1} 5^{2+1}=5^{3}=125$
$a_{3}=(-1)^{3-1} 5^{3+1}=5^{4}=625$
$a_{4}=(-1)^{4-1} 5^{4+1}=5^{5}=3125$
$a_{5}=(-1)^{5-1} 5^{5+1}=5^{6}=15625$
Hence, the required terms are 25, $-125,625,-3125$, and 15625.

Question 6

$a_{n}=n \frac{n^{2}+5}{4}$

Answer:

$$
\begin{aligned}
& a_{1}=1 \cdot \frac{1^{2}+5}{4}=\frac{6}{4}=\frac{3}{2} \\
& a_{2}=2 \cdot \frac{2^{2}+5}{4}=2 \cdot \frac{9}{4}=\frac{9}{2} \\
& a_{3}=3 \cdot \frac{3^{2}+5}{4}=3 \cdot \frac{14}{4}=\frac{21}{2} \\
& a_{4}=4 \cdot \frac{4^{2}+5}{4}=21 \\
& a_{5}=5 \cdot \frac{5^{2}+5}{4}=5 \cdot \frac{30}{4}=\frac{75}{2}
\end{aligned}
$$

Hence, the required terms are $3 / 2,9 / 2,21 / 2,21$ and $75 / 2$.

Question 7

Find the indicated terms in each of the sequences in Exercises 7 to 10 whose nth terms are: $a_{n}=4 n-3 ; a_{17}, a_{24}$

Answer:

Given,
$\mathrm{n}^{\text {th }}$ term of the sequence is $\mathrm{a}_{\mathrm{n}}=4 \mathrm{n}-3$
On substituting $\mathrm{n}=17$, we get
a17 $=4(17)-3=68-3=65$
Next, on substituting $n=24$, we get
$\mathrm{a}_{24}=4(24)-3=96-3=93$

Question 8

$a_{n}=n^{2} / 2^{n} ; a 7$

Answer:

Given,
$\mathrm{n}^{\text {th }}$ term of the sequence is an $=\mathrm{n}^{2} / 2^{\mathrm{n}}$
Now, on substituting $n=7$, we get
a7 $=72 / 27=49 / 128$

Question 9

$a_{n}=(-1)^{n-1} n^{3} ; a 9$

Answer:

Given,
$n^{\text {th }}$ term of the sequence is an $=(-1)^{n-1} n^{3}$
On substituting $\mathrm{n}=9$, we get
$\mathrm{a}_{9}=(-1)^{9-1}(9)^{3}=1 \times 729=729$

Question 10

$\mathbf{a}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}-2)}{\mathrm{n}+3} ; \mathbf{a}_{20}$
Answer:
On substituting $\mathrm{n}=20$, we get
$\mathrm{a}_{20}=\frac{20(20-2)}{20+3}=\frac{20(18)}{23}=\frac{360}{23}$
Write the first five terms of each of the sequences in Exercises 11 to 13 and obtain the corresponding series:

Question 11

$a_{1}=3, a n=3 a_{n-1}+2$ for all $n>1$

Answer:

Given, $\mathrm{an}=3 \mathrm{a}_{\mathrm{n}-1}+2$ and $\mathrm{a}_{1}=3$
Then,
$\mathrm{a}_{2}=3_{\mathrm{a} 1}+2=3(3)+2=11$
$\mathrm{a}_{3}=3_{\mathrm{a} 2}+2=3(11)+2=35$
$\mathrm{a}_{4}=3_{\mathrm{a} 3}+2=3(35)+2=107$
$\mathrm{a}_{5}=3_{\mathrm{a} 4}+2=3(107)+2=323$
Thus, the first 5 terms of the sequence are $3,11,35,107$ and 323.
Hence, the corresponding series is
$3+11+35+107+323 \ldots \ldots$

Question 12

$a_{1}=-1, a_{n}=a_{n-1} / n, n \geq 2$
Answer:
Given,
$\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1} / \mathrm{n}$ and $\mathrm{a}_{1}=-1$
Then,
$\mathrm{a}_{2}=\mathrm{a} 1 / 2=-1 / 2$
$\mathrm{a}_{3}=\mathrm{a} 2 / 3=-1 / 6$
$\mathrm{a}_{4}=\mathrm{a} 3 / 4=-1 / 24$
$a^{5}=a 4 / 5=-1 / 120$

Thus, the first 5 terms of the sequence are $-1,-1 / 2,-1 / 6,-1 / 24$ and $-1 / 120$.
Hence, the corresponding series is
$-1+(-1 / 2)+(-1 / 6)+(-1 / 24)+(-1 / 120)+\ldots \ldots$.

Question 13

$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n>2$
Answer:
Given,
$\mathrm{a}_{1}=\mathrm{a}_{2}, \mathrm{a}_{\mathrm{n}}=\mathrm{a}_{\mathrm{n}-1}-1$
Then,
$\mathrm{a}_{3}=\mathrm{a}_{2}-1=2-1=1$
$\mathrm{a}_{4}=\mathrm{a}_{3}-1=1-1=0$
$a_{5}=a_{4}-1=0-1=-1$
Thus, the first 5 terms of the sequence are $2,2,1,0$ and -1 .
The corresponding series is
$2+2+1+0+(-1)+\ldots \ldots$

Question 14

The Fibonacci sequence is defined by

$$
1=a_{1}=a_{2} \text { and } a_{n}=a_{n}-1+a_{n-2}, n>2
$$

Find a_{n+1} / a_{n}, for $n=1,2,3,4,5$

Answer:

Given,
$1=\mathrm{a} 1=\mathrm{a} 2$
$a_{n}=a_{n-1}+a_{n-2}, n>2$
So,
$\mathrm{a}_{3}=\mathrm{a}_{2}+\mathrm{a}_{1}=1+1=2$
$a_{4}=a_{3}+a_{2}=2+1=3$
$a_{5}=a_{4}+a_{3}=3+2=5$
$\mathrm{a}_{6}=\mathrm{a}_{5}+\mathrm{a}_{4}=5+3=8$
Thus,
For $\mathrm{n}=1, \frac{\mathrm{a}_{\mathrm{n}}+1}{\mathrm{a}_{\mathrm{n}}}=\frac{\mathrm{a}_{2}}{\mathrm{a}_{1}}=\frac{1}{1}=1$
For $\mathrm{n}=2, \frac{\mathrm{a}_{\mathrm{n}}+1}{\mathrm{a}_{\mathrm{n}}}=\frac{\mathrm{a}_{3}}{\mathrm{a}_{2}}=\frac{2}{1}=2$
For $\mathrm{n}=3, \frac{\mathrm{a}_{\mathrm{n}}+1}{\mathrm{a}_{\mathrm{n}}}=\frac{\mathrm{a}_{4}}{\mathrm{a}_{3}}=\frac{3}{2}$
For $\mathrm{n}=4, \frac{\mathrm{a}_{\mathrm{n}}+1}{\mathrm{a}_{\mathrm{n}}}=\frac{\mathrm{a}_{5}}{\mathrm{a}_{4}}=\frac{5}{3}$
For $\mathrm{n}=5, \frac{\mathrm{a}_{\mathrm{n}}+1}{\mathrm{a}_{\mathrm{n}}}=\frac{\mathrm{a}_{6}}{\mathrm{a}_{5}}=\frac{8}{5}$

Exercise 9.2

Question 1

Find the sum of odd integers from 1 to 2001.
Answer:
The odd integers from 1 to 2001 are 1, 3, 5, ... 1999, 2001.
It clearly forms a sequence in A.P.
Where, the first term, $\mathrm{a}=1$
Common difference, $\mathrm{d}=2$
Now,
$\mathrm{a}+(\mathrm{n}-1) \mathrm{d}=2001$
$1+(n-1)(2)=2001$
$2 \mathrm{n}-2=2000$
$2 \mathrm{n}=2000+2=2002$
$\mathrm{n}=1001$
We know,
$\mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{S}_{\mathrm{n}} \frac{1001}{2}[2 \times 1+(1001-1) \times 2]$
$=\frac{1001}{2}[2+1000 \times 2]$
$=\frac{1001}{2} \times 2002$
$=1001 \times 1001$
$=1002001$
Therefore, the sum of odd numbers from 1 to 2001 is 1002001.

Question 2

Find the sum of all natural numbers lying between 100 and 1000 , which are multiples of 5 .

Answer:

The natural numbers lying between 100 and 1000, which are multiples of 5, are 105, 110, ... 995. It clearly forms a sequence in A.P.
Where, the first term, $\mathrm{a}=105$
Common difference, $d=5$
Now,
$a+(n-1) d=995$
$105+(n-1)(5)=995$
$105+5 n-5=995$
$5 n=995-105+5=895$
$\mathrm{n}=895 / 5$
$\mathrm{n}=179$
We know,

$$
\begin{aligned}
\mathrm{S}_{\mathrm{n}} & =\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\
\mathrm{S}_{\mathrm{n}} & =\frac{179}{2}[2(105)+(179-1)(5)] \\
& =\frac{179}{2}[2(105)+(178)(5)] \\
& =179[105+(89) 5] \\
& =(179)(105+445) \\
& =(179)(550) \\
& =9840
\end{aligned}
$$

Therefore, the sum of all natural numbers lying between 100 and 1000 , which are multiples of 5 , is 98450.

Question 3

In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that $\mathbf{2 0}^{\text {th }}$ term is $\mathbf{- 1 1 2}$.

Answer:

Given,
The first term (a) of an A.P = 2
Let's assume d be the common difference of the A.P.
So, the A.P. will be $2,2+d, 2+2 d, 2+3 d \ldots$
Then,
Sum of first five terms $=10+10 \mathrm{~d}$
Sum of next five terms $=10+35 \mathrm{~d}$
From the question, we have
$10+10 d=1 / 4(10+35 d)$
$40+40 d=10+35 d$
$30=-5 d$
$\mathrm{d}=-6$
$\mathrm{a}_{20}=\mathrm{a}+(20-1) \mathrm{d}=2+(19)(-6)=2-114=-112$
Therefore, the 20th term of the A.P. is -112 .

Question 4

How many terms of the A.P. $-6,-11 / 2,-5, \ldots$ are needed to give the sum $\mathbf{- 2 5}$?

Answer:

Let's consider the sum of n terms of the given A.P. as -25 .
We known that,
$\mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$

Where $\mathrm{n}=$ number of terms $\mathrm{a}=$ first term, and $\mathrm{d}=$ common difference
So here, $\mathrm{a}=-6$
$\mathrm{d}=-11 / 2+6=(-11+12) / 2=1 / 2$
Thus, we have
$-25=\frac{n}{2}\left[2 \times(-6)+(n-1)\left(\frac{1}{2}\right)\right]$
$-50=n\left[-12+\frac{n}{2}-\frac{1}{2}\right]$
$-50=n\left[-\frac{25}{2}+\frac{n}{2}\right]$
$-100 n(-25+n)$
$n^{2}-25 n+100=0$
$n^{2}-25 n-20+100=0$
$n(n-5)-20(n-5)=0$
$n=20$ or 5

Question 5

In an A.P., if $p^{\text {th }}$ term is $1 / q$ and q th term is $1 / p$, prove that the sum of first $p q$ terms is $1 / 2(p q+$ 1) where $p \neq q$.

Answer:

We know that general term of A.P. is given by: $a_{n}=a+(n-1) d$ From the question we have
$p^{\text {th }}$ term $=a_{p}=a+(p-1) d=\frac{1}{q}$
$q^{\text {th }}$ term $=a_{q}=a+(q-1) d=\frac{1}{p}$
Subtracting (2) from (1) we have
$(p-1) d-(q-1)=d \frac{1}{q}-\frac{1}{p}$
$(p-1-q+1) d=\frac{p-q}{p q}$
$(p-q) d=\frac{p-q}{p q}$
$d=\frac{1}{p q}$
Using the value of d in (1) we get
$a+(p-1) \frac{1}{p q}=\frac{1}{q}$
$\Rightarrow a=\frac{1}{q}-\frac{1}{q}+\frac{1}{p q}=\frac{1}{p q}$
$S_{p q}=\frac{p q}{2}[2 a+(p q-1) d]$
$=\frac{p q}{2}\left[\frac{2}{p q}+(p q) \frac{1}{p q}\right]$
$=1+\frac{1}{2}(p q-1)$
$=\frac{1}{2} p q+1-\frac{1}{2}=\frac{1}{2} p q+\frac{1}{2}$
$=\frac{1}{2}(p q+1)$

Therefore the sum of first pq terms of A.P. is $\frac{1}{2}(p q+1)$

Question 6

If the sum of a certain number of terms of the A.P. $25,22,19, \ldots$ is 116 . Find the last term

Answer:

Given A.P.,
25, 22, 19,
Here,
First term, $\mathrm{a}=25$ and
Common difference, $\mathrm{d}=22-25=-3$
Also given, sum of certain number of terms of the A.P. is 116
The number of terms be n
So, we have
$\mathrm{Sn}=\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]=116$
$116=n / 2[2(25)+(n-1)(-3)]$
$116 \times 2=\mathrm{n}[50-3 \mathrm{n}+3]$
$232=n[53-3 n]$
$232=53 n-3 n 2$
$3 n 2-53 n+232=0$
$3 n 2-24 n-29 n+232=0$
$3 \mathrm{n}(\mathrm{n}-8)-29(\mathrm{n}-8)=0$
$(3 n-29)(n-8)=0$
Hence,

$\mathrm{n}=29 / 3$ or $\mathrm{n}=8$
As n can only be an integral value, $n=8$
Thus, $8^{\text {th }}$ term is the last term of the A.P.

$$
\begin{aligned}
\mathrm{a}_{8} & =25+(8-1)(-3) \\
& =25-21 \\
& =4
\end{aligned}
$$

Question 7

Find the sum to n terms of the A.P., whose k th term is $5 \mathrm{k}+1$.

Answer:

Given, the $\mathrm{k}^{\text {th }}$ term of the A.P. is $5 \mathrm{k}+1$.
$\mathrm{k}^{\text {th }}$ term $=\mathrm{a}_{\mathrm{k}}=\mathrm{a}+(\mathrm{k}-1) \mathrm{d}$
And,
$\mathrm{a}+(\mathrm{k}-1) d=5 \mathrm{k}+1$
$\mathrm{a}+\mathrm{k} d-\mathrm{d}=5 \mathrm{k}+1$

On comparing the coefficient of k , we get $\mathrm{d}=5$
$\mathrm{a}-\mathrm{d}=1$
a-5 = 1
$\Rightarrow \mathrm{a}=6$
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$=\frac{n}{2}[2(6)+(n-1)(5)]$
$=\frac{n}{2}[2+5 n-5]$
$==\frac{n}{2}[5 n+7]$

Question 8

If the sum of n terms of an A.P. is ($p n+q n^{2}$), where p and q are constants, find the common difference.

Answer:
We know that,
$\mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
From the question we have,
$\frac{n}{2}[2 a+(n-1) d]=p n+q n^{2}$
$\frac{n}{2}[2 a+(n-1) d]=p n+q n^{2}$
$\frac{\mathrm{n}}{2}[2 \mathrm{a}+\mathrm{nd}-\mathrm{d}]=\mathrm{pn}+\mathrm{qn}^{2}$
$n a+n^{2} \frac{d}{n}-n \frac{d}{2}=p n+q^{2}$

On comparing the coefficients of n^{2} on both sides, we get
$\mathrm{d} / 2=\mathrm{q}$
Hence, d = 2q
Therefore, the common difference of the A.P. is 2 q .

