Chapter 8
 Binomial Theorem

Exercise 8.1

Question 1

Expand each of the expressions in Exercises 1 to 5. $(1-2 x)^{5}$

Answer:

From binomial theorem expansion we can write as
$(1-2 x)^{5}$
$={ }^{5} \mathrm{Co}(1)^{5}-{ }^{5} \mathrm{C}_{1}(1)^{4}(2 \mathrm{x})+{ }^{5} \mathrm{C}_{2}(1)^{3}(2 \mathrm{x})^{1}-{ }^{5} \mathrm{C}_{3}(1)^{3}(2 \mathrm{x})^{3}+{ }^{5} \mathrm{C}_{4}(1)^{1}(2 \mathrm{x})^{4}-{ }^{5} \mathrm{C}_{5}(2 \mathrm{x})^{5}$
$=1-5(2 x)+10(4 x)^{2}-10\left(8 x^{3}\right)+5\left(16 x^{4}\right)-\left(32 x^{5}\right)$
$=1-10 \mathrm{x}+40 \mathrm{x}^{2}-80 \mathrm{x}^{3}-32 \mathrm{x}^{5}$
Question 2
$\left(\frac{2}{x}-\frac{x}{2}\right)^{5}$
Answer:
From binomial theorem given equation can be expanded as
$\left(\frac{2}{x}-\frac{x}{2}\right)^{5}={ }^{5} \operatorname{Co}\left(\frac{2}{x}\right)^{3}-{ }^{5} \mathrm{C}_{1}\left(\frac{2}{x}\right)^{4}\left(\frac{x}{2}\right)+{ }^{5} \mathrm{C}_{2}\left(\frac{2}{x}\right)^{3}\left(\frac{x}{2}\right)^{2}$
$-{ }^{3} \mathrm{C}_{3}\left(\frac{2}{x}\right)^{2}\left(\frac{x}{2}\right)^{3}+{ }^{3} \mathrm{C}_{4}\left(\frac{x}{2}\right)\left(\frac{x}{2}\right)^{4}-{ }^{3} \mathrm{C}_{5}\left(\frac{\mathrm{x}}{2}\right)^{5}$
$=\frac{32}{x^{5}}-5\left(\frac{16}{x^{4}}\right)\left(\frac{x}{2}\right)+10\left(\frac{8}{x^{3}}\right)\left(\frac{x^{2}}{4}\right)-10\left(\frac{4}{x^{2}}\right)+5\left(\frac{2}{x}\right)\left(\frac{x^{4}}{16}\right)-\frac{x^{5}}{32}$
$=\frac{32}{x^{5}}-\frac{40}{x^{3}}+\frac{20}{x}-5 x+\frac{5}{8} x^{3}-\frac{x^{3}}{32}$
Question 3
$(2 x-3)^{6}$
Answer:
$(2 \mathrm{x}-3)^{6}={ }^{6} \mathrm{C}_{0}(2 \mathrm{x})^{6}-{ }^{6} \mathrm{C}_{1}(2 \mathrm{x})^{5}(3)+{ }^{6} \mathrm{C}_{1}(2 \mathrm{x})^{4}(3)^{2}-{ }^{4} \mathrm{C}_{3}(2 \mathrm{x})^{3}(3)^{3}$
$=64 x^{6}-6\left(32 x^{5}\right)(3)+15\left(16 x^{4}\right)(9)-20\left(8 x^{3}\right)$
$+15(4 x)^{2}(81)-6(2 x)(243)+729$
$=64 x^{6}-576 x^{5}+2160 x^{4}-4320 x^{3}+4860 x^{2}-2916 x+729$
Question 4
$\left(\frac{x}{3}+\frac{1}{x}\right)^{5}$
Answer:
$\left(\frac{x}{3}+\frac{1}{x}\right)^{5}={ }^{5} \operatorname{Co}\left(\frac{x}{3}\right)^{5}+{ }^{3} \mathrm{C}_{1}\left(\frac{x}{3}\right)^{4}\left(\frac{1}{x}\right)+{ }^{3} \mathrm{C}_{2}\left(\frac{\mathrm{x}}{3}\right)^{3}\left(\frac{1}{\mathrm{x}}\right)^{2}$
$=\frac{x^{5}}{243}+5\left(\frac{x^{4}}{80}\right)\left(\frac{1}{x}\right)+10\left(\frac{x^{3}}{27}\right)\left(\frac{1}{x^{2}}\right)+10\left(\frac{x^{2}}{9}\right)\left(\frac{1}{x^{3}}\right)+5\left(\frac{x}{3}\right)\left(\frac{1}{x^{4}}\right)+\frac{1}{x^{5}}$
$=\frac{x^{5}}{243}+\frac{x^{5}}{243}+\frac{10 x}{27}+\frac{10}{9 x}+\frac{5}{3 x^{3}}+\frac{1}{x^{3}}$

Question 5

$\left(x+\frac{1}{x}\right)^{6}$

Answer:

From binominal theorem, given can be expanded as
$\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{6}={ }^{6} \mathrm{Co}(\mathrm{x})^{6}+{ }^{6} \mathrm{C}_{1}(\mathrm{x})^{1}+\left(\frac{1}{\mathrm{x}}\right)+{ }^{6} \mathrm{C}_{2}(\mathrm{x})^{4}\left(\frac{1}{\mathrm{x}}\right)^{2}$
$+{ }^{6} \mathrm{C}_{3}(\mathrm{x})^{3}\left(\frac{1}{\mathrm{x}}\right)^{3}+{ }^{6} \mathrm{C}_{4}(\mathrm{x})^{2}\left(\frac{1}{\mathrm{x}}\right)^{4}+{ }^{6} \mathrm{C}_{3}(\mathrm{x})\left(\frac{1}{\mathrm{x}}\right)^{5}+{ }^{6} \mathrm{C}_{6}\left(\frac{1}{\mathrm{x}}\right)^{6}$
$=x^{4}+6(x)^{3}\left(\frac{1}{x}\right)+15(x)^{4}\left(\frac{1}{x^{2}}\right)+20(x)^{3}\left(\frac{1}{x^{3}}\right)+15(x)^{2}\left(\frac{1}{x^{4}}\right)+6(x)\left(\frac{1}{x^{5}}\right)+\frac{1}{x^{6}}$
$=x^{6}+6 x^{4}+15 x^{2}+20+\frac{15}{x^{2}}+\frac{6}{x^{4}}+\frac{1}{x^{6}}$

Question 6

$(96)^{3}$

Answer:

Given (96) ${ }^{3}$
96 can be expressed as the sum or difference of two numbers and then binomial theorem can be applied.
The given question can be written as $96=100-4$
$(96)^{3}=(100-4)^{3}$
$={ }^{3} \mathrm{C}_{0}(100)^{3}-{ }^{3} \mathrm{C}_{1}(100)^{2}(4)-{ }^{3} \mathrm{C}_{2}(100)(4)^{2-3} \mathrm{C}_{3}(4)^{3}$
$=(100)^{3}-3(100)^{2}(4)+3(100)(4)^{2}-(4)^{3}$
$=1000000-120000+4800-64$
$=884736$

Question 7

$(102)^{5}$

Answer:

