<u>Chapter 12</u> <u>Introduction to Three Dimensional Geometry</u>

<u>Exercise 12.1</u>

Question 1

A point is on the x-axis. What are its y coordinate and z-coordinates?

Solution:

If a point is on the x-axis, then the coordinates of y and z are 0. So the point is (x, 0, 0).

Question 2

A point is in the XZ-plane. What can you say about its y-coordinate?

Solution:

If a point is in XZ plane, then its y-co-ordinate is 0.

Question 3

Name the octants in which the following points lie: (1, 2, 3), (4, -2, 3), (4, -2, -5), (4, 2, -5), (-4, 2, -5), (-4, 2, 5), (-3, -1, 6) (2, -4, -7)

Solution:

Here is the table which represent the octants:

Octants	Ι	II	III	IV	V	VI	VII	VIII
Х	+	-	-	+	+	-	-	+
у	+	+	-	-	+	+	-	-
Z	+	+	+	+	-	-	-	-

(i) (1,2,3)

Here x is positive y is positive and z is positive. So it lies in I octant.

(ii) (4, -2, 3)

Here x is positive, y is negative and z is positive.

6262969699

So it lies in IV octant

(iii)(4, -2,-5) Here x is positive, y is negative and z is negative. So it lies in VIII octant.

(iv) (4, 2, -5) Here x is positive, y is positive and z is negative. So it lies in V octant.

(v) (-4, 2, -5) Here x is negative, y is positive and z is negative. So it lies in VI octant

(vi) (-4, 2, 5) Here x is negative, y is positive and z is positive. So it lies in II octant.

(Vii) (-3, -1, 6) Here x is negative, y is negative and z is positive. So it lies in III octant.

(viii) (2, -4, -7) Here x is negative, y is negative and z is positive. So it lies in III octant.

Question 4

Fill in the blanks:
(i) The x-axis and y-axis taken together determine a plane known as _____.
(ii) The coordinates of points in the XY-plane are of the form _____.
(ii) Coordinate planes divide the space into _____ octants.

Solution:

(i) The x-axis and y-axis taken together determine a plane known as <u>XY Plane</u>.

(ii) The coordinates of points in the XY-plane are of the form (x, y, 0).

(iii) Coordinate planes divide the space into <u>eight</u> octants.

<u>Exercise 12.2</u>

Question 1

Find the distance between the following pairs of points: (i) (2, 3, 5) and (4, 3, 1) (ii) (-3, 7, 2) and (2, 4, -1)

6262969699

(iii) (-1, 3, -4) and (1, -3, 4) (iv) (2, -1, 3) and (-2, 1, 3) Solution: (i) (2, 3, 5) and (4, 3, 1) Let P be (2, 3, 5) and Q be (4, 3, 1) By using the formula, Distance PQ= $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here. $x_1 = 2, y_1 = 3, z_1 = 5$ $x_2 = 4, y_2 = 3, z_2 = 1$ Distance PQ = $\sqrt{[(4-2)^2 + (3-3)^2 + (1-5)^2]}$ $=\sqrt{[(2)^2+(0)^2+(-4)^2]}$ $=\sqrt{[4+0+16]}$ $=\sqrt{20}$ $= 2\sqrt{5}$ \therefore The required distance is $2\sqrt{5}$ units. (ii) (-3, 7, 2) and (2, 4, -1)Let P be (-3, 7, 2) and Q be (2, 4, -1) By using the formula, Distance PQ = $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here. $x_1 = -3, y_1 = 7, z_1 = 2$ $x_2 = 2, y_2 = 4, z_2 = -1$ Distance PO = $\sqrt{[(2 - (-3)^2 + (4 - 7)^2 + (-1 - 2)^2]]}$ $=\sqrt{[(5)^2 + (-3)^2 + (-3)^2]}$ $=\sqrt{25+9+9}$ $=\sqrt{43}$ \therefore The required distance is $\sqrt{43}$ units. (iii) (-1, 3, -4) and (1, -3, 4)Let P be (-1, 3, -4) and Q be (1, -3, 4) By using the formula, Distance PQ = $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here, $x_1 = -1, y_1 = 3, z_1 = -4$ $x_2 = 1, y_2 = 3, z_2 = 4$ Distance PQ = $\sqrt{[(1 - (-1)^2 + (-3 - 3)^2 + (4 - (-4))^2]]}$ $=\sqrt{[(2)^{2}+(-6)^{2}+(8)^{2}]}$ $=\sqrt{[4+36+64]}$ $=\sqrt{104}$ $= 2\sqrt{26}$

For more Info Visit - <u>www.KITest.in</u>

6262969699

: The required distance is $2\sqrt{26}$ units.