Question 9

The sums of n terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6$. Find the ratio of their 18th terms.

Answer:

Let a_{1}, a_{2}, and d_{1}, d_{2} be the first terms and the common difference of the first and second arithmetic progression respectively.
Then, from the question we have
$\frac{\text { Sum of } n \text { term of first A.P. }}{\text { Sum of } n \text { term of second A.P. }}=\frac{5 n+4}{9 n+6}$
$\frac{\frac{n}{2}\left[2 a_{1}(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{1}(n-1) d_{2}\right]}=\frac{5 n+4}{9 n+6}$
$\frac{2 \mathrm{a}_{1}(\mathrm{n}-1) \mathrm{d}_{1}}{2 \mathrm{a}_{1}(\mathrm{n}-1) \mathrm{d}_{2}}=\frac{5 \mathrm{n}+4}{9 \mathrm{n}+6}$
Substituting $\mathrm{n}=35$ in (1) we get
$\frac{2 \mathrm{a}_{1}+34 \mathrm{~d}_{1}}{2 \mathrm{a}_{2}+34 \mathrm{~d}_{2}}=\frac{5(35)+4}{9(35)+6}$
$\frac{a_{1}+17 d_{1}}{a_{2}+17 d_{2}}=\frac{179}{321}$
$\frac{18^{\text {th }} \text { term of first A.P. }}{18^{\text {th }} \text { term of second A.P. }}=\frac{a_{1}+17 d_{1}}{a_{2}+17 d_{2}}$
From (2) and (3) we have
$\frac{18^{\text {th }} \text { term of first A.P. }}{18^{\text {th }} \text { term of second A.P. }}=\frac{179}{321}$
Therefore the ratio of $18^{\text {th }}$ term of both the A.P.s is 179:321

Question 10

If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first $(p+q)$ terms.

Answer:

Let's take a and d to be the first term and the common difference of the A.P. respectively.
Then, it given that
$S_{p}=\frac{p}{2}[2 a+(p-1) d]$
$S_{q}=\frac{p}{2}[2 a+(p-1) d]$
From the question we have
$\frac{p}{2}[2 a+(p-1) d]=\frac{q}{2}[2 a+(q-1) d]$
$p[2 a+(p-1) d]=\mathrm{a}[2 a+(q-1) d]$
$2 \mathrm{ap}+\mathrm{pd}(\mathrm{p}-1)=2 \mathrm{aq}+\mathrm{qd}(\mathrm{q}-1)$
2a $(p-q)+d[p(p-1)-q(q-1]=0$
$2 \mathrm{a}(\mathrm{p}-\mathrm{q})+\mathrm{d}\left[p^{2}-p-q^{2}+q\right]=0$
2a $(p-q)+\mathrm{d}[(p-q)(p+q)-(p-q)]$
2a $(p-q)+d[(p-q)(p+q-1)]=0$
$2 \mathrm{a}+\mathrm{d}(p+q-1)=0$
$\Rightarrow d=\frac{-2 a}{p+q-1}$
So the sum of $(p+q)$ terms will be
$S_{p+q}=\frac{p+q}{2}[2 a+(p+q-1) \cdot d]$
$S_{p+q}=\frac{p+q}{2}\left[2 a+(p+q-1)\left(\frac{-2 a}{p+q-1}\right)\right]$
[fom (1)]
$\frac{p+q}{2}[2 a-2 a]$
$=0$
Therefore, the sum of $(p+q)$ terms of the A.P. is 0 .

Question 11

Sum of the first p, q and r terms of an A.P. are a, b and c, respectively
Prove that $\frac{a}{p}(\boldsymbol{q}-\boldsymbol{r})+\frac{b}{q}(\boldsymbol{r}-\boldsymbol{p})+\frac{c}{r}(\boldsymbol{p}-\boldsymbol{q})=\mathbf{0}$
Answer:
$S_{p}=\frac{p}{2}\left[2 a_{1}+(p-1) d\right]=a$
[7 $2 a_{1}+(p-1) d=\frac{2 a}{p}$
$S_{p}=\frac{q}{2}\left[2 a_{1}+(q-1) d\right]=b$
2 $2 a_{1}+(q-1) d=\frac{2 b}{q}$
$S_{r}=\frac{r}{2}\left[2 a_{1}+(r-1) d\right]=c$
(2) $2 a_{1}+(r-1) d=\frac{2 c}{r}$

Now subtracting (2) from (1) we get
$(p-1) d-(q-1) d=\frac{2 a}{p}-\frac{2 b}{q}$
$d(p-1-q+1)=\frac{2 a q-2 b q}{p q}$
$d(p-q)=\frac{2 a q-2 b q}{p q}$
$d=\frac{2(a q-b p)}{p q(p-q)}$
Then subtracting (3) from (2) we get
$(q-1) d-(r-1) d=\frac{2 b}{q}-\frac{2 c}{r}$
$d(q-1-r+1)=\frac{2 b}{q}-\frac{2 c}{r}$
$d(q-r)=\frac{2 b r-2 q c}{q r}$
$d=\frac{2(b r-q c)}{q r(q-r)}$
On equating both the value of obtained in (4) and (5) we get
$\frac{a q-b p}{p q(p-q)}=\frac{b r-q c}{q r(q-r)}$
$\frac{a q-b p}{p(p-q)}=\frac{b r-q c}{r(q-r)}$
$r(q-r)(a q-b p)=p(p-q)(b r-q c)$
$r(a q-b p)(q-r)=p(b r-q c)(p-q)$
$(a q r-b p r)(q-r)=(b p r-c p q)(p-q)$
Dividing both sides by pqr we have

$$
\begin{aligned}
& \left(\frac{a}{p}-\frac{b}{q}\right)(q-r)=\left(\frac{b}{q}-\frac{c}{r}\right)(p-q) \\
& \frac{a}{p}(q-r)-\frac{b}{q}(q-r+p-q)+\frac{c}{r}(p-q)=0 \\
& \frac{a}{p}(q-r)-\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0
\end{aligned}
$$

Hence the given result is proved

Question 12

The ratio of the sums of m and n terms of an A.P. is $m 2$: $n 2$. Show that the ratio of $m^{\text {th }}$ and nth term is
($2 m-1$): $(2 n-1)$.
Answer:
Let's consider that a and b to be the first term and the common difference of the A.P. respectively.
Then from the question, we have
$\frac{\text { Sum of } m \text { terms }}{\text { Sum of } n \text { terms }}=\frac{m^{2}}{n^{2}}$
$\frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{m^{2}}{n^{2}}$
$\frac{2 a+(m-1) d}{2 a+(n-1) d} \frac{m}{n}$
Putting $m=2 m-1$ and $n=2 n-1$ in (1) we get
$\frac{2 \mathrm{a}+(2 \mathrm{~m}-2) \mathrm{d}}{2 \mathrm{a}+(2 \mathrm{n}-2) \mathrm{d}}=\frac{2 \mathrm{~m}-1}{2 \mathrm{n}-1}$
$\Rightarrow \frac{\mathrm{a}+(\mathrm{m}-1) \mathrm{d}}{\mathrm{a}+(\mathrm{n}-1) \mathrm{d}}=\frac{2 \mathrm{~m}-1}{2 \mathrm{n}-1}$
Now
$\frac{m^{\text {th }} \text { term of A.P. }}{n^{\text {th }} \text { trm of A.P. }}=\frac{a+(m-1) d}{a+(n-1) d}$
From (2) and (3) we have
$\frac{\mathrm{m}^{\text {th }} \text { term of A.P. }}{\mathrm{n}^{\text {th }} \text { trm of A.P. }}=\frac{2 \mathrm{~m}-1}{2 \mathrm{n}-1}$
Hence the given result proved

Question 13

If the sum of n terms of an A.P. is $3 n^{2}+5^{n}$ and its $m^{\text {th }}$ term is 164 , find the value of m.

Answer:

Let's consider a and b to be the first term and the common difference of the A.P. respectively. $\mathrm{a}_{\mathrm{m}}=\mathrm{a}+$ $(m-1) d=164 \ldots$ (1)
We the sum of the terms is given by,
$\mathrm{S}_{\mathrm{n}}=\mathrm{n} / 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\frac{n}{2}[2 a+n d-d]=3 n^{2}+5 n$
$n a+\frac{d}{2} n^{2}-\frac{d}{2} n=3 n^{2}+5 n$
$\frac{d}{2} n^{2}+\left(a-\frac{d}{2}\right) n-3 n^{2}+5 n$
On comparing the coefficient of n^{2} on both sides we get
$\frac{d}{2}=3$
$\Rightarrow d=6$
On comparing the coefficient of n on both sides we get
$\frac{a-d}{2}=3$
$a-2=5$
$a=8$
Hence from (1) we get
$8+(m-1) 6=164$
$(m-1) 6=164-8=156$
$\mathrm{m}-1=26$
$\mathrm{m}=27$
Therefore the value of m is 27 .

Question 14

Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.

Answer:

Let's assume $A_{1}, A_{2}, A_{3}, A_{4}$, and A_{5} to be five numbers between 8 and 26 such that $8, A_{1}, A_{2}, A_{3}, A_{4}$, $A_{5}, 26$ are in an A.P.
Here we have,
$\mathrm{a}=8, \mathrm{~b}=26, \mathrm{n}=7$
So,
$26=8+(7-1) d$
$6 \mathrm{~d}=26-8=18$
$\mathrm{d}=3$
Now,
$\mathrm{A}_{1}=\mathrm{a}+\mathrm{d}=8+3=11$
$\mathrm{A}_{2}=\mathrm{a}+2 \mathrm{~d}=8+2 \times 3=8+6=14$
$\mathrm{A}_{3}=\mathrm{a}+3 \mathrm{~d}=8+3 \times 3=8+9=17$
$\mathrm{A}_{4}=\mathrm{a}+4 \mathrm{~d}=8+4 \times 3=8+12=20$
$\mathrm{A}_{5}=\mathrm{a}+5 \mathrm{~d}=8+5 \times 3=8+15=23$
Therefore, the required five numbers between 8 and 26 are 11, 14, 17, 20, and 23 .

Question 15

If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the A.M. between a and b, then find the value of n.
Answer:

The A.M between a and b is given by, $(a+b) / 2$
Then according to the question,
$\frac{\mathrm{a}+\mathrm{b}}{2}=\frac{\mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}}}{\mathrm{a}^{\mathrm{n}-1}+\mathrm{b}^{\mathrm{n}-1}}$
$(a+b)\left(a^{n-1}+b^{n-1}\right)=2\left(a^{n}+b^{n}\right)$
$a^{n}+a b^{n-1}+b a^{n-1}+b^{n}=2 a^{n}+2 b^{n}$
$a b^{n-1}-a^{n-1} b=a^{n}+b^{n}$
$a b^{n-1}-b^{n}=a^{n-1} b$
$b^{n-1}(a-b)=a^{n-1}(a-b)$
$b^{n-1}=a^{n-1}$
$\left(\frac{a}{b}\right)^{n-1}=1=\left(\frac{a}{b}\right)^{0}$
$n-1=0$
$n=1$
Thus, the value of n is 1 .

Question 16

Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of $7^{\text {th }}$ and $(m-1)^{\text {th }}$ numbers is 5: 9 . Find the value of m.

Answer:

Let's consider $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots$ am be m numbers such that $1, \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots a m, 31$ is an A.P.
And here,
$\mathrm{a}=1, \mathrm{~b}=31, \mathrm{n}=\mathrm{m}+2$
So, $31=1+(m+2-1)(d)$
$30=(m+1) d$
$\mathrm{d}=30 /(\mathrm{m}+1)$
Now,
$\mathrm{a}_{1}=\mathrm{a}+\mathrm{d}$
$\mathrm{a}_{2}=\mathrm{a}+2 \mathrm{~d}$
$\mathrm{a}_{3}=\mathrm{a}+3 \mathrm{~d} . .$.
Hence, $\mathrm{a} 7=\mathrm{a}+7 \mathrm{~d}$
$\mathrm{a}_{\mathrm{m}-1}=\mathrm{a}+(\mathrm{m}-1) \mathrm{d}$
According to the question, we have
$\frac{a+7 d}{a+(m-1) d}=\frac{5}{9}$
$\frac{1+7\left(\frac{30}{m-1}\right)}{1+(m-1)\left(\frac{30}{m-1}\right)}=\frac{5}{9}$
[From (1)]
$\frac{m+1+7(30)}{m+1+30(m-1)}=\frac{5}{9}$
$\frac{m+1+210}{m+1+30 m-30}=\frac{5}{9}$
$\frac{m+211}{31 m-29}=\frac{5}{9}$
$9 m+1899=155 m-145$
$155 m-9 m=1899+145$
146 m 2044
$m=14$
Therefore, the value of m is 14 .

Question 17

A man starts repaying a loan as first instalment of Rs. 100. If he increases the instalment by Rs 5 every month, what amount he will pay in the 30 th instalment?

Answer:

Given,
The first instalment of the loan is Rs 100.
The second instalment of the loan is Rs 105 and so on as the instalment increases by Rs 5 every month.
Thus, the amount that the man repays every month forms an A.P.
And the, A.P. is $100,105,110$...
Where, first term, $a=100$
Common difference, $\mathrm{d}=5$
So, the $30^{\text {th }}$ term in this A.P. will be
$\mathrm{A}_{30}=\mathrm{a}+(30-1) \mathrm{d}$

$$
=100+(29)
$$

$$
=100+145
$$

$$
=245
$$

Therefore, the amount to be paid in the $30^{\text {th }}$ instalment will be Rs 245 .

Question 18

The difference between any two consecutive interior angles of a polygon is 5°. If the smallest angle is 120°, find the number of the sides of the polygon.

Answer:

It's understood from the question that, the angles of the polygon will form an A.P. with common difference $\mathrm{d}=5^{\circ}$ and first term $\mathrm{a}=120^{\circ}$.
And, we know that the sum of all angles of a polygon with n sides is $180^{\circ}(n-2)$.
Thus, we can say
$S_{n}=180^{0}(n-2)$
$\frac{n}{2}[2 a+(n-1) d]=180^{0}(n-2)$
$\frac{n}{2}\left[240^{0}+(n-1) 5^{0}\right]=180(n-2)$
$n[240+(n-1) 5]=360(n-2)$
$240 n+5 n^{2}-5 n=360-720$
$5 n^{2}+235 n-360 n+720=0$
$5 n^{2}-125 n+720=0$
$n^{2}-25 n+144=0$
$n^{3}-16 n-9 n+144=0$
$n-(n-16)-9+(n-16)=0$
$(n-9)(n-16)=0$
$n=9$ or 16
Thus, a polygon having 9 and 16 sides will satisfy the condition in the question.