Given (102) ${ }^{5}$
102 can be expressed as the sum or difference of two numbers and then binomial theorem can be applied.
The given question can be written as $102=100+2$
$(102)^{5}=(100+2)^{5}$
$={ }^{5} \mathrm{C}_{0}(100)^{5}+{ }^{5} \mathrm{C}_{1}(100)^{4}(2)+{ }^{5} \mathrm{C}_{2}(100)^{3}(2)^{2}+{ }^{5} \mathrm{C}_{3}(100)^{2}(2)^{3}+{ }^{5} \mathrm{C}_{4}(100)(2)^{4}+{ }^{5} \mathrm{C}_{5}(2)^{5}$
$=(100)^{5}+5(100)^{4}(2)+10(100)^{3}(2)^{2}+5(100)(2)^{3}+5(100)(2)^{4}+(2)^{5}$
$=1000000000+1000000000+40000000+80000+8000+32$
$=11040808032$

Question 8

$(101)^{4}$

Answer:

Given (101) ${ }^{4}$

101 can be expressed as the sum or difference of two numbers and then binomial theorem can be applied.
The given question can be written as $101=100+1$
$(101)^{4}=(100+1)^{4}$
$={ }^{4} \mathrm{C}_{0}(100)^{4}+{ }^{4} \mathrm{C}_{1}(100)^{3}(1)+{ }^{4} \mathrm{C}_{2}(100)^{2}(1)^{2}+{ }^{4} \mathrm{C}_{3}(100)(1)^{2}+{ }^{4} \mathrm{C}_{4}(1)^{4}$
$=(100)^{4}+4(100)^{3}+6(100)^{2}+4(100)+(1)^{4}$
$=100000000+400000+60000+400+1$
$=1040604001$

Question 9

$(99)^{5}$
Answer:
Given (99) ${ }^{5}$
99 can be written as the sum or difference of two numbers then binomial theorem can be applied.

The given question can be written as $99=100-1$
$(99)^{5}=(100-1)^{5}$
$={ }^{5} \mathrm{C}_{0}(100)^{5}-{ }^{5} \mathrm{C}_{1}(100)^{4}(1)+{ }^{5} \mathrm{C}_{2}(100)^{3}(1)^{2}-{ }^{5} \mathrm{C}_{3}(100)^{2}(1)^{3}+{ }^{5} \mathrm{C}_{4}(100)(1) 4-{ }^{5} \mathrm{C}_{5}(1)^{5}$
$=(100)^{5}-5(100)^{4}+10(100)^{3}-10(100)^{2}+5(100)-1$
$=1000000000-5000000000+10000000-100000+500-1$
= 9509900499

Question 10

Using Binomial Theorem, indicate which number is larger (1.1) $)^{10000}$ or 1000.

Answer:

By splitting the given 1.1 and then applying binomial theorem, the first few terms of
$(1.1)^{10000}$ can be obtained as
$(1.1)^{10000}=(1+0.1)^{10000}$
$=(1+0.1)^{10000} \mathrm{C} 1(1.1)+$ other positive terms
$=1+10000 \times 1.1+$ other positive terms
$=1+11000+$ other positive terms
>1000
$(1.1)^{10000}>1000$
Question 11
Find $(a+b)^{4}-(a-b)^{4}$. Hence, evaluate
$(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}$

Answer:

Using binomial theorem the expression $(a+b)^{4}$ and $(a-b)^{4}$, can be expanded
$(\mathrm{a}+\mathrm{b})^{4}={ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}+{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}+{ }^{4} \mathrm{C}_{3} a \mathrm{~b}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4}$
$(\mathrm{a}-\mathrm{b})^{4}={ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}-{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}-{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4}$
Now $(\mathrm{a}+\mathrm{b})^{4}-(\mathrm{a}-\mathrm{b})^{4}={ }^{4} \mathrm{C}_{0} \mathrm{a}^{4}+{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a}^{2} \mathrm{~b}^{2}+{ }^{4} \mathrm{C}_{3} \mathrm{ab} \mathrm{b}^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4}-\left[{ }^{4} \mathrm{C}_{0} \mathrm{a} 4-{ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{2} \mathrm{a} 2 \mathrm{~b}^{2}-{ }^{4} \mathrm{C}_{3} \mathrm{a}\right.$ $\left.b^{3}+{ }^{4} \mathrm{C}_{4} \mathrm{~b}^{4}\right]$
$=2\left({ }^{4} \mathrm{C}_{1} \mathrm{a}^{3} \mathrm{~b}+{ }^{4} \mathrm{C}_{3} \mathrm{ab}^{3}\right)$
$=2\left(4 a^{3} b+4 a b^{3}\right)$
$=8 a b\left(a^{2}+b^{2}\right)$
Now by substituting $a=\sqrt{3}$ and $b=\sqrt{2}$ we get
$(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}=8(\sqrt{3})(\sqrt{2})\left\{(\sqrt{3})^{2}+(\sqrt{2})^{2}\right\}$
$=8(\sqrt{6})(3+2)$
$=40 \sqrt{6}$
Question 12

Find $(x+1) 6+(x-1) 6$. Hence or otherwise evaluate
$(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}$

Answer:

Using binomial theorem the expressions, $(x+1)^{6}$ and $(x-1)^{6}$ can be expressed as
$(\mathrm{x}+1)^{6}={ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{x}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}+{ }^{6} \mathrm{C}_{3} \mathrm{x}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}+{ }^{6} \mathrm{C}_{5} \mathrm{x}+{ }^{6} \mathrm{C}_{6}$
$(\mathrm{x}-1)^{6}={ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{x}^{5}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}-{ }^{6} \mathrm{C}_{3} \mathrm{x}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}-{ }^{6} \mathrm{C}_{5} \mathrm{x}+{ }^{6} \mathrm{C}_{6}$

$\left.+{ }^{6} \mathrm{C}_{2} \mathrm{X}^{4}-{ }^{6} \mathrm{C}_{3} \mathrm{X}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{X} \mathrm{X}^{2}-{ }^{6} \mathrm{C}_{5} \mathrm{x}+{ }^{6} \mathrm{C}_{6}\right]$
$=2\left[{ }^{6} \mathrm{C}_{0} \mathrm{x}^{6}+{ }^{6} \mathrm{C}_{2} \mathrm{x}^{4}+{ }^{6} \mathrm{C}_{4} \mathrm{x}^{2}+{ }^{6} \mathrm{C}_{6}\right]$
$=2[\mathrm{x} 6+15 \mathrm{x} 4+15 \mathrm{x} 2+1]$
Now by substituting $x=\sqrt{ } 2$ we get
$(\sqrt{2}+1) 6-(\sqrt{2}-1) 6=2[(\sqrt{2}) 6+15(\sqrt{2}) 4+15(\sqrt{2}) 2+1]$
$=2(8+15 \times 4+15 \times 2+1)$
$=2(8+60+30+1)$
$=2$ (99)
$=198$

Question 13

Show that $9 n+1-8 n-9$ is divisible by 64, whenever \mathbf{n} is a positive integer.

