Chapter 2
 Polynomials

Exercise 2.1

Question 1

The graphs of $y=p(x)$ is given in Fig. 2.10 below, for some polynomials $p(x)$. Find the number of zeroes of $p(x)$, in each case.

Graphical method to find zeroes:
Total number of zeroes in any polynomial equation = total number of times the curve intersects x-axis.
I. In the given graph, the number of zeroes of $p(x)$ is 0 because the graph is parallel to x-axis does not cut it at any point.
II. In the given graph, the number of zeroes of $p(x)$ is 1 because the graph intersects the x-axis at only one point.
III. In the given graph, the number of zeroes of $\mathrm{p}(\mathrm{x})$ is 3 because the graph intersects the x -axis at any three points.
IV. In the given graph, the number of zeroes of $p(x)$ is 2 because the graph intersects the x-axis at two points.
V. In the given graph, the number of zeroes of $p(x)$ is 4 because the graph intersects the x-axis at four points.
VI. In the given graph, the number of zeroes of $\mathrm{p}(\mathrm{x})$ is 3 because the graph intersects the x -axis at three points.

Exercise 2.2

Question 1

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

Solutions:

(i) $x^{2}-2 x-8$
$\Rightarrow \mathrm{x}^{2}-4 \mathrm{x}+2 \mathrm{x}-8=\mathrm{x}(\mathrm{x}-4)+2(\mathrm{x}-4)=(\mathrm{x}-4)(\mathrm{x}+2)$
Therefore, zeroes of polynomial equation $x^{2}-2 x-8$ are $(4,-2)$
Sum of zeroes $=4-2=2=-(-2) / 1=-($ Coefficient of $x) /\left(\right.$ Coefficient of $\left.x^{2}\right)$
Product of zeroes $=4 \times(-2)=-8=-(8) / 1=($ Constant term $) /\left(\right.$ Coefficient of $\left.x^{2}\right)$
(ii) $4 s^{2}-4 s+1$
$\Rightarrow 4 s^{2}-2 s-2 s+1=2 s(2 s-1)-1(2 s-1)=(2 s-1)(2 s-1)$
Therefore, zeroes of polynomial equation $4 s^{2}-4 s+1$ are $(1 / 2,1 / 2)$
Sum of zeroes $=(1 / 2)+(1 / 2)=1=-4 / 4=-($ Coefficient of $s) /\left(\right.$ Coefficient of $\left.s^{2}\right)$
Product of zeros $=(1 / 2) \times(1 / 2)=1 / 4=($ Constant term $) /\left(\right.$ Coefficient of s $\left.{ }^{2}\right)$
(iii) $6 x^{2}-3-7 x$
$\Rightarrow 6 \mathrm{x}^{2}-7 \mathrm{x}-3=6 \mathrm{x}^{2}-9 \mathrm{x}+2 \mathrm{x}-3=3 \mathrm{x}(2 \mathrm{x}-3)+1(2 \mathrm{x}-3)=(3 \mathrm{x}+1)(2 \mathrm{x}-3)$
Therefore, zeroes of polynomial equation $6 x^{2}-3-7 x$ are $(-1 / 3,3 / 2)$
Sum of zeroes $=-(1 / 3)+(3 / 2)=(7 / 6)=-($ Coefficient of $x) /\left(\right.$ Coefficient of $\left.x^{2}\right)$
Product of zeroes $=-(1 / 3) \times(3 / 2)=-(3 / 6)=($ Constant term $) /\left(\right.$ Coefficient of $\left.x^{2}\right)$
(iv) $4 u^{2}+8 u$
$\Rightarrow 4 u(u+2)$
Therefore, zeroes of polynomial equation $4 \mathbf{u}^{2}+8 u$ are ($0,-2$).
Sum of zeroes $=0+(-2)=-2=-(8 / 4)==-($ Coefficient of $u) /\left(\right.$ Coefficient of $\left.u^{2}\right)$
Product of zeroes $=0 \times-2=0=0 / 4=($ Constant term $) /\left(\right.$ Coefficient of $\left.u^{2}\right)$
(v) $\mathbf{t}^{2}-15$
$\Rightarrow \mathrm{t}^{2}=15$ or $\mathrm{t}= \pm \sqrt{ } 15$
Therefore, zeroes of polynomial equation $t^{2}-15$ are $(\sqrt{ } 15,-\sqrt{15})$
Sum of zeroes $=\sqrt{ } 15+(-\sqrt{15})=0=-(0 / 1)=-($ Coefficient of $t) /\left(\right.$ Coefficient of $\left.t^{2}\right)$
Product of zeroes $=\sqrt{ } 15 \times(-\sqrt{ } 15)=-15=-15 / 1=($ Constant term $) /\left(\right.$ Coefficient of $\left.\mathrm{t}^{2}\right)$
(vi) $3 x^{2}-x-4$
$\Rightarrow 3 \mathrm{x}^{2}-4 \mathrm{x}+3 \mathrm{x}-4=\mathrm{x}(3 \mathrm{x}-4)+1(3 \mathrm{x}-4)=(3 \mathrm{x}-4)(\mathrm{x}+1)$
Therefore, zeroes of polynomial equation $3 x^{2}-x-4$ are ($4 / 3,-1$)
Sum of zeroes $=(4 / 3)+(-1)=(1 / 3)=-(-1 / 3)=-($ Coefficient of $x) /\left(\right.$ Coefficient of $\left.x^{2}\right)$