(iv) (2, -1, 3) and (-2, 1, 3) Let P be (2, -1, 3) and Q be (-2, 1, 3) By using the formula, Distance PQ = $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here, $x_1 = 2, y_1 = -1, z_1 = 3$ $x_2 = -2, y_2 = 1, z_2 = 3$ Distance PQ = $\sqrt{[(-2 - 2)^2 + (1 - (-1))^2 + (3 - 3)^2]}$ $= \sqrt{[(-4)^2 + (2)^2 + (0)^2]}$ $= \sqrt{[16 + 4 + 0]}$

∴ The required distance is $2\sqrt{5}$ units.

Question 2

Show that the points (-2, 3, 5), (1, 2, 3) and (7, 0, -1) are collinear.

Solution:

If three points are collinear, then they lie on a line. Firstly let us calculate distance between the 3 points i.e. PQ, QR and PR Calculating PQ $P \equiv (-2, 3, 5)$ and $Q \equiv (1, 2, 3)$ By using the formula, Distance $PQ = \sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here, $x_1 = -2, y_1 = 3, z_1 = 5$ $x_2 = 1, y_2 = 2, z_2 = 3$ Distance $PQ = \sqrt{[(1 - (-2))^2 + (2 - 3)^2 + (3 - 5)^2]}$ $= \sqrt{[(3)^2 + (-1)^2 + (-2)^2]}$ $= \sqrt{[9 + 1 + 4]}$

$$=\sqrt{14}$$

 $= \sqrt{20}$ $= 2\sqrt{5}$

Calculating QR Q = (1, 2, 3) and R = (7, 0, -1) By using the formula, Distance QR = $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here, $x_1 = 1, y_1 = 2, z_1 = 3$ $x_2 = 7, y_2 = 0, z_2 = -1$ Distance QR = $\sqrt{[(7 - 1)^2 + (0 - 2)^2 + (-1 - 3)^2]}$ $= \sqrt{[(6)^2 + (-2)^2 + (-4)^2]}$

6262969699

 $= 2\sqrt{14}$ Calculating PR P = (-2, 3, 5) and R = (7, 0, -1) By using the formula, Distance PR = $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here, $x_1 = -2, y_1 = 3, z_1 = 5$ $x_2 = 7, y_2 = 0, z_2 = -1$ Distance PR = $\sqrt{[(7 - (-2))^2 + (0 - 3)^2 + (-1 - 5)^2]}$ $= \sqrt{[(9)^2 + (-3)^2 + (-6)^2]}$ $= \sqrt{[81 + 9 + 36]}$

Thus, PQ= $\sqrt{14}$, QR= $2\sqrt{14}$, and PR = $3\sqrt{14}$ So, PQ + QR = $\sqrt{14}$ + $2\sqrt{14}$

= PR \therefore The points P, Q and R are collinear.

Question 3

Verify the following: (i) (0, 7, -10), (1, 6, - 6) and (4, 9, - 6) are the vertices of an isosceles triangle. (ii) (0, 7, 10), (-1, 6, 6) and (- 4, 9, 6) are the vertices of a right angled triangle. (iii) (-1, 2, 1), (1, -2, 5), (4, -7, 8) and (2, -3, 4) are the vertices of a parallelogram.

 $=\sqrt{[36+4+16]}$ $=\sqrt{56}$

 $= \sqrt{126}$ $= 3\sqrt{14}$

 $= 3\sqrt{14}$

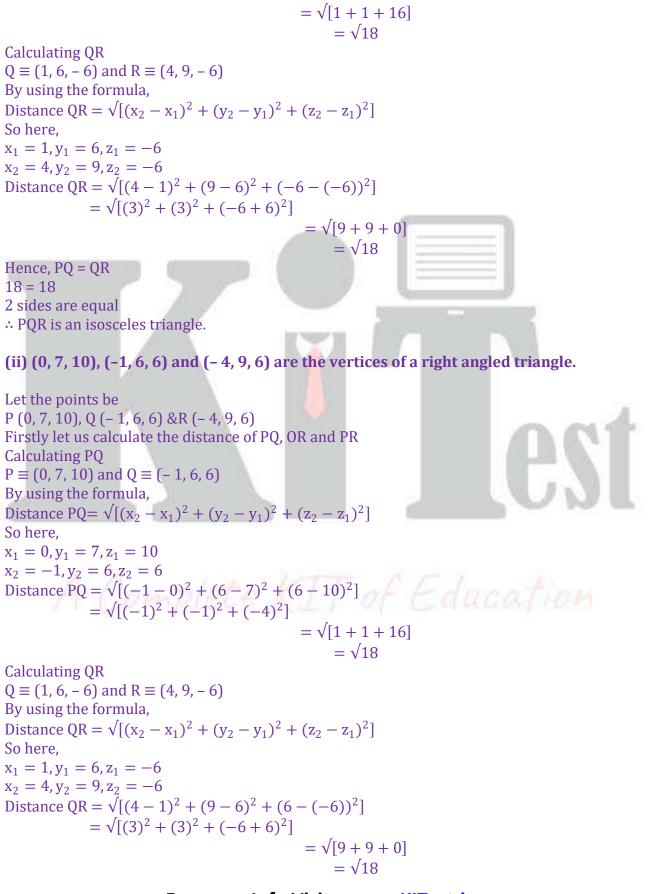
Solution:

(i) (0, 7, -10), (1, 6, - 6) and (4, 9, - 6) are the vertices of an isosceles triangle.

Let us consider the points be P (0, 7, -10), Q (1, 6, -6) and R (4, 9, -6) If any 2 sides are equal, hence it will be an isosceles triangle So firstly let us calculate the distance of PQ, QR Calculating PQ P = (0, 7, -10) and Q = (1, 6, -6) By using the formula, Distance PQ = $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here, $x_1 = 0, y_1 = 7, z_1 = -10$ $x_2 = 1, y_2 = 6, z_2 = -6$ Distance PQ= $\sqrt{[(1 - 0)^2 + (6 - 7)^2 + (-6 - (-10))^2]}$ $= \sqrt{[(1)^2 + (-1)^2 + (4)^2]}$

For more Info Visit - <u>www.KITest.in</u>

6262969699



For more Info Visit - <u>www.KITest.in</u>

6262969699

Calculating PR $P \equiv (0, 7, 10)$ and $R \equiv (-4, 9, 6)$ By using the formula, Distance PR = $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here. $x_1 = 0, y_1 = 7, z_1 = 10$ $x_2 = -4, y_2 = 9, z_2 = 6$ Distance PR = $\sqrt{[(-4-0)^2 + (9-7)^2 + (6-10)^2]}$ $=\sqrt{[(-4)^2+(2)^2+(-4)^2]}$ $=\sqrt{[16+4+16]}$ $=\sqrt{36}$ Now. $PQ^2 + QR^2 = 18 + 18$ = 36 $= PR^2$ By using convers of Pythagoras theorem, : The given vertices P, Q& R are the vertices of a right – angled triangle at Q. (iii) (-1, 2, 1), (1, -2, 5), (4, -7, 8) and (2, -3, 4) are the vertices of a parallelogram. Let the points be: A (-1, 2, 1), B (1, -2, 5), C (4, -7, 8) &D (2, -3, 4) ABCD can be vertices of parallelogram only if opposite sides are equal. i.e. AB = CD and BC = ADFirstly let us calculate the distance **Calculating AB** $A \equiv (-1, 2, 1)$ and $B \equiv (1, -2, 5)$ By using the formula, Distance AB = $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here. $x_1 = -1, y_1 = 2, z_1 = 1$ $x_2 = 1, y_2 = -2, z_2 = 5$ Distance AB = $\sqrt{[(1 - (-1))^2 + (-2 - 2)^2 + (5 - 1)^2]}$ = $\sqrt{[(2)^2 + (-4)^2 + (4)^2]}$ $=\sqrt{[4+16+16]}$ $=\sqrt{36}$ = 6**Calculating BC** $B \equiv (1, -2, 5)$ and $C \equiv (4, -7, 8)$ By using the formula, Distance BC = $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here, $x_1 = 1, y_1 = -2, z_1 = 5$ $x_2 = 4, y_2 = -7, z_2 = 8$ Distance BC = $\sqrt{[(4-1)^2 + (-7-(2))^2 + (8-5)^2]}$ $=\sqrt{[(3)^2 + (-5)^2 + (3)^2]}$ $=\sqrt{9+25+9}$

For more Info Visit - <u>www.KITest.in</u>

6262969699

 $=\sqrt{43}$ Calculating CD $C \equiv (4, -7, 8)$ and $D \equiv (2, -3, 4)$ By using the formula, Distance $CD = \sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here. $x_1 = 4, y_1 = -7, z_1 = 8$ $x_2 = 2, y_2 = -3, z_2 = 4$ Distance CD = $\sqrt{[(2-4)^2 + (-3 - (-7))^2 + (4-8)^2]}$ $=\sqrt{[(-2)^2+(4)^2+(-4)^2]}$ $=\sqrt{[4+16+16]}$ $=\sqrt{36}$ = 6 Calculating DA $D \equiv (2, -3, 4)$ and $A \equiv (-1, 2, 1)$ By using the formula, Distance DA = $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here. $x_1 = 2, y_1 = -3, z_1 = 4$ $x_2 = -1, y_2 = 2, z_2 = 1$ Distance DA = $\sqrt{[(-1-2)^2 + (2-(-3))^2 + (1-4)^2]}$ $=\sqrt{[(-3)^2+(5)^2+(-3)^2]}$ $=\sqrt{[9+25+9]}$ $=\sqrt{43}$ Since AB = CD and BC = DA (given) So, In ABCD both pairs of opposite sides are equal.