Answer:

In order to show that $9^{n+1}-8 n-9$ is divisible by 64 , it has to be show that $9^{n+1}-8 n-9=64 k$, where k is some natural number
Using binomial theorem,
$(1+a){ }^{m}={ }^{m} C_{0}+{ }^{m} C_{1} a+{ }^{m} C_{2} a^{2}+\ldots .+{ }^{m} C_{m} a^{m}$
For $\mathrm{a}=8$ and $\mathrm{m}=\mathrm{n}+1$ we get
$(1+8)^{n+1}={ }^{n+1} C_{0}+{ }^{n+1} C_{1}(8)+{ }^{n+1} C_{2}(8)^{2}+\ldots .+{ }^{n+1} C{ }_{n+1}(8)^{n+1}$
$9^{n+1}=1+(n+1) 8+82\left[n+1 C 2+n+1 C_{3}(8)+\ldots .+{ }^{n+1} C n_{n+1}(8)^{n-1}\right]$
$9^{n+1}=9+8 n+64\left[n+1 C 2+n+1 C 3(8)+\ldots .+{ }^{n+1} C n_{n+1}^{(8)}{ }^{n-1}\right]$
$9^{n+1}-8 n-9=64 k$
Where $\mathrm{k}=\left[{ }^{n+1} \mathrm{C}_{2}+{ }^{\mathrm{n}+1} \mathrm{C}_{3}(8)+\ldots .+{ }^{\mathrm{n}+1} \mathrm{C}_{\mathrm{n}+1}(8)^{\mathrm{n}-1}\right]$ is a natural number
Thus, $9^{n+1}-8 n-9$ is divisible by 64 , whenever n is positive integer.
Hence the proof

Question 14

Prove that

$\sum_{r=0}^{n} 3^{r n} \operatorname{Cr} 4^{n}$

Answer:
$\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r}=(a+b)^{n}$
On right side we need 4^{n} so we will put the values as,
Putting $b=3 \& a=1$ in the above equations, we get
\sum^{n}
$(1)^{n-r}(3)^{r}=(1+3)^{n}$
$\sum_{r=0}^{n}\binom{n}{r}$
(1) $(3)^{r}=(4)^{n}$
$\sum_{r=0}^{n}\binom{n}{r}$
$(3)^{r}=(4)^{n}$
Hence proved

Exercise 8.2

Question 1

Find the coefficient of
x^{5} in $(x+3)^{8}$

Answer:

The general term T_{r+1} in the binomial expansion is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Here x^{5} is the $\mathrm{T}_{\mathrm{r}+1}$ term so $\mathrm{a}=\mathrm{x}, \mathrm{b}=3$ and $\mathrm{n}=8$
$\mathrm{T}_{\mathrm{r}+1}={ }^{8} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{8}-\mathrm{r} 3^{\mathrm{r}}$.
For finding out x^{5}
We have to equate $\mathrm{x}^{5}=\mathrm{x}^{8-\mathrm{r}}$
$\Rightarrow r=3$
Putting value of r in (i) we get
$\mathrm{T}_{3+1}={ }^{8} \mathrm{C}_{3} \times{ }^{8-3} 3^{3}$
$\mathrm{T}_{4}=\frac{8!}{3!5!} \times x^{5} \times 27$
$=1512 \mathrm{x}^{5}$

Hence the coefficient of $x^{5}=1512$

Question 2

$\mathbf{a}^{5} \mathbf{b}^{7}$ in $(a-2 b)^{12}$.

Answer:

The general term T_{r+1} in the binomial expansion is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Here $\mathrm{a}=\mathrm{a}, \mathrm{b}=-2 \mathrm{~b}$ \& $\mathrm{n}=12$
Substituting the values, we get
$\mathrm{T}_{\mathrm{r}+1}={ }^{12} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{12-\mathrm{r}}(-2 \mathrm{~b})^{\mathrm{r}}$
To find a^{5}
We equate $\mathrm{a}^{12-\mathrm{r}}=\mathrm{a}^{5}$
r $=7$
Putting $\mathrm{r}=7$ in (i)
$\mathrm{T}_{8}={ }^{12} \mathrm{C}_{7} \mathrm{a}^{5} \mid(-2 \mathrm{~b})^{7}$
$\mathrm{T}_{8}=\frac{12!}{7!5!} \times x^{5} \times(-2)^{7} \mathrm{~b}^{7}$
$=-101376 a^{5} b^{7}$
Hence the coefficient of a5b7=-101376

Question 3

Write the general term in the expansion of $\left(x^{2}-y\right)^{6}$

Answer:

The general term $\mathrm{Tr}+1$ in the binomial expansion is given by
$\mathrm{T}^{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
Here $a=x^{2}, n=6$ and $b=-y$
Putting values in (i)
$\mathrm{T}^{\mathrm{r}+1}={ }^{6} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{2}(6-\mathrm{r})(-1)^{\mathrm{r}} \mathrm{y}^{\mathrm{r}}$
$=\frac{6!}{r!(6-r)!} \times \times 12-2 \mathrm{r} \times(-1)^{\mathrm{r}} \times \mathrm{y}^{\mathrm{r}}$
$=-\mathrm{r}^{1} \frac{6!}{r!(6-r)!} \times \times^{12-2 \mathrm{r}} \times \mathrm{y}^{\mathrm{r}}$
$=-1^{\mathrm{r}}{ }^{6} \mathrm{C}_{\mathrm{r}} \cdot \mathrm{x}^{12-2 \mathrm{r}} \cdot \mathrm{yr}$

Question 4

$\left(\mathrm{x}^{2}-\mathrm{yx}\right)^{12}, \mathrm{x} \neq 0$.
Answer:

The general term T_{r+1} in the binomial expansion is given by $T^{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Here $\mathrm{n}=12, \mathrm{a}=\mathrm{x}^{2}$ and $\mathrm{b}=-\mathrm{y} \mathrm{x}$
Substituting the values we get
$\mathrm{T}_{\mathrm{n}+1}={ }^{12} \mathrm{C}_{\mathrm{r}} \times \mathrm{x}^{2(12-\mathrm{r})}(-1)^{\mathrm{r}} \mathrm{y}^{\mathrm{r}} \mathrm{x}^{\mathrm{r}}$
$=\frac{12!}{r!(12-r)!} \times \times 12-2 \mathrm{r} \times(-1)^{\mathrm{r}} \times \mathrm{y}^{\mathrm{r}}$
$=-\mathrm{r}^{1} \frac{6!}{r!(6-r)!} \times \times^{12-2 \mathrm{r}} \times \mathrm{y}^{\mathrm{r}}$
$=-1^{\mathrm{r} 12} \mathrm{cr} \cdot \mathrm{x}^{24-2 \mathrm{r}} \cdot \mathrm{y}^{\mathrm{r}}$

Question 5

Find the 4th term in the expansion $(x-2 y)^{12}$.

