<u>Chapter 8</u> <u>Application of Integrals</u> <u>Exercise 8.1</u>

Question 1

Find the area of region bounded by the curve $y^2 = x$ and the x = 1, x = 4 then x – axis in the first quadrant

Solution:

 $y = \sqrt{x}$ (1) Required area is shaded region

$$= \left| \int_{1}^{4} y \, dx \right| = \left| \int_{1}^{4} \sqrt{x} \, dx \right| [From equation (1)]$$

$$= \left| \int_{1}^{4} x^{\frac{1}{2}} dx \right|$$

= $\left| \frac{\left(x^{\frac{3}{2}} \right)_{1}^{4}}{\frac{3}{2}} \right|$
= $\left| \frac{2}{3} \left(4^{\frac{3}{2}} - 1^{\frac{3}{2}} \right) \right|$
= $\left| \frac{2}{3} \left(4^{\frac{3}{2} \times 3} - 1^{\frac{3}{2} \times 3} \right) \right| = \left| \frac{2}{3} (8 - 1) \right| = \frac{2}{3} \times 7 = \frac{14}{3}$ sq. units

Question 2

Find the area of the region bounded by $y^2 = 9x$, x = 2, x = 4 and the a-axis in the first quadrant.

For more Info Visit - www.KITest.in

Solution:

Equation of the curve (rightward parabola) is $y^2 = 9x$. $y = 3\sqrt{x}$

Required area is shaded region which is bounded by curve $y^2 = 9x$ and vertical lines x=2,x=4 and x-axis in first quadrant.

$$= \left| \int_{1}^{4} y \, dx \right| = \left| \int_{1}^{4} 3\sqrt{x} \, dx \right| [\text{From equation (1)}]$$
$$= \left| 3 \int_{1}^{4} x^{\frac{1}{2}} \, dx \right| = \left| 3 \frac{\left(x^{\frac{3}{2}} \right)_{2}^{4}}{\frac{3}{2}} \right|$$
$$= \left| 3 \cdot \frac{2}{3} \left(4^{\frac{3}{2}} - 2^{\frac{3}{2}} \right) \right| = \left| 3 \cdot \frac{2}{3} \left(4^{\frac{1}{2} \times 3} - 2^{\frac{1}{2} \times 3} \right) \right|$$
$$= \left| 2 \left(8 - 2\sqrt{2} \right) \right| = (16 - 4\sqrt{2}) \text{ sq. unit.}$$

Question 3

Find the area of the region bounded by $x^2 = 4y$. y = 2. y = 4 and the y – axis in the first quadrant.

Solution:

Equation of curve (parabola) is $x^2 = 4y$. Or $x = 2\sqrt{y}$ (1) Required region is shaded, that is area bounded by curve $x^2 = 4y$. and Horizontal lines .y = 2.y = 4 and y-axis in first quadrant.

For more Info Visit - www.KITest.in

For more Info Visit - www.KITest.in

6262969699

Put y = 0 in equation (1), we have $\frac{x^2}{16} = 1 \implies x^2 = 16 \implies x = \pm 4$ Therefore, Intersection of ellipse (1) with x-axis are (0,4) and (0,4)Now again Intersection of ellipse (1) with y-axis (x=0) Putting x = 0 in equation (1), $\frac{y^2}{9} = 1 \Rightarrow y^2 = 9 \Rightarrow y = \pm 3$ Therefore, Intersection of ellipse (1) with y-axis are (0, 3) and (0, -3). Now. Area of region bounded by ellipse (1) = Total shaded are = 4 × Area OAB of ellipse in first quadrant. = 4 y dx [: At end B arc AB of ellipse; x = 0 and at end A of arc AB; x -= 4] $= 4 \left| \int_{-1}^{4} \frac{3}{4} \sqrt{16 - x^2} \, dx \right| = 4 \left| \int_{0}^{4} \frac{3}{4} \sqrt{4^2 - x^2} \, dx \right|$ $= 3 \left[\frac{x}{2} \sqrt{4^2 - x^2} + \frac{4^2}{2} \sin^{-1} \frac{x}{4} \right]_0^4 \left[\because \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{4} \right]$ $= 3 \left[\frac{4}{2} \sqrt{16 - 16} + 8 \sin^{-1} 1 - (0 + 8 \sin^{-1} 0) \right] = 3 \left[0 + \frac{8\pi}{2} \right]$ $= 3 (4\pi) = 12\pi$ sq. units **Question 5** Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$. **Solution:** Equation of ellipse is $\frac{x^2}{4} + \frac{y^2}{9} = 1$ X (-2,0) A(2,0) 0 (0,-3) Here $a^2 (= 4) < b^2 (= 9)$ From equation (1), $\frac{y^2}{9} = 1 - \frac{x^2}{4} = \frac{4 - x^2}{4}$ $\Rightarrow y^2 = \frac{9}{4} (4 - x^2)$ For more Info Visit - www.KITest.in 8.4

6262969699

 $\Rightarrow y^2 = \frac{3}{2} (4 - x^2)$ (2) For an arc of ellipse in first quadrant. Ellipse (1) is symmetrical about x-axis and y-axis. Intersections of ellipse (1) with x-axis (y=0) Put y=0 in equation (1), $\frac{x^2}{4} = 1$ $\Rightarrow x^2 = 4$ $\Rightarrow x = +2$ Therefore, Intersections of ellipse (1) with x-axis are (0, 2) and (0, -2). Intersections of ellipse (1) with y-axis are ($\times = 0$) Put x = 0 in equation (1), $\frac{y^2}{x} = 1$ $\Rightarrow y^2 = 9 \Rightarrow y = \pm 3$ Therefore, Intersection of ellipse (1) with y-axis (0,3) and (0,-3)Now Area of region bounded by ellipse (1) = Total shaded area = 4 × Area OAB of ellipse in first quadrant $\int y \, dx$ [: At end B arc AB of ellipse; x = 0 and at end A of arc AB; x = 2] $= 4 \left| \int_{0}^{2} \frac{3}{4} \sqrt{4 - x^{2}} \, dx \right| = 4 \left| \int_{0}^{4} \frac{3}{2} \sqrt{2^{2} - x^{2}} \, dx \right|$ $= 6 \left[\frac{x}{2} \sqrt{2^2 - x^2} + \frac{2^2}{2} \sin^{-1} \frac{x}{4} \right]_0^4 \left[\because \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]$ $= 6 \left[\frac{2}{2} \sqrt{4 - 4} + 2 \sin^{-1} 1 - (0 + 2 \sin^{-1} 0) \right]$ $= 6 \left[0 + 2 \cdot \frac{\pi}{2} - 0 \right] = 6\pi$ sq.unit

