<u>Chapter 2</u> Polynomials

Exercise 2.1

Question 1

The graphs of y = p(x) is given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

Graphical method to find zeroes:

Total number of zeroes in any polynomial equation = total number of times the curve intersects x-axis.

- I. In the given graph, the number of zeroes of p(x) is 0 because the graph is parallel to x-axis does not cut it at any point.
- II. In the given graph, the number of zeroes of p(x) is 1 because the graph intersects the x-axis at only one point.
- III. In the given graph, the number of zeroes of p(x) is 3 because the graph intersects the x-axis at any three points.
- IV. In the given graph, the number of zeroes of p(x) is 2 because the graph intersects the x-axis at two points.
- V. In the given graph, the number of zeroes of p(x) is 4 because the graph intersects the x-axis at four points.
- VI. In the given graph, the number of zeroes of p(x) is 3 because the graph intersects the x-axis at three points.

Exercise 2.2

Question 1

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

Solutions:

(i) x^2-2x-8 $\Rightarrow x^2-4x+2x-8 = x(x-4) + 2(x-4) = (x-4) (x+2)$ Therefore, zeroes of polynomial equation x^2-2x-8 are (4, -2) Sum of zeroes = $4-2 = 2 = -(-2)/1 = -(Coefficient of x)/(Coefficient of x^2)$ Product of zeroes = $4 \times (-2) = -8 = -(8)/1 = (Constant term)/(Coefficient of x^2)$

(ii)4s²-4s+1

 $\Rightarrow 4s^2-2s-2s+1 = 2s(2s-1)-1(2s-1) = (2s-1) (2s-1)$ Therefore, zeroes of polynomial equation $4s^2-4s+1$ are (1/2, 1/2)Sum of zeroes = $(\frac{1}{2})+(1/2) = 1 = -4/4 = -(\text{Coefficient of } s)/(\text{Coefficient of } s^2)$ Product of zeros = $(1/2) \times (1/2) = 1/4 = (\text{Constant term})/(\text{Coefficient of } s^2)$

(iii) 6x²-3-7x

 $\Rightarrow 6x^2 - 7x - 3 = 6x^2 - 9x + 2x - 3 = 3x (2x - 3) + 1(2x - 3) = (3x+1) (2x-3)$ Therefore, zeroes of polynomial equation $6x^2 - 3 - 7x$ are (-1/3, 3/2)Sum of zeroes = $-(1/3) + (3/2) = (7/6) = -(\text{Coefficient of } x) / (\text{Coefficient of } x^2)$ Product of zeroes = $-(1/3) \times (3/2) = -(3/6) = (\text{Constant term}) / (\text{Coefficient of } x^2)$

(iv)4u²+8u

⇒ 4u(u+2)Therefore, zeroes of polynomial equation $4u^2 + 8u$ are (0, -2). Sum of zeroes = $0+(-2) = -2 = -(8/4) = -(\text{Coefficient of } u)/(\text{Coefficient of } u^2)$ Product of zeroes = $0 \times -2 = 0 = 0/4 = (\text{Constant term})/(\text{Coefficient of } u^2)$

(v) t²-15

⇒ $t^2 = 15$ or $t = \pm\sqrt{15}$ Therefore, zeroes of polynomial equation $t^2 - 15$ are ($\sqrt{15}$, $-\sqrt{15}$) Sum of zeroes = $\sqrt{15+(-\sqrt{15})} = 0 = -(0/1) = -(Coefficient of t) / (Coefficient of t^2)$ Product of zeroes = $\sqrt{15} \times (-\sqrt{15}) = -15 = -15/1 = (Constant term) / (Coefficient of t^2)$

(vi) 3x²-x-4

 $\Rightarrow 3x^{2}-4x+3x-4 = x(3x-4) + 1(3x-4) = (3x - 4) (x + 1)$ Therefore, zeroes of polynomial equation $3x^{2} - x - 4$ are (4/3, -1)Sum of zeroes = $(4/3) + (-1) = (1/3) = -(-1/3) = -(Coefficient of x) / (Coefficient of x^{2})$

Product of zeroes= $(4/3) \times (-1) = (-4/3) = (Constant term) / (Coefficient of x²)$

Question 2

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i) 1/4, -1

Solution:

(ii)√2, 1/3

Solution:

Sum of zeroes = $\alpha + \beta = \sqrt{2}$ Product of zeroes = $\alpha \beta = 1/3$ \therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as: $x^2-(\alpha+\beta) x + \alpha\beta = 0$ $x^2-(\sqrt{2}) x + (1/3) = 0$ $3x^2 - 3\sqrt{2x+1} = 0$ Thus, $3x^2 - 3\sqrt{2x+1}$ is the quadratic polynomial.