Answer:

The general term T_{r+1} in the binomial expansion is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Here $\mathrm{a}=\mathrm{x}, \mathrm{n}=12, \mathrm{r}=3$ and $\mathrm{b}=-2 \mathrm{y}$
By substituting the values we get
$\mathrm{T}_{4}={ }^{12} \mathrm{C}_{3} \mathrm{x}^{9}(-2 \mathrm{y})^{3}$
$=\frac{12!}{3!9!} \times x^{9} \times-8 \times y^{3}$
$=\frac{12 \times 11 \times 10 \times 8}{3 \times 2 \times 1} \times x^{9} y^{3}$
$=1760 x^{9} y^{3}$
Question 6
$\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$

Answer:

The general term T_{r+1} in the binominal expansion is given $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Here $\mathrm{a}=9 \mathrm{x}$ b $=-\frac{1}{3 \sqrt{x}} \mathrm{n}=18$ and $\mathrm{r}=12$
Putting values
$\mathrm{T}_{13}=\frac{8!}{12!6!} 9 \mathrm{x} 18-12\left(-\frac{1}{3 \sqrt{\mathrm{x}}}\right)^{12}$
$=\frac{(18 \times 17 \times 16 \times 15 \times 14 \times 13 \times 12!)}{12!\times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \times 3^{12} \times \mathrm{x}^{6} \times \frac{1}{\mathrm{x}^{6}} \times \frac{1}{3^{12}}$
$=18564$

Question 7

Find the middle terms in the expansions of

For more Info Visit - www.KITest.in

$\left(3-\frac{x^{3}}{6}\right)^{7}$

Answer:

Here $\mathrm{n}-7$ so there would be two middle terms given by
$\left(\frac{\mathrm{n}+\mathrm{1}^{\text {th }}}{2}\right)$ term $=4^{\text {th }}$ and $\left(\frac{\mathrm{n}+1}{2}+1\right)$ th term $=5^{\text {th }}$
We have
$\mathrm{a}=3, \mathrm{n}=7$ and $\mathrm{b}=-\frac{x^{2}}{6}$
For $\mathrm{T}_{4} \mathrm{r}=3$
The term will be
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
$\mathrm{T}_{4}=\frac{7!}{3!} 3^{4}\left(-\frac{x^{3}}{6}\right)^{3}$
$=\frac{7 \times 6 \times 5 \times 4}{3 \times 2 \times 1} \times 3^{4} \times \frac{x^{9}}{2^{3} 3^{3}}$
$=-\frac{105}{8} x^{9}$
For T_{5} term, $\mathrm{r}=4$
The term $\mathrm{T}_{\mathrm{r}+1}$ in the binominal expansion is given by
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
$\mathrm{T}_{5}=\frac{7!}{4!3!} 3^{3}\left(-\frac{\mathrm{x}^{3}}{6}\right)^{4}$
$=\frac{7 \times 6 \times 5 \times 4!}{4!3!} \times \frac{3^{3}}{2^{4} 3^{4}} \times x^{3}=\frac{35 x^{12}}{48}$
Question 8
$\left(\frac{x}{3}+9 y\right)^{10}$

Answer:

Here n is even so the middle term will be given by $\left(\frac{\mathrm{n}+1}{2}\right)^{\text {th }}$ term $=6^{\text {th }}$ term the general term $\mathrm{T}_{\mathrm{r}+1}$ in the binominal expansion is given $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
Now $\mathrm{a}=\frac{\mathrm{x}}{3}, \mathrm{~b}=9 \mathrm{y}, \mathrm{n}=10$ and $\mathrm{r}=5$
Substituting the values
$\mathrm{T}_{6}=\frac{10!}{5!5!} \times\left(\frac{\mathrm{x}}{3}\right)^{5} \times(9 \mathrm{y})^{5}$
$=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5!}{5!\times 5 \times 4 \times 3 \times 2 \times 1} \times \frac{\mathrm{x}^{5}}{3^{5}} \times 3^{10} \times \mathrm{y}^{5}$
$=61296 x^{5} y^{5}$

Question 9

In the expansion of $(1+a)^{m+n}$, prove that coefficients of am and an are equal.

Answer:

We know that the general term $\mathrm{T}^{\mathrm{r}+1}$ in the binomial expansion is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$ Here $\mathrm{n}=\mathrm{m}+\mathrm{n}, \mathrm{a}=1$ and $\mathrm{b}=\mathrm{a}$
Substituting the values in the general form
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{m}+\mathrm{n}} \mathrm{C}_{\mathrm{r}} 1^{\mathrm{m}+\mathrm{n}}-\mathrm{r} \mathrm{a}^{\mathrm{r}}$
$=\mathrm{m}+\mathrm{nCr}$ ar.
Now we have that the general term for the expression is,
$\mathrm{T}_{\mathrm{r}+1}=\mathrm{m}+\mathrm{n} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{r}}$
Now, for coefficient of am
$\mathrm{T}_{\mathrm{m}+1}={ }^{\mathrm{m}+\mathrm{n}} \mathrm{C}_{\mathrm{m}} \mathrm{a}^{\mathrm{m}}$
Hence, for coefficient of a^{m}, value of $r=m$
So, the coefficient is ${ }^{m+n} C_{m}$
Similarly, Coefficient of an is ${ }^{m+n} C_{n}$
${ }^{m+n} \mathrm{C}_{\mathrm{m}}=\frac{(m+n)!}{m!n!}$
And also, ${ }^{\mathrm{m}+\mathrm{n}} \mathrm{C}_{\mathrm{m}}=\frac{(m+n)!}{m!n!}$
The coefficient of a^{m} and a^{n} are same that is $\frac{(m+n)!}{m!n!}$

Question 10

The coefficients of the $(r-1)^{\text {th }}, r^{\text {th }}$ and $(r+1)^{\text {th }}$ terms in the expansion of $(x+1) n$ are in the ratio $1: 3: 5$. Find n and r.

Answer:

The general term $\mathrm{T}_{\mathrm{r}+1}$ in the binomial expansion is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
Here the binomial is $(1+\mathrm{x})^{\mathrm{n}}$ with $\mathrm{a}=1, \mathrm{~b}=\mathrm{x}$ and $\mathrm{n}=\mathrm{n}$
The $(\mathrm{r}+1)^{\text {th }}$ term is given by
$\mathrm{T}_{(\mathrm{r}+1)}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} 1^{\mathrm{n}-\mathrm{r}} \mathrm{X}^{\mathrm{r}}$
$\mathrm{T}_{(\mathrm{r}+1)}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{\mathrm{r}}$
The coefficient of $(\mathrm{r}+1)^{\text {th }}$ term is ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$
The $r^{\text {th }}$ term is given by $(r-1)^{\text {th }}$ term
$\mathrm{T}(\mathrm{r}+1-1)=\mathrm{nCr}-1 \mathrm{xr}-1$
$\mathrm{T}_{\mathrm{r}-1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1} \mathrm{X}^{\mathrm{r}-1}$
\therefore the coefficient of $\mathrm{r}^{\text {th }}$ term is ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}$
For $(r-1)^{\text {th }}$ term we will take $(r-2)^{\text {th }}$ term
$\mathrm{T}_{\mathrm{r}-2+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2} \mathrm{X}^{\mathrm{r}-2}$
$\mathrm{T}_{\mathrm{r}-1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2} \mathrm{X}^{\mathrm{r}-2}$
\therefore the coefficient of $(r-1)^{\text {th }}$ term is ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-2}$
Given that the coefficient of $(\mathrm{r}-1)^{\text {th, }} \mathrm{r}^{\text {th }}$ and $\mathrm{r}+1^{\text {th }}$ term are in ratio 1:3:5