Question 6

Find the area of the region in the first quadrant enclosed by x – axis $x = \sqrt{3}y$ and the circle $x^2 + y^2 = 4$

Solution:

Step 1: To draw the graphs and shade the region whose we are to find

For more Info Visit - <u>www.KITest.in</u>

For Enquiry – 6262969604 6262969699 $Y = \frac{1}{\sqrt{2}} x$ $\sqrt{3,1}$ (0,0) B(2,0) X Equation of the circle is $x^2 + y^2 = 2^2$(1) We know that equation (1) represents a circle whose centre is (0,0) and radius is 2 Equation of given line is $x = \sqrt{3}y$ \Rightarrow y = $\frac{1}{\sqrt{3}}x$(2) We know that equation (2) being of the from y = mx where $m = \frac{1}{\sqrt{3}} = \tan 30^{\circ} = \tan \theta \Rightarrow \theta = 30^{\circ}$ represents a straight line passing through the origin and making angle of 30^o with x- axis Step 2: To find the value of x and y Put y = $\frac{1}{\sqrt{3}}$ from equation (2) in equation (1), $x^{2} + \frac{x^{2}}{3} = 4 \Rightarrow 3x^{2} + x^{2} = 12 \Rightarrow 4x^{2} = 12$ $\Rightarrow x^2 = 3 \Rightarrow x = \pm 3$ Putting $x = \pm 3$ in $y = \frac{1}{\sqrt{3}}$, y = 1 and y = -1Therefore the two points of intersections of circle (1) and line (2) are A ($\sqrt{3}$, 1) and D ($-\sqrt{3}$, -1) Step 3: Now shaded area OAM between segment OA of line (2) and x -axis y dx [:: At 0, x = 0 and at A, x $\sqrt{3}$]

Step IV: Now shaded area AMB between are AB of circle and x – axis.

$$= \left| \int_{\sqrt{3}}^{2} y \, dx \right| [\because \text{ At } 0, x = \sqrt{3} \text{ and at } A, x = 2]$$
$$= \left| \int_{\sqrt{3}}^{2} \sqrt{2^2 - x^2} \, dx \right| \text{ from equation(2),}$$

For more Info Visit - <u>www.KITest.in</u>

6262969699

$$\left(\frac{x}{2}\sqrt{2^2 - x^2} + \frac{2^2}{2}\sin^{-1}\frac{x}{2}\right)_{\sqrt{3}}^2 = \left[\frac{2}{2} - \sqrt{4 - 4} + 2\sin^{-1}1 - \left(\frac{\sqrt{3}}{2}\sqrt{4 - 3} + 2\sin^{-1}\frac{\sqrt{3}}{2}\right)\right]$$

= 0 + 2. $\frac{\pi}{2} - \frac{\sqrt{3}}{2} - 2$. $\frac{\pi}{3} = \pi - \frac{\sqrt{3}}{2} - \frac{2\pi}{3} = \left(\frac{\pi}{3} - \frac{\sqrt{3}}{2}\right)$ sq. units (iv)
Step V: Required shaded area OAB = Area of OAM + Area of AMB
= $\frac{\sqrt{3}}{2} + \left(\frac{\pi}{3} - \frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$ sq. units

Question 7

Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off the line $x = \frac{a}{\sqrt{2}}$ **Solution:** Equation of the circle is $x^2 + y^2 = a^2$(1) M(a,0) ★x 0 A Here. Area of smaller part of the circle $x^2 + y^2 = a^2$ cut off the line $x = \frac{a}{\sqrt{2}}$ = Area of ABMC = 2 × Area of ABM $= 2 \left| \int_{\underline{a}}^{a} y \, dx \right| = 4 \left| \int_{\underline{a}}^{a} \frac{3}{2} \sqrt{a^2 - x^2} \, dx \right| \text{[From equation (2)]}$ $= 2\left[\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a}\right]_{\frac{a}{\sqrt{2}}}^{a}$ $=2\left[\frac{a}{2}\sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2}\sin^{-1}1-\left(\frac{a^{2}}{\sqrt{2}}\sqrt{a^{2}-\frac{a^{2}}{2}}\sin^{-1}\frac{a^{2}}{\sqrt{2}}\right)\right]$ For more Info Visit - www.KITest.in

6262969699

$$= 2 \left[0 + \frac{a^2}{2} \cdot \frac{\pi}{2} - \frac{a}{2\sqrt{2}} \sqrt{\frac{a^2}{2}} - \frac{a^2}{2} \sin^{-1} \frac{1}{\sqrt{2}} \right]$$

$$= 2 \left[\frac{\pi a^2}{4} - \frac{a}{2\sqrt{2}} \frac{a}{\sqrt{2}} - \frac{a^2}{2} \frac{\pi}{4} \right]$$

$$= 2 \left[\frac{\pi a^2}{4} - \frac{\pi a^2}{8} - \frac{a^2}{4} \right]$$

$$= 2a^2 \left[\frac{2\pi - \pi - 2}{8} \right]$$

$$= \frac{a^2}{4} (\pi - 2) = \frac{a^2}{4} \left(\frac{\pi}{2} - 1 \right) \text{ sq unit}$$

Ouestion 8

The area between $x = y^2$ and x = 4 is divided into equal parts by the line x = a find the value of a.