Exercise 9.3

Question 1

Find the $20^{\text {th }}$ and $n^{\text {th }}$ terms of the G.P. 5/2, 5/4, 5/8, \qquad \bar{I}

Answer:

Given G.P. is $5 / 2,5 / 4,5 / 8$,
Here, $\mathrm{a}=$ First term $=5 / 2$
$r=$ Common ratio $=(5 / 4) /(5 / 2)=1 / 2$
Thus, the $20^{\text {th }}$ term and $\mathrm{n}^{\text {th }}$ term
$a_{20}=a r^{20-1}=\frac{5}{2}\left(\frac{1}{2}\right)^{19}=\frac{5}{(2)(2)^{19}}=\frac{5}{(2)^{20}}$
$a_{n}=\operatorname{ar}^{n-1}=\frac{5}{2}\left(\frac{1}{2}\right)^{n}=\frac{5}{(2)(2)^{n-1}}=\frac{5}{(2)^{n}}$

Question 2

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.

Answer:

Given,
The common ratio of the G.P., r $=2$
And, let a be the first term of the G.P.
Now,
$\mathrm{a}_{8}=\mathrm{ar}^{8-1}=\mathrm{ar}^{7}$
$\mathrm{ar}^{7}=192$
a $(2)^{7}=192$
a $(2)^{7}=(2)^{6}(3)$
So
$a=\frac{(2)^{6} \times 3}{(2)^{7}}=\frac{3}{2}$
Hence

$$
a_{12}=\operatorname{ar}^{12-1}=\left(\frac{3}{2}\right)(2)^{11}=(3)(2)^{10}=3072
$$

Question 3

The $5^{\text {th }}, 8^{\text {th }}$ and $11^{\text {th }}$ terms of a G.P. are p, q and s, respectively. Show that $q^{2}=p s$.
Answer:

Let's take a to be the first term and r to be the common ratio of the G.P.
Then according to the question, we have
$a^{5}=a r^{5-1}=a r^{4}=p \ldots$ (i)
$\mathrm{a}^{8}=a \mathrm{r}^{8-1}=a \mathrm{r}^{7}=\mathrm{q} \ldots$ (ii)
$a^{11}=\operatorname{ar}^{11-1}=\operatorname{ar}^{10}=\mathrm{s}$
Dividing equation (ii) by (i), we get
$\frac{a r^{7}}{a r^{4}}=\frac{q}{p}$
$r^{3}=\frac{q}{p}$
(iv)

On dividing equation (iii) by (ii) we get
$\frac{a r^{10}}{a r^{4}}=\frac{s}{q}$
$r^{3}=\frac{s}{q}$
(v)

Equation the value of r^{3} obtained in (iv) and (v) we get
$\frac{q}{p}=\frac{s}{q}$
$q^{2}=p s$
Hence proved

Question 4

The $4^{\text {th }}$ term of a G.P. is square of its second term, and the first term is $\mathbf{- 3}$. Determine its $7^{\text {th }}$ term.

Answer:

Let's consider a to be the first term and r to be the common ratio of the G.P.
Given, $\mathrm{a}=-3$
And we know that,
$\mathrm{a}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
So, $a_{4}=a r^{3}=(-3) r^{3}$
$\mathrm{a}_{2}=\mathrm{ar} \mathrm{r}^{1}=(-3) \mathrm{r}$
Then from the question, we have
$(-3) r^{3}=[(-3) r]^{2}$
$\Rightarrow-3 r^{3}=9 r^{2}$
$\Rightarrow \mathrm{r}=-3$
$\mathrm{a}_{7}=\operatorname{ar}^{7-1}=\operatorname{ar}^{6}=(-3)(-3)^{6}=-(3)^{7}=-2187$
Therefore, the seventh term of the G.P. is -2187 .

Question 5

Which term of the following sequences?
(a) $2,2 \sqrt{2}, 4 \ldots$ is 128 ?
(b) $\sqrt{3}, 3,3 \sqrt{3} \ldots$ is 729 ?
(c) $1 / 3,1 / 9,1 / 27$, is $1 / 19683$?

Answer:

(i) The given sequence, $2,2 \sqrt{2}, 4 \ldots$

We have,
$a=2$ and $r=2 \sqrt{2} / 2=\sqrt{2}$
Taking the nth term of this sequence as 128 , we have
$a_{n}=a r^{n-1}$
(2) $(\sqrt{2})^{n-1}=128$
(2) $(2)^{\frac{n * 1}{2}}=(2)^{7}$
$(2)^{\frac{n * 1}{2}}=(2)^{7}$
$\frac{n-1}{2}+1=7$
$\frac{n-1}{2}=6$
$n-1=12$
$n=13$
Therefore the $13^{\text {th }}$ term of given sequence is 128
(ii) Given sequence, $\sqrt{3}, 3,3 \sqrt{3} \ldots$

We have,
,
$a=\sqrt{3}$ and $r=3 / \sqrt{3}=\sqrt{3}$
Taking the nth term of this sequence to be 729, we have
$a_{n}=a r^{n-1}$
$\therefore a r^{n-1}=729$
$(\sqrt{3})(\sqrt{3})^{n-1}=729$
(3) $)^{\frac{1}{2}}(3)^{\frac{n-1}{2}}=(3)^{6}$
(3) $)^{\frac{1}{2}+\frac{n-1}{2}}(3)^{6}$

Equating the exponents we have
$\frac{1}{2}+\frac{n-1}{2}=6$
$\frac{1+n-1}{2}=6$
$\therefore n=12$
(iii) Given sequence, $1 / 3,1 / 9,1 / 27, \ldots$
$a=1 / 3$ and $r=(1 / 9) /(1 / 3)=1 / 3$
Taking the nth term of this sequence to be $1 / 19683$, we have $a_{n}=a r^{n-1}$
$\therefore a r^{n-1}=\frac{1}{19683}$
$\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^{n-1}=\frac{1}{19683}$
$\left(\frac{1}{3}\right)^{n}=\left(\frac{1}{3}\right)^{9}$
$n=9$
Therefore the $9^{\text {th }}$ term of given sequence is $1 / 19683$

Question 6

For what values of x, the numbers $-2 / 7, x,-7 / 2$ are in G.P?
Answer:
The given numbers are $-2 / 7, x,-7 / 2$.
Common ratio $=x /(-2 / 7)=-7 x / 2$
Also, common ratio $=(-7 / 2) / \mathrm{x}=-7 / 2 \mathrm{x}$
$\therefore \frac{-7 x}{2}=\frac{-7}{2 x}$
$x^{2}=\frac{-2 \times 7}{-2 \times 7}=1$
$x=\sqrt{ } 1$
$x= \pm 1$
Therefore, for $x= \pm 1$, the given numbers will be in G.P.

Question 7

Find the sum to 20 terms in the geometric progression $0.15,0.015,0.0015$...

Answer:

Given G.P., $0.15,0.015,0.00015$,
Here, $\mathrm{a}=0.15$ and $\mathrm{r}=0.015 / 0.15=0.1$
We know that $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$\therefore \mathrm{S}_{10}=\frac{0.15\left[1-(0.1)^{20}\right]}{1-0.1}$

$$
\begin{aligned}
& =\frac{0.15}{0.9}\left[1-(0.1)^{20}\right] \\
& =\frac{15}{90}\left[1-(0.1)^{20}\right] \\
& =\frac{1}{6}\left[1-(0.1)^{20}\right]
\end{aligned}
$$

Question 8

Find the sum to n terms in the geometric progression $\sqrt{7} \sqrt{21}, 3 \sqrt{7}$,

Answer:

The given G.P is $\sqrt{7}, \sqrt{21}, 3 \sqrt{7}, \ldots$.
Here,
$\mathrm{a}=\sqrt{7}$ and
$r=\frac{\sqrt{21}}{\sqrt{7}}=\sqrt{3}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$\therefore S_{1}=\frac{\sqrt{7}\left[1-(\sqrt{3})^{N}\right]}{1-\sqrt{3}}$
$=\frac{\sqrt{7}\left[1-(\sqrt{3})^{N}\right]}{1-\sqrt{3}} \times \frac{1+\sqrt{3}}{1+\sqrt{3}}$
(By rationalizing)
$=\frac{\sqrt{7}(1+\sqrt{3})\left[1-(\sqrt{3})^{n}\right]}{1-3}$
$=\frac{-\sqrt{7}(1+\sqrt{3})}{2}\left[1-(3)^{\frac{n}{2}}\right]$
$=\frac{-\sqrt{7}(1+\sqrt{3})}{2}\left[(3)^{\frac{n}{2}}-1\right]$

Question 9

Find the sum to n terms in the geometric progression $1,-a, a^{2},-a^{3} \ldots$... (if $a \neq-1$)

Answer:

The given G.P. is $1,-a, a^{2},-a^{3}$
Here, the first term $=\mathrm{a} 1=1$
And the common ratio $=r=-\mathrm{a}$
We know that
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-\mathrm{r}}$
$\therefore \mathrm{S}_{1}=\frac{1\left[1-(-\mathrm{a})^{\mathrm{n}}\right]}{1-(-\mathrm{a})}=\frac{\left[1-(-\mathrm{a})^{\mathrm{n}}\right]}{1+\mathrm{a}}$

Question 10

Find the sum to n terms in the geometric progression $x 3, x 5, x 7, \ldots$ (if $x \neq \pm 1$)

Answer:

Given G.P. is $x 3, x 5, x 7$,
Here, we have $a=x 3$ and $r=x 5 / x 3=x 2$
We know that $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{x^{3}\left[1-(x)^{n}\right]}{1-x^{2}}=\frac{x^{3}\left(1-x^{2 n}\right)}{1-x^{2}}$
For more Info Visit - www.KITest.in

Question 11

Evaluate: $\sum_{k=1}^{n}\left(2+3^{k}\right)$

Answer:
$\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(2+3^{\mathrm{k}}\right)=\sum_{\mathrm{k}=1}^{\mathrm{n}}(2) \sum_{\mathrm{k}=1}^{\mathrm{n}} 3^{\mathrm{k}}=2(11)+\sum_{\mathrm{k}=1}^{\mathrm{n}} 3^{\mathrm{k}}=22+\sum_{\mathrm{k}=1}^{\mathrm{n}} 3^{\mathrm{k}}$
$\sum_{k=1}^{n} 3^{k}=3^{1}+3^{2}+3^{3}+\cdots . .+3^{11}$
We know that the term of this sequence $3,3^{2}+3^{3}$ from a G.P.
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{11}=\frac{3\left(3^{11}-1\right)}{3-1}$
$S_{11}=\frac{3}{2}\left(3^{11}-1\right)$
$\therefore \sum_{\mathrm{k}=1}^{\mathrm{n}} 3^{\mathrm{k}}=\frac{3}{2}\left(3^{11}-1\right)$
On substituting the above value in equation (1), we get
$\sum_{k=1}^{n}\left(2+3^{k}\right)=22+\frac{3}{2}\left(3^{11}-1\right)$

Question 12

The sum of first three terms of a G.P. is 39/10 and their product is 1 . Find the common ratio and the terms.

Answer:

Let $a / r, a$, ar be the first three terms of the G.P.
$a / r+a+a r=39 / 10$
(a/r) (a) (ar) = 1
From (2), we have
$a^{3}=1$

Hence, $\mathrm{a}=1$ [Considering real roots only]
Substituting the value of a in (1), we get
$1 / r+1+r=39 / 10$
$\left(1+r+r^{2}\right) / r=39 / 10$
$10+10 r+10 r^{2}=39 r$
$10 r^{2}-29 r+10=0$
$10 r^{2}-25 r-4 r+10=0$
$5 r(2 r-5)-2(2 r-5)=0$
$(5 r-2)(2 r-5)=0$
Thus,
$r=2 / 5$ or $5 / 2$
Therefore, the three terms of the G.P. are $5 / 2,1$ and $2 / 5$.

Question 13

How many terms of G.P. $3,32,33, \ldots$ are needed to give the sum $120 ?$

Answer:

Given G.P. is $3,32,33, \ldots$
Let's consider that n terms of this G.P. be required to obtain the sum of 120 .
We know that,

$$
\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-\mathrm{r}}
$$

Here, $\mathrm{a}=3$ and $\mathrm{r}=3$
$S_{n}=120 \frac{3\left(3^{n}-1\right)}{3-1}$
$120=\frac{3\left(3^{\mathrm{n}}-1\right)}{2}$
$\frac{120 \times 2}{3}=3^{n}-1$
$3^{n}-1=180$
$3^{n}=180$
$3^{n}=3^{4}$
Equating the exponents we get, $\mathrm{n}=4$
Therefore, four terms of the given G.P. are required to obtain the sum as 120 .

Question 14

The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.

Answer:

Let's assume the G.P. to be a, ar, $\mathrm{ar}^{2}, \mathrm{ar}^{3}$,
Then according to the question, we have
$a+a r+a r^{2}=16$ and $a r^{3}+a r^{4}+a r^{5}=128$
$a(1+r+r 2)=16 \ldots$
(1) and,
$\operatorname{ar}^{3}\left(1+r+r^{2}\right)=128$
Dividing equation (2) by (1), we get
$\frac{a r^{3}\left(1+r+r^{2}\right)}{a\left(1+r+r^{2}\right)}=\frac{128}{16}$
$r^{3}=8$
$r=2$
Now, using $r=2$ in (1), we get
$a(1+2+4)=16$
a $(7)=16$
$\mathrm{a}=16 / 7$
Now, the sum of terms is given as
$S_{\mathrm{n}}=\frac{\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-\mathrm{r}}$
$\Rightarrow S_{n}=\frac{16}{7} \frac{\left(2^{n}-1\right)}{2-1}=\frac{16}{7}\left(2^{n}-1\right)$

Question 15

Given a G.P. with $\mathrm{a}=729$ and $7^{\text {th }}$ term 64, determine S_{7}.

Answer:

Given,
$\mathrm{a}=729$ and $\mathrm{a}_{7}=64$
Let r be the common ratio of the G.P.
Then we know that, an = a rn-1
$\mathrm{a}_{7}=\mathrm{ar}^{7-1}=(729) \mathrm{r} 6$
$\Rightarrow 64=729 \mathrm{r}^{6}$
$r^{6}=64 / 729$
$r^{6}=(2 / 3) 6$
$r=2 / 3$
And, we know that
$S_{\mathrm{n}}=\frac{\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-\mathrm{r}}$
So,
$S_{7}=\frac{729\left[1-\left(\frac{2}{3}\right)^{7}\right]}{1-\frac{2}{3}}$
$=3 \times 729\left[1-\left(\frac{2}{3}\right)^{7}\right]$
$=(3)^{7}\left[\frac{(3)^{7}-(2)^{7}}{(3)^{7}}\right]$
$=3^{7}-2^{7}$
= 2187-128
$=2059$

Question 16

Find a G.P. for which sum of the first two terms is $\mathbf{- 4}$ and the fifth term is 4 times the third term.

Answer:
Consider a to be the first term and r to be the common ratio of the G.P.
Given, $S_{2}=-4$
Then, from the question we have
$S_{\mathrm{n}}=-4 \frac{\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{1-\mathrm{r}}$
And,
$\mathrm{a}_{5}=4 \times \mathrm{a}_{3}$
$\mathrm{ar}_{4}=4 \mathrm{ar}^{2}$
$r^{2}=4$
$r= \pm 2$
Using the value of r in (1), we have
$-4=\frac{a\left[1-(-2)^{2}\right]}{1-(-2)}$ for $r=-2$
$-4=\frac{a(1-4)}{-1}$
$-4=a$ (3)
$a=\frac{-4}{3}$
Also $-4=\frac{a\left[1-(-2)^{2}\right]}{1-(-2)}$ for $\mathrm{r}=-2$
$-4=\frac{a(1-4)}{1+2}$
$-4=\frac{a(-3)}{3}$
$a=4$
Therefore, the required G.P is
$-4 / 3,-8 / 3,-16 / 3 \ldots$ Or $4,-8,16,-32$..

