Chapter 8 Application of Integrals Exercise 8.1

Question 1

Find the area of region bounded by the curve $y^{2}=x$ and the $x=1, x=4$ then x - axis in the first quadrant

Solution:
Equation of the curve (rightward parabola) is $y^{2}=x$

$y=\sqrt{x}$
Required area is shaded region
$=\left|\int_{1}^{4} y d x\right|=\left|\int_{1}^{4} \sqrt{x} d x\right|[$ From equation (1) $]$
$=\left|\int_{1}^{4} x^{\frac{1}{2}} d x\right|$
$=\left|\frac{\left(x^{\frac{3}{2}}\right)_{1}^{4}}{\frac{3}{2}}\right|$
$=\left|\frac{2}{3}\left(4^{\frac{3}{2}}-1^{\frac{3}{2}}\right)\right|$
$=\left|\frac{2}{3}\left(4^{\frac{3}{2} \times 3}-1^{\frac{3}{2} \times 3}\right)\right|=\left|\frac{2}{3}(8-1)\right|=\frac{2}{3} \times 7=\frac{14}{3}$ sq. units

Question 2

Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the a-axis in the first quadrant.

For more Info Visit - www.KITest.in

Solution:

Equation of the curve (rightward parabola) isy $^{2}=9 x$.
$y=3 \sqrt{x}$

Required area is shaded region which is bounded by curve $y^{2}=9 x$ and vertical lines $x=2, x=4$ and x-axis in first quadrant.

$$
\begin{aligned}
& =\left|\int_{1}^{4} y d x\right|=\left|\int_{1}^{4} 3 \sqrt{x} d x\right| \text { [From equation (1)] } \\
& =\left|3 \int_{1}^{4} x^{\frac{1}{2}} d x\right|=\left|3 \frac{\left(x^{\frac{3}{2}}\right)_{2}^{4}}{\frac{3}{2}}\right| \\
& =\left|3 \cdot \frac{2}{3}\left(4^{\frac{3}{2}}-2^{\frac{3}{2}}\right)\right|=\left|3 \cdot \frac{2}{3}\left(4^{\frac{1}{2} \times 3}-2^{\frac{1}{2} \times 3}\right)\right| \\
& =|2(8-2 \sqrt{2})|=(16-4 \sqrt{2}) \text { sq. unit. }
\end{aligned}
$$

Question 3

Find the area of the region bounded by $x^{2}=4 y \cdot y=2 \cdot y=4$ and the $y-$ axis in the first quadrant.

Solution:

Equation of curve (parabola) is $\mathrm{x}^{2}=4 \mathrm{y}$.
Or $x=2 \sqrt{y}$
Required region is shaded, that is area bounded by curvex ${ }^{2}=4 y$. and Horizontal lines. $y=2 . y=4$ and y-axis in first quadrant.

$=\left|\int_{2}^{4} x d y\right|=\left|\int_{2}^{4} 2 \sqrt{y} d y\right|=\left|2 \int_{2}^{4} y^{\frac{1}{2}} d y\right|$
$=\left|2 \frac{\left(y^{\frac{3}{2}}\right)^{4}}{\frac{3}{2}}\right|=\frac{4}{3}\left(4^{\frac{3}{2}}-2^{\frac{3}{2}}\right)=\left(\frac{32-8 \sqrt{2}}{3}\right)$ sq. units

Question 4

Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$.

Solution:

Equation of ellipse is $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

Here $a^{2}(=6)>b^{2}(=9)$
From equation (1), $\frac{y^{2}}{9}+\frac{x^{2}}{16}=\frac{16-x^{2}}{16}$
$\Rightarrow y^{2}=\frac{9}{16}\left(16-x^{2}\right)$
$\Rightarrow y^{2}=\frac{3}{4}\left(16-x^{2}\right)$
For arc of ellipse in first quadrant.
Ellipse (1) is symmetrical about x -axis (if we change y to -y or x to -x , equation remain same). Intersections of ellipse 91) with x-axis $(y=0)$

Put $y=0$ in equation (1), we have
$\frac{x^{2}}{16}=1 \Rightarrow x^{2}=16 \Rightarrow x= \pm 4$
Therefore, Intersection of ellipse (1) with x-axis are $(0,4)$ and $(0,4)$
Now again
Intersection of ellipse (1) with y-axis ($\mathrm{x}=0$)
Putting $x=0$ in equation (1), $\frac{y^{2}}{9}=1 \Rightarrow y^{2}=9 \Rightarrow y= \pm 3$
Therefore, Intersection of ellipse (1) with y-axis are $(0,3)$ and $(0,-3)$.
Now,
Area of region bounded by ellipse (1) = Total shaded are $=4 \times$ Area OAB of ellipse in first quadrant.
$=4\left|\int_{0}^{4} y d x\right|[\because$ At end B arc AB of ellipse; $\mathrm{x}=0$ and
$=4\left|\int_{0}^{4} \frac{3}{4} \sqrt{16-x^{2}} d x\right|=4\left|\int_{0}^{4} \frac{3}{4} \sqrt{4^{2}-x^{2}} d x\right|$
$=3\left[\frac{x}{2} \sqrt{4^{2}-x^{2}}+\frac{4^{2}}{2} \sin ^{-1} \frac{x}{4}\right]_{0}^{4}\left[\because \int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]$
$=3\left[\frac{4}{2} \sqrt{16-16}+8 \sin ^{-1} 1-\left(0+8 \sin ^{-1} 0\right)\right]=3\left[0+\frac{8 \pi}{2}\right]$
$=3(4 \pi)=12 \pi$ sq. units

Question 5

Find the area of the region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.

Solution:

Equation of ellipse is $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$

Here $a^{2}(=4)<b^{2}(=9)$
From equation (1), $\frac{y^{2}}{9}=1-\frac{x^{2}}{4}=\frac{4-x^{2}}{4}$
$\Rightarrow y^{2}=\frac{9}{4}\left(4-x^{2}\right)$
$\Rightarrow y^{2}=\frac{3}{2}\left(4-x^{2}\right)$
For an arc of ellipse in first quadrant.
Ellipse (1) is symmetrical about x-axis and y-axis.
Intersections of ellipse (1) with x-axis ($\mathrm{y}=0$)
Put $\mathrm{y}=0$ in equation (1), $\frac{x^{2}}{4}=1$
$\Rightarrow x^{2}=4$
$\Rightarrow x= \pm 2$
Therefore, Intersections of ellipse (1) with x-axis are $(0,2)$ and $(0,-2)$.
Intersections of ellipse (1) with y-axis are $(x=0)$
Put $x=0$ in equation (1), $\frac{y^{2}}{9}=1$
$\Rightarrow y^{2}=9 \Rightarrow y= \pm 3$
Therefore, Intersection of ellipse (1) with y-axis $(0,3)$ and $(0,-3)$
Now
Area of region bounded by ellipse $(1)=$ Total shaded area $=4 \times$ Area OAB of ellipse in first quadrant
$=4\left|\int_{0}^{2} y d x\right|[\because$ At end B arc AB of ellipse; $\mathrm{x}=0$
$=4\left|\int_{0}^{2} \frac{3}{4} \sqrt{4-x^{2}} d x\right|=4\left|\int_{0}^{4} \frac{3}{2} \sqrt{2^{2}-x^{2}} d x\right|$
$=6\left[\frac{x}{2} \sqrt{2^{2}-x^{2}}+\frac{2^{2}}{2} \sin ^{-1} \frac{x}{4}\right]_{0}^{4}\left[\because \int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]$
$=6\left[\frac{2}{2} \sqrt{4-4}+2 \sin ^{-1} 1-\left(0+2 \sin ^{-1} 0\right)\right]$
$=6\left[0+2 \cdot \frac{\pi}{2}-0\right]=6 \pi$ sq.unit

Question 6

Find the area of the region in the first quadrant enclosed by $x-$ axis $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$

Solution:

Step 1: To draw the graphs and shade the region whose we are to find

For more Info Visit - www.KITest.in

Equation of the circle is $x^{2}+y^{2}=2^{2}$
We know that equation (1) represents a circle whose centre is $(0,0)$ and radius is 2
Equation of given line is $x=\sqrt{3} y$
$\Rightarrow y=\frac{1}{\sqrt{3}} x$
We know that equation (2) being of the from $y=m x$ where $m=\frac{1}{\sqrt{3}}=\tan 30^{\circ}=\tan \theta \Rightarrow \theta=30^{\circ}$ represents a straight line passing through the origin and making angle of 30° with x - axis
Step 2: To find the value of x and y
Put $\mathrm{y}=\frac{1}{\sqrt{3}}$ from equation (2) in equation (1),
$x^{2}+\frac{x^{2}}{3}=4 \Rightarrow 3 x^{2}+x^{2}=12 \Rightarrow 4 x^{2}=12$
$\Rightarrow x^{2}=3 \Rightarrow x= \pm 3$
Putting $x= \pm 3$ in $y=\frac{1}{\sqrt{3}}, y=1$ and $y=-1$
Therefore the two points of intersections of circle (1) and line (2) are $A(\sqrt{3}, 1)$ and $D(-\sqrt{3},-1)$
Step 3: Now shaded area OAM between segment OA of line (2) and x-axis
$=\left|\int_{0}^{\sqrt{3}} y d x\right|[\because$ At $\mathrm{O}, \mathrm{x}=0$ and at $\mathrm{A}, \mathrm{x} \sqrt{3}]$
$=\left|\int_{0}^{\sqrt{3}} \frac{1}{\sqrt{3}} x d x\right|=\frac{1}{\sqrt{3}}\left(\frac{x^{2}}{2}\right)_{0}^{\sqrt{3}}=\frac{1}{\sqrt{3}}\left(\frac{3}{2}-0\right)=\frac{3}{2 \sqrt{3}}=\frac{\sqrt{3}}{2}$ sq. units
Step IV: Now shaded area AMB between are AB of circle and x - axis.
$=\left|\int_{\sqrt{3}}^{2} y d x\right|[\because$ At $0, \mathrm{x}=\sqrt{3}$ and at $\mathrm{A}, \mathrm{x}=2]$
$=\left|\int_{\sqrt{3}}^{2} \sqrt{2^{2}-x^{2}} d x\right|$ from equation(2),
$\left(\frac{x}{2} \sqrt{2^{2}-x^{2}}+\frac{2^{2}}{2} \sin ^{-1} \frac{x}{2}\right)_{\sqrt{3}}^{2}=\left[\frac{2}{2}-\sqrt{4-4}+2 \sin ^{-1} 1-\left(\frac{\sqrt{3}}{2} \sqrt{4-3}+2 \sin ^{-1} \frac{\sqrt{3}}{2}\right)\right]$
$=0+2 \cdot \frac{\pi}{2}-\frac{\sqrt{3}}{2}-2 \cdot \frac{\pi}{3}=\pi-\frac{\sqrt{3}}{2}-\frac{2 \pi}{3}=\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right)$ sq. units \qquad
Step V: Required shaded area $\mathrm{OAB}=$ Area of $\mathrm{OAM}+$ Area of AMB
$=\frac{\sqrt{3}}{2}+\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$ sq. units

Question 7

Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off the line $x=\frac{a}{\sqrt{2}}$

Solution:

Equation of the circle is $x^{2}+y^{2}=a^{2}$ \qquad

$\therefore y^{2}=a^{2}-x^{2}$
$\Rightarrow \mathrm{y}=\sqrt{a^{2}-x^{2}}$ \qquad
Here,
Area of smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off the line $x=\frac{a}{\sqrt{2}}=$ Area of ABMC $=2 \times$ Area of ABM
$=2\left|\int_{\frac{a}{\sqrt{2}}}^{a} y d x\right|=4\left|\int_{\frac{a}{\sqrt{2}}}^{a} \frac{3}{2} \sqrt{a^{2}-x^{2}} d x\right|$ [From equation (2)]
$=2\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{\frac{a}{\sqrt{2}}}^{a}$
$=2\left[\frac{a}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} 1-\left(\frac{\frac{a^{2}}{\sqrt{2}}}{2} \sqrt{a^{2}-\frac{a^{2}}{2}} \sin ^{-1} \frac{\frac{a^{2}}{\sqrt{2}}}{2}\right)\right]$
$=2\left[0+\frac{a^{2}}{2} \cdot \frac{\pi}{2}-\frac{a}{2 \sqrt{2}} \sqrt{\frac{a^{2}}{2}}-\frac{a^{2}}{2} \sin ^{-1} \frac{1}{\sqrt{2}}\right]$
$=2\left[\frac{\pi a^{2}}{4}-\frac{a}{2 \sqrt{2}} \frac{a}{\sqrt{2}}-\frac{a^{2}}{2} \frac{\pi}{4}\right]$
$=2\left[\frac{\pi a^{2}}{4}-\frac{\pi a^{2}}{8}-\frac{a^{2}}{4}\right]$
$=2 a^{2}\left[\frac{2 \pi-\pi-2}{8}\right]$
$=\frac{a^{2}}{4}(\pi-2)=\frac{a^{2}}{4}\left(\frac{\pi}{2}-1\right)$ sq unit

Question 8

The area between $x=y^{2}$ and $x=4$ is divided into equal parts by the line $x=$ a find the value of a.

Solution:

Equation of the curve (parabola) is $x=y^{2}$ \qquad

$\Rightarrow \mathrm{y}=\sqrt{x}$
Now area bounded by parabola (1) and vertical line $x=4$ is divided into two equal parts vertical line $x=$ a.

Area $\mathrm{OAMB}=$ Area AMBDNC
$\Rightarrow 2\left|\int_{0}^{a} y d x\right|=2\left|\int_{a}^{4} y d x\right|$
$\Rightarrow 2\left|\int_{0}^{a} x^{\frac{1}{2}} d x\right|=2\left|\int_{a}^{4} x^{\frac{1}{2}} d x\right|$
$\Rightarrow \frac{\left(x^{\frac{3}{2}}\right)_{0}^{a}}{\frac{3}{2}}=\frac{\left(x^{\frac{3}{2}}\right)_{a}^{4}}{\frac{3}{2}}$
$\Rightarrow \frac{2}{3}\left[a^{\frac{3}{2}}-0\right]=\frac{2}{3}\left[4^{\frac{3}{2}}-a^{\frac{3}{2}}\right]$
$\Rightarrow a^{\frac{3}{2}}=8-a^{\frac{3}{2}}$
$\Rightarrow 2 a^{\frac{3}{2}}=8 \Rightarrow a^{\frac{3}{2}}=4$
$\Rightarrow a=4^{\frac{3}{2}}$

Question 9

Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$

Solution:

The required area is the area included between the parabola $y=x^{2}$ and the modulus function $\mathrm{y}=$ $|x|=\left\{\begin{array}{c}\mathrm{x}, \text { if } \mathrm{x} \geq 0 \\ -\mathrm{x}, \text { if } \mathrm{x} \leq 0\end{array}\right.$

To find: Area between the parabola $y=x^{2}$ and the ray $y=x$ for $x \geq 0$
Here limits of integration $\Rightarrow \mathrm{y}=\mathrm{x}$
$\Rightarrow x^{2}=x \Rightarrow x^{2}-x=0$
$\Rightarrow x(x-1)=0 \Rightarrow x=0, \mathrm{x}=1$
Now for $\mathrm{y}=|x|$, table of values,
$y=x$ if $x \geq 0$

\mathbf{x}	0	1	2
\mathbf{y}	0	1	2

$y=-x$ if $x \leq 0$

\mathbf{x}	$\mathbf{0}$	-1	-2
\mathbf{y}	0	1	2

Now Area between $\mathrm{y}=x^{2}$ and axis - Area between limits $\mathrm{x}=0$ and $\mathrm{x}=1$
$=\int_{0}^{1} y d x=\int_{0}^{1} x^{2} d x=\left(\frac{x^{3}}{3}\right)_{0}^{1}=\frac{1}{3}$.
For more Info Visit - www.KITest.in