(iii) 0, √5

Solution:

```
Given,
Sum of zeroes = \alpha + \beta = 0
Product of zeroes = \alpha \beta = \sqrt{5}
\therefore If \alpha and \beta are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:
```

6262969699

 $x^{2}-(\alpha+\beta) x + \alpha\beta = 0$ $x^{2}-(0)x + \sqrt{5} = 0$ Thus, x 2+ $\sqrt{5}$ is the quadratic polynomial. (iv) 1, 1

Solution:

Given,

Sum of zeroes = $\alpha + \beta = 1$ Product of zeroes = $\alpha \beta = 1$ \therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as: $x^2-(\alpha+\beta) x + \alpha\beta = 0$ $x^2-x+1 = 0$ Thus, x^2-x+1 is the quadratic polynomial.

(v) -1/4, 1/4

Solution:

```
Given,

Sum of zeroes = \alpha + \beta = -1/4

Product of zeroes = \alpha \beta = 1/4

\therefore If \alpha and \beta are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be

written directly as:

x^{2}-(\alpha+\beta) x + \alpha\beta = 0

x^{2}-(-1/4) x + (1/4) = 0

4x^{2}+x+1 = 0

Thus,4x^{2}+x+1 is the quadratic polynomial.
```

(vi) 4, 1

Solution:

Given, Sum of zeroes = $\alpha + \beta = 4$ Product of zeroes = $\alpha\beta = 1$ \therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can bewritten directly as: $x^2-(\alpha+\beta)x+\alpha\beta = 0$ $x^2-4x+1 = 0$ Thus, x^2-4x+1 is the quadratic polynomial.

Exercise 2.3

6262969699

Ouestion 1

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following: (i) $p(x) = x^3 \cdot 3x^2 + 5x \cdot 3$, $g(x) = x^2 - 2$

Solution:

Given. Dividend = $p(x) = x^3 - 3x^2 + 5x - 3$ Divisor = $g(x) = x^2 - 2$ x -3 $x^2 - 2$ $x^3 - 3x^2 + 5x - 3$

Therefore, upon division we get, Quotient = x-3Remainder = 7x-9

(ii) $p(x) = x^4 - 3x^2 + 4x + 5$, $g(x) = x^2 + 1 - x$ $x^{+}-3x^{2}+4x+5$, g(x) = $x^{2}+1-x$

Solution:

Given, Dividend = $p(x) = x^4 - 3x^2 + 4x + 5$ Divisor = $g(x) = x^2 + 1 - x$

For Enquiry - 6262969604 6262969699 $x^2 + z - 3$ $x^2 - x + 1$ $x^4 + 0x^3 - 3x^2 + 4x + 5$ $rac{x^3 -x^2 +x}{-3x^2 +3x +5}$ $-3x^2 + 3x - 3$ Therefore, upon division we get, Quotient = $x^2 + x - 3$ Remainder = 8 (iii) $p(x) = x^4 - 5x + 6$, $g(x) = 2 - x^2$ Solution: Given, Dividend = $p(x) = x^4 - 5x + 6 = x^4 + 0x^2 - 5x + 6$ Divisor = $g(x) = 2-x^2 = -x^2+2$ $-x^2$ -2 $-x^2+2$) x^4 +0 x^3 +0 x^2 -5x +6 e KIT of Education $2x^2 +0x -4 \\ -5x +10$

Therefore, upon division we get, Quotient = $-x^2 - 2$ Remainder = -5x + 10

Question 2

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial: (i) t²-3, 2t⁴ +3t³ -2t² -9t-12

Solutions:

Given, First polynomial = $t^2 - 3$ Second polynomial = $2t^4 + 3t^3 - 2t^2 - 9t - 12$

As we can see, the remainder is left as 0. Therefore, we say that, $t^2 - 3$ is a factor of $2t^2 + 3t + 4$.