Question 17

If the $4^{\text {th }}, 10^{\text {th }}$ and $16^{\text {th }}$ terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.

Answer:

Let a be the first term and r be the common ratio of the G.P.
According to the given condition,

$$
\begin{equation*}
\mathrm{a}_{4}=\mathrm{ar}^{3}=\mathrm{x} \tag{1}
\end{equation*}
$$

$\mathrm{a}_{10}=\mathrm{ar}^{9}=\mathrm{y} \ldots$ (2)
a16
$=a r^{15}=z$
On dividing (2) by (1), we get
$\frac{y}{x}=\frac{a r^{9}}{a r^{3}} \Rightarrow \frac{y}{x}=r^{6}$
An on dividing (3) by (2) we get
$\frac{y}{x}=\frac{a r^{15}}{a r^{9}} \Rightarrow \frac{y}{x}=r^{6}$
$\frac{y}{x}=\frac{z}{y}$
Therefore $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in G.P.

Question 18

Find the sum to n terms of the sequence, $8,88,888,8888$..

Answer:

Given sequence: $8,88,888,8888 \ldots$
This sequence is not a G.P.
But, it can be changed to G.P. by writing the terms as
$\mathrm{S}_{\mathrm{n}}=8+88+888+8888+$ \qquad to n terms
$=\frac{8}{9}[9+99+999+9999+\cdots \ldots$. to n terms $]$
$=\frac{8}{9}\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\left(10^{4}-1\right)+\cdots \ldots \ldots .\right.$. to n terms $]$
$=\frac{8}{9}\left[\frac{10\left(10^{\mathrm{n}}-1\right)}{10-1}-\mathrm{n}\right]$
$=\frac{8}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$
$=\frac{80}{81}\left(10^{n}-1\right)-\frac{8}{9} n$

Question 19

Find the sum of the products of the corresponding terms of the sequences $2,4,8,16,32$ and 128, 32, 8, 2, 1/2.

Answer:

The required sum $=2 \times 128+4 \times 32+8 \times 8+16 \times 2+32 \times 1 / 2$

$$
=64[4+2+1+1 / 2+1 / 22]
$$

Now, it's seen that
$4,2,1,1 / 2,1 / 22$ is a G.P
With first term, $\mathrm{a}=4$
Common ratio, $r=1 / 2$
We know,

$$
S_{n}=-4 \frac{a\left(1-r^{n}\right)}{1-r}
$$

$\therefore \mathrm{S}_{5}=\frac{4\left[1-\left(\frac{1}{2}\right)^{5}\right]}{1-\frac{1}{2}}=\frac{4\left[1-\frac{1}{32}\right]}{\frac{1}{2}}=8\left(\frac{32-1}{32}\right)=\frac{31}{4}$
Therefore, the required sum $=64(31 / 4)=(16)(31)=496$
Question 20
Show that the products of the corresponding terms of the sequences $\mathrm{a}, \mathrm{ar}^{2} \mathrm{ar}^{2}, \mathrm{arn}^{-1}$ and A , AR, $A R^{2}, \ldots R^{\mathrm{n}-1}$ form a G.P, and find the common ratio.

Answer:
To be proved: The sequence, $a A, a r A R, a^{2} A R^{2}, \operatorname{arn}^{-1} A R^{n-1}$, forms a G.P.
Now, we have
$\frac{\text { Second term }}{\text { Forst term }}=\frac{a r A R}{a A}=r R$
$\frac{\text { Third term }}{\text { Second term }}=\frac{a r^{2} A R^{2}}{a r A R}=r R$
Therefore, the above sequence forms a G.P. and the common ratio is rR.

Question 21

Find four numbers forming a geometric progression in which third term is greater than the first term by 9 , and the second term is greater than the $4^{\text {th }}$ by 18.

Answer:

Consider a to be the first term and r to be the common ratio of the G.P.
Then,
$\mathrm{a}_{1}=\mathrm{a}_{\mathrm{a}} \mathrm{a}_{2}=\mathrm{ar}, \mathrm{a}_{3}=\mathrm{ar}^{2}, \mathrm{a}_{4}=\mathrm{ar}^{3}$
From the question, we have
$a^{3}=a^{1}+9$
$a r^{2}=a+9 \ldots$ (i)
$a^{2}=a^{4}+18$
ar $=a r^{3}+18$... (ii)
So, from (1) and (2), we get
$a\left(r^{2}-1\right)=9 \ldots$ (iii)
$\operatorname{ar}\left(1-r^{2}\right)=18$... (iv)
Now, dividing (4) by (3), we get
$\frac{a r\left(1-r^{2}\right)}{a\left(r^{2}-1\right)}=\frac{18}{9}$
$-r=2$
$r=-2$
On substituting the value of r in (i), we get
$4 \mathrm{a}=\mathrm{a}+9$
$3 \mathrm{a}=9$
$\therefore \mathrm{a}=3$
Therefore, the first four numbers of the G.P. are $3,3(-2), 3(-2)^{2}$, and $3(-2)^{3}$
i.e., $3,-6,12$, and -24 .

Question 22

If the $p^{\text {th }}, q^{\text {th }}$ and rth terms of a G.P. are a, b and c, respectively. Prove that $a^{q-r} \mathbf{b}^{r-p} \mathbf{c}^{p-q}=1$
Answer:
Let's take A to be the first term and R to be the common ratio of the G.P.
Then according to the question, we have
$\mathrm{AR}^{\mathrm{p}-1}=\mathrm{a}$
$\mathrm{AR}^{\mathrm{q}-1}=\mathrm{b}$
$\mathrm{AR}^{\mathrm{r}-1}=\mathrm{c}$
Then,
$\mathrm{a}^{\mathrm{q}-\mathrm{r}} \mathrm{b}^{\mathrm{r}-\mathrm{p}} \mathrm{c}^{\mathrm{p}-\mathrm{q}}$
$=A q-r \times R^{(p-1)(q-r)} \times A r-p \times R^{(q-1)(r-p)} \times A^{p-q} \times R^{(r-1)(p-q)}$
$=A q-r+r-p+p-q \times R(p r-p r-q+r)+(r q-r+p-p q)+(p r-p-q r+q)$
$=\mathrm{A}^{0} \times \mathrm{R}^{0}$
$=1$
Hence proved.

Question 23

If the first and the $n^{\text {th }}$ term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that $\mathrm{P} 2=(\mathrm{ab})^{\mathrm{n}}$.

Answer:

Given, the first term of the G.P is a and the last term is b.
Thus,
The G.P. is $a, a r, a^{2}, a r^{3}, \ldots r^{n-1}$, where r is the common ratio.
Then,
$\mathrm{b}=\mathrm{ar}^{\mathrm{n}-1}$
$\mathrm{P}=$ Product of n terms
$=$ (a) (ar) (ar ${ }^{2}$) ... (arn ${ }^{n-1}$)
$=(a \times a \times \ldots a)\left(r \times r^{2} \times \ldots r^{n-1}\right)$
$=a^{n} r^{1+2}+\ldots(n-1)$
Here, 1,2 ... ($n-1$) is an A.P.
So,
$1+2+$ \qquad $+(\mathrm{n}-1)=\frac{n-1}{2}[2+(n-1-1) \times 1]=\frac{n-1}{2}[2+n-2]=\frac{n(n-1)}{2}$

And, the product of n terms P is given by,
$P=a^{n} r^{\frac{n(n-1)}{2}}$
$\therefore \mathrm{P}^{2}=\mathrm{a}^{2 \mathrm{n}} \mathrm{r}^{\mathrm{n}(\mathrm{n}-1)}$
$=\left[a^{2} r^{(n-1)}\right]^{n}$
$=\left[\mathrm{a} \times \mathrm{ar}^{(\mathrm{n}-1)}\right]^{\mathrm{n}}$
$=(\mathrm{ab})^{\mathrm{n}}$
[Using (1)]

Question 24

Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from. $(\mathrm{n}+1)^{\text {th }}$ to $(2 \mathrm{n})^{\text {th }}$ term is $\frac{1}{\mathrm{r}^{\mathrm{n}}}$

Answer:

Let a be the first term and r be the common ratio of the G.P.
Sum of first n terms $=\frac{a\left(1-r^{n}\right)}{(1-r)}$
Since there are n terms from $(\mathrm{n}+1)^{\text {th }}$ to $(2 \mathrm{n})$ th term,
Sum of terms from $(\mathrm{n}+1)^{\text {th }}$ to $(2 \mathrm{n})$ th term $==\frac{a_{n+1}\left(1-r^{n}\right)}{(1-r)}$
$a^{n+1}=a r^{n+1-1}=a r^{n}$
Thus, required ratio $=\frac{a\left(1-r^{n}\right)}{(1-r)} \times \frac{(1-r)}{a r^{n}\left(1-r^{n}\right)}=\frac{1}{r^{n}}$
Thus, the ratio of the sum of first n terms of a G.P. to the sum of terms from $(n+1)^{\text {th }}$ to $(2 n)^{\text {th }}$ term is - $\frac{1}{r^{n}}$

Question 25

If a, b, c and d are in G.P. show that $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$.

Answer:

Given, a, b, c, d are in G.P.
So, we have
$\mathrm{bc}=\mathrm{ad}$
$\mathrm{b}^{2}=\mathrm{ac}$
$c^{2}=\mathrm{bd}$
Taking the R.H.S. we have
R.H.S.
$=(a b+b c+c d)^{2}$
$=(a b+a d+c d)^{2}$
[Using (1)]
$=[a b+d(a+c)]^{2}$
$=a^{2} b^{2}+2 a b d(a+c)+d^{2}(a+c)^{2}$
$=a^{2} b^{2}+2 a^{2} b d+2 a c b d+d^{2}\left(a^{2}+2 a c+c^{2}\right)$
$=a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}+d^{2} a^{2}+2 d^{2} b^{2}+d^{2} c^{2} \quad$ [Using (1) and (2)]
$=a^{2} b^{2}+a^{2} c^{2}+a^{2} c^{2}+b^{2} c^{2}+b^{2} c^{2}+d^{2} a^{2}+d^{2} b^{2}+d^{2} b^{2}+d^{2} c^{2}$
$=a^{2} b^{2}+a^{2} c^{2}+a^{2} d^{2}+b^{2} \times b^{2}+b^{2} c^{2}+b^{2} d^{2}+c^{2} b^{2}+c^{2} \times c^{2}+c^{2} d^{2}$
[Using (2) and (3) and rearranging terms]
$=a^{2}\left(b^{2}+c^{2}+d^{2}\right)+b^{2}\left(b^{2}+c^{2}+d^{2}\right)+c^{2}\left(b^{2}+c^{2}+d^{2}\right)$
$=\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)$
$=$ L.H.S.
Thus, L.H.S. $=$ R.H.S.
Therefore,
$\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$

Question 26

Insert two numbers between 3 and 81 so that the resulting sequence is G.P.

Answer:

Let's assume G_{1} and G_{2} to be two numbers between 3 and 81 such that the series $3, G_{1}, G_{2}, 81$ forms a G.P.

And let a be the first term and r be the common ratio of the G.P.
Now, we have the $1^{\text {st }}$ term as 3 and the 4 th term as 81.
$81=(3)(r)^{3}$
r3 $=27$
$\therefore \mathrm{r}=3$ (Taking real roots only)
For r = 3,
G1 $=\mathrm{ar}=(3)(3)=9$
$\mathrm{G} 2=\mathrm{ar}^{2}=(3)(3)^{2}=27$
Therefore, the two numbers which can be inserted between 3 and 81 so that the resulting sequence becomes a G.P are 9 and 27 .

Question 27

Find the value of n so that $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ may be the geometric mean between a and b.

Answer:

We know that,
The G. M. of a and b is given by $\sqrt{ } \mathrm{ab}$.
Then from the question, we have
$\frac{a^{\mathrm{n}+1}+\mathrm{b}^{\mathrm{n}+1}}{\mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}}}=\sqrt{a b}$
By squaring both sides, we get
$a^{2 n+2}+2 a^{n+1} b^{n+1}+b^{2 n+2}=(a b)\left(a^{2 n}+2 a^{n} b^{n}+b^{2 n}\right)$
$a^{2 n+2}+2 a^{n+1} b^{n+1}+b^{2 n+2}=a^{2 n+1} b+2 a^{n+1} b^{n+1}+b^{2 n+1}$
$a^{2 n+1} b+2 a^{n+1} b^{n+1}+b^{2 n+1}$
$a^{2 n+1}-a^{2 n+1} b=a b^{2 n+1}-b^{2 n+1}$
$a^{2 n+1}(a-b)=b^{2 n+1}(a-b)$
$\left(\frac{a}{b}\right)^{2 n+1}=1=\left(\frac{a}{b}\right)^{0}$
$2 n+=0$
(Equating the exponents)
$n=\frac{-1}{2}$

Question 28

The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio $(3+2 \sqrt{2}):(3-2 \sqrt{2})$

Answer:
Consider the two numbers be a and b .
Then, G.M. $=\sqrt{ }$ ab.
From the question, we have
$a+b=6 \sqrt{a b}$
$\Rightarrow(a+b)^{2}=36(a b)$
Also
$(a-b)^{2}=(a+b)^{2}-4 a b=36 a b-4 a b=32 a b$
$\Rightarrow a-b=\sqrt{32} \sqrt{a b}$
$=4 \sqrt{2} \sqrt{a b}$
On adding (1) and (2) we gt
$2 a=(6+4 \sqrt{2}) \sqrt{a b}$
$a=(3+2 \sqrt{2}) \sqrt{a b}$
Substituting the value of a in (1) we get
$b=6 \sqrt{a b}-(3+2 \sqrt{2}) \sqrt{a b}$
$b=(3+2 \sqrt{2}) \sqrt{a b}$
$\frac{a}{b}=\frac{(3-2 \sqrt{2}) \sqrt{a b}}{(3-2 \sqrt{2}) \sqrt{a b}}=\frac{3+2 \sqrt{2}}{3-2 \sqrt{2}}$
Therefore the required ratio is $(3+2 \sqrt{2}):(3-2 \sqrt{2})$

Question 29

If A and G be A.M. and G.M., respectively between two positive numbers, prove that the numbers are.

Answer:

Given that A and G are A.M. and G.M. between two positive numbers. And, let these two positive numbers be a and b.

So,
$\mathrm{AM}=\mathrm{A}=\frac{\mathrm{a}+\mathrm{b}}{2}$
$G M=G=\sqrt{a b}$
From (1) and (2) we get
$a+b=2 A$
$a b=G^{2}$
Substituting the value of a and b from (3) and (4) in the identity $(a-b)^{2}=(a+b)^{2}-4 a b$ we have
$(a-b)^{2}=4 A^{2}-4 G^{2}=4\left(A^{2}-G^{2}\right)$
$(a-b)^{2}=4(A+G)(A-G)$
$(a-b)=2 \sqrt{(A+G)(A-G)}$
From (3) and (5) we get
$2 a=2 A+2 \sqrt{(A+G)(A-G)}$
$\Rightarrow a=A+\sqrt{(A+G)(A-G)}$
Substituting the value of a in (3) we have
$b=2 A-A-\sqrt{(A+G)(A-G)}=A-\sqrt{(A+G)(A-G)}$
Therefore the two numbers are $\mathrm{A} \pm \sqrt{(A+G)(A-G)}$.