And area of ray $y=x$ and x-axis
$=\int_{0}^{1} y d x=\int_{0}^{1} x d x=\left(\frac{x^{3}}{2}\right)_{0}^{1}=\frac{1}{2}$
So required shaded area in first quadrant
$=$ Area between ray $\mathrm{y}=\mathrm{x}$ for $\mathrm{x} \geq 0$ and x -axis - Area between parabola $\mathrm{y}=x^{2}$ and x -axis in first quadrant
$=$ Area given by equation (2) - Area given by equation (1)
$=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}$ sq. units
Therefore the required area $=2 \times(1 / 6)=1 / 3$

Question 10

Find the area bounded by the curve $x=4 y$ and the line $x=4 y-2$

Solution:

Step 1: graph and region of integration

Equation of the given curve is
$x^{2}=4 y$ \qquad (1)

Equation of the given line is
$\mathrm{x}=4 \mathrm{y}-2$
(2)
$\Rightarrow \mathrm{y}=\frac{x+2}{4}$

\mathbf{x}	$\mathbf{0}$	1	-2
\mathbf{y}	0	$1 / 2$	0

Step 2: putting $y=\frac{x^{2}}{4}$ from equation (1) in equation (20,
$\mathrm{x}=4 \frac{x^{2}}{4}-2 \Rightarrow x=x^{2}-2 \Rightarrow-x^{2}+x+2=0$
$\Rightarrow x^{2}-x-2=0$
$x^{2}-2 x+x-2=0 \Rightarrow x(x-2)+(x-2)=0$
$\Rightarrow(x-2)+(x+1)=0 \Rightarrow x=2$ or $x=-1$
For $\mathrm{x}=2$, from equation (1), $\mathrm{y}=\frac{x^{2}}{4}=\frac{4}{4}=1$
So points (2, 1)
For $\mathrm{x}=1$ from equation (1), $\mathrm{y}=\frac{x^{2}}{4}=\frac{1}{4}$
So point is $\left(-1, \frac{1}{4}\right)$
Therefore, the two points of intersection of parabola (1) and line (2) are C $\left(-1, \frac{1}{4}\right)$ and $D(2,1)$
Step 3: Area CMOEDN between parabola (1) and x-axis
$=\left|\int_{-1}^{2} y d x\right|=\left|\int_{-1}^{2} \frac{x^{2}}{4} d x\right|$
$=\left|\frac{\left(x^{3}\right)_{-1}^{2}}{12}\right|=\left|\frac{1}{12}\left\{2^{3}+(-1)^{3}\right\}\right|$
$=\frac{1}{12}(8+1)=\frac{9}{12}=\frac{3}{4}$ sq. units
Step 4: Area of trapezium CMND between line (2) and x-axis
$=\left|\int_{-1}^{2} y d x\right|=\left|\int_{-1}^{2} \frac{x+2}{4} d x\right|$
$=\left|\frac{1}{4} \int_{-1}^{2}(x+2) d x\right|=\frac{1}{4}\left|\left(\frac{x^{2}}{2}+2 x\right)_{-1}^{2}\right|$
$=\frac{1}{4}\left|\left(\frac{4}{2}+4\right)-\left(\frac{1}{2}-2\right)\right|=\frac{1}{4}\left|\left(2+4-\frac{1}{2}+2\right)\right|$
$=\frac{1}{4}\left|8-\frac{1}{2}\right|=\frac{1}{4} \times \frac{15}{2}=\frac{15}{8}$ sq. units. \qquad
Therefore,
Required shaded area = Area given by equation (4) - Area given by equation (3) = $\frac{15}{8}-\frac{3}{4}=\frac{15-6}{8}=\frac{9}{8}$ sq. units.

Question 11

Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$
Solution:
$y^{2}=4 x$
$\Rightarrow y=4 x=2 x^{\frac{1}{2}}$
Here required shaded area OAMB $=2 \times$ Area OAM

$=2\left|\int_{0}^{3} y d x\right|=2\left|\int_{0}^{3} 2 x^{\frac{1}{2}} d x\right|=4\left|\frac{\left(x^{\frac{3}{2}}\right)_{0}^{3}}{\frac{3}{2}}\right|$
$=4 \cdot \frac{2}{3}\left[3^{\frac{3}{2}}-0\right]=\frac{8}{3} \cdot 3 \sqrt{3}=8 \sqrt{3}$ sq. units.

Question 12

Choose the correct answer:
Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the line 0 and $x=2$ is
(A) π
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{4}$

Solution:

Option (A) is correct.
Explanation:
Equation of the circle is $x^{2}+y^{2}=2^{2}$ (1)
$\Rightarrow y=\sqrt{2^{2}-x^{2}}$

Required area $=\left|\int_{0}^{2} y d x\right|=\left|\int_{0}^{2} \sqrt{2^{2}-x^{2}} d x\right|$
$=\left|\left(\frac{x}{2} \sqrt{2^{2}-x^{2}}+\frac{2^{2}}{2} \sin ^{-1} \frac{x}{2}\right)_{0}^{2}\right|$
$=\frac{2}{2} \sqrt{4-4}+2 \sin ^{-1} 1-\left(0+2 \sin ^{-1} 0\right)$
$=0+2 \cdot \frac{\pi}{2}-0-0=\pi$ sq. units.

Question 13

Choose the correct answer:
Area of the region bounded by the curve $y^{2}=4 x, y-$ axis and the line $y=3$ is:
(A) 2
(B) $9 / 4$
(C) $9 / 3$
(D) $9 / 2$

Solution:
Option (B) is correct.
Explanation:
Equation of the curve (parabola) $y^{2}=4 x$

Required area $=$ Area OAM $=\left|\int_{0}^{3} x d x\right|=\left|\int_{0}^{2} \frac{y^{2}}{4} d y\right|$
$=\frac{1}{4}\left|\left(\frac{y^{3}}{3}\right)_{0}^{2}\right|=\frac{1}{4}\left|\frac{27}{3}-0\right|=\frac{9}{4}$ sq. units

Exercise 8.2

Question 1

Find the area of the area $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$

Solution:

Step 1: Equation of the circle is $4 x^{2}+4 y^{2}=9$
$x^{2}+y^{2}=\frac{9}{4}$

Here, centre of circle is $(0,0)$ and radius is $3 / 2$
Equation of parabola is $x^{2}=4 y$ \qquad
Step 2: To find values of x and y
Put $x^{2}=4 y$ in equation (1), $4 y+y^{2}=\frac{9}{4}$
$16 y+4 y^{2}=9$
$4 y^{2}=16 y-9=0$
$4 y^{2}=18 y-2 y-9=0$
$2 y(2 y+9)-(2 y+9)=0$
$(2 y+9)(2 y-1)=0$
$2 y+9=0$ Or $2 y-1=0$
$\Rightarrow y=\frac{-9}{2}$ or $y=\frac{1}{2}$
Find the value of x :
Put $y=\frac{-9}{2}$ in $x^{2}=4 y$,
$\Rightarrow x^{2}=4 y\left(\frac{-9}{2}\right)=-18$
Put $y=\frac{1}{2}$ in $x^{2}=4 y$,
$\Rightarrow x^{2}=4 y\left(\frac{1}{2}\right)=2$
$=>x+ \pm 2$
Therefore Points of intersection of circle (1) and parabola (2) are
A $\left(-\sqrt{2}, \frac{1}{2}\right)$ and $B\left(\sqrt{2}, \frac{1}{2}\right)$
Step 3: Area OBM = Area between parabola (2) and y-axis
$=\int_{0}^{\frac{1}{2}} x d y$
$\left[\because\right.$ At $0, y=0$ and at $\left.B, y \frac{1}{2}\right]$
$=\int_{0} 2 y^{\frac{1}{2}} d y$
$\left[\because x^{2}=4 y \Rightarrow x=2 \sqrt{y}=2 y^{\frac{1}{2}}\right]$
$=2 \cdot \frac{\left(y \frac{3}{2}\right)_{0}^{\frac{1}{2}}}{\frac{3}{2}}=2 \cdot \frac{2}{3}\left[\left(\frac{1}{2}\right)^{\frac{1}{2}}-0\right]$
$=\frac{4}{3} \cdot \frac{1}{2} \sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{3}$
Step 4: Now area BDM = Area between circle (1) and y -axis
$=\int_{\frac{1}{2}}^{\frac{1}{2}} x d y$
$\left[\because\right.$ At $\mathrm{B}, \mathrm{y}=\frac{1}{2}$ and at $\left.\mathrm{D}, \mathrm{y}=\frac{3}{2}\right]$
$=\int_{\frac{1}{2}}^{\frac{1}{2}}\left(\frac{3}{2}\right)^{2}-y^{2} d y$
$\left[\because x^{2}=\left(\frac{3}{2}\right)^{2}-y^{2} \Rightarrow x=\sqrt{\left(\frac{3}{2}\right)^{2}-y^{2}}\right]$
$=\left[\frac{y}{2} \sqrt{\left(\frac{3}{2}\right)^{2}-y^{2}}+\frac{\left(\frac{3}{2}\right)^{2}}{2} \sin ^{-1} \frac{\frac{y}{3}}{2}\right]_{\frac{1}{2}}^{\frac{3}{2}}$
$=\frac{3}{4} \sqrt{\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}}+\frac{9}{8} \sin ^{-1} \frac{\frac{3}{2}}{\frac{3}{2}}-\left[\frac{1}{4} \sqrt{\frac{9}{4}-\frac{1}{4}}+\frac{9}{8} \sin ^{-1} \frac{\frac{1}{2}}{\frac{3}{2}}\right]$
$=\left(\frac{3}{4} \times 0\right)+\frac{9}{8} \sin ^{-1} 1-\left[\frac{1}{4} \sqrt{\frac{8}{4}}+\frac{9}{8} \sin ^{-1} \frac{1}{3}\right]$
$=\frac{9}{8} \times \frac{\pi}{2}-\frac{1}{4} \sqrt{2}-\frac{9}{8} \sin ^{-1} \frac{1}{3}$
$=\frac{9 \pi}{16}-\frac{\sqrt{2}}{4}-\frac{9}{8} \sin ^{-1} \frac{1}{3}$
Step 5:
Required shaded area $=$ Area $A O B D A=2($ Area OBD $)=($ Area OBM + Area MBD $)$
$=2\left[\frac{\sqrt{2}}{3}+\left(\frac{9 \pi}{16}-\frac{\sqrt{2}}{4}-\frac{9}{8} \sin ^{-1} \frac{1}{3}\right)\right]=2\left[\sqrt{2}\left(\frac{1}{3}-\frac{1}{4}\right)+\frac{9 \pi}{16}-\frac{9}{8} \sin ^{-1} \frac{1}{3}\right]$
$=2 \sqrt{2}\left(\frac{4-1}{12}\right)+\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}$
$=\frac{\sqrt{2}}{6}+\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}=\frac{\sqrt{2}}{6}+\frac{9}{4}\left(\frac{\pi}{2}-\sin ^{-1} \frac{1}{3}\right)$
$=\frac{\sqrt{2}}{6}+\frac{9}{4} \cos ^{-1} \frac{1}{3}\left[\because \sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta\right]$

Question 2

Find the area bounded by the curves $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$
Solution:
Equations of two circles are
$x^{2}+y^{2}=1$ \qquad

And $(x-1)^{2}+y^{2}=1$
From equation (1), $y^{2}=1-x^{2}$
Put this value in equation (2),
$(x-1)^{2}+1-x^{2}=1$
$\Rightarrow x^{2}+1-2 x+1-x^{2}=1$
$\Rightarrow-2 x+1=0$
$\Rightarrow x=\frac{1}{2}$
Put $x=\frac{1}{2}$ in $y^{2}=1-x^{2}$
$y^{2}=1\left(\frac{1}{2}\right)^{2}=1-\frac{1}{4}=\frac{3}{4} \Rightarrow y= \pm \frac{\sqrt{3}}{4}$
The two points of intersection of circles (1) and (2) are ($\left.\frac{1}{2} \cdot \frac{\sqrt{3}}{2}\right)$ and $\left(\frac{1}{2} \cdot \frac{-\sqrt{3}}{2}\right)$
Now from equation (1) $y=\sqrt{1-x^{2}}$ in first quadrant and from equation (2) $y=\sqrt{1-(x-1)^{2}}$ in first quadrant
Required area $\mathrm{OACBO}=2 \times$ Area $\mathrm{OAC}=2($ Area $O A D+$ Area $D A C)$
$=2\left[\int_{0}^{\frac{1}{2}} y\right.$ of circle (ii) $d x+\int_{\frac{1}{2}}^{1} y$ of circle (i) $\left.d x\right]$
$=2\left[\int_{0}^{\frac{1}{2}} \sqrt{1-(x-1)^{2}} d x+\int_{\frac{1}{2}}^{1} \sqrt{1-x^{2}} d x\right]$
$=2\left[\left\{\frac{(x-1) \sqrt{1-(x-1)^{2}}}{2}+\frac{1}{2} \sin ^{-1}(x-1)\right\}_{0}^{\frac{1}{2}}+\left\{\frac{x \sqrt{1-x^{2}}}{2}+\frac{1}{2} \sin ^{-1} x\right\}_{\frac{1}{2}}^{1}\right]$
$=\left\{-\frac{1}{2} \sqrt{\frac{3}{4}}+\sin ^{-1}\left(-\frac{1}{2}\right)\right\}-\sin ^{-1}(-1)-\left\{\frac{1}{2} \sqrt{\frac{3}{4}}+\sin ^{-1} \frac{1}{2}\right\}$
For more Info Visit - www.KITest.in
8. 17
$=-\frac{\sqrt{3}}{4}-\frac{\pi}{6}+\frac{\pi}{2}+\frac{\pi}{2}-\frac{\sqrt{3}}{4}-\frac{\pi}{6}=\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right)$ sq. units

Question 3

Find the area of the region by the curve $y=x^{2}+2 \cdot y=x, x=0$ and $x=3$.

Solution:

Equation of the given curve is

(Point D is $(0,2)$
$y=x^{2}+2 \ldots \ldots \ldots \ldots$ (1)
$x^{2}=y-2$
Here vertex of the parabola is $(0,2)$
Equation of the given line is $y=x$............... (2)

\mathbf{x}	$\mathbf{0}$	1	2
\mathbf{y}	0	1	2

We know that, slope of straight line passing through the origin is always 1 , that means, making an angle of 45 degrees with x - axis.
Here also, Limits of integration area given to be $x=0$ to $x=3$.
Area bounded by parabola (1) namely $y=x^{2}+2$. the x-axis and the ordinates $\mathrm{x}=0$ to $\mathrm{x}=3$ is the area
OACD and $\int_{0}^{3} y d x=\int_{0}^{3}\left(x^{2}+2\right) d x$
$=\left(\frac{x^{3}}{3}+2 x\right)_{0}^{3}$
$=(9+6)-0=15$
Again Area bounded by parabola (2) namely $y=x$ the x-axis and the ordinates $x=0$ to $x=3$ is the area $O A B$ and
$\int_{0}^{3} y d x=\int_{0}^{3} x d x$
$=\left(\frac{x^{2}}{2}\right)_{0}^{3}=\frac{9}{2}-0=\frac{9}{2}$
Required area $=$ Area OBCD $=$ Area OACD - Area OAB
$=$ Area given by equation (3) - Area given by equation (4)
$=15-\frac{9}{2}=\frac{21}{2}$ sq. units

Question 4

Using integration, find the area of the region by the triangle whose vertices are $(-1,0),(1,3)$ and $(3,2)$

Solution:
Vertices of triangle are A $(-1,0), B(1,3)$ and $C(3,2)$.