Therefore,
$\frac{\text { the coeffiecient of } \mathrm{r}-1^{\text {th }} \text { term }}{\text { cofficient of } \mathrm{r}^{\text {th }} \text { term }}=\frac{1}{3}$
$\frac{r-2}{n c}=\frac{1}{3}$
$r-1$
$\Rightarrow \frac{\frac{n!}{(r-2)!(n-r+2)!}}{\frac{n!}{(r-1)!(n-r+1)!}}=\frac{1}{3}$
On rearranging we get
$\frac{n!}{(r-2)!(n-r+2)!} \times \frac{(r-1)!(n-r+1)!}{n!}=\frac{1}{3}$
By multiplying
$\Rightarrow \frac{(r-1)(r-2)(n-r+1)}{(r-2)!(n-r+2)!}=\frac{1}{3}$
$\Rightarrow \frac{(r-1)(n-r+1)!}{(n-r+2)(n-r+1)!}=\frac{1}{3}$
On simplifying we get
$\Rightarrow \frac{(r-1)}{(n-r+2)}=\frac{1}{3}$
$\Rightarrow 3 \mathrm{r}-3=\mathrm{n}-\mathrm{r}+2$
$\Rightarrow \mathrm{n}-4 \mathrm{r}+5=0$... 1
Also
$\frac{\text { the coeffiecient of } \mathrm{r}^{\text {th }} \text { term }}{\text { cofficient of } \mathrm{r}+1^{\text {th }} \text { term }}=\frac{1}{3}$
$\Rightarrow \frac{\frac{n!}{(r-1)!(n-r+1)!}}{n!} \frac{n!}{r!(n-r)!}=\frac{1}{3}$
On rearranging we get
$\Rightarrow \frac{n!}{(r-1)!(n-r+1)!} \times \frac{r!(n-r)!}{n!}=\frac{1}{3}$
By multiplying
$\Rightarrow \frac{r(r-1)(n-r)!}{(r-1)!(n-r+1)!}=\frac{1}{3}$
$\Rightarrow \frac{r(n-r)!}{(n-r+1)!}=\frac{1}{3}$
$\Rightarrow \frac{r(n-r)!}{(n-r+2)(n-r)!}=\frac{1}{3}$
On simplifying we get
$\Rightarrow \frac{r(}{(n-r+1)}=\frac{1}{3}$
$\frac{\text { the coeffiecient of } \mathrm{r}^{\text {th }} \text { term }}{\text { cofficient of } \mathrm{r}+1^{\text {th }} \text { term }}=\frac{1}{3}$
$\Rightarrow \frac{\frac{n!}{(r-1)!(n-r+1)!}}{\frac{n!}{r!(n-r)!}}=\frac{1}{3}$
On rearranging we get
$\Rightarrow 5 \mathrm{r}=3 \mathrm{n}-3 \mathrm{r}+3$
$\Rightarrow 8 r-3 n-3=0$. .2
We have 1 and 2 as
$n-4 r \pm 5=0$ \qquad .1
$8 r-3 n-3=0$ \qquad . 2

Multiplying equation 1 by number 2
$2 n-8 r+10=0$.. 3
Adding equation 2 and 3
$2 \mathrm{n}-8 \mathrm{r}+10=0$
$-3 n-8 r-3=0$
$\Rightarrow-n=-7$
$\mathrm{n}=7$ and $\mathrm{r}=3$

Question 11

Prove that the coefficient of $x n$ in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x) 2^{n-1}$.

Answer:

The general term $\mathrm{T}_{\mathrm{r}+1}$ in the binomial expansion is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
The general term for binomial $(1+x)^{2 n}$ is
$\mathrm{T}_{\mathrm{r}+1}={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{\mathrm{r}}$ \qquad
To find the coefficient of x^{n}
$\mathrm{r}=\mathrm{n}$
$\mathrm{T}_{\mathrm{n}+1}={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{X}^{\mathrm{n}}$
The coefficient of $x^{n}={ }^{2 n} C_{n}$
The general term for binomial $(1+x)^{2 n-1}$ is
$\mathrm{T}_{\mathrm{r}+1}={ }^{2 \mathrm{n}-1} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{\mathrm{r}}$
To find the coefficient of x^{n} \qquad \square
Putting $\mathrm{n}=\mathrm{r}$
$\mathrm{T}_{\mathrm{r}+1}={ }^{2 \mathrm{n}-1} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{\mathrm{n}}$
The coefficient of $\mathrm{x}^{\mathrm{n}}={ }^{2 \mathrm{n}-1} \mathrm{C}_{\mathrm{n}}$
We have to prove
Coefficient of x^{n} in $(1+x)^{2 n}=2$ coefficient of x^{n} in $(1+x)^{2 n-1}$
Consider LHS $={ }^{2 n} C_{n}$
$=\frac{2 n!}{n!(2 n!-n)!}$
$=\frac{2 n!}{n!(n)!}$
Again consider RHS $=2 \times{ }^{2 n-1} C_{n}$
$=2 \times \frac{(2 n-1)!}{n!(2 n-1-n)!}$
$=2 \times \frac{(2 n-1)!}{n!(n-1)!}$
Now multiplying and dividing by n we get
$=2 \times \frac{(2 n-1)!}{n!(n-1)!} \times \frac{n}{n}$
$=\frac{2 n(2 n-1)!}{n!n(n-1)!}$
$=\frac{2 n!}{n!n!}$
From above equations LHS = RHS
Hence proof

Question 12

Find a positive value of m for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 .
Answer:
The general term T_{r+1} in the binomial expansion is given by $T_{r+1}={ }^{n} C_{r}$ andr b^{r}
Here $\mathrm{a}=1, \mathrm{~b}=\mathrm{x}$ and $\mathrm{n}=\mathrm{m}$
Putting the value
$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{m}} \mathrm{C}_{\mathrm{r}} 1^{\mathrm{m}-\mathrm{r}} \mathrm{X}^{\mathrm{r}}$
$={ }^{m} C_{r} X^{r}$
We need coefficient of x^{2}
\therefore putting r $=2$
$\mathrm{T}_{2+1}={ }^{\mathrm{m}} \mathrm{C}_{2} \mathrm{X}^{2}$
The coefficient of $x^{2}={ }^{m} C_{2}$
Given that coefficient of $x^{2}={ }^{m} C_{2}=6$
$\Rightarrow \frac{m!}{2!(m-2)!}=6$
$\Rightarrow \frac{m(m-1)(m-2)!}{2 \times 1 \times(m-2)!}=6$
$\Rightarrow \mathrm{m}(\mathrm{m}-1)=12$
$\Rightarrow \mathrm{m}^{2}-\mathrm{m}-12=0$
$\Rightarrow m^{2}-4 m+3 m-12=0$
$\Rightarrow m(m-4)+3(m-4)=0$
$\Rightarrow(m+3)(m-4)=0$
$\Rightarrow \mathrm{m}=-3,4$
We need positive value of m so $\mathrm{m}=4$

Miscellaneous Exercise

Question 1

Find a, b and n in the expansion of $(a+b)^{n}$ if the first three terms of the expansion are 729, 7290 and 30375, respectively.