Question 30

The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2nd hour, 4th hour and nth hour?

Answer:

Given, the number of bacteria doubles every hour. Hence, the number of bacteria after every hour will form a G.P.
Here we have, $\mathrm{a}=30$ and $\mathrm{r}=2$
So, $\mathrm{a}^{3}=\mathrm{ar}^{2}=(30)(2)^{2}=120$
Thus, the number of bacteria at the end of $2^{\text {nd }}$ hour will be 120 .
And, $\mathrm{a}^{5}=\mathrm{ar}^{4}=(30)(2) 4=480$
The number of bacteria at the end of 4th hour will be 480.
$a_{n+1}=a r n=(30) 2^{n}$
Therefore, the number of bacteria at the end of nth hour will be $30(2)^{n}$.

Question 31

What will Rs 500 amounts to in 10 years after its deposit in a bank which pays annual interest rate of $\mathbf{1 0 \%}$ compounded annually

Answer:
Given,
The amount deposited in the bank is Rs 500.

At the end of first year, amount $=$ Rs $500(1+1 / 10)=$ Rs 500 (1.1)
At the end of $2^{\text {nd }}$ year, amount $=$ Rs 500 (1.1) (1.1)
At the end of $3^{\text {rd }}$ year, amount $=$ Rs 500 (1.1) (1.1) (1.1) and so on....
Therefore,
The amount at the end of 10 years $=$ Rs 500 (1.1) (1.1) ... (10 times)

$$
=\text { Rs } 500(1.1) 10
$$

Question 32

If A.M. and G.M. of roots of a quadratic equation are 8 and 5, respectively, then obtain the quadratic equation.

Answer:
Let's consider the roots of the quadratic equation to be a and b .
Then, we have

$$
\begin{align*}
& A . M .=\frac{a+b}{2}=8 \Rightarrow a+b=16 \tag{1}\\
& G . M .=\sqrt{a b}=5 \Rightarrow A B=25 \tag{2}
\end{align*}
$$

We know that,
A quadratic equation can be formed as,
$x^{2}-x$ (Sum of roots) + (Product of roots) $=0$
$x^{2}-x(a+b)+(a b)=0$
$x^{2}-16 x+25=0$ [Using (1) and (2)]
Therefore, the required quadratic equation is $x 2-16 x+25=0$

Exercise 9.4

Question 1

Find the sum to n terms of each of the series in Exercises 1 to 7 .
$1.1 \times 2+2 \times 3+3 \times 4+4 \times 5+\ldots$

Answer:

Given series is $1 \times 2+2 \times 3+3 \times 4+4 \times 5+\ldots$
It's seen that,
nth term, an $=n(n+1)$
Then, the sum of n terms of the series can be expressed as
$S_{n}=\sum_{k=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}=\sum_{k=1}^{\mathrm{n}} \mathrm{k}(\mathrm{k}+1)$
$=\sum_{k=1}^{\mathrm{n}} \mathrm{k}^{2}+=\sum_{k=1}^{\mathrm{n}} \mathrm{k}$
$=\frac{n(n+1)(2 n+2)}{6}+\frac{n(n+1)}{2}$
$=\frac{n(n+1)}{2}\left(\frac{2 n+1}{3}+1\right)$
$=\frac{n(n+1)}{2}\left(\frac{2 n+4}{3}\right)$
$=\frac{n(n+1)(n+2)}{3}$

Question 2

$1 \times 2 \times 3+2 \times 3 \times 4+3 \times 4 \times 5+\ldots$

Answer:

Given series is $1 \times 2 \times 3+2 \times 3 \times 4+3 \times 4 \times 5+\ldots$
It's seen that,
$\mathrm{n}^{\text {th }}$ term, an $=\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)$
$=\left(n^{2}+n\right)(n+2)$
$=n^{3}+3 n 2+2 n$
Then, the sum of n terms of the series can be expressed as
$S_{n}=\sum_{k=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}$
=
$=\sum_{k=1}^{\mathrm{n}} \mathrm{k}^{3}+\sum_{k=1}^{\mathrm{n}} \mathrm{k}^{2}+2 \sum_{k=1}^{\mathrm{n}} \mathrm{k}$
$=\left[\frac{n(n+1)}{2}\right]^{2}+\frac{3 n(n+1)(2 n+1)}{6}+\frac{2 n(n+1)}{2}$
$=\left[\frac{n(n+1)}{2}\right]^{2}+\frac{n(n+1)(2 n+1)}{2}+n(n+1)$
$=\frac{n(n+1)}{2}\left[\frac{n(n+1)}{2}+2 n+1+2\right]$
$=\frac{n(n+1)}{4}\left(n^{2}+5 n+6\right)$
$=\frac{n(n+1)}{4}\left(n^{2}+2 n+3 n+6\right)$
$=\frac{n(n+1)[n(n+2)+3(n+2)]}{4}$
$=\frac{n(n+1)(n+2)(n+3)}{4}$

Question 3

$3 \times 1^{2}+5 \times 22+7 \times 3^{2}+\ldots$

Answer:

Given series is $3 \times 1^{2}+5 \times 22+7 \times 3^{2}+\ldots$
It's seen that,
nth term, an $=(2 n+1) n^{2}=2 n^{3}+n^{2}$
Then, the sum of n terms of the series can be expressed as
$S_{n}=\sum_{k=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}$
$=\sum_{k=1}^{\mathrm{n}}=\left(2 \mathrm{k}^{3}+\mathrm{k}^{2}\right)=2 \sum_{k=1}^{\mathrm{n}} \mathrm{k}^{3}+\sum_{k=1}^{\mathrm{n}} \mathrm{k}^{2}$
$=2\left[\frac{n(n+1)}{2}\right]^{2}+\frac{n(n+1)(2 n+1)}{6}$
$=\frac{n(n+1)}{2}+\frac{n(n+1)(2 n+1)}{6}$
$=\frac{n(n+1)}{2}\left[n(n+1)+\frac{2 n+1}{3}\right]$
$=\frac{n(n+1)}{2}\left[\frac{3 n^{2}+3 n+2 n+1}{3}\right]$
$=\frac{n(n+1)}{2}\left[\frac{3 n^{2}+5 n+1}{3}\right]$
$=\frac{n(n+1)\left(3 n^{2}+5 n+1\right)}{6}$

Question 4

Find the sum to n terms of the series $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots .$.

Answer:

Given series is $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots$..
It's seen that,
$\mathrm{n}^{\text {th }}$ term, $\mathrm{a}_{\mathrm{n}}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$
(By partial fractions)
$a_{1}=\frac{1}{1}-\frac{1}{2}$
$a_{2}=\frac{1}{2}-\frac{1}{3}$
$a_{3}=\frac{1}{3}-\frac{1}{4}$
$a_{1}=\frac{1}{n}-\frac{1}{n+2}$
On adding the above terms column wise we get
$a_{1}+a_{2}+\ldots \ldots+a_{n}=\left[\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots \frac{1}{n}\right]-\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \frac{1}{n+1}\right]$
$\therefore S_{n}=1-\frac{1}{n+1}=\frac{n+1-1}{n+1}=\frac{n}{n+1}$
Then, the sum of n terms of the series can be expressed as

Question 5

Find the sum to n terms of the series $5^{2}+6^{2}+7^{2}+\ldots+20^{2}$

Answer:

Given series is $5^{2}+6^{2}+7^{2}+\ldots+20^{2}$
It's seen that,
$n^{\text {th }}$ term, an $=(n+4) 2=n^{2}+8 n+16$
Then, the sum of n terms of the series can be expressed as
$S_{n}=\sum_{k=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}=\sum_{k=1}^{\mathrm{n}}\left(\mathrm{k}^{2}+8 \mathrm{k}+16\right)$
$=\sum_{k=1}^{\mathrm{n}} \mathrm{k}^{2}+8=\sum_{k=1}^{\mathrm{n}} \mathrm{k}+=\sum_{k=1}^{\mathrm{n}} 16$
$=\frac{n(n+1)(2 n+1)}{6}+\frac{8 n(n+1)}{2}+16 n$
Now its formula that
$16^{\text {th }}$ term is $(16+4)^{2}=20^{2}$
Thus
$S_{n}=\frac{16(16+1)(2 \times 16+)}{6}+\frac{8 \times 16 \times(16+1)}{2}+16 \times 16$
$=\frac{(16)(17)(33)}{6}+\frac{(8) \times 16 \times(16+1)}{2}+16 \times 16$
$=\frac{(16)(17)(33)}{6}+\frac{(8)(16)(17)}{2}+256$
Hence, $5^{2}+6^{2}+7^{2}+. .+20^{2}=2840$

Question 6

Find the sum to n terms of the series $3 \times 8+6 \times 11+9 \times 14+\ldots$
Answer:
Given series is $3 \times 8+6 \times 11+9 \times 14+\ldots$
It's found out that,
$a_{n}=(n t h$ term of $3,6,9 \ldots) \times\left(n^{\text {th }}\right.$ term of $\left.8,11,14, \ldots\right)$
$=(3 n)(3 n+5)$
$=9 n^{2}+15 n$
Then, the sum of n terms of the series can be expressed as
$S_{n}=\sum_{k=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}=\sum_{k=1}^{\mathrm{n}}\left(9 \mathrm{k}^{2}+15 \mathrm{k}\right)$
$=9 \sum_{k=1}^{\mathrm{n}} \mathrm{k}^{2}=15 \sum_{k=1}^{\mathrm{n}} \mathrm{k}$
$=9 \times \frac{n(n+1)(2 n+1)}{6}+15 x \frac{n(n+1)}{2}$
$=\frac{3 n(n+1)(2 n+1)}{2}+\frac{15 n(n+1)}{2}$
$=\frac{3 n(n+1)}{2}(2 n+1+5)$
$=\frac{3 n(n+1)}{2}(2 n+6)$
$=3 n(n+1)(n+3)$

Question 7

Find the sum to n terms of the series $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+\ldots$

Answer:

Given series is $12+(12+22)+(12+22+32)+\ldots$
Finding the nth term, we have
$\mathrm{a}_{\mathrm{n}}=\left(1^{2}+2^{2}+3^{2}+\ldots \ldots . .+n^{2}\right)$
$=\frac{n(n+1)(2 n+1)}{6}$
$=\frac{n\left(2 n^{2}+3 n+1\right)}{6}$
$=\frac{2 n^{3}+3 n^{2}+n}{6}$
$=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$
Now the sum of n terms of the series can be expressed as
$S_{n}=\sum_{k=1}^{n} \mathrm{a}_{\mathrm{k}}$
$=\sum_{k=1}^{\mathrm{n}}\left(\frac{1}{3} \mathrm{k}^{3}+\frac{1}{2} \mathrm{k}^{2}+\frac{1}{6} \mathrm{k}\right)$
$\frac{1}{3} \sum_{k=1}^{\mathrm{n}} \mathrm{k}^{2}+\frac{1}{2} \sum_{k=1}^{\mathrm{n}} \mathrm{k}^{2}+\frac{1}{6} \sum_{k=1}^{\mathrm{n}} \mathrm{k}$
$=\frac{1}{3} \frac{n^{2}(n+1)^{2}}{(2)^{2}}+\frac{1}{2} \times \frac{n(n+1)(2 n+1)}{6}+\frac{1}{6} \times \frac{n(n+1)}{2}$
$=\frac{n(n+1)}{6}\left[\frac{n(n+1)}{2}+\frac{(2 n+1)}{2}+\frac{1}{2}\right]$
$\frac{n(n+1)}{6}\left[\frac{n^{2}+n+2 n+1+1}{2}\right]$
$=\frac{n(n+1)}{6}\left[\frac{n^{2}+n+2 n+2}{2}\right]$
$=\frac{n(n+1)}{6}\left[\frac{n(n+1)+2(n+1)}{2}\right]$
$\frac{n(n+1)}{6}\left[\frac{n(n+1)(n+2)}{2}\right]$
$=\frac{n(n+1)^{2}(n+2)}{12}$

Question 8

Find the sum to n terms of the series whose nth term is given by $n(n+1)(n+4)$.
Answer:
Given,
an $=n(n+1)(n+4)=n\left(n^{2}+5 n+4\right)=n^{3}+5 n^{2}+4 n$
Now, the sum of n terms of the series can be expressed as
$S_{n}=\sum_{k=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}=\sum_{k=1}^{\mathrm{n}} \mathrm{k}^{3}+5 \sum_{k=1}^{\mathrm{n}} \mathrm{k}^{2}+4 \sum_{k=1}^{\mathrm{n}} \mathrm{k}$
$=\frac{n^{2}(n+1)^{2}}{4}+\frac{5 n(n+1)(2 n+1)}{6}+\frac{4 n(n+1)}{2}$
$=\frac{n(n+1)}{2}\left[\frac{n(n+1)}{2}+\frac{2(2 n+1)}{3}+4\right]$
$=\frac{n(n+1)}{2}\left[\frac{3 n^{2}+3 n+20 n+10+24}{6}\right]$
$=\frac{n(n+1)}{2}\left[\frac{3 n^{2}+23 n+34}{6}\right]$
$=\frac{n(n+1)\left(3 n^{2}+23 n+34\right)}{12}$

Question 9

Find the sum to n terms of the series whose nth terms is given by $n^{2}+2^{n}$

Answer:

Given,
$\mathrm{n}^{\text {th }}$ term of the series as:
an $=n^{2}+2 n$
Then, the sum of n terms of the series can be expressed as
$S_{n}=\sum_{k=1}^{\mathrm{n}} \mathrm{k}^{2}+2^{\mathrm{k}}=\sum_{k=1}^{\mathrm{n}} \mathrm{k}^{2}+\sum_{k=1}^{\mathrm{n}} 2^{\mathrm{k}}$

Consider $\sum_{k=1}^{n} 2^{\mathrm{K}}+2^{1}=2^{2}+2^{3}+\cdots \ldots$
The above series $2.2^{2} 2^{3} \ldots$ is a G.P. with the both first term and common ratio equal to 2
$\therefore \sum_{k=1}^{\mathrm{n}} 2^{\mathrm{K}}=\frac{(2)\left[(2)^{n}-1\right]}{2-1}=2\left(2^{n}-1\right)$
$S_{n}=\sum_{k=1}^{\mathrm{n}} \mathrm{k}^{2}+2\left(2^{\mathrm{n}}-1\right)=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}+2\left(2^{\mathrm{n}}-1\right)$

Question 10

Find the sum to n terms of the series whose nth terms is given by $(2 n-1) 2$

Answer:

Given,
$\mathrm{n}^{\text {th }}$ term of the series as:
$a n=(2 n-1)^{2}=4 n^{2}-4 n+1$
Then, the sum of n terms of the series can be expressed as
$S_{n}=\sum_{k=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}=\sum_{k=1}^{\mathrm{n}}\left(4 \mathrm{k}^{2}-4 \mathrm{k}+1\right)$
$=4 \sum_{k=1}^{\mathrm{n}} \mathrm{k}^{2}-4 \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}+\sum_{\mathrm{k}=1}^{\mathrm{n}} 1$
$=\frac{4 n(n+1)(2 n+1)}{6}-\frac{4 n(n+1)}{2}+n$
$=\frac{2 n(n+1)(2 n+1)}{3}-2 n(n+1)+n$
$=\mathrm{n}\left[\frac{2\left(2 n^{2}+3 n+1\right)}{3}-2(n+1)+1\right]$
$=\mathrm{n}\left[\frac{4 n^{2}+6 n+2-6 n-6+3}{3}\right]$
$=\mathrm{n}\left[\frac{4 n^{2}-1}{3}\right]$
$=\mathrm{n} \frac{n(2 n+1)(2 n-1)}{3}$

Miscellaneous Exercise

Question 1

Show that the sum of $(m+n)^{\text {th }}$ and $(m-n)$ th terms of an A.P. is equal to twice the m th term. Answer:

Let's take a and d to be the first term and the common difference of the A.P. respectively.
We know that, the kth term of an A. P. is given by
$\mathrm{a}_{\mathrm{k}}=\mathrm{a}+(\mathrm{k}-1) \mathrm{d}$
So, $\mathrm{a}_{\mathrm{m}}+\mathrm{n}=\mathrm{a}+(\mathrm{m}+\mathrm{n}-1) \mathrm{d}$
And, $\mathrm{a}_{\mathrm{m}}-\mathrm{n}=\mathrm{a}+(\mathrm{m}-\mathrm{n}-1) \mathrm{d}$
$a_{m}=a+(m-1) d$
Thus,

$$
\begin{aligned}
a_{m}+n+a m-n & =a+(m+n-1) d+a+(m-n-1) d \\
& =2 a+(m+n-1+m-n-1) d \\
& =2 a+(2 m-2) d \\
& =2 a+2(m-1) d \\
& =2[a+(m-1) d] \\
& =2 a_{m}
\end{aligned}
$$

Therefore, the sum of $(m+n)^{\text {th }}$ and $(m-n)$ th terms of an A.P. is equal to twice the mth term

Question 2

If the sum of three numbers in A.P., is 24 and their product is 440 , find the numbers.