Therefore, equation of the line is
$y-0 \frac{3-0}{1-(-1)}(x-(-1))$
$\left[\because y-y_{1}=\frac{y_{2-y_{1}}}{x_{2}-x_{1}}\left(x_{2}-x_{1}\right)\right]$
$y=\frac{3}{2}(x+1)$
Area of $\triangle \mathrm{ABC}=$ Area bounded by line AB and $\mathrm{x}-$ axis
$=\int_{-1}^{1} y d x$
$[\because$ At $A, x=-1$ and at $B, x=1]$
$=\int_{-1}^{1} \frac{3}{2}(x+1) d x$
$=\frac{3}{2}\left(\frac{x^{2}}{2}+x\right)_{-1}^{1}$
$=\frac{3}{2}\left[\left(\frac{1}{2}+1\right)+\left(\frac{1}{2}-1\right)\right]$
$=\frac{3}{2}\left(\frac{3}{2}+\frac{1}{2}\right)=\frac{3}{2} \cdot \frac{4}{2}=3$
$=$ Again equation of line $B C$ is $y-3=\frac{3}{2}+\frac{1}{2}(x-1) \Rightarrow y=\frac{1}{2}(7-x)$
Area of trapezium BLMC = Area bounded by line BC and $x-$ axis
$\Rightarrow \int_{1}^{3} y d x=\int_{1}^{3} \frac{1}{2}(7-x) d x$
$=\frac{1}{2}\left(7 x-\frac{x^{2}}{2}\right)_{1}^{3}$
$=\frac{1}{2}\left[\left(21-\frac{9}{2}\right)-\left(7-\frac{1}{2}\right)\right]$
$=\frac{1}{2}\left(21-\frac{9}{2}-7+\frac{1}{2}\right)=\frac{1}{2}\left(\frac{42-9-14+1}{2}\right)$
$=\frac{1}{4} \times 20=5$
Again equation of line AC is $\mathrm{y}-0=\frac{2-0}{3-(-1)}(x-(-1)) \Rightarrow y=\frac{1}{2}(x+1)$
Area of triangle ACM = Area bounded by line AC and x-axis
$=>\int_{-1}^{3} y d x=\int_{-1}^{3} \frac{1}{2}(x+1) d x$
$=\frac{1}{2}\left[\left(\frac{x^{2}}{2}+x\right)_{-1}^{3}\right]$
$=\frac{1}{2}\left(\frac{9}{2}+3-\frac{1}{2}+1\right)$
$=\frac{1}{2}\left(\frac{9+6-1+2}{2}\right)$
$=\frac{1}{2} \times 16=4$
Therefore
Required area $=$ Area of $\triangle \mathrm{ABC}+$ Area of Trapezium BLMC - Area $\triangle \mathrm{ACM}$
$=3+5-4=4$ sq. units

Question 5

Using integration, find the area of the triangular region whose sides have the equations $y=2 x+$ $1, y=3 x+1$ and $x=4$.

For more Info Visit - www.KITest.in

Solution:

Equations of one side of triangle is

$$
\begin{align*}
& y=2 x 1 \ldots \ldots \ldots \text { (1) } \\
& y=3 x 1 \ldots \ldots \ldots \text { (2) And } \\
& x=4 \ldots \ldots \ldots \text { (3) } \tag{3}
\end{align*}
$$

Solving equation (1) and (2), we get $x=0$ and $y=1$
So, Point of intersection of lines (1) and (2) is A (0,1)
Put $x=4$ in equation (1), we get $y=9$
So, Point of intersection of lines (1) and (3) is B (4, 9)
Put $x=4$ in equation (1), we get $y=13$
Point of intersection of lines (2) and (3) is C $(4,13)$
Area between line (2), that is AC and x -axis
$=\int_{0}^{4} y d x=\int_{0}^{4}(3 x+1) d x=\left(\frac{3 x^{2}}{2}+x\right)_{0}^{4}$
$=24+4=28$ sq. units \qquad .(iv)
Again Area between line (1) , that is AB and x-axis
$=\int_{0}^{4} y d x=\int_{0}^{4}(2 x+1) d x$
$=\left(x^{2}+x\right)_{0}^{4}$
$16+4=20$ sq. units (v)

Therefore, required area of $\triangle A B C$
$=$ Area given by (4) - Area given by (5)
$=28-20=8$ sq. units

Question 6

Choose the correct answer:
Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is:
(A) $2(\pi-2)$
(B) $\pi-2$
(C) $2 \pi-1$
(B) $2(\pi+2)$

Solution:
Option (B) is correct.
Explanation:
Equation of circle is $x^{2}+y^{2}=2^{2}$

$\Rightarrow y=\sqrt{2^{2}-x^{2}}$
Also, equation of the line is $x+y=2$

\mathbf{x}	$\mathbf{0}$	2
\mathbf{y}	2	0

Therefore graph of equation (3) is the straight line joining the points $(0,2)$ and $(2,0)$.
From the graph of circle (1) and straight line (3), it is clear that points of intersections of circle (1) and straight line (3) are $A(2,0)$ and $B(0,2)$.
Area OACB, bounded by circle (1) and coordinate axes in first quadrant.
$=\left|\int_{0}^{2} y d x\right|=\left|\int_{0}^{2} \sqrt{2^{2}-x^{2}} d x\right|$
$=\left(\frac{x}{2} \sqrt{2^{2}-x^{2}}+\frac{2^{2}}{2} \sin ^{-1} \frac{x}{2}\right)_{0}^{2}$
$=\left(\frac{2}{2} \sqrt{4-4}+2 \sin ^{-1} 1\right)-\left(0+2 \sin ^{-1} 0\right)$
$=0+2\left(\frac{\pi}{2}\right)-2(0)=\pi$ sq. units \qquad (iv)

Area of triangle OAB bounded by straight line (3) and coordinate axes
$=\left|\int_{0}^{2} y d x\right|=\left|\int_{0}^{2}(2-x) d x\right|$
$=\left(2 x-\frac{x^{2}}{2}\right)_{0}^{2}$
$=(4-2)-(0,0)=2$ sq. units
Required shaded area $=$ Area OACB given by - Area of triangle OAB by $(v)=(\pi-2)$ sq. units

Question 7

Choose the correct answer:
Area lying between the curves $y^{2}=4 x$ and $y=2 x$ is:
(A) $\frac{2}{3}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(C) $\frac{3}{4}$

Solution:

Option (B) is correct

Explanation:

Equation of curve (parabola) is $y^{2}=4 x$ \qquad

$\Rightarrow y=2 \sqrt{x}=2 x \frac{1}{2}$
Equation of another curve (line) is $y=2 x$
Solving equation (1) and (3), we get $x=0$ or $x=1$ and $y=0$ or $y=2$
Therefore, Points of intersections of circle (1) and line (2) are $0(0,0)$ and $A(1,2)$.
Now Area OBAM $=$ Area bounded by parabola (1) and $\mathrm{x}-$ axis $=\left|\int_{0}^{1} y d x\right|$

$$
=\left|\int_{0}^{1} 2 x^{\frac{1}{2}} d x\right|=2 \frac{\left(x^{\frac{3}{2}}\right)_{0}^{1}}{\frac{3}{2}}
$$

$=\frac{4}{3}(1-0)=\frac{4}{3}$.
Also, Area $\triangle \mathrm{OAM}=$ Area bounded by parabola (3) and x -axis
$=\left|\int_{0}^{1} y d x\right|=\left|\int_{0}^{1} 2 x d x\right|=2\left(\frac{x^{2}}{2}\right)_{0}^{1}$
$=(1-0)=1$
Now required shaded area OBA $=$ Area OBAM - Area of \triangle OAM
$=\frac{4}{3}-1=\frac{4-3}{3}=\frac{1}{3}$ sq. units

Miscellaneous Examples

Question 1

Find the area under of the given curves and given lines:
I. $\quad y=x^{2} . x=1, x=2$ and x-axis.
II. $y=x^{4} \cdot x=1, x=5$ and x-axis.