ABCD is a parallelogram.

Question 4

Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, -1).

Solution:

Let A (1, 2, 3) & B (3, 2, -1) Let point P be (x, y, z) Since it is given that point P(x, y, z) is equal distance from point A (1, 2, 3) &B (3, 2, -1) i.e. PA = PB Firstly let us calculate Calculating PA P \equiv (x, y, z) and A \equiv (1, 2, 3) By using the formula, Distance PA = $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here, $x_1 = x, y_1 = y, z_1 = z$

6262969699

 $x_2 = 1, y_2 = 2, z_2 = 3$ Distance PA= $\sqrt{[(1-x)^2 + (2-y)^2 + (3-z)^2]}$ **Calculating PB** $P \equiv (x, y, z)$ and $B \equiv (3, 2, -1)$ By using the formula, Distance PB = $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here, $x_1 = x, y_1 = -y, z_1 = z$ $x_2 = 3, y_2 = 2, z_2 = -1$ Distance PB = $\sqrt{[(3-x)^2 + (2-y)^2 + (-1-z)^2]}$ Since PA = PB Square on both the sides, we get $PA^2 = PB^2$ $(1-x)^2 + (2-y)^2 + (3-z)^2 = (3-x)^2 + (2-y)^2 + (-1-z)^2$ $(1 + x^2 - 2x) + (4 + y^2 - 4y) + (9 + z^2 - 6z)$ $(9 + x^2 - 6x) + (4 + y^2 - 4y) + (1 + z^2 + 2z)$ -2x - 4y - 6z + 14 = -6x - 4y + 2z + 144x - 8z = 0x - 2z = 0 \therefore The required equation is x - 2z = 0

Question 5

Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (-4, 0, 0) is equal to 10.

Solution:

Let A (4, 0, 0) & B (-4, 0, 0) Let the coordinates of point P be (x, y, z)Calculating PA Calculating PA $P \equiv (x, y, z)$ and $A \equiv (4, 0, 0)$ By using the formula, Distance PA = $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here, $x_1 = x_1 y_1 = y_1 z_1 = z$ $x_2 = 4, y_2 = 0, z_2 = 0$ Distance PA = $\sqrt{[(4-x)^2 + (0-y)^2 + (0-z)^2]}$ **Calculating PB** $P \equiv (x, y, z)$ and $B \equiv (-4, 0, 0)$ By using the formula, Distance PB= $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ So here. $x_1 = x, y_1 = y, z_1 = z$ $x_2 = -4, y_2 = 0, z_2 = 0$ Distance PB = $\sqrt{[(-4 - x)^2 + (0 - y)^2 + (0 - z)^2]}$

6262969699

Now is given that: PA + PB = 10PA = 10 - PBSquare on both the sides, we get $PA^2 = (10 - PB)^2$ $PA^2 = 100 + PB^2 - 20PB$ $(4 - X)^{2} + (0 - Y)^{2} + 0 - Z)^{2}$ $100 + (-4 - x)^2 + (0 - y)^2 + (0 - z)^2 - 20$ PB $(16 + x^2 - 8x) + (y)^2 + (z)^2$ $100 + (16 + x^{2} + 8x) + (y^{2}) + (z^{2}) - 20PB$ 20PB = 16x + 1005PB = (4x + 25)Square on both the sides again, we get $25PB^2 = 16x^2 + 200x + 625$ $25[(-4-x)^{2} + (0-y)^{2} + (0-z)^{2}] = 16x^{2} + 200x + 625$ $25[x^{2} + y^{2} + z^{2} + 8x + 16] = 16x^{2} + 200x + 625$ $25x^{2} + 25y^{2} + 25z^{2} + 200x + 400 - 16x^{2} + 200x + 625$ $9x^2 + 25y^2 + 25z^2 - 225 = 0$ \therefore The required equation $9x^2 + 25y^2 + 25z^2 - 225 = 0$

Exercise12.3

Question 1

Find the coordinates of the point which divides the line segment joining the points (- 2, 3, 5) and (1, - 4, 6) in the ratio (i) 2: 3 internally, (ii) 2: 3 externally.