Answer:

Let's consider the three numbers in A.P. as a -d , a , and $\mathrm{a}+\mathrm{d}$.
Then, from the question we have
$(a-d)+(a)+(a+d)=24 \ldots$ (i)
$3 \mathrm{a}=24$
$\therefore \mathrm{a}=8$
And,
$(a-d) a(a+d)=440$
$(8-d)(8)(8+d)=440$
$(8-d)(8+d)=55$
$64-d^{2}=55$
$\mathrm{d}^{2}=64-55=9$
$\therefore \mathrm{d}= \pm 3$
Thus,
When $\mathrm{d}=3$, the numbers are 5,8 , and 11 and
When $d=-3$, the numbers are 11,8 , and 5 .
Therefore, the three numbers are 5,8 , and 11 .

Question 3

Let the sum of $n, 2 n, 3 n$ terms of an A.P. be $S 1, S 2$ and $S 3$, respectively, show that $S_{3}=3\left(S_{2}-S_{1}\right)$

Answer:

Let's take a and d to be the first term and the common difference of the A.P. respectively. So, we have
$S_{1}=\frac{n}{2}[2 a+(n+1) d]$
$\left.S_{2}=\frac{2 n}{2}[2 a+(2 n+1) d]=n[2 a+92 a-1) d\right]$
$S_{3}=\frac{3 n}{2}[2 a+(3 n+1) d]=$
From (1) and (2) we get
$S_{1} S_{2} n=[2 a+(2 n-1) d]-\frac{n}{2}[2 a+(n-1) d]$
$=\mathrm{n}\left\{\frac{4 a+4 n d-2 d-2 a-n d+d}{2}\right\}$
$=\mathrm{n}\left[\frac{2 a+3 n d-d}{2}\right]$
$=\frac{n}{2}[2 a+(3 n-1) d]$
Now
$3\left(S_{2}-S_{1}\right)=\frac{3 n}{2}[2 a+(3 n-1) d]=S_{3}$
[From (3)]

Question 4

Find the sum of all numbers between 200 and 400 which are divisible by 7 .

Answer:

First let's find the numbers between 200 and 400 which are divisible by 7 .
The numbers are:
203, 210, 217, ... 399
Here, the first term, $\mathrm{a}=203$
Last term, l=399 and
Common difference, $\mathrm{d}=7$
Let's consider the number of terms of the A.P. to be n.
Hence, $\mathrm{an}=399=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$399=203+(n-1) 7$
$7(n-1)=196$
$\mathrm{n}-1=28$
$\mathrm{n}=29$
Then, the sum of 29 terms of the A.P is given by:

$$
\begin{aligned}
\therefore S_{29} & =\frac{29}{9}(203+399) \\
& =\frac{29}{2}(602) \\
& =(29)(301) \\
& =88729
\end{aligned}
$$

Therefore, the required sum is 8729 .

Question 5

Find the sum of integers from 1 to 100 that are divisible by 2 or 5 .

Answer:

First let's find the integers from 1 to 100, which are divisible by 2 .
And, they are 2, 4, 6... 100.
Clearly, this forms an A.P. with the first term and common difference both equal to 2 .
So, we have
$100=2+(n-1) 2$
$\mathrm{n}=50$
Hence, the sum is

$$
\begin{aligned}
2+4+6+\ldots .+100 & =\frac{50}{2}[2(2)+(50-1)(2)] \\
& =\frac{50}{2}[4+98] \\
& =(25)(102) \\
& =2550
\end{aligned}
$$

Now, the integers from 1 to 100, which are divisible by 5, are 5, 10... 100 .
This also forms an A.P. with the first term and common difference both equal to 5 .
So, we have

$$
100=5+(n-1) 5
$$

$5 \mathrm{n}=100$
$\mathrm{n}=20$
Hence, the sum is

$$
\begin{aligned}
5+10+\ldots \ldots+100 & =\frac{20}{2}[2(5)+(20-1) 5] \\
& =10[10+(19) 5] \\
& =10[10+95]=10 \times 105 \\
& =1050
\end{aligned}
$$

Lastly, the integers which are divisible by both 2 and 5 , are $10,20, \ldots 100$.
And this also forms an A.P. with the first term and common difference both equal to 10 .
So, we have

$$
\begin{aligned}
& 100=10+(\mathrm{n}-1)(10) \\
& 100=10 \mathrm{n} \\
& \mathrm{n}=10 \\
& \begin{aligned}
10+20+\ldots \ldots+100 & =\frac{10}{2}[2(10)+(10-1)(10)] \\
& =5[20+90]=5(110)=550
\end{aligned}
\end{aligned}
$$

Thus, the required sum $=2550+1050-550=3050$
Therefore, the sum of the integers from 1 to 100 , which are divisible by 2 or 5 , is 3050 .

Question 6

Find the sum of all two digit numbers which when divided by 4 , yields 1 as remainder.

Answer:

We have to first find the two-digit numbers, which when divided by 4 , yield 1 as remainder. They are: 13, 17, ... 97.
As it's seen that this series forms an A.P. with first term (a) 13 and common difference (d) 4. Let n be the number of terms of the A.P.
We know that, the nth term of an A.P. is given by,
$\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
So, $97=13+(n-1)(4)$
$4(\mathrm{n}-1)=84$
$\mathrm{n}-1=21$
$\mathrm{n}=22$
Now, the sum of n terms of an A.P. is given by,
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\therefore S_{22}=\frac{22}{2}[22(13)+(22-1)(4)]$
$=11[26+84]$

$$
=1210
$$

Therefore, the required sum is 1210 .

Question 7

If f is a function satisfying $f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) f(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{N}$ such that
$f(1)=3$ and $\sum_{x=1}^{n} f(x)$ find the value of n

Answer:

Given that,
$f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) \times f(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{N}$
$f(1)=3$
Taking $\mathrm{x}=\mathrm{y}=1$ in (1), we have
$f(1+1)=f(2)=f(1) f(1)=3 \times 3=9$
Similarly,
$f(1+1+1)=f(3)=f(1+2)=f(1) f(2)=3 \times 9=27$
And, $\mathrm{f}(4)=f(1+3)=\mathrm{f}(1) f(3)=3 \times 27=81$
Thus, $f(1), f(2), f(3), \ldots$, that is $3,9,27, \ldots$, forms a G.P. with the first term and common ratio both equal to 3.
We know that sum of terms in G.P is given by,
$S_{n=\frac{a\left(r^{n}-1\right)}{r-1}}$
And it's given that,
$\sum_{x=1}^{\mathrm{n}} f(x) 120$
Hence, the sum of terms of the function is 120 .

$$
\begin{aligned}
& 120=\frac{3\left(3^{n}-1\right)}{3-1} \\
& 120=\frac{3}{2}\left(3^{n}-1\right) \\
& 3^{n}-1=80 \\
& 3^{n}=81=3^{4} \\
& \therefore n=4
\end{aligned}
$$

Therefore, the value of n is 4 .

Question 8

The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.

Answer:

Given that the sum of some terms in a G.P is 315 .
Let the number of terms be n.
We know that, sum of terms is
$S_{n=\frac{a\left(r^{n}-1\right)}{r-1}}$
Given that the first term a is 5 and common ratio r is 2 .
315

$$
=\frac{5\left(2^{n}-1\right)}{r-1}
$$

$2^{n}-1=63$
$2^{n}=64=(2)^{6}$
$\therefore n=6$
Hence, the last term of the G.P $=6$ th term $=$ ar6 $-1=(5)(2) 5=(5)(32)=160$
Therefore, the last term of the G.P. is 160 .

Question 9

The first term of a G.P. is 1 . The sum of the third term and fifth term is 90 . Find the common ratio of G.P.

Answer:

Let's consider a and r to be the first term and the common ratio of the G.P. respectively.
Given, $\mathrm{a}=1$
$a^{3}=a r^{2}=r^{2}$
$a^{5}=a r^{4}=r^{4}$
Then, from the question we have
$r^{2}+r^{4}=90$
$r^{4}+r^{2}-90=0$
$r^{2}=\frac{-1+\sqrt{1+360}}{2}=\frac{-1 \pm \sqrt{361}}{2}=\frac{-1 \pm 19}{2}=-10$ or 9
$\therefore \mathrm{r}= \pm 3$
Therefore, the common ratio of the G.P. is ± 3.

Question 10

The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an arithmetic progression. Find the numbers.

Answer:

Let's consider the three numbers in G.P. to be as a, ar, and ar^{2}.
Then from the question, we have
$a+a r+a r^{2}=56$
a $\left(1+r+r_{56}^{2}\right)=56$
$\Rightarrow a=\frac{56}{1+r+r^{2}} \ldots$
Also, given
a - 1 , $a r-7$, $a^{2}-21$ forms an A.P.
So, $(a r-7)-(a-1)=\left(a r^{2}-21\right)-(a r-7)$
ar $-\mathrm{a}-6=\mathrm{ar}^{2}-\mathrm{ar}-14$
$\mathrm{ar}^{2}-2 \mathrm{ar}+\mathrm{a}=8$
$a r^{2}-a r-a r+a=8$
$a\left(r^{2}+1-2 r\right)=8$
a $(\mathrm{r}-1)^{2}=8 \ldots(2)$
$\Rightarrow \frac{56}{1+r+r^{2}}(r-1)^{2} \ldots(1)$
[Using (1)]
$7\left(r^{2}-2 r+1\right)=1+r+r^{2}$
$7 r^{2}-14 r+7-1-r-r^{2}=0$
$6 r^{2}-15 r+6=0$
$6 \mathrm{r} 2-12 \mathrm{r}-3 \mathrm{r}+6=0$
$6 \mathrm{r}(\mathrm{r}-2)-3(\mathrm{r}-2)=0$
$(6 r-3)(r-2)=0$
$r=2,1 / 2$
When $r=2, a=8$
When $r=1 / 2, a=32$
Thus,
When $r=2$, the three numbers in G.P. are 8,16 , and 32 .
When $r=1 / 2$, the three numbers in G.P. are 32,16 , and 8 .
Therefore in either case, the required three numbers are 8,16 , and 32 .

Question 11

A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.

Answer:

Let's consider the terms in the G.P.to be T1, T2, T3, T4, ... T2n.
The number of terms $=2 \mathrm{n}$
Then, from the question we have
$\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}+\ldots+\mathrm{T}_{2 \mathrm{n}}=5\left[\mathrm{~T}_{1}+\mathrm{T}_{3}+\ldots+\mathrm{T}_{2 \mathrm{n}-1}\right]$
$\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T} 3+\ldots+\mathrm{T}_{2 \mathrm{n}}-5[\mathrm{~T} 1+\mathrm{T} 3+\ldots+\mathrm{T} 2 \mathrm{n}-1]=0$
$\mathrm{T}_{2}+\mathrm{T}_{4}+\ldots+\mathrm{T}_{2 \mathrm{n}}=4\left[\mathrm{~T}_{1}+\mathrm{T}_{3}+\ldots+\mathrm{T}_{2 \mathrm{n}-1}\right]$
Now, let the terms in G.P. be a, ar, $\mathrm{ar}^{2}, \mathrm{ar}^{3}, \ldots$
Then (1) becomes,

$$
\begin{aligned}
& \frac{\operatorname{ar}\left(r^{n}-1\right)}{r-1}=\frac{4 \times a\left(r^{n}-1\right)}{r-1} \\
& \operatorname{ar}=4 \mathrm{a} \\
& \mathrm{r}=4
\end{aligned}
$$

Thus, the common ratio of the G.P. is 4 .

Question 12

The sum of the first four terms of an A.P. is 56 . The sum of the last four terms is $\mathbf{1 1 2}$. If its first term is 11 , then find the number of terms.

Answer:
Let's consider the terms in A.P. to be $a, a+d, a+2 d, a+3 d, \ldots a+(n-2) d, a+(n-1) d$.
From the question, we have
Sum of first four terms $=a+(a+d)+(a+2 d)+(a+3 d)=4 a+6 d$
Sum of last four terms $=[a+(n-4) d]+[a+(n-3) d]+[a+(n-2) d]+[a+n-1) d]$

$$
=4 a+(4 n-10) d
$$

Then according to the given condition,
$4 a+6 d=56$
$4(11)+6 d=56$ [Since $\mathrm{a}=11$ (given)]
$6 \mathrm{~d}=12$
d $=2$
Hence, $4 \mathrm{a}+(4 \mathrm{n}-10) \mathrm{d}=112$
$4(11)+(4 n-10) 2=112$
$(4 n-10) 2=68$
$4 \mathrm{n}-10=34$
$4 \mathrm{n}=44$
$\mathrm{n}=11$
Therefore, the number of terms of the A.P. is 11.

Question 13

If , $\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0)$ then show that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are in G.P.
Answer:
Given,
$\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=$
On cross multiplying, we have
$(a+b x)(b-c x)=(b+c x)(a-b x)$
$a b-a c x+b^{2} x b c x^{2}=a b-b^{2} x+a c x-b c x^{2}$
$2 b^{2} \times 2 a c x$
$b^{2}=a c$
$\frac{b}{a}=\frac{c}{b}$
Also given $\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}$

On cross multiplication we have
$(b+c x)(c-d x)=(b-c x)(c+d x)$
$b c-b d x+c^{2} x-c d x^{2}=b c+b d x c^{2} x-c d x^{2}$
$2 c^{2} x=2 b d x$
$c^{2}=b d$
$\frac{c}{d}=\frac{d}{c}$
From (1) and (2), we get
$b / a=c / b=d / c$
Therefore a, b, c and d are in G.P.

