Chapter 4
 Principal of Mathematical Induction

Exercise 4.1

Question 1

Prove the following by using the principle of mathematical induction for all $\mathbf{n} \in \mathbf{N}$:
$1+3+3^{2}+\ldots .+3^{n+1}=\frac{\left(3^{n}-1\right)}{2}$

Answer:

We can write the given statement as
$P(n): 1+3+3^{2}+\ldots .+3^{n+1}=\frac{\left(3^{n}-1\right)}{2}$
If $\mathrm{n}=1$ we get
$P(n): 1=\frac{\left(3^{1}-1\right)}{2} \frac{3-1}{2}=\frac{2}{2}=1$
Which is true?
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$1+3+3^{2}+\ldots .+3^{k+1}=\frac{\left(3^{k}-1\right)}{2}$
Now let us prove that $P(K+1)$ is true
Here
$1+3+3^{2}+\ldots .+3^{k-1}+3^{(k+1)}=\left(1+3+3^{2}+\ldots .+3^{k-1}\right)+3^{k}$
By using equation (i)
$=\frac{\left(3^{\mathrm{k}}-\mathbf{1}\right)}{2}+3^{\mathrm{k}}$
Taking LCM
$=\frac{\left(3^{\mathrm{k}}-1\right)+2.3^{\mathrm{K}}}{2}$
Taking the common terms out
$\frac{(1+2) 3^{\mathrm{k}}-1}{2}$
We get
$=\frac{3.3^{\mathrm{k}}-1}{2}$
$=\frac{3^{\mathrm{k}+1}-1}{2}$
$P(k+1)$ is true whenever $P(k)$ is rue
Therefore by the principal of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural number i.e. n

Question 2

$1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
Answer:
We can write the given statement as
$P(n) 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
If $\mathrm{n}=1$ we get
$P(1): 1^{3}=1=\left(\frac{1(1+1)}{2}\right)^{2}=\left(\frac{1.2}{2}\right)^{2}=1^{2}=1$
Which is true?
Consider P (k) be true for some positive integer k
$1^{3}+2^{3}+3^{3}+\ldots+\mathrm{k}^{3}=\left(\frac{\mathrm{k}(\mathrm{k}+1)}{2}\right)^{2}$
Now let us prove that $P(k+1)$ is true
Here
$1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}=\left(1^{3}+2^{3}+3^{3}+\ldots \ldots+k^{3}\right)+(k+1)^{3}$
By using equation (1)
$=\left(\frac{\mathrm{k}(\mathrm{k}+1)}{2}\right)^{2}+(\mathrm{k}+1)^{3}$
So we get
$\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}$
Taking LCM
$\frac{\mathrm{k}^{2}(\mathrm{k}+1)^{2}+4(\mathrm{k}+1)^{3}}{4}$
Taking the common terms out
$=\frac{(\mathrm{k}+1)^{2}\left\{\mathrm{k}^{2}+4(\mathrm{k}+1)\right\}}{4}$
$=\frac{(\mathrm{k}+1)^{2}(\mathrm{k}+1)^{2}}{4}$
= By expending using formula
$=\frac{(\mathrm{k}+1)^{2}(\mathrm{k}+1+1)^{2}}{4}$
$=\left(\frac{(\mathrm{k}+1)^{2}(\mathrm{k}+1+1)^{2}}{4}\right)^{2}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is rue
Therefore by the principal of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural number i.e. n

Question 3

$1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\cdots+\frac{1}{(1+2+3+. n)}=\frac{2 n}{(n+1)}$

Answer:

We can write the given statement as
$\mathrm{P}(\mathrm{n}): 1+\frac{1}{1+2}+\frac{1}{1+2+3}+\cdots+\frac{1}{1+2+3+. n}=\frac{2 \mathrm{n}}{\mathrm{n}+1}$
If $\mathrm{n}=1$ we get
$P(1): 1=\frac{2.1}{1+1}=\frac{2}{2}=1$
Which is true?
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\cdots+\frac{1}{1+2+3+\cdots+. k}=\frac{\mathrm{kn}}{\mathrm{k}+1}$
Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true
Here
$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\cdots+\frac{1}{1+2+3+\cdot k}+\frac{1}{1+2+3+\cdots \cdot+\mathrm{k}+(\mathrm{k}+1)}$
$=\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\cdots+\frac{1}{1+2+3+. k}\right)+\frac{1}{1+2+3+\cdots+k+(k+1)}$
By using equation (i)
$=\frac{2 \mathrm{k}}{\mathrm{k}+1}+\frac{1}{1+2+3+\cdots+\mathrm{k}+(\mathrm{k}+1)}$
We know that
$1+2+3+\ldots .+n=\frac{n(n+1)}{2}$
So we get
$=\frac{2 \mathrm{k}}{\mathrm{k}+1}+\frac{1}{\left(\frac{\mathrm{k}+1)(\mathrm{k}+1+1)}{2}\right)}$
It can be written as
$=\frac{2 \mathrm{k}}{(\mathrm{k}+1)}+\frac{2}{(\mathrm{k}+1)(\mathrm{k}+2)}$
Taking the common term out

$=\frac{2 \mathrm{k}}{(\mathrm{k}+1)}+\left(\mathrm{k}+\frac{1}{\mathrm{k}+2}\right)$
By taking LCM
$=\frac{2 \mathrm{k}}{\mathrm{k}+1}+\left(\frac{\mathrm{k}(\mathrm{k}+2)+1}{\mathrm{k}+2}\right)$
We get
$=\frac{2 \mathrm{k}}{(\mathrm{k}+1)}\left(\frac{\mathrm{k}^{2}+2 \mathrm{k}+1}{\mathrm{k}+2}\right)$
$=\frac{2 \mathrm{k}(\mathrm{k}+1)^{2}}{(\mathrm{k}+1)(\mathrm{k}+2)}$
$=\frac{2(\mathrm{k}+1)}{(\mathrm{k}+2)}$
$P(k+1)$ is true whenever $P(k)$ is true
Therefore by the principal of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural number i.e. n

Question 4

1.2.3. $+2.3 .4+\ldots . .+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$

Answer:

We can write the given statement as
$P(n): 1.2 .3 .+2.3 .4+\ldots . .+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$
If $\mathrm{n}=1$ we get
$P(1): 1.2 .3 .=6=\frac{1(1+1)(1+2)(1+3)}{4}=\frac{1 \cdot 2 \cdot 3 \cdot 4}{4}=6$
Which is true?
Consider P (k) be true for some positive integer k
1.2.3. $+2.3 .4+\ldots . .+k(k+1)(k+2)=\frac{k(k+1)(k+2)(k+3)}{4}$

Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true
Here
1.2.3. $+2.3 .4+\ldots . .+\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)+(\mathrm{k}+3)=\{1.2 .3 .+2 \cdot 3.4+\cdots . .+\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)\}+(\mathrm{k}+1)(\mathrm{k}+$ 2(k+3)
By using equation (i)
$=\frac{\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)}{4}+(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)$
So we get
$=(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)\left(\frac{\mathrm{k}}{4}+1\right)$
It can be written as
$=\frac{(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)(\mathrm{k}+4)}{4}$
By further simplification
$=\frac{(k+1)(k+1+1)(k+1+2)(k+1+3)}{4}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true

Therefore by the principal of mathematical induction, statement $P(n)$ is true for all natural number i.e. n

Question 5

$1.3+2.3^{2}+3.3^{2}+\ldots .+n .3^{n}=\frac{(2 n-1) 3^{n-1}+3}{4}$

Answer:

We can write the given statement as
$P(n): 1.3+2.3^{2}+3.3^{2}+\ldots .+n .3^{n}=\frac{(2 n-1) 3^{n-1}+3}{4}$
If $\mathrm{n}=1$ we get
$P(1): 1.3 .=3=\frac{(2 n-1) 3^{n-1}+3}{4}=\frac{3^{2}+3}{4}=\frac{12}{4}=3$
Which is true?
Consider P (k) be true for some positive integer k
$1.3+2.3^{2}+3.3^{2}+\ldots .+\mathrm{k} .3^{\mathrm{k}}=\frac{(2 \mathrm{k}-1) 3^{\mathrm{k}-1}+3}{4}$
Now let us prove that $\mathrm{p}(\mathrm{k}+1)$ is true
Here
$1.3+2.3^{2}+3.3^{2}+\ldots .+\mathrm{k} .3^{\mathrm{k}}+(\mathrm{k}+1) 3^{\mathrm{k}+1}==\left(1.3+2.3^{2}+3.3^{2}+\ldots .+\mathrm{k} .3^{\mathrm{k}}\right)+(\mathrm{k}+1) 3^{\mathrm{k}+1}$
By using equation (1)
$=\frac{(2 \mathrm{k}-1) 3^{\mathrm{k}-1}+3}{4}+(\mathrm{k}+1) 3^{\mathrm{k}+1}$
By taking LCM
$=\frac{(2 \mathrm{k}-1) 3^{\mathrm{k}+1}+3+4(\mathrm{k}+1) 3^{\mathrm{k}+1}}{4}$
Taking the common terms out
$=\frac{3^{\mathrm{k}+1}\{2 \mathrm{k}-1+4(\mathrm{k}+1)\}+3}{4}$
By further simplification
$=\frac{3^{\mathrm{k}+1}\{6 \mathrm{k}+3\}+3}{4}$
Taking 3 as common
$=\frac{3^{\mathrm{k}+1} 3\{2 \mathrm{k}+1\}+3}{4}$
$=\frac{3^{(k+1)+1}\{2 k+1\}+3}{4}$
$=\frac{\{2(\mathrm{k}+1)-1\} 3^{(\mathrm{k}+1)+1}+3}{4}$
$P(k+1)$ is true whenever $P(k)$ is true
Therefore by the principal of mathematical induction, statement $P(n)$ is true for all natural number i.e. n

Question 6

$1.2+2.3+3.4+\ldots .+n \cdot(n+1)=\left[\frac{n(n+1)(n+2)}{3}\right]$
Answer:
We can write the given statement as
$P(n): 1.2+2.3+3.4+\ldots .+n .(n+1)=\left[\frac{n(n+1)(n+2)}{3}\right]$
If $\mathrm{n}=1$ we get
$P(1): 1.2=2=\frac{1(1+1)(1+2)}{3}=\frac{1.2 \cdot 3}{3}=2$
Which is true?
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$1.2+2.3+3.4+\ldots .+\mathrm{k} .(\mathrm{k}+1)=\left[\frac{\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)}{3}\right]$
Now let us prove that $\mathrm{p}(\mathrm{k}+1)$ is true
Here
$1.2+2.3+3.4+\ldots .+\mathrm{k} .(\mathrm{k}+1)+(\mathrm{k}+2)=[1.2+2.3+3.4+\ldots . .+\mathrm{k}(\mathrm{k}+1)]+(\mathrm{k}+1) .(\mathrm{k}+2)$
By using equation (1)
$=\frac{\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)}{3}+(\mathrm{k}+1)(\mathrm{k}+2)$
We can write it as
$=(\mathrm{k}+1)(\mathrm{k}+2)\left(\frac{\mathrm{k}}{3}+1\right)$
We get
$=\frac{(\mathrm{k}+1) \cdot(\mathrm{k}+2) \cdot(\mathrm{k}+3) \text {. }}{3}$
By further simplification
$=\frac{(\mathrm{k}+1) \cdot(\mathrm{k}+1+1) \cdot(\mathrm{k}+1+2)}{3}$
$P(k+1)$ is true whenever $P(k)$ is true
Therefore by the principal of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural number i.e. n

Question 7

$1.3+3.5+5.7+\ldots+(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$

Answer:

We can write the given statement as
$P(n): 1.3+3.5+5.7+\ldots+(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$
If $\mathrm{n}=1$ we get
$P(1): 1.3=3=\frac{1\left(41^{2}+6.1-1\right)}{3}=\frac{4+6-1}{3}+\frac{9}{3}=3$
Which is true?
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$1.3+3.5+5.7+\ldots+(2 \mathrm{k}-1)(2 \mathrm{k}+1)=\frac{\mathrm{k}\left(4 \mathrm{k}^{2}+6 \mathrm{k}-1\right)}{3}$
Now let us prove that $\mathrm{p}(\mathrm{k}+1)$ is true
Here
$(1.3+3.5+5.7+\ldots+(2 \mathrm{k}-1)(2 \mathrm{k}+1)+\{2(\mathrm{k}+1)-2\}\{2(\mathrm{k}+1)+\}$
By using equation (1)
$=\frac{\mathrm{k}\left(4 \mathrm{k}^{2}+6 \mathrm{k}-1\right)}{3}+(2 \mathrm{k}+2-1)(2 \mathrm{k}+2+1)$
$=\frac{\mathrm{k}\left(4 \mathrm{k}^{2}+6 \mathrm{k}-1\right)}{3}+(2 \mathrm{k}+2-1)(2 \mathrm{k}+2+1)$
On further calculation
$=\frac{\mathrm{k}\left(4 \mathrm{k}^{2}+6 \mathrm{k}-1\right)}{3}+(2 \mathrm{k}+1)(2 \mathrm{k}+3)$
By multiplying the terms
$=\frac{\mathrm{k}\left(4 \mathrm{k}^{2}+6 \mathrm{k}-1\right)}{3}+\left(4 \mathrm{k}^{2}+8 \mathrm{k}+3\right)$
Taking LCM
$=\frac{\mathrm{k}\left(4 \mathrm{k}^{2}+6 \mathrm{k}-1\right)+3\left(4 \mathrm{k}^{2}+8 \mathrm{k}+3\right)}{3}$
By further simplification
$=\frac{4 \mathrm{k}^{3}+6 \mathrm{k}^{2}-\mathrm{k}+12 \mathrm{k}^{2}+24 \mathrm{k}+9}{3}$
So we get
$=\frac{4 \mathrm{k}^{3}+18 \mathrm{k}^{2}+23 \mathrm{k}+9}{3}$
It can be written as
$=\frac{4 \mathrm{k}^{3}+14 \mathrm{k}^{2}+9 \mathrm{k}+4 \mathrm{k}^{2}+14 \mathrm{k}+9}{3}$
$=\frac{\mathrm{k}\left(4 \mathrm{k}^{2}+14 \mathrm{k}+9\right)+\left(4 \mathrm{k}^{2}+14 \mathrm{k}+9\right)}{3}$
Taking the common terms out
$=\frac{(\mathrm{k}+1)\left\{4\left(\mathrm{k}^{2}+2 \mathrm{k}+1\right)+6(\mathrm{k}+1)-1\right\}}{3}$
Using the formula
$=\frac{(\mathrm{k}+1)\left\{4(\mathrm{k}+1)^{2}+6(\mathrm{k}+1)-1\right\}}{3}$
$P(k+1)$ is true whenever $P(k)$ is true
Therefore by the principal of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural number i.e. n

Question 8

$1.2+2.2^{2}+3.2^{2}+\ldots+n .2^{n}=(n-1) 2^{n+1}+2$

Answer:

We can write the given statement as
$P(n): 1.2+2.2^{2}+3.2^{2}+\ldots+n .2^{n}=(n-1) 2^{n+1}+2$
If $\mathrm{n}=1$ we get
$P(1): 1.2=2=(1-1)^{1+1}+2=0+2=2$
Which is true?
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$1.2+2.2^{2}+3.2^{2}+\ldots+\mathrm{k} 2^{\mathrm{k}}=(\mathrm{k}-1) 2^{\mathrm{n}+1}+2$
Now let us prove that p $(\mathrm{k}+1)$ is true
Here
$\left\{1.2+2.2^{2}+3.2^{2}+\ldots+\mathrm{k} .2^{\mathrm{k}}\right\}=(\mathrm{k}-1) 2^{\mathrm{k}+1}$
By using equation (1)
$(\mathrm{k}-1) 2^{\mathrm{k}+1}+2+(\mathrm{k}-1) 2^{\mathrm{k}+1}$
Taking the common terms out
$=2^{\mathrm{k}+1}\{(\mathrm{k}-1)(\mathrm{k}-1)\}+2$
So we get
$=2^{\mathrm{k}+1} .2 \mathrm{k}+2$
It can be written as
$=\mathrm{k} .2^{(\mathrm{k}+1)-1}+2$
$=\{(\mathrm{k}-1)-1\} 2^{(\mathrm{k}+1)}+2$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true
Therefore by the principal of mathematical induction, statement $P(n)$ is true for all natural number i.e. n

Question 9

$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$

Answer:

We can write the given statement as
$\mathrm{P}(\mathrm{n}): \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .+\frac{1}{2^{\mathrm{n}}}=1-\frac{1}{2^{\mathrm{n}}}$
If $\mathrm{n}=1$ we get
$P(1): \frac{1}{2}=1-\frac{1}{2^{n}}=\frac{1}{-2}$
Which is true?
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{\mathrm{k}}}=1-\frac{1}{2^{\mathrm{k}}}$
Now let us prove that $\mathrm{p}(\mathrm{k}+1)$ is true
Here
$\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots .+\frac{1}{2^{k}}\right)+\frac{1}{2^{k+1}}$
By using equation (i)
$=\left(1-\frac{1}{2^{\mathrm{k}}}\right)+\frac{1}{2^{\mathrm{k}+1}}$
We can write it as
$=1-\frac{1}{2^{k}}+\frac{1}{2.2^{k}}$
Taking the common terms out
$=1-\frac{1}{2^{\mathrm{k}}}\left(1-\frac{1}{2}\right)$
So we get
$=1-\frac{1}{2^{\mathrm{k}}}\left(\frac{1}{2}\right)$
It can be written as
$=\frac{1}{2^{k+1}}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true
Therefore by the principal of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural number i.e. n

Question 10
$\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots . .+\frac{1}{(3 n+1)(3 n+2)}=\frac{n}{(6 n+4)}$

Answer:

We can write the given statement as
$P(n): \frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots . .+\frac{1}{(3 n+1)(3 n+2)}=\frac{n}{(6 n+4)}$
If $\mathrm{n}=1$ we get
$P(1):=\frac{1}{2.5}=\frac{1}{10}=\frac{1}{6.1+4}=\frac{1}{10}$
Which is true?
Consider P (k) be true for some positive integer k
$\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots . .+\frac{1}{(3 \mathrm{k}+2)(3 \mathrm{k}+2)}=\frac{\mathrm{k}}{6 \mathrm{k}+4}$
Now let us prove that p $(\mathrm{k}+1)$ is true
Here
$\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots .+\frac{1}{(3 k-)(3 k+2)}+\frac{1}{\{3(k+1)-1\}\{3(k+1)+2\}}$
By using equation (i)
$=\frac{\mathrm{k}}{(6 \mathrm{k}+4)}+\frac{1}{(3 \mathrm{k}+3-1)(3 \mathrm{k}+3+2)}$
By simplification of terms
$=\frac{\mathrm{k}}{(6 \mathrm{k}+4)}+\frac{1}{(3 \mathrm{k}+2)(3 \mathrm{k}+5)}$
Taking 2 as common
$=\frac{\mathrm{k}}{2(3 \mathrm{k}+2)}+\frac{1}{(3 \mathrm{k}+2)(3 \mathrm{k}+5)}$
Taking the common terms out
$=\frac{\mathrm{k}}{(3 \mathrm{k}+2)}\left(\frac{\mathrm{k}}{2}+\frac{1}{3 \mathrm{k}+5}\right)$
Taking LCM
$=\frac{1}{(3 \mathrm{k}+2)}\left(\frac{\mathrm{k}(3 \mathrm{k}+5)+2}{2(3 \mathrm{k}+5)}\right)$
By multiplication
$\frac{1}{(3 \mathrm{k}+2)}\left(\frac{3 \mathrm{k}^{2}+5 \mathrm{k}+2}{2(3 \mathrm{k}+5)}\right)$
Separating the terms
$\frac{1}{(3 \mathrm{k}+2)}\left(\frac{(3 \mathrm{k}+)(\mathrm{k}+1)}{2(3 \mathrm{k}+5)}\right)$
By further calculation
$=\frac{(k+1)}{6 k+10}$
So we get
$=\frac{(k+1)}{6(k+1)+4}$
$P(k+1)$ is true whenever $P(k)$ is true
Therefore by the principal of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural number
i.e. n

For more Info Visit - www.KITest.in

Question 11

$\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots \ldots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$

Answer:

We can write the given statement as
P (n): $\frac{1}{1.2 \cdot 3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots . .+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$
If $\mathrm{n}=1$ we get
$P(1):=\frac{1}{1.2 .3}=\frac{1 .(1+3)}{4(1+1)(1+2)}=\frac{1.4}{4.2 \cdot 3}=\frac{1}{1.2 .3}$
Which is true?
Consider P (k) be true for some positive integer k
$\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots . .+\frac{1}{k(k+1)(k+2)}=\frac{k(k+3)}{4(k+1)(k+2)}$
Now let us prove that $\mathrm{p}(\mathrm{k}+1)$ is true
Here
$\left[\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\cdots . .+\frac{1}{k(k+1)(k+2)}\right]+\frac{1}{(k+1)(k+2)(k+3)}$
By using equation (1)
$=\frac{\mathrm{k}(\mathrm{k}+3)}{4(\mathrm{k}+1)(\mathrm{k}+2)}+\frac{1}{(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)}$
Taking out the common terms
$=\frac{1}{(k+1)(k+2)}\left\{\frac{\mathrm{k}(\mathrm{k}+3)}{4}+\frac{1}{\mathrm{k}+3}\right\}$
Taking LCM
$=\frac{1}{(k+1)(k+2)}\left\{\frac{\mathrm{k}(\mathrm{k}+3)^{2}+4}{4(\mathrm{k}+3)}\right\}$
Expanding using formula
$=\frac{1}{(k+1)(k+2)}\left\{\frac{\mathrm{k}\left(\mathrm{k}^{2}+6 \mathrm{k}+9\right)+4}{4(\mathrm{k}+3)}\right\}$
By further calculation
$=\frac{1}{(\mathrm{k}+1)(\mathrm{k}+2)}\left\{\frac{\mathrm{k}^{3}\left(6 \mathrm{k}^{2}+9 \mathrm{k}+4\right.}{4(\mathrm{k}+3)}\right\}$
We can write it as
$=\frac{1}{(k+1)(k+2)}\left\{\frac{k^{3}+2 k^{2} k+4 k^{2}+8 k+4}{4(k+3)}\right\}$
Taking the common terms
$=\frac{1}{(k+1)(k+2)}\left\{\frac{\mathrm{k}\left(\mathrm{k}^{2}+2 \mathrm{k}+1\right)+4\left(\mathrm{k}^{2}+2 \mathrm{k}+1\right)}{4(\mathrm{k}+3)}\right\}$
We get
$=\frac{1}{(k+1)(k+2)}\left\{\frac{\mathrm{k}(\mathrm{k}+1)^{2}+4(\mathrm{k}+1)^{2}}{4(\mathrm{k}+3)}\right\}$
Here
$=\frac{(k+1)^{2}(k+4)}{4(k+1)(k+2)(k+3)}$
$=\frac{(\mathrm{k}+1)\{(\mathrm{k}+1)(\mathrm{k}+3)\}}{4\{(\mathrm{k}+1)+1\}\{(\mathrm{k}+1)+2\}}$
$P(k+1)$ is true whenever $P(k)$ is true
Therefore by the principal of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural number i.e. n

Question 12

$\alpha+\alpha r+\alpha r^{2}+\ldots .+\alpha r^{r-1}=\frac{\alpha\left(r^{n}-1\right)}{r-1}$
Answer:

We can write the given statement as

$P(n): \alpha+\alpha r+\alpha r^{2}+\ldots . .+\alpha r^{r-1}=\frac{\alpha\left(r^{n}-1\right)}{r-1}$
If $\mathrm{n}=1$ we get
$\mathrm{P}(1):=\mathrm{a}=\frac{\mathrm{a}\left(\mathrm{r}^{1}-1\right)}{\mathrm{r}-1}=\alpha$
Which is true?
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$\alpha+\alpha r+\alpha r^{2}+\ldots .+\alpha r^{k-1}=\frac{\alpha\left(r^{k}-1\right)}{r-1} \ldots \ldots$
Now let us prove that p $(\mathrm{k}+1)$ is true
Here
$\left\{\alpha+\alpha r+\alpha r^{2}+\cdots . .+\alpha r k-1\right\} \alpha^{(k+1)-1}$