Solution:

Let the line segment joining the points P (-2, 3, 5) and Q (1, -4, 6) be PQ.

(i) 2: 3 internally

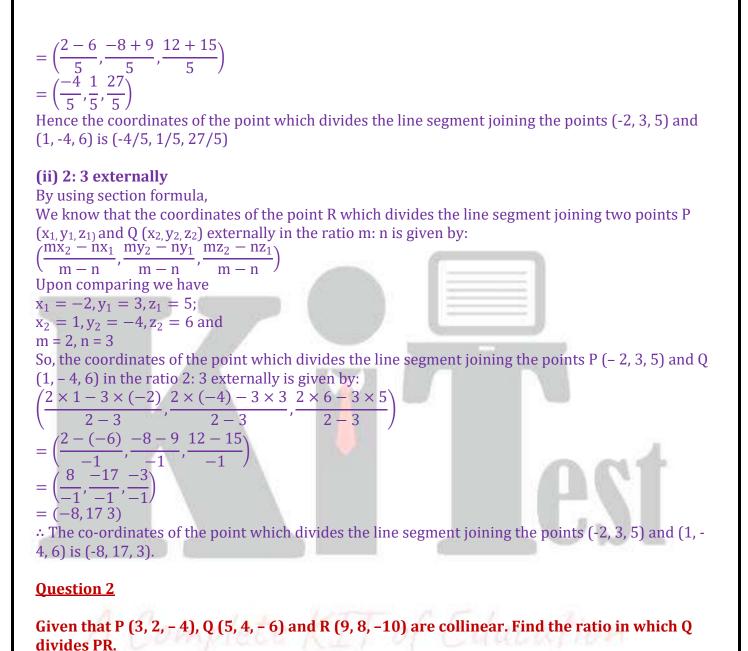
By using section formula, We know that the coordinates of the point R which divides the line segment joining two points P (x_1, y_1, z_1) and Q (x_2, y_2, z_2) internally in the ratio m: n is given by:

 $\left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}, \frac{mz_2 + nz_1}{m + n}\right)$ Upon comparing we have $x_1 = -2, y_1 = 3, z_1 = 5;$ $x_2 = 1, y_2 = -4, z_2 = 6$ and m = 2, n = 3

So, the coordinates of the point which divides the line segment joining the points P (-2,3, 5) and Q (1, -4, 6) in the ratio 2: 3 internally is given by:

 $\left(\frac{2 \times 1 + 3 \times (-2)}{2 + 3}, \frac{2 \times (-4) + 3 \times 3}{2 + 3}, \frac{2 \times 6 + 3 \times 5}{2 + 3}\right)$

6262969699



Solution:

Let us consider Q divides PR in the ratio k: 1. By using section formula,

We know that the coordinates of the point R which divides the line segment joining two P (x_1, y_1, z_1) and Q (x_2, y_2, z_2) internally in the ratio m: n is given by:

 $\left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}, \frac{mz_2 + nz_1}{m + n}\right)$ Upon comparing we have $x_1 = 3, y_1 = 2, z_1 = -4;$ $x_2 = 9, y_2 = 8, z_2 = -10$ and m = k, n = 1So we have

For more Info Visit - www.KITest.in

6262969699

 $\left(\frac{9k+3}{k+1}, \frac{8k+2}{k+1}, \frac{10k-4}{k+1}\right) = (5,4,-6)$ $\frac{9k+3}{k+1} = 5, \frac{8k+2}{k+1} = 4, \frac{10-4}{k+1} = -6$ 9k+3=5(k+1) 9k+3=5k+5 9k-5k=5-3 4k=2 K=2/4 $= \frac{1}{2}$ Hence the ratio in which Q divides PR is 1:2.

Question 3

Find the ratio in which the YZ-plane divides the line segment formed by joining the points (-2, 4, 7) and (3, -5, 8).

Solution:

Let the line segment formed by joining the points P (-2, 4, 7) and Q (3, -5, 8) be PQ. We know that any point on the YZ-plane is of the form (0, y, z). So now, let R (0, y, z) divides the line segment PQ in the ratio k: 1. Then, Upon comparing we have,