Solution:

Equation of the curve (parabola) is $x = y^2$ (1)

\Rightarrow y = \sqrt{x}

Now area bounded by parabola (1) and vertical line x = 4 is divided into two equal parts vertical line x = a.

Area OAMB = Area AMBDNC

Area OAMB = Area AMBDNC

$$\Rightarrow 2 \left| \int_{0}^{a} y \, dx \right| = 2 \left| \int_{a}^{4} y \, dx \right|$$

$$\Rightarrow 2 \left| \int_{0}^{a} x^{\frac{1}{2}} \, dx \right| = 2 \left| \int_{a}^{4} x^{\frac{1}{2}} \, dx \right|$$

$$\Rightarrow \frac{\left(x^{\frac{3}{2}}\right)_{0}^{a}}{\frac{3}{2}} = \frac{\left(x^{\frac{3}{2}}\right)_{a}^{4}}{\frac{3}{2}}$$

$$\Rightarrow \frac{2}{3} \left[a^{\frac{3}{2}} - 0 \right] = \frac{2}{3} \left[4^{\frac{3}{2}} - a^{\frac{3}{2}} \right]$$

$$\Rightarrow a^{\frac{3}{2}} = 8 - a^{\frac{3}{2}}$$

For more Info Visit - www.KITest.in

6262969699

$$\Rightarrow 2a^{\frac{3}{2}} = 8 \Rightarrow a^{\frac{3}{2}} = 4$$
$$\Rightarrow a = 4^{\frac{3}{2}}$$

Question 9

Find the area of the region bounded by the parabola $y = x^2$ and y = |x|

Solution:

6262969699

And area of ray y=x and x-axis

So required shaded area in first quadrant = Area between ray y=x for x ≥ 0 and x-axis – Area between parabola y = x^2 and x-axis in first quadrant = Area given by equation (2) – Area given by equation (1) = $\frac{1}{2} - \frac{1}{3} = \frac{1}{6}$ sq. units Therefore the required area = 2 × (1/6) = 1/3

Question 10

Find the area bounded by the curve x = 4y and the line x = 4y- 2

Solution:

Step 1: graph and region of integration

Equation of the given curve is $x^2 = 4y$ (1) Equation of the given line is x = 4y - 2......(2) $\Rightarrow y = \frac{x+2}{4}$

x	0	1	-2
У	0	1/2	0

Step 2: putting $y = \frac{x^2}{4}$ from equation (1) in equation (20, $x=4\frac{x^2}{4}-2 \Rightarrow x = x^2 - 2 \Rightarrow -x^2 + x + 2 = 0$ $\Rightarrow x^2 - x - 2 = 0$ $x^2 - 2x + x - 2 = 0 \Rightarrow x (x - 2) + (x - 2) = 0$

For more Info Visit - www.KITest.in

6262969699

 \Rightarrow (x - 2) + (x + 1) = 0 \Rightarrow x = 2 or x = -1 For x =2, from equation (1), $y = \frac{x^2}{4} = \frac{4}{4} = 1$ So points (2, 1) For x = 1 from equation (1), $y = \frac{x^2}{a} = \frac{1}{a}$ So point is $\left(-1, \frac{1}{4}\right)$ Therefore, the two points of intersection of parabola (1) and line (2) are C $\left(-1, \frac{1}{4}\right)$ and D (2,1) Step 3: Area CMOEDN between parabola (1) and x-axis $= \left| \int_{-1}^{2} y \, dx \right| = \left| \int_{-1}^{2} \frac{x^2}{4} \, dx \right|$ $= \left| \frac{\left(x^3\right)_{-1}^2}{12} \right| = \left| \frac{1}{12} \left\{ 2^3 + (-1)^3 \right\} \right|$ $=\frac{1}{12}(8+1) = \frac{9}{12} = \frac{3}{4}$ sq. units......(3) Step 4: Area of trapezium CMND between line (2) and x-axis $=\left|\int_{-1}^{2} y \, dx\right| = \left|\int_{-1}^{2} \frac{x+2}{4} \, dx\right|$ $= \left| \frac{1}{4} \int_{-1}^{2} (x+2) dx \right| = \frac{1}{4} \left| \left(\frac{x^2}{2} + 2x \right)_{-1}^{2} \right|$ $=\frac{1}{4}\left|\binom{4}{2}+4\right|-\binom{1}{2}-2\right|=\frac{1}{4}\left|\binom{2}{2}+4-\frac{1}{2}+2\right|$ $=\frac{1}{4}\left|8-\frac{1}{2}\right|=\frac{1}{4}\times\frac{15}{2}=\frac{15}{8}$ sq. units.....(4) Therefore. Required shaded area = Area given by equation (4) – Area given by equation (3) = $\frac{15}{8} - \frac{3}{4} = \frac{15-6}{8} = \frac{9}{8}$ sq. - Complete Kill of Education units.