(ii)x²+3x+1, 3x⁴+5x³-7x²+2x+2

Solutions:

```
Given,

First polynomial = x^2+3x+1

Second polynomial = 3x^4+5x^3-7x^2+2x+2
```

For Enquiry - 6262969604 6262969699 $\begin{array}{c|cccc} -4x^3 & -12x^2 & -4x \\ \hline 2x^2 & +6x & +2 \end{array}$ $2x^2 + 6x + 2$ As we can see, the remainder is left as 0. Therefore, we say that, $x^2 + 3x + 1$ is a factor of $3x^4 + 5x^37x^2 + 2x + 2$. (iii) $x^3 - 3x + 1$, $x^5 - 4x^3 + x^2 + 3x + 1$ Solutions: Given, First polynomial = $x^3 - 3x + 1$ Second polynomial = $x^5 - 4x^3 + x^2 + 3x + 1$ $x^2 - 1$ x^{5} +0 x^{4} -4 x^{3} + x^{2} +3x +1 $x^3 - 3x + 1$ KIT of Education $-x^3$ $+0x^2$ +3x -1

As we can see, the remainder is not equal to 0. Therefore, we say that, $x^3 - 3x + 1$ is not a factor of $x^5 - 4x^3 + x^2 + 3x + 1$.

6262969699

Question 3

Obtain all other zeroes of $3x^4+6x^3-2x^2-10x-5$, if two of its zeroes are $\sqrt{(5/3)}$ and $\sqrt{(5/3)}$.

Solutions:

Since this is a polynomial equation of degree 4, hence there will be total 4 roots. $\sqrt{(5/3)}$ and $\sqrt{(5/3)}$ are zeroes of polynomial f(x). $\therefore (x - \sqrt{(5/3)}) (x + \sqrt{(5/3)} = x 2 - (5/3) = 0$ $(3x^2 - 5) = 0$, is a factor of given polynomial f(x). Now, when we will divide f(x) by $(3x^2 - 5)$ the quotient obtained will also be a factor of f(x) and the remainder will be 0.

Therefore, $3x^4+6x^3-2x^2-10x-5 = (3x^2-5)(x^2+2x+1)$ Now, on further factorizing (x^2+2x+1) we get, $x^2+2x+1 = x^2+x+x+1 = 0$ x(x+1)+1(x+1) = 0(x+1)(x+1) = 0So, its zeroes are given by: x = -1 and x = -1. Therefore, all four zeroes of given polynomial equation are: $\sqrt{(5/3)}, -\sqrt{(5/3)}, -1$ and -1. Hence, is the answer.

Question 4

On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x-2 and -2x+4, respectively. Find g(x).

6262969699

Solutions:

Given, Dividend, $p(x) = x^3 \cdot 3x^2 + x + 2$ Quotient = x-2 Remainder = -2x + 4We have to find the value of Divisor, g(x) =? As we know, Dividend = Divisor × Quotient + Remainder $\therefore x^3 \cdot 3x^2 + x + 2 = g(x) \times (x - 2) + (-2x + 4)$ $x^3 \cdot 3x^2 + x + 2 - (-2x + 4) = g(x) \times (x - 2)$ Therefore, $g(x) \times (x - 2) = x^3 \cdot 3x^2 + x + 2$ Now, for finding g(x) we will divide $x^3 \cdot 3x^2 + x + 2$ with (x - 2)

Therefore,
$$g(x) = (x^2 - x + 1)$$

Question 5

Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and (i) deg p(x) = deg q(x)(ii) deg q(x) = deg r(x)(iii) deg r(x) = 0

Solutions:

6262969699

According to the division algorithm, dividend p(x) and divisor g(x) are two polynomials, where $g(x) \neq 0$. Then we can find the value of quotient q(x) and remainder r(x), with the help of below given formula; Dividend = Divisor × Quotient + Remainder $\therefore p(x) = g(x) \times q(x) + r(x)$ Where r(x) = 0 or degree of r(x) < degree of g(x). Now let us proof the three given cases as per division algorithm by taking examples for each. (i) deg p(x) = deg q(x)Degree of dividend is equal to degree of quotient, only when the divisor is a constant term. Let us take an example, $p(x) = 3x^2 + 3x + 3$ is a polynomial to be divided by g(x) = 3. So, $(3x^2 + 3x + 3)/3 = x^2 + x + 1 = q(x)$ Thus, you can see, the degree of quotient q(x) = 2, which also equal to the degree of dividend p(x). Hence, division algorithm is satisfied here. (ii) $\deg q(x) = \deg r(x)$ Let us take an example, $p(x) = x^2 + 3$ is a polynomial to be divided by g(x) = x - 1. So, $x^2 + 3 = (x - 1) \times (x) + (x + 3)$ Hence, quotient q(x) = xAlso, remainder r(x) = x + 3Thus, you can see, the degree of quotient q(x) = 1, which is also equal to the degree of remainder r(x). Hence, division algorithm is satisfied here. (iii) deg r(x) = 0The degree of remainder is 0 only when the remainder left after division algorithm is constant. Let us take an example, $p(x) = x^2 + 1$ is a polynomial to be divided by g(x) = x. So, $x^2 + 1 = (x) \times (x) + 1$ Hence, quotient q(x) = xAnd, remainder r(x) = 1Clearly, the degree of remainder here is 0. Hence, division algorithm is satisfied here

Exercise 2.4

Question 1

Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

(i) $2x^3+x^2-5x+2$; -1/2, 1, -2

Solution:

Given, $p(x) = 2x^3+x^2-5x+2$ And zeroes for p(x) are = 1/2, 1, -2

6262969699

 \therefore p (1/2) = 2(1/2)³+(1/2)2-5(1/2) +2 = (1/4) +(1/4) -(5/2) +2 = 0 $p(1) = 2(1)^3 + (1)^2 - 5(1) + 2 = 0$ $p(-2) = 2(-2)^3 + (-2)^2 - 5(-2) + 2 = 0$ Hence, proved 1/2, 1, -2 are the zeroes of $2x^3+x^2$ -5x+2. Now, comparing the given polynomial with general expression, we get; \therefore ax³+bx²+cx+d = 2x³+x²-5x+2 a=2, b=1, c= -5 and d = 2 As we know, if α , β , γ are the zeroes of the cubic polynomial ax^3+bx^2+cx+d , then; $\alpha + \beta + \gamma = -b/a$ $\alpha\beta + \beta\gamma + \gamma\alpha = c/a$ $\alpha \beta \gamma = -d/a.$ Therefore, putting the values of zeroes of the polynomial, $\alpha + \beta + \gamma = \frac{1}{2} + 1 + (-2) = -\frac{1}{2} = -\frac{b}{a}$ $\alpha\beta+\beta\gamma+\gamma\alpha = (1/2\times1) + (1\times2) + (-2\times1/2) = -5/2 = c/a$ $\alpha \beta \gamma = \frac{1}{2} \times 1 \times (-2) = -\frac{2}{2} = -\frac{d}{a}$ Hence, the relationship between the zeroes and the coefficients are satisfied. (ii) $x^{3}-4x^{2}+5x-2$; 2, 1, 1 Solution: Given, $p(x) = x^3 - 4x^2 + 5x - 2$ And zeroes for p(x) are 2,1,1. \therefore p(2) = 23-4(2)²+5(2)-2 = 0 $p(1) = 1^{3} - (4 \times 12) + (5 \times 1) - 2 = 0$ Hence proved, 2, 1, 1 are the zeroes of x^3-4x^2+5x-2 Now, comparing the given polynomial with general expression, we get; \therefore ax³+bx²+cx+d = x³-4x²+5x-2 a = 1, b = -4, c = 5 and d = -2As we know, if α , β , γ are the zeroes of the cubic polynomial ax^3+bx^2+cx+d , then; $\alpha + \beta + \gamma = -b/a$ $\alpha\beta + \beta\gamma + \gamma\alpha = c/a$ $\alpha \beta \gamma = -d/a$. Therefore, putting the values of zeroes of the polynomial, $\alpha + \beta + \gamma = 2 + 1 + 1 = 4 = -(-4)/1 = -b/a$ $\alpha\beta + \beta\gamma + \gamma\alpha = 2 \times 1 + 1 \times 1 + 1 \times 2 = 5 = 5/1 = c/a$ $\alpha\beta\gamma = 2 \times 1 \times 1 = 2 = -(-2)/1 = -d/a$ Hence, the relationship between the zeroes and the coefficients are satisfied.