 $x_1 = -2, y_1 = 4, z_1 = 7;$ $x_2 = 3, y_2 = -5, z_2 = 8$ and

m = k, n = 1

By using the section formula

We know that the coordinates of the point R which divides the line segment joining two points P (x_1, y_1, z_1) and Q (x_2, y_2, z_2) internally in the ratio m: n is given by:

```
\left(\frac{\mathbf{m}\mathbf{x}_2 + \mathbf{n}\mathbf{x}_1}{\mathbf{m} + \mathbf{n}}, \frac{\mathbf{m}\mathbf{y}_2 + \mathbf{n}\mathbf{y}_1}{\mathbf{m} + \mathbf{n}}, \frac{\mathbf{m}\mathbf{z}_2 + \mathbf{n}\mathbf{z}_1}{\mathbf{m} + \mathbf{n}}\right)
```

```
\begin{pmatrix} m+n & m+n & m+n & m+n \\ So we have, \\ \left(\frac{3k-2}{k+1}, \frac{-5k+4}{k+1}, \frac{8k+7}{k+1}\right) = (0, y, z) \\ \frac{3k-2}{k+1} = 0 \\ 3k-2 = 0 \\ 3k = 2 \\ K = 2/3 \\ Hence, the ratio in which the YZ- plane divides the line segment formed by joining the points (-2, 4, 7) and (3, -5, 8) is 2:3.
```

Ouestion 4

Using section formula, show that the points A (2, -3, 4), B (-1, 2, 1) and C (0, 1/3, 2) are collinear.

6262969699

Solution:

Let the point P divides AB in the ratio k: 1. Upon comparing we have, $x_1 = 2, y_1 = -3, z_1 = 4;$ $x_2 = -1, y_2 = 2, z_2 = 1$ and m = k, n = 1By using section formula We know that the coordinates of the point R which divides the line segment joining two points P (x_1, y_1, z_1) and Q (x_2, y_2, z_2) internally in the ratio m: n is given by: $mx_2 + nx_1 my_2 + ny_1 mz_2 + nz_1$ $\frac{1}{m+n}, \frac{1}{m+n}$ m + nSo we have, The coordinates of P $\left(\frac{-k+1}{k+1}, \frac{2k-3}{k+1}, \frac{k+4}{k+1}\right)$ Now, we check if for some value of k, the point coincides with the point C. Put (-k+2)/(k+1) = 0-k+2 = 0k = 2 When k = 2, then (2k-3)/(k+1) = (2(2)-3)/(2+1)= (4-3)/3= 1/3And, (k+4)/(k+1) = (2+4)/(2+1)= 6/3= 2 \therefore C (0, 1/3, 2) is a point which divides AB in the ratio 2: 1 and is same as P. Hence, A, B, C are collinear.

Question 5

Find the coordinates of the points which trisect the line segment joining the points P (4, 2, -6) and Q (10, -16, 6).

Solution:

Let A (x_1 , y_1 , z_1) and B (x_2 , y_2 , z_2) trisect the line segment joining the points P (4, 2, -6) and Q (10, -16, 6). A divides the line segment PQ in the ratio 1: 2. Upon comparing we have, $x_1 = 4$, $y_1 = 2$, $z_1 = -6$; $x_2 = 10$, $y_2 = -16$, $z_2 = 6$ and m = 1, n = 2By using section formula We know that the coordinates of the point R which divides the line segment joining two points P (x_1 , y_1 , z_1) and Q (x_2 , y_2 , z_2) internally in the ratio m: n is given by:

6262969699

 $\left(\frac{\mathrm{mx}_2+\mathrm{nx}_1}{\mathrm{m}+\mathrm{n}},\frac{\mathrm{my}_2+\mathrm{ny}_1}{\mathrm{m}+\mathrm{n}},\frac{\mathrm{mz}_2+\mathrm{nz}_1}{\mathrm{m}+\mathrm{n}}\right)$ So we have, The coordinates of A = $\left(\frac{1 \times 10 + 2 \times 4}{1 + 2}, \frac{1 \times (-16) + 2 \times 2}{1 + 2}, \frac{1 \times 6 + 2 \times 2}{1 + 2}\right)$ =(18/3, -12/3, -6/3)= (6, -4, -2)Similarly, we know that B divides the line segment PQ in the ratio 2: 1. Upon comparing we have, $x_1 = 4, y_1 = 2, z_1 = -6;$ $x_2 = 10, y_2 = -16, z_2 = 6$ and m = 2, n = 2By using section formula, We know that the coordinates of the point R which divides the line segment joining two points P (x_1, y_1, z_1) and Q (x_2, y_2, z_2) internally in the ratio m: n is given by: $\left(\frac{\mathbf{m}\mathbf{x}_2 + \mathbf{n}\mathbf{x}_1}{\mathbf{m} + \mathbf{n}}, \frac{\mathbf{m}\mathbf{y}_2 + \mathbf{n}\mathbf{y}_1}{\mathbf{m} + \mathbf{n}}, \frac{\mathbf{m}\mathbf{z}_2 + \mathbf{n}\mathbf{z}_1}{\mathbf{m} + \mathbf{n}}\right)$ So we have. The coordinates of B = $\left(\frac{2 \times 10 + 1 \times 4}{2 + 1}, \frac{2 \times (-16) + 1 \times 2}{2 + 1}, \frac{1 \times 6 + 1 \times (-6)}{2 + 1}\right)$ = (24/3, -30/3, 6/3)= (8, -10, 2): The coordinates of the points which trisect the line segment joining the points P (4, 2, - 6) and Q (10, -16, 6) are (6, -4, -2) and (8, -10, 2).