Product of zeroes $=(4 / 3) \times(-1)=(-4 / 3)=($ Constant term $) /\left(\right.$ Coefficient of $\left.x^{2}\right)$

Question 2

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
(i) $1 / 4,-1$

Solution:

From the formulas of sum and product of zeroes, we know,
Sum of zeroes $=\alpha+\beta$
Product of zeroes $=\alpha \beta$
Sum of zeroes $=\alpha+\beta=1 / 4$
Product of zeroes $=\alpha \beta=-1$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can bewritten directly as:
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-(1 / 4) x+(-1)=0$
$4 x^{2}-x-4=0$
Thus, $4 x^{2}-x-4$ is the quadratic polynomial.
(ii) $\sqrt{2}, 1 / 3$

Solution:

Sum of zeroes $=\alpha+\beta=\sqrt{2}$
Product of zeroes $=\alpha \beta=1 / 3$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-(\sqrt{2}) x+(1 / 3)=0$
$3 x^{2}-3 \sqrt{2 x}+1=0$
Thus, $3 x^{2}-3 \sqrt{2} x+1$ is the quadratic polynomial.
(iii) $0, \sqrt{5}$

Solution:

Given,
Sum of zeroes $=\alpha+\beta=0$
Product of zeroes $=\alpha \beta=\sqrt{5}$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-(0) x+\sqrt{5}=0$
Thus, $x 2+\sqrt{5}$ is the quadratic polynomial.
(iv) 1,1

Solution:

Given,
Sum of zeroes $=\alpha+\beta=1$
Product of zeroes $=\alpha \beta=1$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-x+1=0$
Thus, $x 2-x+1$ is the quadratic polynomial.

(v) $-1 / 4,1 / 4$

Solution:

Given,
Sum of zeroes $=\alpha+\beta=-1 / 4$
Product of zeroes $=\alpha \beta=1 / 4$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-(-1 / 4) x+(1 / 4)=0$
$4 x^{2}+x+1=0$
Thus, $4 x^{2}+x+1$ is the quadratic polynomial.
(vi) 4, 1

Solution:

Given,
Sum of zeroes $=\alpha+\beta=4$
Product of zeroes $=\alpha \beta=1$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can bewritten directly as:
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-4 x+1=0$
Thus, $x^{2}-4 x+1$ is the quadratic polynomial.
Exercise 2.3
For more Info Visit - www.KITest.in

Question 1

Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in each of the following:
(i) $p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$

Solution:

Given,
Dividend $=p(x)=x^{3}-3 x^{2}+5 x-3$
Divisor $=g(x)=x^{2}-2$

$x^{2}-2$| $x-3$ |
| :--- |
| $x^{3}-3 x^{2}+5 x$$-3$ |
| |
| $x^{3}+0 x^{2}-2 x$
 -
 $-3 x^{2}+7 x$ |
| $-3 x^{2}+0 x$ +6
 $7 x$ -9 |

Therefore, upon division we get,
Quotient $=x-3$
Remainder $=7 \mathrm{x}-9$
(ii) $p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x$

Solution:

Given, Dividend $=p(x)=x^{4}-3 x^{2}+4 x+5$
Divisor $=g(x)=x^{2}+1-x$

$$
\begin{aligned}
& x^{2}-x+1 \\
& \sqrt{x^{2}+x-3} \\
& \begin{array}{lll}
x^{4}-x^{3} & +x^{2} \\
\hline & -4 x^{2}+4 x+5
\end{array} \\
& \begin{array}{rrr}
x^{3} & -x^{2} & +x \\
\hline & -3 x^{2} & +3 x \\
- & \\
& -3 x^{2} & +3 x
\end{array} \begin{array}{r}
-3 \\
\hline
\end{array}
\end{aligned}
$$

Therefore, upon division we get,
Quotient $=x^{2}+x-3$
Remainder $=8$
(iii) $p(x)=x^{4}-5 x+6, g(x)=2-x^{2}$

Solution:

Given,
Dividend $=p(x)=x^{4}-5 x+6=x^{4}+0 x^{2}-5 x+6$
Divisor $=g(x)=2-x^{2}=-x^{2}+2$

$$
\begin{aligned}
& - x ^ { 2 } + 2 \longdiv { x ^ { 2 } - 2 } \begin{array} { | c }
{ x ^ { 4 } + 0 x ^ { 3 } + 0 x ^ { 2 } - 5 x + 6 }
\end{array} \\
& \text { - } \\
& \frac{x^{4}+0 x^{3}-2 x^{2}}{} \begin{array}{llll}
2 x^{2} & -5 x & +6
\end{array} \\
& \begin{array}{r}
2 x^{2}+0 x-4 \\
\hline-5 x+10
\end{array}
\end{aligned}
$$

Therefore, upon division we get,
Quotient $=-x^{2}-2$
Remainder $=-5 x+10$
Question 2

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
(i) $t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$

Solutions:

Given, First polynomial $=t^{2}-3$
Second polynomial $=2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$
$t ^ { 2 } - 3 \longdiv { 2 t ^ { 2 } + 3 t + 4 } \begin{array} { l } { 2 t ^ { 4 } + 3 t ^ { 3 } - 2 t ^ { 2 } } \end{array} \frac { - 9 t } { } - 1 2$

$2 t^{4}$	$+0 t^{3}$	$-6 t^{2}$	
$3 t^{3}$	$+4 t^{2}$	$-9 t$	-12
-			
$3 t^{3}$	$+0 t^{2}$	$-9 t$	
	$4 t^{2}$	$+0 t$	-12
	$4 t^{2}$	$+0 t$	-12
		0	

As we can see, the remainder is left as 0 . Therefore, we say that, $t^{2}-3$ is a factor of $2 t^{2}+3 t+4$.
(ii) $x^{2}+3 x+1,3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$

Solutions:

Given,
First polynomial $=x^{2}+3 x+1$
Second polynomial $=3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$

$$
\begin{array}{r}
x^{2}+3 x+1 \begin{array}{r}
3 x^{2}-4 x+2 \\
\\
\\
\begin{array}{r}
3 x^{4}+5 x^{3}-7 x^{2}+2 x+2 \\
- \\
-4 x^{4}-10 x^{2}+2 x+2 \\
-4 x^{3}-12 x^{2}-4 x
\end{array} \\
\begin{array}{r}
2 x^{2}+6 x+2 \\
- \\
2 x^{2}+6 x+2
\end{array} \\
\hline
\end{array}
\end{array}
$$

As we can see, the remainder is left as 0 . Therefore, we say that, $x^{2}+3 x+1$ is a factor of $3 x^{4}+5 x^{3} 7 x^{2}+2 x+2$.
(iii) $x^{3}-3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$

Solutions:

Given, First polynomial $=x^{3}-3 x+1$
Second polynomial $=x^{5}-4 x^{3}+x^{2}+3 x+1$

As we can see, the remainder is not equal to 0 . Therefore, we say that, $x^{3}-3 x+1$ is not a factor of x^{5} $4 x^{3}+x^{2}+3 x+1$.

Question 3

Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{ }(5 / 3)$ and $-\sqrt{ }(5 / 3)$.

Solutions:

Since this is a polynomial equation of degree 4, hence there will be total 4 roots.
$\sqrt{ }(5 / 3)$ and $-\sqrt{ }(5 / 3)$ are zeroes of polynomial $f(x)$.
$\therefore(\mathrm{x}-\sqrt{ }(5 / 3))(\mathrm{x}+\sqrt{ }(5 / 3)=\mathrm{x} 2-(5 / 3)=0$
$\left(3 x^{2}-5\right)=0$, is a factor of given polynomial $f(x)$.
Now, when we will divide $f(x)$ by $\left(3 x^{2}-5\right)$ the quotient obtained will also be a factor of $f(x)$ and the remainder will be 0 .