Answer:

We know that $(\mathrm{r}+1)^{\text {th }}$ term, $\left(\mathrm{T}_{\mathrm{r}+1}\right)$, in the binomial expansion of $(\mathrm{a}+\mathrm{b}) \mathrm{n}$ is given by $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}-\mathrm{t}} \mathrm{b}^{\mathrm{r}}$

The first three terms of the expansion are given as 729,7290 and 30375 respectively.
Then we have,
$\mathrm{T}_{1}={ }^{\mathrm{n}} \mathrm{C}_{0} \mathrm{a}^{\mathrm{n}-0} \mathrm{~b}^{0}=\mathrm{a}^{\mathrm{n}}=729 \ldots . . .1$
$\mathrm{T}_{2}={ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{a}^{\mathrm{n}-1} \mathrm{~b}^{1}=\mathrm{na}^{\mathrm{n}-1} \mathrm{~b}=7290 \ldots . .2$
$\mathrm{T}_{3}={ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{a}^{\mathrm{n}-2} \mathrm{~b}^{2}=\mathrm{n}(\mathrm{n}-1) / 2 \mathrm{an}-2 \mathrm{~b} 2=30375 \ldots . .3$
Dividing 2 by 1 we get
na $^{\mathrm{n}-1} \mathrm{ba}^{\mathrm{n}}=\frac{7290}{729}$
n ba $=10$ \qquad .4
Dividing 3 by 2 we get
$n(n-1) a^{n-2} b^{2} 2 n a{ }^{n-1} b \frac{30375}{7290}$
$\Rightarrow(\mathrm{n}-1) \mathrm{b} 2 \mathrm{a}=\frac{30375}{7290}$
$\Rightarrow(\mathrm{n}-1)$ ba $=\frac{30375 \times 2}{7290}=\frac{25}{3}$
$\Rightarrow \mathrm{nba}-\frac{b}{a}=\frac{25}{3}$
$\Rightarrow 10-b a=\frac{25}{3}$
$\Rightarrow \mathrm{ba}=10-\frac{25}{3}=\frac{5}{3}$
From 4 and 5 we have
n. $5 / 3=10$
$\mathrm{n}=6$
Substituting $\mathrm{n}=6$ in 1 we get
$a^{6}=729$
$\mathrm{a}=3$
From 5 we have, $b / 3=5 / 3$
b=5
Thus $\mathrm{a}=3, \mathrm{~b}=5$ and $\mathrm{n}=76$

Question 2

Find a if the coefficients of $x 2$ and $x 3$ in the expansion of $(3+a x)^{9}$ are equal.

Answer:

We know that general term of expansion $(a+b)^{n}$ is
$\mathrm{T}_{\mathrm{r}+1}=\left(\frac{\mathrm{n}}{\mathrm{r}}\right) \mathrm{a}^{\mathrm{n}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$
For $(3+a x)^{9}$
Putting $\mathrm{a}=3, \mathrm{~b}=\mathrm{a} \times \& \mathrm{n}=9$
General term of $(3+a x)^{9}$ is
$\mathrm{T}_{\mathrm{r}+1}=\left(\frac{9}{\mathrm{r}}\right) 3^{\mathrm{n}-\mathrm{r}}(\mathrm{ax})^{\mathrm{r}}$
$\mathrm{T}_{\mathrm{r}+1}=\left(\frac{9}{\mathrm{r}}\right) 3^{\mathrm{n}-\mathrm{r}} \mathrm{a}^{\mathrm{r}} \mathrm{X}^{\mathrm{r}}$
Since we need to find the coefficient of x^{r} and x^{3} therefore

For $\mathrm{r}=2$
$\mathrm{T}_{\mathrm{r}+1}=\left(\frac{9}{3}\right) 3^{\mathrm{n}-3} \mathrm{a}^{3} \mathrm{x}^{3}$
Thus coefficient of $x^{3}\left(\frac{9}{3}\right) 3^{n-3} a^{3}$
Given that coefficient of $x^{2}=$ coefficient of x^{3}
$\Rightarrow\left(\frac{9}{2}\right) 3^{n-2} a^{2}=\left(\frac{9}{3}\right) 3^{n-3} a^{3}$
$\Rightarrow \frac{9!}{2!(9-2)!} \times 3^{\mathrm{n}-2} \mathrm{a}^{2}=\frac{9!}{3!(9-3)!} \times 3^{\mathrm{n}-3} \mathrm{a}^{3}$
$\Rightarrow \frac{3^{\mathrm{n}-2} \mathrm{a}^{2}}{3^{\mathrm{n}-3} \mathrm{a}^{3}}=\frac{2!(9-2)!}{3!(9-3)!}$
$\Rightarrow \frac{3^{(n-2)-(n-3)}}{a}=\frac{2!7!}{3!6!}$
$\Rightarrow \frac{3}{a}=\frac{7}{3}$
$\therefore \mathrm{a}=9 / 7$
Hence, $\mathrm{a}=9 / 7$

Question 3

Find the coefficient of $x 5$ in the product $(1+2 x) 6(1-x) 7$ using binomial theorem.

Answer:

$$
\begin{aligned}
& (1+2 x)^{6}={ }^{6} C_{0}+{ }^{6} C_{1}(2 x)+{ }^{6} C_{2}(2 x)^{2}+{ }^{6} C_{3}(2 x)^{3}+{ }^{6} C_{4}(2 x)^{4}+{ }^{6} \mathrm{C}_{5}(2 \mathrm{x})^{5}+{ }^{6} \mathrm{C}_{6}(2 \mathrm{x})^{6} \\
& =1+6(2 \mathrm{x})+15(2 \mathrm{x})^{2}+20(2 \mathrm{x})^{3}+15(2 \mathrm{x})^{4}+6(2 \mathrm{x})^{5}+(2 \mathrm{x})^{6} \\
& =1+12 \mathrm{x}+60 \mathrm{x}^{2}+160 \mathrm{x}^{3}+240 \mathrm{x}^{4}+192 \mathrm{x}^{5}+64 \mathrm{x}^{6} \\
& (1-\mathrm{x})^{7}={ }^{7} \mathrm{C}_{0}-{ }^{7} \mathrm{C}_{1}(\mathrm{x})+{ }^{7} \mathrm{C}_{2}(\mathrm{x})^{2}-{ }^{7} \mathrm{C}_{3}(\mathrm{x})^{3}+{ }^{7} \mathrm{C}_{4}(\mathrm{x})^{4}-{ }^{7} \mathrm{C}_{5}(\mathrm{x})^{5}+{ }^{7} \mathrm{C}_{6}(\mathrm{x})^{6}-{ }^{7} \mathrm{C}_{7}(\mathrm{x})^{7} \\
& =1-7 \mathrm{x}+21 \mathrm{x}^{2}-35 \mathrm{x}^{3}+35 \mathrm{x}^{4}-21 \mathrm{x}^{5}+7 \mathrm{x}^{6}-\mathrm{x}^{7} \\
& (1+2 \mathrm{x}){ }^{6}(1-\mathrm{x}) 7=\left(1+12 \mathrm{x}+60 \mathrm{x}^{2}+160 \mathrm{x}^{3}+240 \mathrm{x}^{4}+192 \mathrm{x}^{5}+64 \mathrm{x}^{6}\right)\left(1-7 \mathrm{x}+21 \mathrm{x}^{2}-35 \mathrm{x}^{3}+35 \mathrm{x}^{4}-\right. \\
& \left.21 \mathrm{x}^{5}+7 \mathrm{x}^{6}-\mathrm{x}^{7}\right) \\
& 192-21=171
\end{aligned}
$$

Thus, the coefficient of x 5 in the expression $(1+2 \mathrm{x})^{6}(1-x)^{7}$ is 171 .