Miscellaneous Exercise

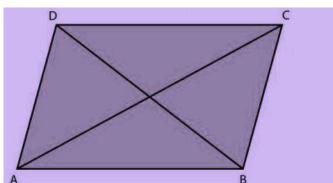
Question 1

Three vertices of a parallelogram ABCD are A (3, -1, 2), B (1, 2, -4) and C (-1, 1, 2). Find the coordinates of the fourth vertex.

Solution:

Given: ABCD is a parallelogram, with vertices A (3, -1, 2), B (1, 2, -4), C (-1, 1, 2). Where, $x_1 = 3$, $y_1 = -1$, $z_1 = 2$; $x_2 = 1$, $y_2 = 2$, $z_2 = -4$; $x_3 = -1$, $y_3 = 2$, $z_3 = 2$

6262969699



Let the coordinates of the fourth vertex be D (x, y, z).

We also know that the diagonals of a parallelogram bisect each other, so the mid points of AC and BD are equal, i.e. Midpoint of AC =Midpoint of BD (1)

Now, by midpoint Formula, we know that the coordinates of the mid-point of the line segment joining two points P (x_1 , y_1 , z_1) and Q (x_2 , y_2 , z_2) are [(x_1+x_2)/2, (y_1+y_2)/2, (z_1+z_2)/2] So we have,

Co-ordinates of the midpoint of AC:

 $= \left(\frac{3-1}{2}, \frac{-1+1}{2}, \frac{2+2}{2}\right)$ = (2/2, 0/2, 4/2) = (1, 0, 2) Co- ordinates of the midpoint of BD; = $\left(\frac{1+x}{2}, \frac{2+y}{2}, \frac{-4+z}{2}\right)$ So, using (1), we have = $\left(\frac{1+x}{2}, \frac{2+y}{2}, \frac{-4+z}{2}\right) = 0$ $\frac{1+x}{2} = 1, \frac{2+y}{2} = 0, \frac{-4+z}{2} = 2$ 1+x = 2, 2+y = 0, -4+z = 2

x = 1, y = -2, z = 8

Hence, the coordinates of the fourth vertex is D (1, -2, 8).

Question 2

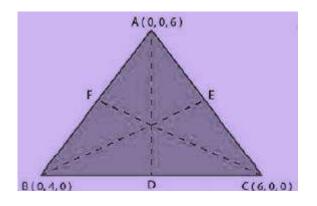
Find the lengths of the medians of the triangle with vertices A (0, 0, 6), B (0, 4, 0) and (6, 0, 0).

Solution:

Given: The vertices of the triangle are A (0, 0, 6), B (0, 4, 0) and C (6, 0, 0). $x_1 = 0, y_1 = 0, z_1 = 6;$

 $x_2 = 0, y_2 = 4, z_2 = 0;$ $x_3 = 6, y_3 = 0, z_3 = 0$

6262969699



So, let the medians of this triangle be AD, BE and CF corresponding to the vertices A, B and C respectively.

D, E and F are the midpoints of the sides BC, AC and AB respectively.

By midpoint Formula, we know that the coordinates of the mid-point of the line segment joining two points P (x_1 , y_1 , z_1) and Q (x_2 , y_2 , z_2) are [(x_1+x_2)/2, (y_1+y_2)/2, (z_1+z_2)/2]

So we have,

The coordinates of D:

 $=\left(\frac{0+6}{2},\frac{4+0}{2},\frac{0+0}{2}\right)=\left(\frac{6}{2},\frac{4}{2},\frac{0}{2}\right)$ = (3, 2, 0)The coordinates of E: $= \left(\frac{0+6}{2}, \frac{0+0}{2}, \frac{6+0}{2}\right) = \left(\frac{6}{2}, \frac{0}{2}, \frac{6}{2}\right)$ = (3, 0, 3)And the coordinates of F: = $\left(\frac{0+0}{2}, \frac{0+4}{2}, \frac{6+0}{2}\right) = \left(\frac{0}{2}, \frac{4}{2}, \frac{6}{2}\right)$ = (0, 2, 3)By Distance formula, we know that the between two points P (x₁, y₁, z₁) and Q (x₂, y₂, z₂) is given by $PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ So the lengths of the medians are: AD = $\sqrt{(3-0)^2 + (2-0)^2 + (0-6)^2} = \sqrt{3^2 + 2^2 + (-6)^2} = \sqrt{9+4+36}$ $=\sqrt{49} = 7$ BE = $\sqrt{(3-0)^2 + (0-4)^2 + (3-0)^2} = \sqrt{3^2 + (-4)^2 + 3^2} = \sqrt{9+16+9}$ $CF = \sqrt{(0-6)^2 + (2-0)^2 + (3-0)^2} = \sqrt{(-6)^2 + 2^2 + (3)^2} = \sqrt{36 + 4 + 9}$ $=\sqrt{49}=7$: The lengths of the medians of the given triangle are 7, $\sqrt{34}$ and 7.