$x^{2}+2 x+1$			
$3 x^{2}-5$	$3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$		
	$3 x^{4}-5 x^{2}$		
	(-)	-1 (*)	
	$+6 \mathrm{x}^{3}+3 \mathrm{x}^{2}-10 \mathrm{x}-5$		
	$-6 \mathrm{x}^{3}$		$-10 \mathrm{x}$
	(*)		$(-)$
		$3 x^{2}$	-5
		$3 x^{2}$	-5
		(-)	(+)

Therefore, $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5=\left(3 x^{2}-5\right)\left(x^{2}+2 x+1\right)$
Now, on further factorizing $\left(x^{2}+2 x+1\right)$ we get,
$x^{2}+2 x+1=x^{2}+x+x+1=0$
$x(x+1)+1(x+1)=0$
$(x+1)(x+1)=0$
So, its zeroes are given by: $x=-1$ and $x=-1$.
Therefore, all four zeroes of given polynomial equation are:
$\sqrt{ }(5 / 3),-\sqrt{ }(5 / 3),-1$ and -1 .
Hence, is the answer.

Question 4

On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $g(x)$.

Solutions:

Given,
Dividend, $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2$
Quotient = x -2
Remainder $=-2 \mathrm{x}+4$
We have to find the value of Divisor, $\mathrm{g}(\mathrm{x})=$?
As we know,
Dividend $=$ Divisor \times Quotient + Remainder
$\therefore \mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2=\mathrm{g}(\mathrm{x}) \times(\mathrm{x}-2)+(-2 \mathrm{x}+4)$
$x^{3}-3 x^{2}+x+2-(-2 x+4)=g(x) \times(x-2)$
Therefore, $g(x) \times(x-2)=x^{3}-3 x^{2}+x+2$
Now, for finding $g(x)$ we will divide $x^{3}-3 x^{2}+x+2$ with ($x-2$)

Therefore, $g(x)=\left(x^{2}-x+1\right)$

Question 5

Give examples of polynomials $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and (i) $\operatorname{deg} p(x)=\operatorname{deg} q(x)$
(ii) $\operatorname{deg} q(x)=\operatorname{deg} r(x)$
(iii) $\operatorname{deg} r(x)=0$

Solutions:

According to the division algorithm, dividend $\mathrm{p}(\mathrm{x})$ and divisor $\mathrm{g}(\mathrm{x})$ are two polynomials, where $\mathrm{g}(\mathrm{x}) \neq 0$. Then wecan find the value of quotient $\mathrm{q}(\mathrm{x})$ and remainder $\mathrm{r}(\mathrm{x})$, with the help of below given formula; Dividend $=$ Divisor \times Quotient + Remainder
$\therefore \mathrm{p}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \times \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$
Where $r(x)=0$ or degree of $r(x)<$ degree of $g(x)$.
Now let us proof the three given cases as per division algorithm by taking examples for each.
(i) $\operatorname{deg} p(x)=\operatorname{deg} q(x)$

Degree of dividend is equal to degree of quotient, only when the divisor is a constant term.
Let us take an example, $\mathrm{p}(\mathrm{x})=3 \mathrm{x}^{2}+3 \mathrm{x}+3$ is a polynomial to be divided by $\mathrm{g}(\mathrm{x})=3$.
So, $\left(3 x^{2}+3 x+3\right) / 3=x^{2}+x+1=q(x)$
Thus, you can see, the degree of quotient $\mathrm{q}(\mathrm{x})=2$, which also equal to the degree of dividend $\mathrm{p}(\mathrm{x})$.
Hence, division algorithm is satisfied here.
(ii) $\operatorname{deg} q(x)=\operatorname{deg} r(x)$