Question 11

Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3

Solution:

For more Info Visit - <u>www.KITest.in</u>

For Enquiry – 6262969604	6262969699
x' $(x = 0)$ $y' = 4x$ $(x = 3)$ $y'' = 4x$	
$= 2\left \int_{0}^{3} y dx\right = 2\left \int_{0}^{3} 2x^{\frac{1}{2}} dx\right = 4\left \frac{\left(x^{\frac{3}{2}}\right)_{0}^{3}}{\frac{3}{2}}\right $	
$= 4 \cdot \frac{2}{3} \left[3^{\frac{3}{2}} - 0 \right] = \frac{8}{3} \cdot 3 \sqrt{3} = 8 \sqrt{3} \text{ sq. units.}$	
Question 12	
Choose the correct answer:	ACT
Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and t (A) π (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{4}$	he line 0 and x = 2 is
Solution:	
Option (A) is correct. Explanation: Equation of the circle is $x^2 + y^2 = 2^2$ (1) $\Rightarrow y = \sqrt{2^2 - x^2}$ (2)	

For more Info Visit - <u>www.KITest.in</u>

Option (B) is correct. **Explanation:** Equation of the curve (parabola) $y^2 = 4x$

For more Info Visit - <u>www.KITest.in</u>

For more Info Visit - www.KITest.in

6262969699

For more Info Visit - www.KITest.in

6262969699

$= \int_{\frac{1}{2}}^{\frac{1}{2}} \left(\frac{3}{2}\right)^2 - y^2 dy$
$\left[\because x^2 = \left(\frac{3}{2}\right)^2 - y^2 \Rightarrow x = \sqrt{\left(\frac{3}{2}\right)^2 - y^2} \right]$
$= \left[\frac{y}{2}\sqrt{\left(\frac{3}{2}\right)^2 - y^2} + \frac{\left(\frac{3}{2}\right)^2}{2}\sin^{-1}\frac{\frac{y}{3}}{2}\right]_{\frac{1}{2}}^{\frac{3}{2}}$
$=\frac{3}{4}\sqrt{\left(\frac{3}{2}\right)^2 - \left(\frac{3}{2}\right)^2} + \frac{9}{8}\sin^{-1}\frac{\frac{3}{2}}{\frac{3}{2}} - \left[\frac{1}{4}\sqrt{\frac{9}{4} - \frac{1}{4}} + \frac{9}{8}\sin^{-1}\frac{\frac{1}{2}}{\frac{3}{2}}\right]$
$= \left(\frac{3}{4} \times 0\right) + \frac{9}{8} \sin^{-1} 1 - \left[\frac{1}{4} \sqrt{\frac{8}{4}} + \frac{9}{8} \sin^{-1} \frac{1}{3}\right]$
$=\frac{9}{8} \times \frac{\pi}{2} - \frac{1}{4}\sqrt{2} - \frac{9}{8}\sin^{-1}\frac{1}{3}$
$=\frac{9\pi}{16} - \frac{\sqrt{2}}{4} - \frac{9}{8}\sin^{-1}\frac{1}{3}\dots\dots(4)$ Step 5:
Required shaded area = Area AOBDA = 2 (Area OBD) = (Area OBM + Area MBD)
$=2\left[\frac{\sqrt{2}}{3} + \left(\frac{9\pi}{16} - \frac{\sqrt{2}}{4} - \frac{9}{8}\sin^{-1}\frac{1}{3}\right)\right] = 2\left[\sqrt{2}\left(\frac{1}{3} - \frac{1}{4}\right) + \frac{9\pi}{16} - \frac{9}{8}\sin^{-1}\frac{1}{3}\right]$
$=2\sqrt{2}\left(\frac{4-1}{12}\right)+\frac{9\pi}{8}-\frac{9}{4}\sin^{-1}\frac{1}{3}$
$=\frac{\sqrt{2}}{6}+\frac{9\pi}{8}-\frac{9}{4}\sin^{-1}\frac{1}{3}=\frac{\sqrt{2}}{6}+\frac{9}{4}\left(\frac{\pi}{2}-\sin^{-1}\frac{1}{3}\right)$
$= \frac{\frac{6}{\sqrt{2}}}{\frac{6}{7}} + \frac{9}{4}\cos^{-1}\frac{1}{3}\left[::\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta\right]$

Question 2

Find the area bounded by the curves $(x - 1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$

Solution:

Equations of two circles are

 $x^2 + y^2 = 1$ (1)

For more Info Visit - <u>www.KITest.in</u>

6262969699

And $(x - 1)^2 + y^2 = 1$ (2) From equation (1), $y^2 = 1 - x^2$ Put this value in equation (2), $(x - 1)^2 + 1 - x^2 = 1$ $\Rightarrow x^2 + 1 - 2x + 1 - x^2 = 1$ $\Rightarrow -2x + 1 = 0$ $\Rightarrow x = \frac{1}{2}$ Put $x = \frac{1}{2}$ in $y^2 = 1 - x^2$ $y^2 = 1\left(\frac{1}{2}\right)^2 = 1 - \frac{1}{4} = \frac{3}{4} \Rightarrow y = \pm \frac{\sqrt{3}}{4}$

The two points of intersection of circles (1) and (2) are $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(\frac{1}{2}, \frac{-\sqrt{3}}{2}\right)$ Now from equation (1) $y = \sqrt{1 - x^2}$ in first quadrant and from equation (2) $y = \sqrt{1 - (x - 1)^2}$ in first

quadrant

Required area OACBO = 2 × Area OAC = 2 (Area OAD + Area DAC) $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$

$$= 2 \left[\int_{0}^{\frac{1}{2}} y \text{ of circle (ii)} dx + \int_{\frac{1}{2}}^{1} y \text{ of circle (i)} dx \right]$$

$$= 2 \left[\int_{0}^{\frac{1}{2}} \sqrt{1 - (x - 1)^2} \, dx + \int_{\frac{1}{2}}^{1} \sqrt{1 - x^2} \, dx \right]$$

= $2 \left[\left\{ \frac{(x - 1)\sqrt{1 - (x - 1)^2}}{2} + \frac{1}{2} \sin^{-1} (x - 1) \right\}_{0}^{\frac{1}{2}} + \left\{ \frac{x\sqrt{1 - x^2}}{2} + \frac{1}{2} \sin^{-1} x \right\}_{\frac{1}{2}}^{1} \right]$
= $\left\{ -\frac{1}{2}\sqrt{\frac{3}{4}} + \sin^{-1} \left(-\frac{1}{2}\right) \right\} - \sin^{-1} (-1) - \left\{ \frac{1}{2}\sqrt{\frac{3}{4}} + \sin^{-1} \frac{1}{2} \right\}$

For more Info Visit - <u>www.KITest.in</u>

6262969699

$$= -\frac{\sqrt{3}}{4} - \frac{\pi}{6} + \frac{\pi}{2} + \frac{\pi}{2} - \frac{\sqrt{3}}{4} - \frac{\pi}{6} = \left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2}\right)$$
sq. units

Question 3

Find the area of the region by the curve $y = x^2 + 2$. y = x, x = 0 and x = 3.