By using equation (1)
$\frac{\alpha\left(\mathbf{r}^{\mathbf{k}}-1\right)}{\mathrm{r}-1}+\alpha \mathrm{r}^{\mathrm{k}}$
Taking L.C.M.
$=\frac{\alpha\left(\mathbf{r}^{\mathbf{k}}-\mathbf{1}\right)+\alpha \mathrm{r}^{\mathrm{k}}(\mathrm{r}-1)}{\mathrm{r}-1}$
Multiplying the terms
$=\frac{\alpha\left(\mathbf{r}^{\mathbf{k}}-\mathbf{1}\right)+\alpha \mathrm{r}^{\mathrm{k}+1}-\mathrm{ar}^{\mathrm{k}}}{\mathrm{r}-\mathbf{1}}$
So we get
$=\frac{\operatorname{ar}^{\mathrm{k}}-\alpha+\alpha \mathrm{r}^{\mathrm{k}+1}-\alpha \mathrm{r}^{\mathrm{k}}}{\mathrm{r}-\mathbf{1}}$
By further simplification
$=\frac{\alpha r^{\mathrm{k}+1}-\alpha}{\mathrm{r}-1}$
Taking the common terms out
$=\frac{\alpha\left(r^{\mathrm{k}+1}-\alpha\right)}{\mathrm{r}-1}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true

Therefore by the principal of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural number i.e. n

Question 13

$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots \ldots\left(1+\frac{(2 n+1}{n^{2}}\right)=(n+1)^{2}$
Answer:
We can write the given statement as
$P(n):\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots \ldots .\left(1+\frac{(2 n+1}{n^{2}}\right)=(n+1)^{2}$
If $\mathrm{n}=1$ we get
$P(1):=\left(1+\frac{3}{1}\right)=4=(1+1)^{2}=2^{2}=4$
Which is true?
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots \ldots .\left(1+\frac{(2 k+1}{\mathrm{k}^{2}}\right)=(\mathrm{k}+1)^{2}$
Now let us prove that $\mathrm{p}(\mathrm{k}+1)$ is true
Here
$\left[\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots \ldots\left(1+\frac{(2 k+1)}{k^{2}}\right)\right]\left\{1+\frac{\{2(k+1)+1\}}{(k+1)^{2}}\right\}$
By using equation (1)
$=(\mathrm{k}+1)^{2}\left(1+\frac{2(\mathrm{k}+1)+1}{(\mathrm{k}+1)^{2}}\right)$
Taking LCM
$=(\mathrm{k}+1)\left[\frac{\mathrm{k}+1)^{2}+2(k+1)+1}{(\mathrm{k}+1)^{2}}\right]$
So we get
$=(\mathrm{k}+1)^{2}+2(k+1)+1$
By further simplification
$=\{(k+1)+1\}^{2}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true
Therefore by the principal of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural number i.e. n

Question 14
$\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots \ldots\left(1+\frac{1}{n}\right)=(n+1)$
Answer:

We can write the given statement as
$P(n):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots \ldots\left(1+\frac{1}{n}\right)=(n+1)$
If $\mathrm{n}=1$ we get
$P(1):=\left(1+\frac{1}{1}\right)=2=(1+1)$
Which is true?
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$\mathrm{p}(\mathrm{k}):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots \ldots\left(1+\frac{1}{\mathrm{k}}\right)=(\mathrm{k}+1)$
Now let us prove that $\mathrm{p}(\mathrm{k}+1)$ is true
Here
$\left[\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots \ldots\left(1+\frac{1}{\mathrm{k}}\right)\right]\left(1+\frac{1}{\mathrm{k}+1}\right)$
By using equation (1)
$=(\mathrm{k}+1)\left(1+\frac{1}{\mathrm{k}+1}\right)$
Taking LCM
$=(\mathrm{k}+1)\left(\frac{(\mathrm{K}+1)+1}{(\mathrm{~K}+1)}\right)$
By further simplification
$=(\mathrm{k}+1)+1$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true
Therefore by the principal of mathematical induction, statement $P(n)$ is true for all natural number i.e. n

Question 15

$1^{2}+3^{2}+5^{2}+\cdots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$

Answer:

We can write the given statement as
$P(n): 1^{2}+3^{2}+5^{2}+\cdots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$
If $\mathrm{n}=1$ we get
$P(1):=1^{2}=1 \frac{1(2.1-1)(2.1+1)}{3}=\frac{1 \cdot 1 \cdot 3}{3}=1$
Which is true?
Consider P (k) be true for some positive integer k
$\mathrm{p}(\mathrm{k}): 1^{2}+3^{2}+5^{2}+\cdots+(2 \mathrm{k}-1)^{2}=\frac{\mathrm{k}(2 \mathrm{k}-1)(2 \mathrm{k}+1)}{3}$