Let us take an example, $\mathrm{p}(\mathrm{x})=\mathrm{x} 2+3$ is a polynomial to be divided by $\mathrm{g}(\mathrm{x})=\mathrm{x}-1$.
So, $x^{2}+3=(x-1) \times(x)+(x+3)$
Hence, quotient $\mathrm{q}(\mathrm{x})=\mathrm{x}$
Also, remainder $r(x)=x+3$
Thus, you can see, the degree of quotient $\mathrm{q}(\mathrm{x})=1$, which is also equal to the degree of remainder $\mathrm{r}(\mathrm{x})$. Hence, division algorithm is satisfied here.
(iii) $\operatorname{deg} r(x)=0$

The degree of remainder is 0 only when the remainder left after division algorithm is constant.
Let us take an example, $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+1$ is a polynomial to be divided by $\mathrm{g}(\mathrm{x})=\mathrm{x}$.
So, $\mathrm{x}^{2}+1=(\mathrm{x}) \times(\mathrm{x})+1$
Hence, quotient $\mathrm{q}(\mathrm{x})=\mathrm{x}$

And, remainder $r(x)=1$
Clearly, the degree of remainder here is 0 .
Hence, division algorithm is satisfied here

Exercise 2.4

Question 1

Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:
(i) $2 x^{3}+x^{2}-5 x+2 ;-1 / 2,1,-2$

Solution:

Given, $p(x)=2 x^{3}+x^{2}-5 x+2$
And zeroes for $\mathrm{p}(\mathrm{x})$ are $=1 / 2,1,-2$
For more Info Visit - www.KITest.in
$\therefore \mathrm{p}(1 / 2)=2(1 / 2)^{3}+(1 / 2) 2-5(1 / 2)+2=(1 / 4)+(1 / 4)-(5 / 2)+2=0$
$p(1)=2(1)^{3}+(1)^{2}-5(1)+2=0$
$\mathrm{p}(-2)=2(-2)^{3}+(-2)^{2}-5(-2)+2=0$
Hence, proved $1 / 2,1,-2$ are the zeroes of $2 x^{3}+x^{2}-5 x+2$.
Now, comparing the given polynomial with general expression, we get;
$\therefore \mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}=2 \mathrm{x}^{3}+\mathrm{x}^{2}-5 \mathrm{x}+2$
$a=2, b=1, c=-5$ and $d=2$
As we know, if α, β, γ are the zeroes of the cubic polynomial $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$, then;
$\alpha+\beta+\gamma=-\mathrm{b} / \mathrm{a}$
$\alpha \beta+\beta \gamma+\gamma \alpha=c / a$
$\alpha \beta \gamma=-d / a$.
Therefore, putting the values of zeroes of the polynomial,
$\alpha+\beta+\gamma=1 / 2+1+(-2)=-1 / 2=-b / a$
$\alpha \beta+\beta \gamma+\gamma \alpha=(1 / 2 \times 1)+(1 \times-2)+(-2 \times 1 / 2)=-5 / 2=c / a$

$\alpha \beta \gamma=1 / 2 \times 1 \times(-2)=-2 / 2=-\mathrm{d} / \mathrm{a}$
Hence, the relationship between the zeroes and the coefficients are satisfied.
(ii) $x^{3}-4 x^{2}+5 x-2 ; 2,1,1$

Solution:

Given, $p(x)=x^{3}-4 x^{2}+5 x-2$
And zeroes for $p(x)$ are 2,1,1.
$\therefore p(2)=23-4(2)^{2}+5(2)-2=0$
$p(1)=1^{3}-(4 \times 12)+(5 \times 1)-2=0$
Hence proved, 2, 1, 1 are the zeroes of $x^{3}-4 x^{2}+5 x-2$
Now, comparing the given polynomial with general expression, we get;
$\therefore \mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}=\mathrm{x}^{3}-4 \mathrm{x}^{2}+5 \mathrm{x}-2$
$a=1, b=-4, c=5$ and $d=-2$
As we know, if α, β, γ are the zeroes of the cubic polynomial $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$, then;
$\alpha+\beta+\gamma=-b / a$
$\alpha \beta+\beta \gamma+\gamma \alpha=c / a$
$\alpha \beta \gamma=-\mathrm{d} / \mathrm{a}$.
Therefore, putting the values of zeroes of the polynomial,
$\alpha+\beta+\gamma=2+1+1=4=-(-4) / 1=-b / a$
$\alpha \beta+\beta \gamma+\gamma \alpha=2 \times 1+1 \times 1+1 \times 2=5=5 / 1=c / a$
$\alpha \beta \gamma=2 \times 1 \times 1=2=-(-2) / 1=-d / a$
Hence, the relationship between the zeroes and the coefficients are satisfied.