Question 4

If a and b are distinct integers, prove that $a-b$ is a factor of $a n-b n$, whenever n is a positive integer. [Hint write $a^{n}=(a-b+b)^{n}$ and expand]

Answer:

In order to prove that $(a-b)$ is a factor of $\left(a^{n}-b^{n}\right)$, it has to be proved that $a^{n}-b^{n}=k(a-b)$ where k is some natural number.
a can be written as $\mathrm{a}=\mathrm{a}-\mathrm{b}+\mathrm{b}$
$\mathrm{a}^{\mathrm{n}}=(\mathrm{a}-\mathrm{b}+\mathrm{b})^{\mathrm{n}}=[(\mathrm{a}-\mathrm{b})+\mathrm{b}]^{\mathrm{n}}$
$={ }^{\mathrm{n}} \mathrm{C}_{0}(\mathrm{a}-\mathrm{b})^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_{1}(\mathrm{a}-\mathrm{b})^{\mathrm{n}-1} \mathrm{~b}+$ \qquad
$a^{n}-b^{n}=(a-b)\left[(a-b)^{n-1}+{ }^{n} C_{1}(a-b)^{n-1} b+\ldots \ldots+{ }^{n} C_{n} b^{n}\right]$
$a^{n}-b n=(a-b) k$
Where $\mathrm{k}=\left[(\mathrm{a}-\mathrm{b})^{\mathrm{n}-1}+{ }^{\mathrm{n}} \mathrm{C}_{1}(\mathrm{a}-\mathrm{b})^{\mathrm{n}-1} \mathrm{~b}+\ldots \ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{b}^{\mathrm{n}}\right]$ is a natural number
This shows that $(a-b)$ is a factor of $\left(a^{n}-b^{n}\right)$, where n is positive integer.

Question 5

Evaluate

$(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$

Answer:

Using binomial theorem the expression $(a+b)^{6}$ and $(a-b)^{6}$, can be expanded
$(\mathrm{a}+\mathrm{b})^{6}={ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5} \mathrm{~b}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4} \mathrm{~b}^{2}+{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3} \mathrm{~b}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2} \mathrm{~b}^{4}+{ }^{6} \mathrm{C}_{5} \mathrm{a} \mathrm{b}^{5}+{ }^{6} \mathrm{C}_{6} \mathrm{~b}^{6}$
$(a-b){ }^{6}={ }^{6} C_{0} a^{6}-{ }^{6} C_{1} a^{5} b+{ }^{6} C_{2} a^{4} b^{2}-{ }^{6} C_{3} a^{3} b^{3}+{ }^{6} C_{4} a^{2} b^{4}-{ }^{6} C_{5} a b^{5}+{ }^{6} C_{6} b^{6}$
Now $(\mathrm{a}+\mathrm{b})^{6}-(\mathrm{a}-\mathrm{b})^{6}={ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5} \mathrm{~b}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4} \mathrm{~b}^{2}+{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3} \mathrm{~b}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2} \mathrm{~b}^{4}+{ }^{6} \mathrm{C}_{5} \mathrm{ab} \mathrm{b}^{5}+{ }^{6} \mathrm{C}_{6} \mathrm{~b}^{6}$
$-\left[{ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5} \mathrm{~b}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4} \mathrm{~b}^{2}-{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3} \mathrm{~b}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2} \mathrm{~b}^{4}-{ }^{6} \mathrm{C}_{5} a \mathrm{~b}^{5}+{ }^{6} \mathrm{C}_{6} \mathrm{~b}^{6}\right]$
Now by substituting $a=\sqrt{3}$ and $b=\sqrt{2}$ we get
$(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}=2\left[6(\sqrt{3})^{5}(\sqrt{2})+20(\sqrt{3})^{3}(\sqrt{2})^{3}+6(\sqrt{3})(\sqrt{2})^{5}\right]$
$=2[54(\sqrt{6})+120(\sqrt{6})+24 \sqrt{6}]$
$=2(\sqrt{6})(198)$
$=396 \sqrt{ } 6$

Question 6

Find the value of

$$
\left(\mathbf{a}^{2}+\sqrt{\mathbf{a}^{2}-1}\right)^{4}-\left(\mathbf{a}^{2}-\sqrt{a^{2}-1}\right)^{4}
$$

Answer:

Firstly the expression $(x+y)^{4}+(x-y)^{4}$ is simplified by using binomial theorem
$(x+y)^{4}={ }^{4} \mathrm{C}_{0 \mathrm{x}}{ }^{4}+{ }^{4} \mathrm{C}_{1} \mathrm{x}^{3} \mathrm{y}+{ }^{4} \mathrm{C}_{2} \mathrm{x}^{2} \mathrm{y}^{2}+{ }^{+} \mathrm{C}_{3 \mathrm{x}} \mathrm{y} 3+{ }^{4} \mathrm{C}_{4 \mathrm{y}}{ }^{4}$
$=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}$
$(\mathrm{x}-\mathrm{y})^{4}={ }^{4} \mathrm{C}_{0 \mathrm{x}}{ }^{4}-{ }^{4} \mathrm{C}_{1} \mathrm{x}^{3} \mathrm{y}-{ }^{4} \mathrm{C}_{2} \mathrm{X}^{2} \mathrm{y}^{2}-{ }^{4} \mathrm{C}_{3} \mathrm{xy} 3+{ }^{4} \mathrm{C}_{4 \mathrm{y}}{ }^{4}$
$=x^{4}+4 x^{3} y+6 x^{2} y^{2}-4 x y^{3}+y^{4}$
$\therefore(\mathrm{x}+\mathrm{y})^{4}+(\mathrm{x}-\mathrm{y})^{4}=2\left(\mathrm{x}^{4}+6 \mathrm{x}^{2} \mathrm{y}^{2}+\mathrm{y}^{4}\right)$
Putting $x=a^{2}$ and $y=\sqrt{a^{2}-1}$, we obtain
$\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}-\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$
$=2\left[\left(a^{2}\right)^{4}+6\left(a^{2}\right)^{2}\left(\sqrt{a^{2}-1}\right)^{2}+\left(\sqrt{a^{2}-1}\right)^{4}\right]$
$=2\left[a^{8}+6 a^{4}\left(a^{2}-1\right)+\left(a^{2}-1\right)^{2}\right]$
$=2\left[a^{8}+6 a^{6}-6 a^{4}+a^{4}-2 a^{2}+1\right]$
$=2\left[a^{8}+6 a^{6}-5 a^{4}-2 a^{2}+1\right]$
$=2 a^{8}+12 a^{6}-10 a^{4}-4 a^{2}+2$

Question 7

Find an approximation of $(0.99) 5$ using the first three terms of its expansion.
Answer:
0.99 can be written as
$0.99=1-0.01$
Now by applying binomial theorem we get $(0.99)^{5}=(1-0.01)^{5}$
$={ }^{5} \mathrm{C}_{0}(1)^{5-5} \mathrm{C}_{1}(1)^{4}(0.01)+{ }^{5} \mathrm{C}_{2}(1)^{3}(0.01)^{2}$
$=1-5(0.01)+10(0.01)^{2}$
$=1-0.05+0.001$
$=0.951$