Solution:

Equation of the given curve is

We know that, slope of straight line passing through the origin is always 1, that means, making an angle of 45 degrees with x- axis.

Here also, Limits of integration area given to be x=0 to x=3.

Area bounded by parabola (1) namely $y = x^2 + 2$. the x-axis and the ordinates x=0 to x=3 is the area

OACD and
$$\int_{0}^{0} y \, dx = \int_{0}^{0} (x^2 + 2) \, dx$$

= $\left(\frac{x^3}{3} + 2x\right)_{0}^{3}$
= $(9 + 6) - 0 = 15$ (3)

Again Area bounded by parabola (2) namely y=x the x-axis and the ordinates x=0 to x=3 is the area OAB and

For more Info Visit - www.KITest.in

6262969699

$$\int_{0}^{3} y \, dx = \int_{0}^{3} x \, dx$$

= $\left(\frac{x^{2}}{2}\right)_{0}^{3} = \frac{9}{2} - 0 = \frac{9}{2}$(3)
Required area = Area OBCD = Area OACD - Area OAB
= Area given by equation (3) - Area given by equation (4)
= $15 - \frac{9}{2} = \frac{21}{2}$ sq. units

Question 4

Using integration, find the area of the region by the triangle whose vertices are (-1, 0), (1,3) and (3,2)

Solution:

Vertices of triangle are A (-1,0), B (1,3) and C (3,2).

Therefore, equation of the line is $y - 0 \frac{3-0}{1-(-1)} (x - (-1))$ $\left[\because y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x_2 - x_1)\right]$ $y = \frac{3}{2} (x + 1)$ Area of ΔABC = Area bounded by line AB and x - axis $= \int_{-1}^{1} y \, dx$ $\left[\because At A, x = -1 \text{ and at } B, x = 1\right]$ $= \int_{-1}^{1} \frac{3}{2} (x + 1) \, dx$

For more Info Visit - www.KITest.in

6262969699

$$=\frac{3}{2}\left(\frac{x^{2}}{2}+x\right)_{-1}^{1}$$

$$=\frac{3}{2}\left[\left(\frac{1}{2}+1\right)+\left(\frac{1}{2}-1\right)\right]$$

$$=\frac{3}{2}\left(\frac{3}{2}+\frac{1}{2}\right)=\frac{3}{2}\cdot\frac{4}{2}=3$$
......(1)
$$= Again equation of line BC is $y - 3 = \frac{3}{2} + \frac{1}{2}(x - 1) \Rightarrow y = \frac{1}{2}(7 - x)$
Area of trapezium BLMC = Area bounded by line BC and x - axis
$$\Rightarrow \int_{1}^{3} y \, dx = \int_{1}^{3} \frac{1}{2}(7 - x) \, dx$$

$$=\frac{1}{2}\left[(21 - \frac{9}{2} - 7 + \frac{1}{2})\right] = \frac{1}{2}\left(\frac{422 - 9 - 14 + 1}{2}\right)$$

$$=\frac{1}{4} \times 20 = 5$$
.......(2)
Again equation of line AC is $y - 0 = \frac{2 - 0}{3 - (-1)}(x - (-1)) \Rightarrow y = \frac{1}{2}(x + 1)$
Area of triangle ACM = Area bounded by line AC and x-axis
$$= \sum_{1}^{3} y \, dx = \int_{-1}^{3} \frac{1}{2}(x + 1) \, dx$$

$$=\frac{1}{2}\left[\left(\frac{x^{2}}{2} + x\right)_{-1}^{3}\right]$$

$$=\frac{1}{2}\left(\frac{9 + 6 - 1 + 2}{2}\right)$$

$$=\frac{1}{2} \times 16 = 4$$
.......(3)
Therefore
Required area = Area of $\Delta ABC + Area of Trapezium BLMC - Area $\Delta ACM$$$$

Question 5

Using integration, find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1 and x=4.

For more Info Visit - <u>www.KITest.in</u>

6262969699

Solution:

Equations of one side of triangle is

 $y = 2x \ 1 \dots \dots \dots (1)$ $y = 3x \ 1 \dots \dots \dots (2)$ And $x = 4 \dots \dots \dots (3)$ Solving equation (1) and (2), we get x=0 and y=1 So, Point of intersection of lines (1) and (2) is A (0, 1) Put x=4 in equation (1), we get y=9 So, Point of intersection of lines (1) and (3) is B (4, 9) Put x=4 in equation (1), we get y=13 Point of intersection of lines (2) and (3) is C (4, 13) Area between line (2), that is AC and x-axis

$$= \int_{0}^{4} y \, dx = \int_{0}^{4} (3x+1) \, dx = \left(\frac{3x^2}{2} + x\right)_{0}^{4}$$

= 24 + 4 = 28 sq. units(iv) Again Area between line (1) , that is AB and x-axis

$$= \int_{0}^{4} y \, dx = \int_{0}^{4} (2x+1) \, dx$$

= $(x^{2} + x)_{0}^{4}$
16 + 4 = 20 sq. units(v)
Therefore, required area of Δ ABC
= Area given by (4) – Area given by (5)
= 28 - 20 = 8 sq. units

For more Info Visit - www.KITest.in

From the graph of circle (1) and straight line (3), it is clear that points of intersections of circle (1) and straight line (3) are A (2, 0) and B (0, 2).