Now let us prove that $\mathrm{p}(\mathrm{k}+1)$ is true
Here
$\left\{1^{2}+3^{2}+5^{2}+\cdots+(2 \mathrm{k}-1)^{2}\right\}+\{2(\mathrm{k}+1)\}^{2}$
By using equation (1)
$=\frac{\mathrm{k}(2 \mathrm{k}-1)(2 \mathrm{k}+1)}{3}(2 \mathrm{k}+2-1)^{2}$
So we get
$=\frac{\mathrm{k}(2 \mathrm{k}-1)(2 \mathrm{k}+1)}{3}(2 \mathrm{k}+1)^{2}$
Taking LCM
$=\frac{\mathrm{k}(2 \mathrm{k}+1)(2 \mathrm{k}+1)+3(2 \mathrm{k}+1)^{2}}{3}$
Taking the common terms out
$=\frac{(2 \mathrm{k}+1)\{\mathrm{k}(2 \mathrm{k}-1)+3(2 \mathrm{k}+1)\}}{3}$
By further simplification
$=\frac{(2 \mathrm{k}+1)\left\{2 \mathrm{k}^{2}-\mathrm{k}+6 \mathrm{k}+3\right\}}{3}$
So we get
$=\frac{(2 \mathrm{k}+1)\left\{2 \mathrm{k}^{2}+2 \mathrm{k}+5 \mathrm{k}+3\right\}}{3}$
We can write it as
$=\frac{(2 \mathrm{k}+1)\left\{2 \mathrm{k}^{2}+2 \mathrm{k}+3 \mathrm{k}+3\right\}}{3}$
Splitting the terms
$=\frac{(2 \mathrm{k}+1)\{2 \mathrm{k}(\mathrm{k}+1)+(\mathrm{k}+1)\}}{3}$
We get
$=\frac{(2 \mathrm{k}+1)(\mathrm{k}+1)(2 \mathrm{k}+3)}{3}$
$=\frac{(\mathrm{k}+1)\{2(\mathrm{k}+1)-1\}\{2(\mathrm{k}+1)+1\}}{3}$
$P(k+1)$ is true whenever $P(k)$ is true
Therefore by the principal of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural number i.e. n

Question 16

$\frac{1}{1.4}+\frac{1}{1.4}+\frac{1}{7.4}+\ldots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}$

Answer:

We can write the given statement as
P (n): $\frac{1}{1.4}+\frac{1}{1.4}+\frac{1}{7.4}+\ldots .+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}$
If $\mathrm{n}=1$ we get
$P(1):=\frac{1}{1.4} \frac{1}{3.1+1}=\frac{1}{4}=\frac{1}{1.4}$

Which is true?
Consider P (k) be true for some positive integer k
$\mathrm{p}(\mathrm{k}): \frac{1}{1.4}+\frac{1}{1.4}+\frac{1}{7.10}+\ldots .+\frac{1}{(3 \mathrm{k}-2)(3 \mathrm{k}+1)}=\frac{\mathrm{k}}{(3 \mathrm{k}+1)}$
Now let us prove that $\mathrm{p}(\mathrm{k}+1)$ is true
Here
$\left\{\frac{1}{1.4}+\frac{1}{1.4}+\frac{1}{7.10}+\cdots .+\frac{1}{(3 \mathrm{k}-2)(3 \mathrm{k}+1)}\right\}+\frac{1}{\{3(\mathrm{k}+1)-2\}\{3(\mathrm{k}+1)+1\}}$
By using equation (1)
$=\frac{\mathrm{k}}{3 \mathrm{k}+1}+\frac{1}{(3 \mathrm{k}+1)(3 \mathrm{k}+4)}$
So we get
$=\frac{1}{(3 \mathrm{k}+1)}\left\{\mathrm{k}+\frac{1}{(3 \mathrm{k}+4)}\right\}$
Taking LCM
$=\frac{1}{(3 \mathrm{k}+1)}\left\{\frac{\mathrm{k}(3 \mathrm{k}+4)+1}{(3 \mathrm{k}+4)}\right\}$
Multiplying the terms
$=\frac{1}{(3 k+1)}\left\{\frac{3 k^{2}+4 k+1}{(3 k+4)}\right\}$
It can be written as
$=\frac{1}{(3 k+1)}\left\{\frac{3 k^{2}+3 k+1}{(3 k+4)}\right\}$
Separating the terms
$=\frac{(3 k+1)(k+1)}{(3 k+1)(3 k+4)}$
By further calculation
$=\frac{(k+1)}{3(k+1)+1}$
$P(k+1)$ is true whenever $P(k)$ is true
Therefore by the principal of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural number i.e. n

Question 17

$\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}$

Answer:

We can write the given statement as
$\mathrm{P}(\mathrm{n}): \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}$
If $n=1$ we get
$P(1):=\frac{1}{1.3}=\frac{1}{3(2.1+3)}=\frac{1}{3.5}$

Which is true?
Consider P (k) be true for some positive integer k
$\mathrm{p}(\mathrm{k}): \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 \mathrm{k}+1)(2 \mathrm{k}+3)}=\frac{\mathrm{k}}{3(2 \mathrm{k}+3)}$
Now let us prove that $\mathrm{p}(\mathrm{k}+1)$ is true
Here
$\left[\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 k+1)(2 k+3)}\right]+\frac{1}{\{2(k+1)+1\}\{2(k+1)+3\}}$
By using equation (1)
$=\frac{\mathrm{k}}{3(2 \mathrm{k}+3)}+\frac{1}{(2 \mathrm{k}+3)(26+5)}$
So we get
$=\frac{\mathrm{k}}{(2 \mathrm{k}+3)}\left[\frac{\mathrm{k}}{3}+\frac{1}{(2 \mathrm{k}+5)}\right]$
Taking LCM
$=\frac{1}{(2 \mathrm{k}+3)}\left[\frac{\mathrm{K}(2 \mathrm{~K}+5)+3}{3(2 \mathrm{~K}+5)}\right]$
Multiplying the terms
$=\frac{1}{(2 \mathrm{k}+3)}\left[\frac{2 \mathrm{k}^{2}+5 \mathrm{k}+3}{3(2 \mathrm{k}+5)}\right]$
It can be written as
$=\frac{1}{(2 \mathrm{k}+3)}\left[\frac{2 \mathrm{k}^{2}+2 \mathrm{k}+3 \mathrm{k}+3}{3(2 \mathrm{k}+5)}\right]$
Separating the terms
$=\frac{1}{(2 \mathrm{k}+3)}\left[\frac{2 \mathrm{k}(\mathrm{k}+1)+3(\mathrm{k}+1)}{3(2 \mathrm{k}+5)}\right]$
By further calculation
$=\frac{(\mathrm{k}+1)(2 \mathrm{k}+3)}{3(2 \mathrm{k}+3)(2 \mathrm{k}+5)}$
$=\frac{(k+1)}{3\{2(k+1)+3\}}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true
Therefore by the principal of mathematical induction, statement $\mathrm{P}(\mathrm{n})$ is true for all natural number i.e. n