Question 14

Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that $P^{2} R^{n}$ $=S^{n}$

Answer:

Let the terms in G.P. be $a, a r, a r^{2}, a r^{3}, \ldots a r^{n}-1 \ldots$
Form the question, we have
$S=\frac{a\left(r^{n}-1\right)}{r-1}$
$\mathrm{P}=a^{n} \times r^{1+2+\cdots+n-1}$
$=a^{n} r^{\frac{n(n-1)}{2}}$
$\left[\therefore\right.$ Sum of first natural number is $\left.n \frac{n+1}{2}\right]$
$R=\frac{1}{a}+\frac{1}{a r}+\cdots .+\frac{1}{a r^{n-1}}$
$=\frac{r^{n-1}+r^{n-2}+\cdots . . r+1}{a r^{n-1}}$
$=\frac{1\left(r^{n}-1\right)}{(r-1)} \times \frac{1}{a r^{n-1}}$
$\left[\because 1 r, \ldots . . r^{n-1}\right.$ forms a G.P.]
$=\frac{r^{n}-1}{a r^{n-1}(r-1)}$
$\therefore p^{2} R^{2}=a^{2 n} r^{n(n-1)}\left(\frac{\left(r^{n}-1\right)^{n}}{a^{n} r^{n(n-1)}(r-1)^{n}}\right)$
$=\frac{a^{n}\left(r^{n}-1\right)^{n}}{(r-1)^{n}}$
$=\left[\frac{a\left(r^{n}-1\right)}{(r-1)}\right]^{n}$
$=S^{n}$
$=p^{2} R^{2}=S^{n}$

Question 15

The $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of an A.P. are a, b, c respectively.
Show that $(q-r) a+(r-p) b+(p-q) c=0$

Answer:

Let's assume t and d to be the first term and the common difference of the A.P. respectively.
Then the nth term of the A.P. is given by, an $=t+(n-1) d$
Thus,

$$
\begin{align*}
& \mathrm{a}_{\mathrm{p}}=\mathrm{t}+(\mathrm{p}-1) \mathrm{d}=\mathrm{a} \ldots(1) \\
& \mathrm{a}_{\mathrm{q}}=\mathrm{t}+(\mathrm{q}-1) \mathrm{d}=\mathrm{b} \ldots(2) \tag{2}\\
& \mathrm{a}_{\mathrm{r}}=\mathrm{t}+(\mathrm{r}-1) \mathrm{d}=\mathrm{c} \ldots \text { (3) } \tag{3}
\end{align*}
$$

On subtracting equation (2) from (1), we get
$(p-1-q+1) d=a-b$
$(p-q) d=a-b$
$\mathrm{d}=\frac{a-b}{p-q}$

On subtracting equation (3) from (2), we get
$(q-1-r+1) d=b-c$
$(q-r) d=b-c$
$\mathrm{d}=\frac{b-c}{q-r}$
Equating both the values of d obtained in (4) and (5), we get
$\frac{a-b}{p-q}=\frac{b-c}{q-r}$
$(a-b)(q-r)=(b-c)(p-q)$
$a q-b q-a r+b r=b p-b q-c p+c q$
$b p-c p+c q-a q+a r-b r=0$
$(-a q+a r)+(b p-b r)+(-c p+c q)=0 \quad$ (By rearranging terms)
$-a(q-r)-b(r-p)-c(p-q)=0$
$a(q-r)+b(r-p)+c(p-q)=0$
Therefore, the given result is proved.

Question 16

If $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right) c,\left(\frac{1}{a}+\frac{1}{b}\right)$, are in A.P., prove that a, b, c are in A.P.
Answer:
Given a $\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right) c,\left(\frac{1}{a}+\frac{1}{b}\right)$, are in A.P.
$b\left(\frac{1}{c}+\frac{1}{a}\right)-\mathrm{a}\left(\frac{1}{b}+\frac{1}{c}\right)=c\left(\frac{1}{a}+\frac{1}{b}\right)-b\left(\frac{1}{c}+\frac{1}{a}\right)$
$\frac{b(a+c)}{a c}-\frac{a(b+c)}{b c}=\frac{c(a+b)}{a b}-\frac{b(a+c)}{a c}$
$\frac{b^{2} a+b^{1} c-a^{2} b-a^{2} c}{a b c}=\frac{c^{2} a+c^{2} b-b^{2} a-b^{2} c}{a b c}$
$b^{2} a-a^{2} b+b^{1} c-a^{2} c=c^{2} a-b^{2} a+c^{2} b-b^{2} c$
$a b(b-a)+c\left(b^{2}-a^{2}\right)=a\left(c^{2}-b^{2}\right)+b c(c-b)$
$a b(b-a)+c(b-a)(b+a)=a(c-b)+b c(c-b)$
$(b-a)(a b+c b+c a)=(c-b)(a c+a b+b c)$
$b-a=c-b$
Therefore a, b and c are in A.P.

Question 17

If $\mathbf{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P, prove that $(\mathrm{an}+\mathrm{bn}),(\mathrm{bn}+\mathrm{cn}),(\mathrm{cn}+\mathrm{dn})$ are in G.P.

Answer:

Given, a, b, c, and d are in G.P.
So, we have
$\therefore \mathrm{b}^{2}=\mathrm{ac} . .$. (i)
$c^{2}=\mathrm{bd} . .$. (ii)
ad = bc ... (iii)
Required to prove $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ are in G.P.i.e.,
$\left(b^{n}+c^{n}\right) 2=(a n+b n)(c n+d n)$
Taking L.H.S.
$\left(b^{n}+c^{n}\right)^{2}=b^{2 n}+2 b n c^{n}+c^{2 n}$
$=\left(b^{2}\right)^{n}+2 b^{n} c^{n}+(c 2)^{n}$
$=(\mathrm{ac})^{\mathrm{n}}+2 \mathrm{~b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}}+(\mathrm{bd}) \mathrm{n} \quad$ [Using (i) and (ii)]
$=a^{n} c^{n}+b^{n} c^{n}+b^{n} c^{n}+b^{n} d^{n}$
$=a^{n} c^{n}+b^{n} c^{n}+a^{n} d n+b^{n} d^{n}$
[Using (iii)]
$=c^{n}(a n+b n)+d^{n}(a n+b n)$
$=\left(\mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}}\right)\left(\mathrm{c}^{\mathrm{n}}+\mathrm{d}^{\mathrm{n}}\right)$
= R.H.S.
Therefore, $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right)$, and $\left(c^{n}+d^{n}\right)$ are in G.P

- Hence proved.

Question 18

If a and b are the roots of $x^{2}-3 x+p=0$ and c, dare roots of $x^{2}-12 x+q=0$, where a, b, c, d, form a G.P. Prove that $(q+p):(q-p)=17: 15$.

Answer:

Given, a and b are the roots of $x^{2}-3 x+p=0$
So, we have $\mathrm{a}+\mathrm{b}=3$ and $\mathrm{ab}=\mathrm{p}$
Also, c and d are the roots of $\mathrm{x}^{2}-12 \mathrm{x}+\mathrm{q}=0$
So, $c+d=12$ and $c d=q$
And given $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P.
Let's take $\mathrm{a}=\mathrm{x}, \mathrm{b}=\mathrm{xr}, \mathrm{c}=\mathrm{xr} 2, \mathrm{~d}=\mathrm{xr} 3$
From (i) and (ii), we get
$\mathrm{x}+\mathrm{xr}=3$
$x(1+r)=3$
And,
$\mathrm{xr}^{2}+\mathrm{xr}^{3}=12$
$\mathrm{xr}^{2}(1+\mathrm{r})=12$
On dividing, we get
$\frac{x r^{2}(1+r)}{x(1+r)}=\frac{12}{3}$
$r^{2}=4$
$r= \pm 2$
When $r=2, x=3 /(1+2)=3 / 3=1$
When $r=-2, x=3 /(1-2)=3 /-1=-3$
Case I:
When $r=2$ and $x=1$,
$a b=x^{2} r=2$
$\mathrm{cd}=\mathrm{x}^{2} \mathrm{r}^{5}=32$
$\frac{q-p}{(q+p)}=\frac{32+18}{32-2}=\frac{34}{30}=\frac{17}{15}$
$(q+p):(q-p)=17: 15$
Case II:
When $r=-2, x=-3$,
$a b=x^{2} r=-18$
$\mathrm{cd}=\mathrm{x}^{2} \mathrm{r}^{5}=-288$
$\frac{q-p}{(q+p)}=\frac{-288-18}{-288+18}=\frac{-306}{-270}=\frac{17}{15}$
$(q+p):(q-p)=17: 15$
Therefore, in both the cases, we get $(q+p):(q-p)=17: 15 \backslash$

Question 19

The ratio of the A.M and G.M. of two positive numbers a and \mathbf{b}, is \mathbf{m} : \mathbf{n}. Show $a: b=\left(m+\sqrt{m^{2} n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right)$ that.

Let the two numbers be a and b .
A.M $=(\mathrm{a}+\mathrm{b}) / 2$ and G.M. $=\sqrt{\mathrm{ab}}$

From the question, we have
$\frac{a+b}{2 \sqrt{a b}}=\frac{m}{n}$
$\frac{(a+b)^{2}}{4(a b)}=\frac{m^{2}}{n^{2}}$
$(a+b)^{2}=\frac{4 a b m^{2}}{n^{2}}$
$(a+b)=\frac{2 \sqrt{a b m}}{n}$
By using in identity $(a-b)^{2}=(a+b)^{2}-4 a b$ we get
$(a+b)^{2}=\frac{4 a b m^{2}}{n^{2}}-4 a b=\frac{4 a b\left(m^{2}-n^{2}\right)}{n^{2}}$
$(a-b)=\frac{2 \sqrt{a b} \sqrt{m^{2}-n^{2}}}{n}$
Adding (1) and (2) we get
$2 a=\frac{2 \sqrt{a b}}{n}\left(m+\sqrt{m^{2}-n^{2}}\right)$
$a=\frac{\sqrt{a b}}{n}\left(m+\sqrt{m^{2}-n^{2}}\right)$
Substituting the value of a in (1) we get
$b=\frac{2 \sqrt{a b}}{n} m-\frac{\sqrt{a b}}{n}\left(m+\sqrt{m^{2}-n^{2}}\right)$
$=\frac{\sqrt{a b}}{n} m-\frac{\sqrt{a b}}{n} \sqrt{m^{2}-n^{2}}$
$=\frac{\sqrt{a b}}{n}\left(m+\sqrt{m^{2}-n^{2}}\right)$
$\therefore a: b=\frac{a}{b}=\frac{\frac{\sqrt{a b}}{n}\left(m+\sqrt{m^{2}-n^{2}}\right)}{\frac{n}{\sqrt{a b}}\left(m-\sqrt{m^{2}-n^{2}}\right)}=\frac{\left(m+\sqrt{m^{2}-n^{2}}\right)}{\left(m-\sqrt{m^{2}-n^{2}}\right)}$

Therefore, $\mathrm{a}: \mathrm{b}=\left(m+\sqrt{m^{2}-n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right)$

Question 20

If a, b, c are in A.P,; b, c, d are in G.P and $1 / c, 1 / d, 1 / e$ are in A.P. prove that a, c, e are in G.P.

Answer:

Given $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P.
Hence, $\mathrm{b}-\mathrm{a}=\mathrm{c}-\mathrm{b}$
And, given that b, c, d are in G.P.
So, c2 = bd ... (2)
Also, $1 / \mathrm{c}, 1 / \mathrm{d}, 1$ /e are in A.P.
So,
$\frac{1}{d}-\frac{1}{c}=\frac{1}{e}-\frac{1}{d}$
$\frac{2}{d}=\frac{1}{c}+\frac{1}{e}$

Now, required to prove that a, c, e are in G.P. i.e., $c^{2}=a e$
From (1), we have
$2 \mathrm{~b}=\mathrm{a}+\mathrm{c}$
$\mathrm{b}=(\mathrm{a}+\mathrm{c}) / 2$
And from (2), we have
$d=c^{2} / b$
On substituting these values in (3), we get
$\frac{2 b}{c^{2}}=\frac{1}{c}+\frac{1}{e}$
$\frac{2(a+b)}{2 c^{2}}=\frac{1}{c}+\frac{1}{e}$
$\frac{a+c}{c^{2}}=\frac{e+c}{c e}$
$\frac{a+c}{c}=\frac{e+c}{e}$
$a e+c e=e c+c^{2}$
$c^{2} a e$
Therefore, a, c, and e are in G.P.

Question 21

Find the sum of the following series up to \mathbf{n} terms:
(i) $5+55+555+\ldots$ (ii) $.6+.66+.666+\ldots$

Answer:
(i) Given, $5+55+555+$

Let $S_{n}=5+55+555+\ldots$. up to n terms
$=\frac{5}{9}[9+99+999+\cdots$ to n terms $]$
$=\frac{5}{9}\left[\left(10+10^{2}+10^{3}+\ldots\right.\right.$ n terms $)-(1+1+\cdots n$ terms $\left.)\right]$
$=\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right]$
$=\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$
$=\frac{50}{81}\left(10^{n}-1\right)-\frac{5 n}{9}$
(ii) Given, $6+66+666+\ldots$

Let $S_{n}=6+66+666+\ldots .$. up to n terms
$=6[0.1+0.11+0.111+\cdots$ to n terms $]$
$=\frac{6}{9}\left[\left(1-\frac{1}{10}\right)+\left(1-\frac{1}{10^{2}}\right)+\left(1-\frac{1}{10^{3}}\right)+\right.$ to n term $]$
$=\frac{2}{3}\left[(1+1+\cdots . n\right.$ terms $)-\frac{1}{10}\left(1+\frac{1}{10}+\frac{1}{10^{2}}+\ldots . n\right.$ terms $\left.)\right]$
$=\frac{2}{3}\left[n-\frac{1}{10}\left(\frac{1-\left(\frac{1}{10}\right)^{n}}{1-\frac{1}{10}}\right)\right]$
$=\frac{2}{3} n-\frac{2}{30} \times \frac{10}{9}\left(1-10^{-n}\right)$
$=\frac{2}{3} n-\frac{2}{27}\left(1-10^{-n}\right)$

Question 22

Find the 20 th term of the series $2 \times 4+4 \times 6+6 \times 8+\ldots+n$ terms.
Answer:
Given series is $2 \times 4+4 \times 6+6 \times 8+\ldots n$ terms
$\therefore \mathrm{n}^{\text {th }}$ term $=\mathrm{an}=2 \mathrm{n} \times(2 \mathrm{n}+2)=4 \mathrm{n}^{2}+4 \mathrm{n}$
The $20^{\text {th }}$ term,
$\mathrm{a} 20=4(20)^{2}+4(20)=4(400)+80=1600+80=1680$
Therefore, the 20th term of the series is 1680 .