Solution:

I. Equation of the curve is
$y=x^{2}$ \qquad

Require area bounded by curve (1), vertical line $x-1, x=2$ and x-axis
$=\int_{1}^{2} y d x$
$=\left(\frac{x^{3}}{3}\right)_{1}^{2}$
$=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}$ sq. unit
II. Equation of the curve
$y=x^{4}$ \qquad (1)

It is clear that curve (1) passes through the origin because $x=0$ from (1) $y=0$.
Table of values for curve $y=x^{4}$

\mathbf{X}	1	2	3	4	5
\mathbf{y}	1	16	81	256	625

Required shaded area between the curve $y=x^{4}$, vertical lines $x=1, x=5$ and x - axis
$=\int_{1}^{5} y d x==\int_{1}^{5} x^{4} d x$
$=\left(\frac{x^{5}}{5}\right)_{1}^{5}=\frac{5^{5}}{5}-\frac{1^{5}}{5}$
$=\frac{3125-1}{5}=\frac{3124}{5}$
$=624.8$ sq units

Question 2

Find the area between the curves the $y=x$ and $y=x^{2}$

Solution:

Equation of one curve (straight line) is $y=x$

For more Info Visit - www.KITest.in

Equation of second curve (parabola) is $y=x^{2}$
Solving equation (i) and (ii), we get $x=0$ or $x=1$ and $y=0$ or $y=1$
Points of intersection of line (i) and parabola (ii) are $0(0,0)$ and $A(1,1)$.
Now Area of triangle OAM
= Area bounded by line (i) and x -axis
$=\int_{0}^{1} y d x==\int_{0}^{1} x d x$
$=\left(\frac{x^{2}}{2}\right)_{0}^{1}$
$=\frac{1}{2}-0=\frac{1}{2}$ sq. units
Also Area OBAM = Area bounded by parabola (ii) and x - axis
$=\int_{0}^{1} y d x=\int_{0}^{1} x^{2} d x$
$=\left(\frac{x^{3}}{3}\right)_{0}^{1}$
$=\frac{1}{3}-0=\frac{1}{3}$ sq. units
Required area OBA between line (i) and parabola (ii)
= Area of triangle OAM - Area of OBM
$=\frac{1}{2}-\frac{1}{3}=\frac{3-2}{6}=\frac{1}{6}$ sq. units

Question 3

Find the area of the region lying in the first quadrant and bounded. by $y=4 x^{2}, x=0, y=$ 1 and $y=4$

Solution:

Equation of the curve is $y=4 x^{2}$

For more Info Visit - www.KITest.in
8. 26
$x^{2}=\frac{y}{4}$ \qquad
Or $x=\frac{\sqrt{y}}{2}$
Here required shaded area of the region lying in first quadrant bounded by parabola (i) $x=0$ and the horizontal linesy $=1$ and $y=4$ is.
$\int_{1}^{4} x d y=\int_{1}^{4} \frac{\sqrt{y}}{2} d y=\frac{1}{2} \int_{1}^{4} y^{\frac{1}{2}}$
$=\frac{1}{2}\left|\frac{\left(y^{\frac{3}{2}}\right)_{1}^{4}}{\frac{3}{2}}\right|$
$=\frac{1}{2} \cdot \frac{2}{3}\left(4^{\frac{3}{2}}-1^{\frac{3}{2}}\right)$
$=\frac{1}{3}(4 \sqrt{4}-1)$
$=\frac{1}{3}(8-1)=\frac{7}{3}$ sq. units

Question 4

Sketch the of $y=|x+3|$ and evaluate $\int_{-6}^{0}|x+3| d y$

Solution:

Equation of the given curve is $\mathrm{y}=|x+3| \ldots \ldots$. (i)

$\mathrm{y}=|x+3| \geq 0$ for all real x .
Graph of curve is only above the x -axis I.e., in first and second quadrant only.
$y=|x+3|$
$=x+3$
If $x+3 \geq 0$
$x \geq-3$.
(ii)

And $\mathrm{y}=|x+3|$
$=-(x+3)$
If $x+3 \leq 0$
$x \leq-3$
Table of values for $y=x+3$ for $x \geq-3$

\mathbf{X}	\mathbf{Y}
-3	0
-2	1
-1	2
0	3

Table of values for $y=x+3$ for $x \leq-3$

X	Y
-3	0
-4	1
-5	2
-6	3

Now $\int_{-6}^{0}|x+3| d x$
$=\int_{-6}^{-3}|x+3| d x+\int_{-3}^{0}|x+3| d x$
$=\int_{-6}^{-3}-(x+3) d x+\int_{-3}^{0}(x+3) d x$
$=\left(\frac{x^{2}}{2}+3 x\right)_{-6}^{-3}+\left(\frac{x^{2}}{2}+3 x\right)_{-3}^{0}$
$=\left[\frac{9}{2}-9-(18-18)\right]+\left[0-\left(\frac{9}{2}-9\right)\right]$
$=\frac{9}{2}+9+0+0-\frac{9}{2}+9$
$=18-\frac{18}{2}=18-9=9$ sq. units

Question 5

Find that area bounded by the curve $y=\sin x$ between $x=0$ and $x=2 \pi$.
Solution:

Equation of the curve is $\mathrm{y}=\sin \mathrm{x}$ (i)
$y=\sin x \geq 0$ for $0 \leq x \leq \pi$: as graph is in I and II quadrant
And $y=\sin x \geq 0$ for $\pi \leq x \leq 2 \pi$: as graph is in III and IV quadrant

If tangent is parallel to x - axis, then
$\frac{d y}{d x}=0$
$\Rightarrow \cos x=0$
$\Rightarrow x=\frac{\pi}{2} \cdot \frac{3 \pi}{2}$
Table of values of curve $y=\sin x$ between $x=0$ and $x 2 \pi$

\mathbf{X}	\mathbf{y}
$\mathbf{0}$	0
$\frac{\boldsymbol{\pi}}{\mathbf{2}}$	1
$\boldsymbol{\pi}$	0
$\frac{\mathbf{3} \boldsymbol{\pi}}{\mathbf{2}}$	-1
$\mathbf{2 \pi}$	0

Now required shaded area $=$ Area OAB + Area BCB
$=\int_{0}^{\pi} y d x+\int_{\pi}^{2 \pi} y d x$
$=\int_{0}^{\pi} \sin d x+\int_{\pi}^{2 \pi} \sin x d x$
$=-(\cos x)_{0}^{\pi}+(\cos x)_{0}^{2 \pi}$
$=-1(-1-1),+-(1+1)$
$=2+2=4$ sq. units

Question 6

Find the area enclosed by the parabola $y^{2}=4 a x$ and the $y=m x$.

Solution:

Equation of parabola is $y^{2}=4 a x$

The area enclosed between the parabola and line is the shaded area OADO.
From figure: And the points of intersection of curve and line
$0,(0,0)$ and $\mathrm{A}\left(\frac{4 a}{m^{2}}, \frac{4 a}{m}\right)$
Now Area ODAM = Area of parabola and x -axis
$=\int_{0}^{\frac{4 a}{m^{2}}} 2 \sqrt{a} x^{\frac{1}{2}} d x$
$=2 \sqrt{a} \frac{\left(x^{\frac{3}{2}}\right)_{0}^{\frac{4 a}{m^{2}}}}{\frac{3}{2}}$
$=\frac{4 \sqrt{a}}{3}\left(\frac{4 a}{m^{2}}\right)^{\frac{3}{2}}$
$=\frac{32 a^{2}}{3 m^{3}}$
(ii)

Again $\triangle \mathrm{OAM}=$ Area between line and $\mathrm{x}=$ axis
$=\left|\int_{0}^{\frac{4 a}{m^{2}}} m x d x\right|=m\left(\frac{x^{2}}{2}\right)_{0}^{\frac{4 a}{m^{2}}}$
$=\frac{m}{2}\left(\left(\frac{4 a}{m^{2}}\right)^{2}-0\right)$
$=\frac{m}{2} \cdot \frac{16 a^{2}}{m^{4}}=\frac{8 a^{2}}{m^{2}}$
Requires shaded area $=$ Area ODAM - Area of \triangle OAM
$\frac{32 a^{2}}{3 m^{3}}=\frac{8 a^{2}}{m^{3}}$
$=\frac{a^{2}}{m^{2}}\left(\frac{32}{3}-8\right)$
$=\frac{8 a^{2}}{3 m^{3}}$

Question 7

Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$.