Question 18

$$
1+2+3+\ldots .+n<\frac{1}{8}(2 n+1)^{2}
$$

Answer:

We can write the given statement as
P (n): $1+2+3+\ldots . .+n<\frac{1}{8}(2 n+1)^{2}$
If $\mathrm{n}=1$ we get
$P(1):=1<\frac{1}{8}(2 n+1)^{2}=\frac{9}{8}$

Which is true?
Consider P (k) be true for some positive integer k
$1+2+\ldots . .+\mathrm{k}<\frac{1}{8}(2 \mathrm{k}+1)^{2}$
Now let us prove that $\mathrm{p}(\mathrm{k}+1)$ is true
Here
$(1+2+\ldots \ldots+\mathrm{k})+(\mathrm{k}+1)<\frac{1}{8}(2 \mathrm{k}+1)^{2}+(\mathrm{k}+1)$
By using equation (1)
$<\frac{1}{8}\left\{(2 \mathrm{k}+1)^{2}+8(\mathrm{k}+1)\right\}$
Expanding terms using formula
$<\frac{1}{8}\left\{4 \mathrm{k}^{2}+4 \mathrm{k}+1+8(\mathrm{k}+8)\right\}$
By further calculation.
$<\frac{1}{8}\left\{4 \mathrm{k}^{2}+12 \mathrm{k}+9\right\}$
So we get
$<\frac{1}{8}(2 \mathrm{k}+3)^{2}$
$<\frac{1}{8}\{2(\mathrm{k}+1)+1\}^{2}$
$(1+2+3+\ldots .+\mathrm{k})+(\mathrm{k}+1)<\frac{1}{8}(2 \mathrm{k}+1)^{2}+(\mathrm{k}+1)$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true
Therefore by the principal of mathematical induction, statement $P(n)$ is true for all natural number i.e. n

Question 19

$n(n+1)(n+5)$ is a multiple of 3

Answer:

We can write the given statement as
$P(n): n(n+1)(n+5)$, which is a multiple of 3
If $\mathrm{n}=1$ we get
$1(1+1)(1+5)=12$, which is a multiple of 3
Which is true?
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+5)$ is a multiple of 3
$k(k+1)(k+5)=3 m$, where $m \in N$
Now let us prove that $P(k+1)$ is true.
Here
$(\mathrm{k}+1)\{(\mathrm{k}+1)+1\}\{(\mathrm{k}+1)+5\}$
We can write it as
$=(\mathrm{k}+1)(\mathrm{k}+2)\{(\mathrm{k}+5)+1\}$

By multiplying the terms
$=(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+5)+(\mathrm{k}+1)(\mathrm{k}+2)$
So we get
$=\{\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+5)+2(\mathrm{k}+1)(\mathrm{k}+5)\}+(\mathrm{k}+1)(\mathrm{k}+2)$
Substituting equation (1)
$=3 \mathrm{~m}+(\mathrm{k}+1)\{2(\mathrm{k}+5)+(\mathrm{k}+2)\}$
By multiplication
$=3 \mathrm{~m}+(\mathrm{k}+1)\{2 \mathrm{k}+10+\mathrm{k}+2\}$
On further calculation
$=3 \mathrm{~m}+(\mathrm{k}+1)(3 \mathrm{k}+12)$
Taking 3 as common
$=3 \mathrm{~m}+3(\mathrm{k}+1)(\mathrm{k}+4)$
We get
$=3\{\mathrm{~m}+(\mathrm{k}+1)(\mathrm{k}+4)\}$
$=3 \times \mathrm{q}$ where $\mathrm{q}=\{\mathrm{m}+(\mathrm{k}+1)(\mathrm{k}+4)\}$ is some natural number
$(\mathrm{k}+1)\{(\mathrm{k}+1)+1\}\{(\mathrm{k}+1)+5\}$ is a multiple of 3
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e. n.

Question 20

$102{ }^{\mathrm{n}-1}+1$ is divisible by 11

Answer:

We can write the given statement as
$\mathrm{P}(\mathrm{n}): 102^{\mathrm{n}}-1+1$ is divisible by 11
If $\mathrm{n}=1$ we get
$P(1)=102^{2.1}-1+1=11$, which is divisible by 11
Which is true?
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$10^{2 \mathrm{k}}-1+1$ is divisible by 11
$10^{2 \mathrm{k}}-1+1=11 \mathrm{~m}$, where $\mathrm{m} \in \mathrm{N}$ \qquad
Now let us prove that $P(k+1)$ is true.
Here
$10^{2(\mathrm{k}+1)-1}+1$
We can write it as
$=10^{2(k+1)-1}+1$
$=10^{2(k+1)-1}+1$
By addition and subtraction of 1
$=10^{2}\left(10^{2 k-1}+1-1\right)+1$
We get
$=10^{2}\left(10^{2 \mathrm{k}-1}+1\right)-10^{2}+1$

Using equation 1 we get
$=10^{2} .11 \mathrm{~m}-100+1$
$=100 \times 11 \mathrm{~m}-99$
Taking out the common terms
$=11$ ($100 \mathrm{~m}-9$)
$=11 r$, where $r=(100 m-9)$ is some natural number
$10^{2(k+1)-1}+1$ is divisible by 11
$P(k+1)$ is true whenever $P(k)$ is true.
Therefore, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e. n.

Question 21

$x^{2 n}-y^{2 n}$ is divisible by $x+y$

Answer:

We can write the given statement as $P(n): x^{2 n}-y^{2 n}$ is divisible by $x+y$
If $\mathrm{n}=1$ we get
$P(1)=x^{2 \times 1}-y^{2 \times 1}=x^{2}-y^{2}=(x+y)(x-y)$, which is divisible by $(x+y)$
Which is true?
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$x^{2 n}-y^{2 n}$ is divisible by $x+y$
$x^{2 k}-y^{2 k}=m(x+y)$, where $m \in N$
Now let us prove that $P(k+1)$ is true.