Area OACB, bounded by circle (1) and coordinate axes in first quadrant. $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$

$$= \left| \int_{0}^{2} y \, dx \right| = \left| \int_{0}^{2} \sqrt{2^{2} - x^{2}} \, dx \right|$$

= $\left(\frac{x}{2} \sqrt{2^{2} - x^{2}} + \frac{2^{2}}{2} \sin^{-1} \frac{x}{2} \right)_{0}^{2}$
= $\left(\frac{2}{2} \sqrt{4 - 4} + 2\sin^{-1} 1 \right) - (0 + 2\sin^{-1} 0)$
= $0 + 2 \left(\frac{\pi}{2} \right) - 2 (0) = \pi$ sq. units(iv)
Area of triangle OAB bounded by straight line (3) and coordinate axes

For more Info Visit - <u>www.KITest.in</u>

6262969699

 $\Rightarrow y = 2\sqrt{x} = 2x \frac{1}{2}\dots\dots(2)$

Equation of another curve (line) is y=2x(3) Solving equation (1) and (3), we get x=0 or x=1 and y=0 or y=2 Therefore, Points of intersections of circle (1) and line (2) are 0 (0, 0) and A (1, 2).

Now Area OBAM = Area bounded by parabola (1) and x – axis = $\int_{0}^{1} y \, dx$

$$= \left| \int_{0}^{1} 2x^{\frac{1}{2}} dx \right| = 2 \frac{\left(x^{\frac{3}{2}}\right)_{0}^{1}}{\frac{3}{2}}$$

For more Info Visit - www.KITest.in

6262969699

For more Info Visit - www.KITest.in

For Enquiry - 6262969604 6262969699 (5,625) (1, 1) 0 x=5 x = 1 It is clear that curve (1) passes through the origin because x = 0 from (1) y = 0. Table of values for curve $y = x^4$ 2 3 4 5 X 1 16 81 256 625 1 y Required shaded area between the curve $y = x^4$, vertical lines x = 1, x = 5 and x - axis $=\int_{1}^{3} y \, dx = =\int_{1}^{3} x^4 \, dx$ $\left(\frac{x^5}{5}\right)_1^5 = \frac{5^5}{5} - \frac{1^5}{5}$ = $=\frac{3125-1}{5}=\frac{3124}{5}$ = 624.8 sq units

Question 2

Find the area between the curves the y =x and y = x^2

Solution:

Equation of one curve (straight line) is y = x (i)

For more Info Visit - <u>www.KITest.in</u>

6262969699

Equation of second curve (parabola) is $y = x^2$ (ii) Solving equation (i) and (ii), we get x = 0 or x = 1 and y = 0 or y = 1Points of intersection of line (i) and parabola (ii) are 0 (0, 0) and A (1, 1). Now Area of triangle OAM = Area bounded by line (i) and x-axis = $\int_{0}^{1} y \, dx = \int_{0}^{1} x \, dx$ = $\left(\frac{x^2}{2}\right)_{0}^{1}$ = $\frac{1}{2} - 0 = \frac{1}{2}$ sq. units Also Area OBAM = Area bounded by parabola (ii) and x - axis = $\int_{0}^{1} y \, dx = \int_{0}^{1} x^2 \, dx$ = $\left(\frac{x^3}{3}\right)_{0}^{1}$ = $\frac{1}{3} - 0 = \frac{1}{3}$ sq. units Required area OBA between line (i) and parabola (ii) = Area of triangle OAM - Area of OBM = $\frac{1}{2} - \frac{1}{3} = \frac{3-2}{6} = \frac{1}{6}$ sq. units Question 3

Find the area of the region lying in the first quadrant and bounded. by $y = 4x^2$, x = 0, y = 1 and y = 4

Solution:

For more Info Visit - www.KITest.in

6262969699

 $y=|x+3| \ge 0$ for all real x. Graph of curve is only above the x -axis I.e., in first and second quadrant only. y=|x+3|= x+3If $x+3 \ge 0$ $x \ge -3$ (ii)

For more Info Visit - www.KITest.in

6262969699

And $y = x + 3 $ = -(x + 3) If $x + 3 \le 0$ $x \le -3$ (iii) Table of values for $y = x + 3$ for $x \ge -3$
x Y -3 0 -2 1 -1 2 0 3
Table of values for $y = x + 3$ for $x \le -3$ $\begin{array}{r} x & Y \\ \hline -3 & 0 \\ \hline -4 & 1 \\ \hline -5 & 2 \\ \hline -6 & 3 \end{array}$ Now $\int x+3 dx$
$= \int_{-6}^{-3} x+3 dx + \int_{-3}^{0} x+3 dx$ = $\int_{-6}^{-6} -(x+3) dx + \int_{-3}^{0} (x+3) dx$
$= \left(\frac{x^2}{2} + 3x\right)_{-6}^{-3} + \left(\frac{x^2}{2} + 3x\right)_{-3}^{0}$ = $\left[\frac{9}{2} - 9 - (18 - 18)\right] + \left[0 - \left(\frac{9}{2} - 9\right)\right]$ = $\frac{9}{2} + 9 + 0 + 0 - \frac{9}{2} + 9$ = $18 - \frac{18}{2} = 18 - 9 = 9$ sq. units

Question 5

Find that area bounded by the curve $y = \sin x$ between x=0 and $x=2\pi$.

Solution:

For more Info Visit - <u>www.KITest.in</u>

6262969699

Equation of the curve is $y = \sin x$ (i) $y = \sin x \ge 0$ for $0 \le x \le \pi$: as graph is in I and II quadrant And $y = \sin x \ge 0$ for $\pi \le x \le 2\pi$: as graph is in III and IV quadrant

Question 6

Find the area enclosed by the parabola $y^2 = 4ax$ and the y =mx.