Question 23

Find the sum of the first n terms of the series: $3+7+13+21+31+\ldots$

Answer:

The given series is $3+7+13+21+31+\ldots$

$$
\begin{aligned}
& S=3+7+13+21+31+\ldots+a_{n-1}+a_{n} \\
& S=3+7+13+21+\ldots .+a_{n}-2+a_{n-1}+a_{n}
\end{aligned}
$$

On subtracting both the equations, we get

$$
\begin{aligned}
& S-S=\left[3+\left(7+13+21+31+\ldots+a_{n}-1+a_{n}\right)\right]-\left[\left(3+7+13+21+31+\ldots+a_{n}-1\right)+a_{n}\right] \\
& S-S=3+\left[(7-3)+(13-7)+(21-13)+\ldots+\left(a_{n}-a_{n}-1\right)\right]-a_{n} \\
& 0=3+[4+6+8+\ldots(n-1) \text { terms }]-a_{n} \\
& a_{n}=3+[4+6+8+\ldots(n-1) \text { terms }]
\end{aligned}
$$

$$
\mathrm{a}_{\mathrm{n}}=3+[4+6+8+\ldots(\mathrm{n}-1) \text { terms }]
$$

$$
\Rightarrow a_{n}=3+\left(\frac{n-1}{2}\right)[2 \times 4+(n-1-1) 2]
$$

$$
=3+\left(\frac{n-1}{2}\right)[8+(n-2) 2]
$$

$$
=3+\left(\frac{n-1}{2}\right)(2 n+4)
$$

$$
=3+(n-1)(n+2)
$$

$$
=3+\left(n^{2}+n-2\right)
$$

$$
=n^{2}+n+1
$$

$$
\therefore \sum_{k=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}^{2}+\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}+\sum_{\mathrm{k}=1}^{\mathrm{n}} 1
$$

$$
=\frac{n(n+1)(2 n+1)}{2}+\frac{n(n-1)}{2}+n
$$

$$
=n\left[\frac{(n+1)(2 n+1)+3(n+1)+6}{6}\right]
$$

$$
=n\left[\frac{2 n^{2}+3 n+1+3 n+3+6}{6}\right]
$$

$=n\left[\frac{2 n^{2}+6 n+10}{6}\right]$
$=\frac{n}{3}\left(n^{2}+3 n+5\right)$

Question 24

If S_{1}, S_{2}, S_{3} are the sum of first n natural numbers, their squares and their cubes, respectively, show that $\mathbf{9 S}_{\mathbf{2}}{ }^{2}$
$2=S_{3}\left(1+8 S_{1}\right)$.

Answer:

From the question, we have
$S_{1}=\frac{n(n+1)}{2}$
$S_{3}=\frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{4}$
Here $S_{3}\left(1+8 S_{1}\right)=\frac{n^{2}(n+1)^{2}}{4}\left[1+\frac{8 n(n+1)}{2}\right]$

$$
=\frac{n^{2}(n+1)^{2}}{4}\left[1+4 n^{2}+4 n\right]
$$

$$
=\frac{n^{2}(n+1)^{2}}{4}(2 n+1)^{2}
$$

$$
\begin{equation*}
=\frac{[n(n+1)(2 n+1)]^{2}}{4} \tag{1}
\end{equation*}
$$

Also $9 \mathrm{~S}_{2}^{2}=9=\frac{[n(n+1)(2 n+1)]^{2}}{(6)^{2}}$

$$
\begin{align*}
& =\frac{9}{36}[n(n+1)(2 n+1)]^{2} \\
& =\frac{[n(n+1)(2 n+1)]^{2}}{4} \tag{2}
\end{align*}
$$

Therefore from (1) and (2) we have $9 S_{2}^{2}=S_{3}\left(1+8 S_{1}\right)$

Question 25

Find the sum of the following series up to n terms: $\frac{\mathbf{1}^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\cdots$.

Answer:

The $n^{\text {th }}$ term of the given series is $\frac{1^{3}+2^{3}+3^{3}+\cdots+n^{3}}{1+3+5+\cdots+(2 n-1)}=\frac{\left[\frac{n(n+1)}{2}\right]^{2}}{1+3+5+\cdots+(2 n-1)}$
Here $1,3,5, \ldots \ldots .(2 n-1)$ is an AP with first a last term $(2 n-1)$ and number of term as n So,
$1+3+5+\ldots . .+(2 n-1)=\frac{n}{2}[2 \times 1+(n-1) 2]=n^{2}$
And
$\mathrm{a}_{\mathrm{n}}=\frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{4 \mathrm{n}^{2}}=\frac{(\mathrm{n}+1)^{2}}{4}=\frac{1}{4} \mathrm{n}^{2}+\frac{1}{2} \mathrm{n}+\frac{1}{4}$
Thus
$S_{n}=\sum_{k=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}=\sum_{k=1}^{\mathrm{n}}\left(\frac{1}{4} \mathrm{k}^{2}+\frac{1}{2} \mathrm{k}+\frac{1}{4}\right)$
$=\frac{1}{4}-\frac{n(n+1)(2 n+1)}{6}+\frac{1}{2} \frac{n(n+1)}{2}+\frac{1}{4} n$
$=\frac{n[(n+1)(2 n+1)+6(n+1)+6]}{24}$
$=\frac{n\left[2 n^{2}+3 n+1+6 n+6+6\right]}{24}$
$=\frac{n\left(2 n^{2}+9 n+13\right)}{24}$

Question 26

Show that $\frac{1 \times 2^{2}+2 \times 3^{2}+\cdots+n \times(n+1)^{2}}{1^{2} \times 2+2^{2} \times 3+\cdots+n^{2} \times(n+1)}=\frac{3 n+5}{3 n+1}$

Answer:

$n^{\text {th }}$ term of the numertor $=n(n+1)^{2}=n^{3}+2 n^{2}+n$
$n^{\text {th }}$ term of the numertor $=n^{2}(n+1)=n^{3}+n^{2}$
$\frac{1 \times 2^{2}+2 \times 3^{2}+\cdots+n \times(n+1)^{2}}{1^{2} \times 2+2^{2} \times 3+\cdots \ldots+n^{2}(n+1)}=\frac{\sum_{k=1}^{n} a_{k}}{\sum_{k=1}^{n} a_{k}}=\frac{\sum_{k=1}^{n}\left(k^{3}+2 \mathrm{k}^{2}+\mathrm{k}\right)}{\sum_{k=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}\left(\mathrm{k}^{3}+\mathrm{k}^{2}\right)}$
Here
$\sum_{k=1}^{n}\left(k^{2}+2 k^{2}+k\right)$
$=\frac{n^{2}(n+1)^{2}}{4}+\frac{2 n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}$
$=\frac{n(n+1)}{2}\left[\frac{n(n+1)}{2}+\frac{2}{3}(2 n+1)+1\right]$
$=\frac{n(n+1)}{2}\left[\frac{3 n^{2}+3 n+8 n+4+6}{6}\right]$
$=\frac{n(n+1)}{12}\left[3 n^{2}+11 n+10\right]$
$=\frac{n(n+1)}{12}\left[3 n^{2}+6 n+5 n+10\right]$
$=\frac{n(n+1)}{12}[3 n(n+2)+5(n+2)]$
$=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)(3 \mathrm{n}+5)}{12}$
Also
$\sum_{k=1}^{\mathrm{n}}\left(\mathrm{k}^{3}+\mathrm{k}^{2}\right)=\frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{4}+\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
$=\frac{n(n+1)}{2}\left[\frac{n(n+1)}{2}+\frac{2 n+1}{3}\right]$
$=\frac{n(n+1)}{2}\left[\frac{3 n^{2}+3 n+4 n+2}{6}\right]$
$=\frac{n(n+1)}{12}\left[3 n^{2}+7 n+2\right]$
$=\frac{\mathrm{n}(\mathrm{n}+1)}{12}[3 \mathrm{n}(\mathrm{n}+2)+1(\mathrm{n}+2)]$
$=\frac{n(n+1)(n+2)(3 n+1)}{12}$
From (1) (2) and (3) we otatain
$\frac{1 \times 2^{2} 2 \times 3^{2}+\cdots+n \times(n+1)^{2}}{1^{2} \times 2+2^{2} \times 3+\cdots+n^{2} \times(n+1)}=\frac{\frac{n(n+1)(n+2)(3 n+5)}{12}}{\frac{n(n+1)(n+2)(3 n+1)}{12}}$
Hence proved

Question 27

A farmer buys a used tractor for Rs $\mathbf{1 2 0 0 0}$. He pays Rs 6000 cash and agrees to pay the balance in annual installments of Rs 500 plus $\mathbf{1 2 \%}$ interest on the unpaid amount. How much will be the tractor cost him?

Answer:

Given, the farmer pays Rs 6000 in cash.
So, the unpaid amount $=$ Rs $12000-$ Rs $6000=$ Rs 6000
From the question, the interest paid annually will be
12% of $6000,12 \%$ of $5500,12 \%$ of $5000, \ldots, 12 \%$ of 500
Hence, the total interest to be paid $=12 \%$ of $6000+12 \%$ of $5500+12 \%$ of $5000+\ldots+12 \%$ of 500

$$
\begin{aligned}
& =12 \% \text { of }(6000+5500+5000+\ldots+500) \\
& =12 \% \text { of }(500+1000+1500+\ldots+6000)
\end{aligned}
$$

It's seen that, the series $500,1000,1500 \ldots 6000$ is an A.P. with the first term and common difference both equal to 500 .
Let's take the number of terms of the A.P. to be n.
So, $6000=500+(n-1) 500$
$1+(n-1)=12$
$\mathrm{n}=12$
Now,
The sum of the A.P = 12/2 $[2(500)+(12-1)(500)]=6[1000+5500]=6(6500)=39000$
Hence, the total interest to be paid $=12 \%$ of $(500+1000+1500+\ldots+6000)$

$$
=12 \% \text { of } 39000=\text { Rs } 4680
$$

Therefore, the tractor will cost the farmer $=$ (Rs $12000+$ Rs 4680) $=$ Rs 16680

Question 28

Shamshad Ali buys a scooter for Rs 22000 . He pays Rs 4000 cash and agrees to pay the balance in annual installment of Rs $\mathbf{1 0 0 0}$ plus $\mathbf{1 0 \%}$ interest on the unpaid amount. How much will the scooter cost him?

Answer:

Given, Shamshad Ali buys a scooter for Rs 22000 and pays Rs 4000 in cash.

So, the unpaid amount = Rs 22000 - Rs 4000 = Rs 18000
Form the question, it's understood that the interest paid annually is
10% of $18000,10 \%$ of $17000,10 \%$ of $16000 \ldots 10 \%$ of 1000
Hence, the total interest to be paid $=10 \%$ of $18000+10 \%$ of $17000+10 \%$ of $16000+\ldots+10 \%$ of 1000

$$
\begin{aligned}
& =10 \% \text { of }(18000+17000+16000+\ldots+1000) \\
& =10 \% \text { of }(1000+2000+3000+\ldots+18000)
\end{aligned}
$$

It's seen that, 1000, 2000, $3000 \ldots 18000$ forms an A.P. with first term and common difference both equal to 1000 .
Let's take the number of terms to be n.
So, $18000=1000+(n-1)(1000)$
$\mathrm{n}=18$
Now, the sum of the A.P is given by:

$$
\begin{aligned}
\therefore 1000+2000+\ldots+18000 & =\frac{18}{2}[2(1000)+(18-1)(1000)] \\
& =9[2000+17000] \\
& =171000
\end{aligned}
$$

Thus,
Total interest paid $=10 \%$ of $(18000+17000+16000+\ldots+1000)$
$=10 \%$ of Rs $171000=$ Rs 17100
Therefore, the cost of scooter = Rs 22000 + Rs 17100 = Rs 39100

Question 29

A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paise to mail one letter. Find the amount spent on the postage when 8th set of letter is mailed.

Answer:

It's seen that,
The numbers of letters mailed forms a G.P.: $4,4^{2}, \ldots 4^{8}$
Here, first term $=4$ and common ratio $=4$
And the number of terms $=8$
The sum of n terms of a G.P. is given by:
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
$\therefore S_{8}=\frac{4\left(4^{8}-1\right)}{4-1}=\frac{4(65536-1)}{3}=\frac{4(65535)}{3}=4(21845)=87380$
Also, given that the cost to mail one letter is 50 paisa.
Hence, Cost of mailing 87380 letters $=$ Rs $87380 \times(50 / 100)=$ Rs $43690=$ Rs 43690
Therefore, the amount spent when 8th set of letter is mailed will be Rs 43690.
Question 30

A man deposited Rs 10000 in a bank at the rate of 5\% simple interest annually. Find the amount in 15th year since he deposited the amount and also calculate the total amount after 20 years.

Answer:

Given, the man deposited Rs 10000 in a bank at the rate of 5\% simple interest annually.
Hence, the interest in first year $=(5 / 100) \times$ Rs $10000=$ Rs 500
So, Amount in $15^{\text {th }}$ year $=$ Rs $1000+\frac{500+500+\cdots+500}{14 \text { times }}$
$=$ Rs $10000+14 \times$ Rs 500
= Rs 10000 + Rs 7000
$=$ Rs 17000
And, the amount after 20 years $=$ Rs $1000+\frac{500+500+\cdots+500}{20 \text { times }}$

$$
\begin{aligned}
& =\text { Rs } 10000+20 \times \text { Rs } 500 \\
& =\text { Rs } 10000+\text { Rs } 10000 \\
& =\text { Rs } 20000
\end{aligned}
$$

Therefore, the amount in the 15th year is Rs 17000 and the total amount after 20 years will be Rs 20000.

Question 31

A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by $\mathbf{2 0 \%}$. Find the estimated value at the end of 5 years.
Answer:
Given, the cost of machine = Rs 15625
Also, given that the machine depreciates by 20% every year.
Hence, its value after every year is 80% of the original cost i.e., $4 / 5^{\text {th }}$ of the original cost.
Therefore, the value at the end of 5 years $=15625 \frac{\times \frac{4}{5} \times \frac{4}{5} \times \ldots \ldots \times \frac{4}{5}}{5 \text { times }}$

$$
=5 \times 1024=5120
$$

Thus, the value of the machine at the end of 5 years will be Rs 5120 .

Question 32

150 workers were engaged to finish a job in a certain number of days. 4 workers dropped out on second day, 4 more workers dropped out on third day and so on. It took 8 more days to finish the work. Find the number of days in which the work was completed.

Answer:

Let's assume x to be the number of days in which 150 workers finish the work. Then from the question, we have

$$
150 x=150+146+142+\ldots .(x+8) \text { terms }
$$

The series $150+146+142+\ldots .(x+8)$ terms is an A.P.
With first term (a) = 150, common difference $(\mathrm{d})=-4$ and number of terms $(\mathrm{n})=(\mathrm{x}+8)$
Now, finding the sum of terms:

```
\(150 x=\frac{(x+8)}{2}[2(150)+(x+8-1)(-4)]\)
\(150 x=(x+8)[150+(x+7)(-2)]\)
\(150 x=(x+8)(150-2 x-14)\)
\(150 x=(x+8)(136-2 x)\)
\(75 x=(x+8)(68-x)\)
\(75 x=68 x-x^{2}+544-8 x\)
\(x^{2}+75 x-60 x-544=0\)
\(x^{2}+15 x-544=0\)
\(x^{2}+32 x-17 x-544=0\)
\(x(x+32)-17(x+32)=0\)
\((x-17)(x+32)=0\)
\(x=17\) or \(x=-32\)
```

As x cannot be negative.
$\mathrm{x}=17$
[Number of days is always a positive quantity]
Hence, the number of days in which the work should have been completed is 17.
But, due to the dropping out of workers the number of days in which the work is completed $=(17+8)=25$