Here
$x^{2(k+1)}-y^{2(k+1)}$
We can write it as
$=x^{2 k} \cdot x^{2}-y^{2 k} \cdot y^{2}$
By adding and subtracting $y 2 \mathrm{k}$ we get
$=x^{2}\left(x^{2 k}-y^{2 k}+y^{2 k}\right)-y^{2 k} \cdot y^{2}$
From equation (1) we get
$=x^{2}\left\{m(x+y)+y^{2 k}\right\}-y^{2 k} . y^{2}$
By multiplying the terms
$=m(x+y) x^{2}+y^{2 k} \cdot x^{2}-y 2 k . y 2$
Taking out the common terms
$=m(x+y) x^{2}+y^{2 k}\left(x^{2}-y^{2}\right)$
Expanding using formula
$=m(x+y) x^{2}+y^{2 k}(x+y)(x-y)$
So we get
$=(x+y)\left\{\mathrm{mx}^{2}+\mathrm{y}^{2 \mathrm{k}}(\mathrm{x}-\mathrm{y})\right\}$, which is a factor of $(\mathrm{x}+\mathrm{y})$
$P(k+1)$ is true whenever $P(k)$ is true.

Therefore, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e. n.

Question 22

$32^{n+2}-8 n-9$ is divisible by 8

Answer:

We can write the given statement as
$\mathrm{P}(\mathrm{n}): 3^{2 \mathrm{n}+2}-8 \mathrm{n}-9$ is divisible by 8
If $\mathrm{n}=1$ we get
$P(1)=3^{2 \times 1+2}-8 \times 1-9=64$, which is divisible by 8
Which is true?
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$32 \times 1+2-8 \mathrm{k}-9$ is divisible by 8
$32 \mathrm{k}+2-8 \mathrm{k}-9=8 \mathrm{~m}$, where $\mathrm{m} \in \mathrm{N}$
Now let us prove that $P(k+1)$ is true.
Here
$32(k+1)+2-8(k+1)-9$
We can write it as
$=3.3^{2 \mathrm{k}+2}-8 \mathrm{k}-8-9$
By adding and subtracting 8 k and 9 we get
$=3^{2}\left(3^{2 k+2}-8 \mathrm{k}-9+8 \mathrm{k}+9\right)-8 \mathrm{k}-17$
On further simplification
$=32\left(3^{2 \times 1+2}-8 \mathrm{k}-9\right)+32(8 \mathrm{k}+9)-8 \mathrm{k}-17$

From equation (1) we get
$=9.8 \mathrm{~m}+9(8 \mathrm{k}+9)-8 \mathrm{k}-17$
By multiplying the terms
$=9.8 \mathrm{~m}+72 \mathrm{k}+81-8 \mathrm{k}-17$
So we get
$=9.8 \mathrm{~m}+64 \mathrm{k}+64$
By taking out the common terms
$=8(9 \mathrm{~m}+8 \mathrm{k}+8)$
$=8 \mathrm{r}$, where $\mathrm{r}=(9 \mathrm{~m}+8 \mathrm{k}+8)$ is a natural number
So $3^{2(k+1)+2-8(k+1)-9}$ is divisible by 8 $\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e. n.

Question 23

$41^{n-14}{ }^{n}$ is a multiple of 27

Answer:

We can write the given statement as
$P(n): 41^{n}-14^{n}$ is a multiple of 27
If $\mathrm{n}=1$ we get
$P(1)=411-141=27$, which is a multiple by 27
Which is true?
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
41^{k} - 14kis a multiple of 27
$41^{\mathrm{k}}-14^{\mathrm{k}}=27 \mathrm{~m}$, where $\mathrm{m} \in \mathrm{N}$. (1)
Now let us prove that $P(k+1)$ is true.
Here
$41^{\mathrm{k}}+1-14^{\mathrm{k}}+1$
We can write it as
$=41^{\mathrm{k}} .41-14^{\mathrm{k}} .14$
By adding and subtracting 14 k we get
$=41\left(41^{\mathrm{k}}-14^{\mathrm{k}}+14^{\mathrm{k}}\right)-14^{\mathrm{k}} .14$
On further simplification
$=41\left(41^{\mathrm{k}}-14^{\mathrm{k}}\right)+41.14^{\mathrm{k}}-14^{\mathrm{k}} .14$
From equation (1) we get
$=41.27 \mathrm{~m}+14^{\mathrm{k}}(41-14)$
By multiplying the terms
$=41.27 \mathrm{~m}+27.14^{\mathrm{k}}$
By taking out the common terms
$=27\left(41 \mathrm{~m}-14^{\mathrm{k}}\right)$
$=27 \mathrm{r}$, where $\mathrm{r}=(41 \mathrm{~m}-14 \mathrm{k})$ is a natural number
So $41^{\mathrm{k}+1}-14 \mathrm{k}+1$ is a multiple of 27
$P(k+1)$ is true whenever $P(k)$ is true.
Therefore, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e. n.

Question 24

$(2 n+7)<(n+3)^{2}$

Answer:

We can write the given statement as
$P(n):(2 n+7)<(n+3)^{2}$
If $\mathrm{n}=1$ we get
$2.1+7=9<(1+3)^{2}=16$
Which is true?
Consider $\mathrm{P}(\mathrm{k})$ be true for some positive integer k
$(2 \mathrm{k}+7)<(\mathrm{k}+3)^{2}$

Now let us prove that $\mathrm{P}(\mathrm{k}+1)$ is true.
Here
$\{2(\mathrm{k}+1)+7\}=(2 \mathrm{k}+7)+2$
We can write it as
$=\{2(\mathrm{k}+1)+7\}$
From equation (1) we get
$(2 \mathrm{k}+7)+2<(\mathrm{k}+3) 2+2$
By expanding the terms
$2(\mathrm{k}+1)+7<\mathrm{k}^{2}+6 \mathrm{k}+9+2$
On further calculation
$2(k+1)+7<k^{2}+6 k+11$
Here $\mathrm{k}^{2}+6 \mathrm{k}+11<\mathrm{k}^{2}+8 \mathrm{k}+16$
We can write it as
$2(\mathrm{k}+1)+7<(\mathrm{k}+4)^{2}$
$2(\mathrm{k}+1)+7<\{(\mathrm{k}+1)+3\}^{2}$
$\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Therefore, by the principle of mathematical induction, statement $P(n)$ is true for all natural numbers i.e. n.