Question 2

Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as $2,-7,-14$ respectively.

Solution:

Let us consider the cubic polynomial is $\mathrm{ax}^{3}+\mathrm{bx}{ }^{2}+\mathrm{cx}+\mathrm{d}$ and the values of the zeroes of the polynomials be α, β, γ.
As per the given question,
$\alpha+\beta+\gamma=-b / a=2 / 1$
$\alpha \beta+\beta \gamma+\gamma \alpha=c / a=-7 / 1$
$\alpha \beta \gamma=-\mathrm{d} / \mathrm{a}=-14 / 1$
Thus, from above three expressions we get the values of coefficient of polynomial.
$\mathrm{a}=1, \mathrm{~b}=-2, \mathrm{c}=-7, \mathrm{~d}=14$
Hence, the cubic polynomial is $\mathrm{x}^{3}-2 \mathrm{x}^{2}-7 \mathrm{x}+14$

Question 3

If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $a-b, a, a+b$, find a and b.

Solution:

We are given with the polynomial here,
$p(x)=x^{3}-3 x^{2}+x+1$
And zeroes are given as $\mathrm{a}-\mathrm{b}, \mathrm{a}, \mathrm{a}+\mathrm{b}$
Now, comparing the given polynomial with general expression, we get;
$\therefore \mathrm{px}^{3}+\mathrm{qx}^{2}+\mathrm{rx}+\mathrm{s}=\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+1$
$p=1, q=-3, r=1$ and $s=1$
Sum of zeroes $=a-b+a+a+b$
$-q / p=3 a$
Putting the values q and p.
$-(-3) / 1=3$ a
$\mathrm{a}=1$
Thus, the zeroes are 1-b, 1, 1+b.
Now, product of zeroes $=1(1-b)(1+b)$
$-s / p=1-b^{2}$
$-1 / 1=1-b^{2}$
$b^{2}=1+1=2$
$\mathrm{b}=\sqrt{ } 2$
Hence, $1-\sqrt{ } 2,1,1+\sqrt{2}$ are the zeroes of $x^{3}-3 x^{2}+x+1$.

Question 4

If two zeroes of the polynomial $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$, find other zeroes.

Solution:

Since this is a polynomial equation of degree 4 , hence there will be total 4 roots
Let $f(x)=x^{4}-6 x^{3}-26 x^{2}+138 x-35$
For more Info Visit - www.KITest.in

Since $2+\sqrt{3}$ and $2-\sqrt{3}$ are zeroes of given polynomial $f(x)$.
$\therefore[\mathrm{x}-(2+\sqrt{3})][\mathrm{x}-(2-\sqrt{3})]=0$
$(x-2-\sqrt{3})(x-2+\sqrt{3})=0$
On multiplying the above equation, we get,
$x^{2}-4 x+1$, this is a factor of a given polynomial $f(x)$.
Now, if we will divide $f(x)$ by $g(x)$, the quotient will also be a factor of $f(x)$ and the remainder will be 0 .

$$
x^{2}-2 x-35
$$

$x^{2}-4 x+1 \quad x^{4}-6 x^{3}-26 x^{2}+138 x-35$

$$
x^{4}-4 x^{3}+x^{2}
$$

(4) (0) 4
$-2 x^{3}-27 x^{2}+138 x-35$
$-2 x^{3}+8 x^{2}-2 x$
(-) $\quad \Leftrightarrow \quad(-)$
$-35 x^{2}+140 x-35$
$-35 x^{2}+140 x-35$

So, $\mathrm{x}^{4}-6 \mathrm{x}^{3}-26 \mathrm{x}^{2}+138 \mathrm{x}-35=\left(\mathrm{x}^{2}-4 \mathrm{x}+1\right)\left(\mathrm{x}^{2}-2 \mathrm{x}-35\right)$
Now, on further factorizing ($x^{2}-2 x-35$) we get,
$x^{2}-(7-5) x-35=x^{2}-7 x+5 x+35=0$
$x(x-7)+5(x-7)=0$
$(x+5)(x-7)=0$
So, its zeroes are given by:
$\mathrm{x}=-5$ and $\mathrm{x}=7$.
Therefore, all four zeroes of given polynomial equation are: $2+\sqrt{3}, 2-\sqrt{3},-5$ and 7