For more Info Visit - www.KITest.in

Solution:

For more Info Visit - www.KITest.in

6262969699

$$= \frac{a^2}{m^2} \left(\frac{32}{3} - 8\right)$$
$$= \frac{8a^2}{3m^3}$$

Question 7

Find the area enclosed by the parabola $4y = 3x^2$ and the line 2y = 3x + 12.

Solution:

Equation of the line is 2 y = 3 x + 12 (ii) From graph, points of intersection are B (4, 12) and C (-2, 3).

Now, Area ABCD =
$$\left| \int_{-2}^{4} \left(\frac{3}{2} x + 6 \right) dx \right|$$

= $\left[\frac{3}{4} x^2 + 6x \right]_{-2}^{4}$
= $(12 + 240 - (3 - 12))$
= 45 sq. units
Again, Area COD + Area OAB = $\int_{-2}^{4} \left(\frac{3}{4} x^2 \right) dx$
= $\frac{1}{4} [64 - (-8)] = 18$ sq. units
Therefore,

For more Info Visit - <u>www.KITest.in</u>

6262969699

Requirement area = Area ABCD - (Area COD+ Area OAB) = 45 - 18 = 27 sq. units

Question 8

Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$

Solution:

$$= \int_{0}^{2} \frac{2}{3} \sqrt{9 - x^{2}} \, dx$$

$$= \frac{2}{3} \left[\frac{x}{2} \sqrt{3^{2} - x^{2}} \frac{3^{2}}{2} \sin^{-1} \frac{x}{3} \right]$$

$$= \frac{2}{3} \left[\frac{3}{2} \sqrt{9 - 9} + \frac{9}{2} \sin^{-1} 1 - \left(0 + \frac{9}{2} \sin^{-1} 0 \right) \right]$$

$$= \frac{2}{3} \cdot \frac{9\pi}{4} = \frac{3\pi}{2} \text{ sq. units (ii)}$$

Again Area of triangle OAB = Area bounded by line AB x-axis

$$= \int_{0}^{3} \frac{2}{3} \sqrt{3 - x} \, dx$$

$$= \frac{2}{3} \left\{ \left(9 - \frac{9}{2} \right) - 0 \right\}$$

$$= \frac{2}{3} \cdot \frac{9}{2} = 3 \text{ sq. units (ii)}$$

Now required shaded area = Area OADM - Area OAB

For more Info Visit - www.KITest.in

6262969699

$$= \frac{3\pi}{2} - 3$$

= $3\left(\frac{\pi}{2} - 1\right) = \frac{3}{2}(\pi - 2)$ sq. units

Question 9

Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line $\frac{x}{a} + \frac{y}{b} = 1$.

Solution:

For more Info Visit - www.KITest.in

6262969699

Now, Required area = (Area between arc AB of the ellipse and x-axis) – (Area between chord AB and x-axis) = $\frac{\pi ab}{A} = \frac{ab}{2} = \frac{ab}{A} (\pi - 2)$ sq. units

Question 10

Find the area of the region enclosed by the parabola x2 = y, the line y = x+2 and x- axis.

Solution:

Question 11

Using the method of integration, find the area enclosed by the curve |x| + |y| = 1.

For more Info Visit - www.KITest.in

[Hint: The required is bounded by lines x + y = 1, x - y = 1, -x + y = 1 and -x - y = 1].

Solution:

6262969699

Since area is symmetrical about y –axis

Therefore, required area = Area between parabola and x –axis between limits x = 0 and x = 1

$$= \int_{0}^{1} y \, dx = \int_{0}^{1} x^2 \, dx$$

$$= \left(\frac{x^3}{3}\right)_{0}^{1} = \frac{1}{3} \dots \dots \dots (i)$$

And Area of ray – y=x and x-axis,

$$= \int_{0}^{1} y \, dx = \int_{0}^{1} x \, dx = \left(\frac{x^2}{2}\right)_{0}^{1} = \frac{1}{2} \dots \dots \dots (ii)$$

Required shaded area in first quadrant
= (Area between ray y = x for $x \ge 0$ and x -axis) – (Area between parabola $y = x^2$ and x-axis in first
quadrant)
= Area given by equation (ii) – Area given by equation (i)

$$= \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$
 sq. units

Question 13

Using the method of integration, find the area of the triangle whose vertices are A (2, 0), B (4,5) and (6,3)

Solution:

Vertices of the given triangle are A (2, 0), B (4,5) and C (6,3)

Equation of side AB is $y - 0 = \frac{5-0}{4-2} (x - 2)$

$$= y = \frac{5}{2}(x-2)$$

Equation of side BC is $y - 5 = \frac{3-5}{6-4} (x - 4)$ = y = 9 - xEquation of side AC is $y - 0 = \frac{3-0}{6-2} (x - 2)$

For more Info Visit - www.KITest.in

6262969699

$$= y = \frac{3}{4} (x - 2)$$

Now, required shaded, area = Area Δ ALB + Area of trapezium BLMC - Area Δ AMC
$$= \int_{2}^{4} \frac{5}{2} (x - 2) dx + \int_{4}^{6} (9 - 2) dx - \int_{2}^{6} \frac{3}{4} (x - 2) dx$$
$$= \left[\frac{5}{2} (8 - 8) - (2 - 4)\right] + |54 - 18 - (36 - 8)| - \left[\frac{3}{4} \{18 - 12 - (2 - 4)\}\right]$$
$$= \frac{5}{2} (0 + 2) + |36 - 36 + 8| - \frac{3}{4} (6 + 2)$$
$$= 5 + 8 - 6 = 7 \text{ sq. units}$$

Question 14

Using the method of integration find the find the area of the region bounded lines 2x + y = 4, 3x - 2y = 6 and x - 3y + 5 = 0.