Question 2

Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

6262969699

Solution:

Let us consider the cubic polynomial is ax^3+bx^2+cx+d and the values of the zeroes of the polynomials be α , β , γ .

As per the given question, $\alpha+\beta+\gamma = -b/a = 2/1$ $\alpha\beta+\beta\gamma+\gamma\alpha = c/a = -7/1$ $\alpha\beta\gamma = -d/a = -14/1$ Thus, from above three expressions we get the values of coefficient of polynomial. a = 1, b = -2, c = -7, d = 14Hence, the cubic polynomial is $x^3 - 2x^2 - 7x + 14$

Question 3

If the zeroes of the polynomial $x^3 - 3x^2 + x + 1$ are a – b, a, a + b, find a and b.

Solution:

We are given with the polynomial here, $p(x) = x^3 - 3x^2 + x + 1$ And zeroes are given as a - b, a, a + bNow, comparing the given polynomial with general expression, we get; \therefore px³+qx²+rx+s = x³ - 3x²+x+1 p = 1, q = -3, r = 1 and s = 1Sum of zeroes = a - b + a + a + b-q/p = 3aPutting the values q and p. -(-3)/1 = 3aa=1 Thus, the zeroes are 1-b, 1, 1+b. Now, product of zeroes = 1(1-b)(1+b) $-s/p = 1-b^2$ $-1/1 = 1-b^2$ $b^2 = 1 + 1 = 2$ $b = \sqrt{2}$ Hence, $1 \cdot \sqrt{2}$, 1, $1 + \sqrt{2}$ are the zeroes of $x^3 - 3x^2 + x + 1$.

Question 4

If two zeroes of the polynomial x^4 -6 x^3 -26 x^2 +138x-35 are 2 ± $\sqrt{3}$, find other zeroes.

Solution:

Since this is a polynomial equation of degree 4, hence there will be total 4 roots Let $f(x) = x^4 - 6x^3 - 26x^2 + 138x - 35$

6262969699

Since $2 + \sqrt{3}$ and $2 - \sqrt{3}$ are zeroes of given polynomial f(x). $\therefore [x-(2+\sqrt{3})] [x-(2-\sqrt{3})] = 0$ $(x-2-\sqrt{3}) (x-2+\sqrt{3}) = 0$ On multiplying the above equation, we get, $x^2 - 4x + 1$, this is a factor of a given polynomial f(x).

Now, if we will divide f(x) by g(x), the quotient will also be a factor of f(x) and the remainder will be 0.

 $x^2 - 2x - 35$ $x^2 - 4x + 1$ $x^4 - 6x^3 - 26x^2 + 138x - 35$ $x^4 - 4x^3 + x^2$ (-) (+) (-) $-2x^3 - 27x^2 + 138x - 35$ $-2x^3 + 8x^2 - 2x$ (+) (-) (+) $-35x^2 + 140x - 35$ $-35x^2 + 140x - 35$ (+) (+) 0 So, $x^4 - 6x^3 - 26x^2 + 138x - 35 = (x^2 - 4x + 1)(x^2 - 2x - 35)$ Now, on further factorizing $(x^2-2x-35)$ we get, x^{2} (7-5) $x - 35 = x^{2} - 7x + 5x + 35 = 0$ x(x-7) + 5(x-7) = 0(x+5)(x-7) = 0So, its zeroes are given by: x = -5 and x = 7. Therefore, all four zeroes of given polynomial equation are: $2+\sqrt{3}$, $2-\sqrt{3}$, -5 and 7