Question 8

Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ of is $\sqrt{6: 1}$

Answer:

In the expansions $(a+b)^{4}$, if n is even then the middle term is $(n / 2+1)^{\text {th }}$ term
${ }^{n} \mathrm{C}_{\mathrm{a}}(\sqrt[4]{2})^{n-1}\left(\frac{1}{\sqrt[4]{3}}\right)^{4}={ }^{\mathrm{n}} \mathrm{C}_{4} \frac{(\sqrt[4]{2})^{n}}{(\sqrt[4]{2})^{4}} \cdot \frac{1}{3}={ }^{n} \mathrm{C}_{4} \frac{(\sqrt[4]{2})^{n}}{2} \cdot \frac{1}{3}=\frac{n!}{6 \cdot 4!(n-4)!}(\sqrt[4]{2})^{n}$
${ }^{n} C_{n-4}(\sqrt[4]{2})^{4}\left(\frac{1}{\sqrt[4]{3}}\right)^{n-4}={ }^{n} C_{n-1} \cdot 2 \cdot \frac{(\sqrt[4]{2})^{n}}{(\sqrt[4]{2})^{4}} \cdot{ }^{n} C_{4} \cdot 2 \cdot \frac{3}{(\sqrt[4]{3})^{n}}=\frac{6 n!}{(n-4) 4!} \cdot \frac{1}{(\sqrt[4]{3})^{n}}$
$\frac{6 n!}{6.4(n-4) 4!} \cdot(\sqrt[4]{3})^{n}: \frac{6 n!}{(n-4) 4!} \frac{1}{(\sqrt[4]{3})^{n}}=\sqrt{6}: 1$
$\Rightarrow \frac{(\sqrt[4]{2})^{n}}{6}: \frac{6}{(\sqrt[4]{3})^{n}}=\sqrt{6}: 1$
$\Rightarrow \frac{(\sqrt[4]{2})^{n}}{6} \times \frac{(\sqrt[4]{3})^{n}}{6}=\sqrt{6}$
$\Rightarrow(\sqrt[4]{6})^{n}=36 \sqrt{6}$
$\Rightarrow 6 \frac{n}{4}=6 \frac{5}{2}$
$\Rightarrow \frac{n}{4}=\frac{5}{2}$
$\Rightarrow \mathrm{n}=4 \times \frac{5}{2}=10$
Thus the value of $\mathrm{n}=10$

Question 9

Expand using Binomial Theorem
$\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}, x \neq 0$
Answer:
$\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}, x \neq 0$
$={ }^{4} C_{0}\left(1+\frac{x}{2}\right)^{4}-{ }^{4} C_{1}\left(1+\frac{x}{2}\right)^{3}\left(\frac{2}{x}\right)+{ }^{4} C_{2}\left(1+\frac{x}{2}\right)^{2}\left(\frac{2}{x}\right)^{2}-{ }^{4} C_{3}\left(1+\frac{x}{2}\right)\left(\frac{2}{x}\right)^{3}+{ }^{4} C_{4}\left(\frac{2}{x}\right)^{4}$
$=\left(1+\frac{x}{2}\right)^{4}-4\left(1+\frac{x}{2}\right)^{3}\left(\frac{2}{x}\right)+6\left(1+x+\frac{x^{2}}{4}\right)\left(\frac{4}{x^{2}}\right)-4\left(1+\frac{x}{2}\right)\left(\frac{8}{x^{3}}\right)+\frac{16}{x^{4}}$
$=\left(1+\frac{x}{2}\right)^{4}-\frac{8}{x}\left(1+\frac{x}{2}\right)^{3}+\frac{24}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}-\frac{16}{x^{2}}+\frac{16}{x^{4}}$
$=\left(1+\frac{x}{2}\right)^{4}-\frac{8}{x}\left(1+\frac{x}{2}\right)^{3}+\frac{8}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}}$
Again by using binomial theorem to expand the above terms we get

$$
\begin{align*}
=\left(1+\frac{x}{2}\right)^{4} & ={ }^{4} C_{0}-(1)^{4}+{ }^{4} C_{1}(1)^{3}\left(\frac{x}{2}\right){ }^{4} C_{2}(1)^{1}\left(\frac{x}{2}\right)^{3}+{ }^{4} C_{4}\left(\frac{x}{2}\right)^{4} \\
& =1+4 \times \frac{x}{2}+6 \times \frac{x^{2}}{4}+4 \times \frac{x^{3}}{8}+\frac{x^{4}}{16} \\
& =1+2 x+\frac{3 x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16} \tag{2}\\
=\left(1+\frac{x}{2}\right)^{3} & ={ }^{3} C_{0}-(1)^{3}+{ }^{3} C_{1}(1)^{3}\left(\frac{x}{2}\right)+{ }^{3} C_{2}(1)\left(\frac{x}{2}\right)^{3}+{ }^{3} C_{3}\left(\frac{x}{2}\right)^{3} \\
& =1+\frac{3 x}{2}+\frac{3 x^{2}}{4}+\frac{x^{3}}{8} \tag{3}
\end{align*}
$$

From equation 1, 2 and 3 we get
$=1+2 x+\frac{3 x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}-\frac{8}{x}\left(1+\frac{3 x}{2}+\frac{3 x^{2}}{4}+\frac{x^{3}}{8}\right)+\frac{8}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}}$
$=1+2 x+\frac{3}{2} x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}-\frac{8}{x}-12-6 x-x^{2}+\frac{8}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}}$
$=\frac{16}{x}+\frac{8}{x^{2}}-\frac{32}{x^{3}}+\frac{16}{x^{4}}-4 x+\frac{x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}-5$

Question 10

Find the expansion of $\left(3 x 2-2 a x+3 a^{2}\right)^{3}$ using binomial theorem.

Answer:
We know that $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
Putting $a=3 x^{2} \& b=-a(2 x-3 a)$, we get
$\left[3 x^{2}+(-a(2 x-3 a))\right]^{3}$
$=(3 x 2)^{3}+3\left(3 x^{2}\right)^{2}(-a(2 x-3 a))+3\left(3 x^{2}\right)(-a(2 x-3 a))^{2}+(-a(2 x-3 a))^{3}$
$=27 x^{6}-27 a x^{4}(2 x-3 a)+9 a^{2} x^{2}(2 x-3 a)^{2}-a^{3}(2 x-3 a)^{3}$
$=27 x^{6}-54 a x^{5}+81 a^{2} x^{4}+9 a^{2} x^{2}\left(4 x^{2}-12 a x+9 a^{2}\right)-a^{3}\left[(2 x)^{3}-(3 a)^{3}-3(2 x)^{2}(3 a)+3(2 x)(3 a)^{2}\right]$
$=27 x^{6}-54 a x^{5}+81 a^{2} x^{4}+36 a^{2} x^{4}-108 a^{3} x^{3}+81 a^{4} x^{2}-8 a^{3} x^{3}+27 a^{6}+36 a^{4} x^{2}-54 a^{5} x$
$=27 x^{6}-54 a x^{5}+117 a^{2} x^{4}-116 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$
Thus, $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$
$=27 x^{6}-54 a x^{5}+117 a^{2} x^{4}-116 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$