Solution:

Let say, equation of one line l_1 is 2x + y = 4Equation of second line l_2 is 3x - 2y = 6And Equation of third line l_3 is x - 3y + 5 = 0Draw all the lines on the coordinate plane we get

Here, vertices of triangle ABC are A (2,0), B (4,3) and C (1,2). Now, Required area of triangle = Area of trapezium CLMB – Area \triangle ABL

$$= \int_{1}^{4} \frac{1}{3} (x+5) dx - \int_{1}^{2} (4-2) dx - \int_{2}^{4} \frac{3}{2} (x-2) dx$$

For more Info Visit - www.KITest.in

6262969699

$$= \frac{1}{3} \left[8 + 20 - \left(\frac{1}{2} + 5\right) \right] - \left\{ (8 - 4) - (4 - 1) \right\} - \frac{3}{2} \left| (8 - 8) - (2 - 4) \right| \\ = \frac{1}{3} \left(28 - \frac{11}{2} \right) - (4 - 3) - \frac{3}{2} \times 2 \\ = \frac{1}{3} \times \frac{45}{2} - 1 - 3 \\ = \frac{15}{2} - 1 - 3 = \frac{7}{2} \text{ sq. units}$$

Question 15

Find the area of the region $\{(x, y): y^2 \le 4x \text{ and } 4x^2 + 4y^2 \le 9\}$

Solution:

Equation of parabola is $y^2 = 4x \dots \dots$ (i) And equation of circle is $4x^2 + 4y^2 \le 9$(ii)

From figures, points of intersection of parabola (i) and circle (ii) are $A\left(\frac{1}{2}\sqrt{2}\right)$ and $B\left(\frac{1}{2}\sqrt{2}\right)$

Required shaded area OADBO (Area of the circle which is interior to the parabola) = 2 × Area OADO = 2 [Area OAC + Area CAD]

$$= 2 \left[\int_{0}^{\frac{1}{2}} 2\sqrt{x} \, dx \, \int_{\frac{1}{2}}^{\frac{5}{2}} \sqrt{\frac{9}{4} - x^2} \, dx \right]$$

For more Info Visit - <u>www.KITest.in</u>

$$= \int_{0}^{0} x^{3} dx + \int_{0}^{1} x^{3} dx$$
$$= \frac{\frac{-2}{17}}{4} \text{ sq units}$$

For more Info Visit - www.KITest.in

6262969699

Question 17

Choose the correct answer: The area bounded by the curve y = x|x|,x- axis and the ordinates x = -1 and x = 1 is given by (A) 0 (B) 1/3(C) 2/3 (D) 4/3

Solution:

Equation of the curve is $x + \frac{N}{x = -1} + \frac{N}{y} + \frac{N}{y} + \frac{N}{x} = 1$ $y = x|x| = x (x) = x^{2} \text{ if } x \ge 0 \dots \dots (1)$ And $y = x|x| = x (-x) = -x^{2} \text{ if } x \ge 0 \dots (1)$ Required area = Area OAMO $= \int -x^{2} dx + \int x^{2} dx$

= 2/3 sq. units

Question 18

Choose the correct answer: The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$. (A) $\frac{4}{3} (4 \pi - \sqrt{3})$ (B) $\frac{4}{3} (4 \pi + \sqrt{3})$ (C) $\frac{4}{3} (8 \pi - \sqrt{3})$ (D) $\frac{4}{3} (8 \pi + \sqrt{3})$

Solution:

Option (c) is correct Explanation: Equation of the circle is $x^2 + y^2 = 16$ (1) Thus, radius of circle is 4

For more Info Visit - www.KITest.in

This circle is symmetrical about x-axis and y- axis. Here two points of intersection are B $(2, 2\sqrt{3})$ and B' $(2, -2\sqrt{3})$.

Required area = Area of circle – Area of circle interior to the parabola = πr^2 - Area OBAB'O

 $= 16\pi - 2 \text{ x Area OBAB O}$ $= 16\pi - 2 \text{ x Area OBACO}$ $= 16\pi - 2 \left[\int_{0}^{2} \sqrt{6x} \, dx + \int_{2}^{4} \sqrt{16 - x^{2}} \, dx \right]$ $= 16\pi - 2 \left[\frac{2}{3} \sqrt{6} \left(2\sqrt{2} \right) + 8 \sin^{-1} 1 \sqrt{12} - 8 \sin^{-1} \frac{1}{2} \right]$ $= 16\pi - 2 \left[\frac{8}{\sqrt{3}} + 8 \cdot \frac{\pi}{2} - 2\sqrt{3} - 8 \cdot \frac{\pi}{6} \right]$ $= 16\pi - 2 \left[\frac{8}{\sqrt{3}} - 2\sqrt{3} + 8\pi \left(\frac{1}{2} - \frac{1}{6} \right) \right]$ $= 16\pi - 2 \left[\frac{2}{\sqrt{3}} + \frac{8\pi}{3} \right]$ $= 16\pi \left(1 - \frac{1}{3} \right) - \frac{4}{\sqrt{3}}$ $= \frac{4}{3} \left(8\pi - \sqrt{3} \right) \text{ sq. units}$

Question 19

Choose the correct answer: The area bounded by the y -axis, y = cos x and y = sin x when $0 \le x \le \frac{\pi}{2}$ is: (A) 2 $(\sqrt{2} - 1)$ (B) $\sqrt{2} - 1$ (C) $\sqrt{2} + 1$ (D) $\sqrt{2}$

Solution:

For more Info Visit - <u>www.KITest.in</u>

6262969699

Option (B) is correct Explanation: Graph of both the function are intersect at the point B $\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$

For more Info Visit - <u>www.KITest.in</u>