Solution:

Equation of the parabola is
$4 y=3 x^{2}$
Or $x^{2}=\frac{4}{3} y$

Equation of the line is $2 y=3 x+12$
From graph, points of intersection are $B(4,12)$ and $C(-2,3)$.
Now, Area ABCD $=\left|\int_{-2}^{4}\left(\frac{3}{2} x+6\right) d x\right|$
$=\left[\frac{3}{4} x^{2}+6 x\right]_{-2}^{4}$
$=(12+240-(3-12)$
$=45$ sq. units
Again, Area COD + Area OAB $=\int_{-2}^{4}\left(\frac{3}{4} x^{2}\right) d x$
$=\frac{1}{4}[64-(-8)]=18$ sq. units
Therefore,

Requirement area $=$ Area $\mathrm{ABCD}-($ Area COD + Area OAB)
$=45-18=27$ sq. units

Question 8

Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$

Solution:

Equation of the ellipse is
$\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$

Here points of intersection of ellipse (i) with a-axis are
$A(3,0)$ and $A^{\prime}(-3,0)$ and intersection of ellipse (i) with y -axis $B(0,2)$ and $B,(0,2)$.
Also, the points of intersection of ellipse (i) and line $\frac{x}{3}+\frac{y}{2}=1$ area $\mathrm{A}(3,0)$ and $\mathrm{B}(0,2)$.
Therefore
$=\int_{0}^{3} \frac{2}{3} \sqrt{9-x^{2}} d x$
$=\frac{2}{3}\left[\frac{x}{2} \sqrt{3^{2}-x^{2}} \frac{3^{2}}{2} \sin ^{-1} \frac{x}{3}\right]$
$=\frac{2}{3}\left[\frac{3}{2} \sqrt{9-9}+\frac{9}{2} \sin ^{-1} 1-\left(0+\frac{9}{2} \sin ^{-1} 0\right)\right]$
$=\frac{2}{3} \cdot \frac{9 \pi}{4}=\frac{3 \pi}{2}$ sq. units \qquad
Again Area of triangle $\mathrm{OAB}=$ Area bounded by line AB x -axis
$=\int_{0}^{3} \frac{2}{3} \sqrt{3-x} d x$
$=\frac{2}{3}\left\{\left(9-\frac{9}{2}\right)-0\right\}$
$=\frac{2}{3} \cdot \frac{9}{2}=3$ sq. units (ii)

Now required shaded area $=$ Area OADM - Area OAB
$=\frac{3 \pi}{2}-3$
$=3\left(\frac{\pi}{2}-1\right)=\frac{3}{2}(\pi-2)$ sq. units

Question 9

Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$. Solution:

Equation of ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

Area between arc AB of the ellipse and x axis
$=\int_{0}^{a} \frac{b}{a} \sqrt{a^{2}-x^{2}} d x$
$=\frac{b}{a}\left[\frac{x}{a} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{a} \sin ^{-1} \frac{x}{a}\right]_{0}^{a}$
$=\frac{b}{a}\left[0+\frac{a^{2}}{2} \sin ^{-1} 1(0+0)\right]$
$=\frac{b}{a} \cdot \frac{a^{2}}{2} \cdot \frac{\pi}{2}=\frac{\pi a b}{4}$
Also Area between chord and x -axis
$=\int_{0}^{a} \frac{b}{a}(a-x) d x$
$=\frac{b}{a}\left[a x-\frac{x^{2}}{2}\right]_{0}^{a}$
$=\frac{b}{a}\left(a^{2}-\frac{a^{2}}{2}\right)$
$=\frac{b}{a} \cdot \frac{a^{2}}{2}=\frac{1}{2} a b$

Now, Required area $=$ (Area between arc AB of the ellipse and x-axis) - (Area between chord $A B$ and $x-$ axis)
$=\frac{\pi a b}{4}=\frac{a b}{2}=\frac{a b}{4}(\pi-2)$ sq. units

Question 10

Find the area of the region enclosed by the parabola $x 2=y$, the line $y=x+2$ and x - axis.

Solution:

Equation of parabola is $x^{2}=y$ \qquad
Equation of line is $y=x+2$ \qquad
Here the two points of intersections of parabola (i) and line (ii) are A $(-1,1)$ and $B(2,4)$.
Area ALODBM = Area bounded by parabola (i) and x -axis
$=\int_{-1}^{2} x^{2} d x=\left(\frac{x^{3}}{3}\right)_{-1}^{2}$
$=\frac{8^{-1}}{3}+\frac{1}{3}=\frac{9}{3}=3$ sq. units

Also, Area of trapezium ALMB = Area bounded by line (ii) and x -axis
$=\int_{-1}^{2}(x-2) d x=\left(\frac{x^{2}}{2} 2 x\right)_{-1}^{2}$
$=2+4-\left(\frac{1}{2}-2\right)$
$=\frac{15}{2}$ sq. units
Now required area $=$ Area of trapezium ALMB - Area ALODBM
$=\frac{15}{2}-3=\frac{9}{2}$ sq. units

Question 11

Using the method of integration, find the area enclosed by the curve $|x|+|y|=1$.
[Hint: The required is bounded by lines $x+y=1, x-y=1,-x+y=1$ and $-x-y=1$].

Solution:

$$
\begin{equation*}
|x|+|y|=1 \tag{i}
\end{equation*}
$$

\qquad

The area bounded by the curve (i) is represented by the shaded region ABCD.
The curve intersects the axes at points $A(1,0), B(0,1), C(-1,0)$ and $D(0,-1)$
As, given curve is symmetrical about x-axis and y-axis.
Area bounded by the curve $=$ Area of square $\mathrm{ABCD}=4 \times \Delta \mathrm{OAB}$
$=4 \int_{0}^{1}(1-x) d x$
$=4\left(x-\frac{x^{2}}{2}\right)_{0}^{1}$
$=4 \times \frac{1}{2}=2$ sq units

Question 12

Find the area bounded by the curves $\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$

Solution:

The area bounded by the curves $\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$ is represented by the shaded region.

For more Info Visit - www.KITest.in
8. 35

Since area is symmetrical about y -axis
Therefore, required area $=$ Area between parabola and x -axis between limits $\mathrm{x}=0$ and $\mathrm{x}=1$
$=\int_{0}^{1} y d x=\int_{0}^{1} x^{2} d x$
$=\left(\frac{x^{3}}{3}\right)_{0}^{1}=\frac{1}{3}$
And Area of ray $-\mathrm{y}=\mathrm{x}$ and x -axis,
$=\int_{0}^{1} y d x=\int_{0}^{1} x d x=\left(\frac{x^{2}}{2}\right)_{0}^{1}=\frac{1}{2}$
Required shaded area in first quadrant
$=$ (Area between ray $\mathrm{y}=\mathrm{x}$ for $x \geq 0$ and x -axis) - (Area between parabola $y=x^{2}$ and x -axis in first quadrant)
$=$ Area given by equation (ii) - Area given by equation (i)
$=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}$ sq. units

Question 13

Using the method of integration, find the area of the triangle whose vertices are $A(2,0), B(4,5)$ and $(6,3)$

Solution:

Vertices of the given triangle are A $(2,0), B(4,5)$ and $C(6,3)$

Equation of side AB is $y-0=\frac{5-0}{4-2}(x-2)$
$=y=\frac{5}{2}(x-2)$
Equation of side $B C$ is $y-5=\frac{3-5}{6-4}(x-4)$
$=y=9-x$
Equation of side AC is $y-0=\frac{3-0}{6-2}(x-2)$
$=y=\frac{3}{4}(x-2)$
Now, required shaded, area $=$ Area $\triangle A L B+$ Area of trapezium BLMC - Area $\triangle A M C$
$=\int_{2}^{4} \frac{5}{2}(x-2) d x+\int_{4}^{6}(9-2) d x-\int_{2}^{6} \frac{3}{4}(x-2) d x$
$=\left[\frac{5}{2}(8-8)-(2-4)\right]+|54-18-(36-8)|-\left[\frac{3}{4}\{18-12-(2-4)\}\right]$
$=\frac{5}{2}(0+2)+|36-36+8|-\frac{3}{4}(6+2)$
$=5+8-6=7$ sq. units

Question 14

Using the method of integration find the find the area of the region bounded lines $2 x+y=$ $4,3 x-2 y=6$ and $x-3 y+5=0$.

Solution:

Let say, equation of one line l_{1} is $2 x+y=4$
Equation of second line l_{2} is $3 x-2 y=6$
And Equation of third line l_{3} is $x-3 y+5=0$
Draw all the lines on the coordinate plane we get

Here, vertices of triangle ABC are A $(2,0), B(4,3)$ and $C(1,2)$.
Now, Required area of triangle $=$ Area of trapezium CLMB - Area $\triangle A B L$
$=\int_{1}^{4} \frac{1}{3}(x+5) d x-\int_{1}^{2}(4-2) d x-\int_{2}^{4} \frac{3}{2}(x-2) d x$
$=\frac{1}{3}\left[8+20-\left(\frac{1}{2}+5\right)\right]-\{(8-4)-(4-1)\}-\frac{3}{2}|(8-8)-(2-4)|$
$=\frac{1}{3}\left(28-\frac{11}{2}\right)-(4-3)-\frac{3}{2} \times 2$
$=\frac{1}{3} \times \frac{45}{2}-1-3$
$=\frac{15}{2}-1-3=\frac{7}{2}$ sq. units

Question 15

Find the area of the region $\left\{(x, y): y^{2} \leq 4 x\right.$ and $\left.4 x^{2}+4 y^{2} \leq 9\right\}$

Solution:

Equation of parabola is $y^{2}=4 x \ldots$
And equation of circle is $4 x^{2}+4 y^{2} \leq 9$. \qquad

From figures, points of intersection of parabola (i) and circle (ii) are A $\left(\frac{1}{2}, \sqrt{2}\right)$ and B $\left(\frac{1}{2}^{\prime} \sqrt{2}\right)$
Required shaded area OADBO (Area of the circle which is interior to the parabola)
$=2 \times$ Area OADO $=2[$ Area OAC + Area CAD $]$
$=2\left[\int_{0}^{\frac{1}{2}} 2 \sqrt{x} d x \int_{\frac{1}{2}}^{\frac{3}{2}} \sqrt{\frac{9}{4}-x^{2}} d x\right]$
$\left.=\left[2 \cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right\}_{0}^{\frac{1}{2}}+\left\{\frac{\sqrt{\frac{9}{4}-x^{2}}}{4}+\frac{\frac{9}{4}}{2} \sin ^{-1} \frac{x}{3 / 2}\right\}_{\frac{1}{2}}^{\frac{3}{2}}\right]$
$=2\left[\frac{4}{3} \times \frac{1}{2 \sqrt{2}}+\frac{9}{8} \sin ^{-1} 1-\frac{\frac{1}{2} \sqrt{2}}{2} \frac{9}{8} \sin ^{-1} \frac{1}{3}\right]$
$=2\left[\frac{\sqrt{2}}{3}+\frac{9}{8} \cdot \frac{\pi}{2}-\frac{\sqrt{2}}{4}-\frac{9}{8} \sin ^{-1} \frac{1}{3}\right]$
$=\left(\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}+\frac{\sqrt{2}}{6}\right)$ sq units.

Question 16

Choose the correct answer:
Area bounded by the curve $y=x^{2}$ the $x-$ axis and the ordinate $x=2$ and $x=1$ is:
(A) -9
(B) $-15 / 4$
(C) 15/4
(D) $17 / 4$

Solution:

Option (D) is correct
Explanation:
Equation of the curve is $y=x^{3}$

Now, Area OBN ($y=x^{3}$ for $-2 \leq x \leq 0$) and Area OAM $\left(y=x^{3}\right.$ for $\left.0 \leq x \leq 1\right)$
Therefore, required area $=$ Area OBN + Area OBN + Area OAM
$=\int_{-2}^{0} x^{3} d x+\int_{0}^{1} x^{3} d x$
$=\frac{-2}{4}$ sq units

Question 17

Choose the correct answer:
The area bounded by the curve $y=x|x|, x$ - axis and the ordinates $x=-1$ and $x=1$ is given by
(A) 0
(B) $1 / 3$
(C) $2 / 3$
(D) $4 / 3$

Solution:

Equation of the curve is

$y=x|x|=x(x)=x^{2}$ if $x \geq 0$
And $y=x|x|=x(-x)=-x^{2}$ if $x \geq 0$
Required area $=$ Area OAMO
$=\int_{-1}^{0}-x^{2} d x+\int_{0}^{1} x^{2} d x$
$=2 / 3$ sq. units

Question 18

Choose the correct answer:
The area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y^{2}=6 x$.
(A) $\frac{4}{3}(4 \pi-\sqrt{3})$
(B) $\frac{4}{3}(4 \pi+\sqrt{3})$
(C) $\frac{4}{3}(8 \pi-\sqrt{3})$
(D) $\frac{4}{3}(8 \pi+\sqrt{3})$

Solution:

Option (c) is correct
Explanation:
Equation of the circle is $x^{2}+y^{2}=16$
Thus, radius of circle is 4

This circle is symmetrical about x -axis and y -axis.
Here two points of intersection are $B(2,2 \sqrt{3})$ and $B^{\prime}(2,-2 \sqrt{3})$.

Required area $=$ Area of circle - Area of circle interior to the parabola
$=\pi r^{2}$ - Area OBAB'O
$=16 \pi-2 \times$ Area OBACO
$=16 \pi-2$ [Area OBCO + Area BACB]
$=16 \pi-2\left[\int_{0}^{2} \sqrt{6 x} d x+\int_{2}^{4} \sqrt{16-x^{2}} d x\right]$
$=16 \pi-2\left[\frac{2}{3} \sqrt{6}(2 \sqrt{2})+8 \sin ^{-1} 1 \sqrt{12}-8 \sin ^{-1} \frac{1}{2}\right]$
$=16 \pi-2\left[\frac{8}{\sqrt{3}}+8 \cdot \frac{\pi}{2}-2 \sqrt{3}-8 \cdot \frac{\pi}{6}\right]$
$=16 \pi-2\left[\frac{8}{\sqrt{3}}-2 \sqrt{3}+8 \pi\left(\frac{1}{2}-\frac{1}{6}\right)\right]$
$=16 \pi-2\left[\frac{2}{\sqrt{3}}+\frac{8 \pi}{3}\right]$
$=16 \pi\left(1-\frac{1}{3}\right)-\frac{4}{\sqrt{3}}$
$=\frac{4}{3}(8 \pi-\sqrt{3})$ sq. units

Question 19

Choose the correct answer:
The area bounded by the y -axis, $\mathrm{y}=\cos \mathrm{x}$ and $\mathrm{y}=\sin \mathrm{x}$ when $0 \leq x \leq \frac{\pi}{2}$ is:
(A) $2(\sqrt{2}-1)$
(B) $\sqrt{2}-1$
(C) $\sqrt{2}+1$
(D) $\sqrt{2}$

Solution:

Option (B) is correct
Explanation:
Graph of both the function are intersect at the point
B $\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$

Required shaded Area $=$ Area OABC - Area OBC
$=$ Area OABC - (Area OBM + Area BCM)
$=\int_{0}^{\pi / 2} \cos x d x-\left(\int_{0}^{\pi / 4} \sin x d x+\int_{\pi / 4}^{\pi / 2} \cos x d x\right)$
$=\left(\sin \frac{\pi}{2}-\sin 0^{0}\right)-\left(-\cos \frac{\pi}{4}+\cos 0^{0}+\sin \frac{\pi}{2}-\sin \frac{\pi}{4}\right)$
$=1+\frac{1}{\sqrt{2}}-1-1+\frac{1}{\sqrt{2}}=(\sqrt{2}-1)$ sq. units