Question 3

If the origin is the centroid of the triangle PQR with vertices P (2a, 2, 6), Q (-4, 3b, -10) and R (8, 14, 2c), then find the values of a, b and c.

6262969699

Solution:

Given:

The vertices of the triangle are P (2a, 2, 6), Q (-4, 3b, -10) and R (8, 14, 2c). Where,

$$x_1 = 2a, y_1 = 2, z_1 = 6;$$

 $x_2 = -4, y_2 = 3b, z_2 = 10;$ $x_3 = 8, y_3 = 14, z_3 = 2c$

We know that the coordinates of the centroid of the triangle, whose vertices are (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3) , are $[(x_1+x_2+x_3)/3, (y_1+y_2+y_3)/3, (z_1+z_2+z_3)/3]$ So, the coordinates of the triangle PQR are $\left(\frac{2a-4+8}{3}, \frac{2+3b+14}{3}, \frac{6-10+2c}{3}\right) = \left(\frac{2a+4}{3}, \frac{3b+16}{3}, \frac{2c-4}{3}\right)$

Now, it is given that the origin (0, 0, 0) is the centroid. So we have $\left(\frac{2a+4}{3}, \frac{3b+16}{3}, \frac{2c-4}{3}\right) = (0, 0, 0)$ $\left(\frac{2a+4}{3} = 0, \frac{3b+16}{3} = 0, \frac{2c-4}{3} = 0\right)$ 2a + 4 = 0, 3b + 16 = 0, 2c - 4 = 0A = -2, b = -16/3, c = 2 \therefore The values of a, b and c are a = -2, b = -16/3, c = 2

Question 4

Find the coordinates of a point on y-axis which are at a distance of $5\sqrt{2}$ from the point P (3, -2, 5).

Solution:

Let the point on y-axis be A (0, y, 0). Then, it is given that the distance between the points A (0, y, 0) and P (3, -2, 5) is $5\sqrt{2}$. Now, by using distance formula, By Distance formula, we know that the between two points P (x₁, y₁, z₁) and Q (x₂, y₂, z₂) is given by Distance of PQ = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ So the distance between the points A (0, y, 0) and P (3, -2, 5) is given by Distance AP = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ $= \sqrt{[(3 - 0)^2 + (-2 - y)^2 + (5 - 0)^2]}$ $= \sqrt{[(3 - 0)^2 + (-2 - y)^2 + (5 - 0)^2]}$ $= \sqrt{[(-2 - y)^2 + 9 + 25]}$ $5\sqrt{2} = \sqrt{[(-2 - y)^2 + 34]}$ Squaring on both the sides, we get $(-2 - y)^2 + 34 = 25 \times 2$ $(-2 - y)^2 = 50 - 34$

 $(-2 - y)^{2} = 50 - 34$ $4 + y^{2} + (2 \times -2 \times -y) = 16$ $y^{2} + 4y - 12 = 0$ $y^{2} + 6y - 2y - 12 = 0$

6262969699

y(y+6)-2(y+6) = 0(y+6)(y-2)=0y = -6, y = 2 \therefore The points (0, 2, 0) and (0, -6, 0) are the required points on the y-axis.

Ouestion 5

A point R with x-coordinate 4 lies on the line segment joining the points P (2, -3, 4) and Q (8, 0, 10). Find the coordinates of the point R.

[Hint Suppose R divides PQ in the ratio k: 1. The coordinates of the point R are given by $\left(\frac{8k+2}{k+1}, \frac{-3}{k+1}, \frac{10k+4}{k+1}\right)$

Solution:

Given:

The coordinates of the points P(2, -3, 4) and Q(8, 0, 10). $x_1 = 2, y_1 = -3, z_1 = 4;$ $x_2 = 8, y_2 = 0, z_2 = 10$ Let the coordinates of the required point be (4, y, z). So now, let the point R (4, y, z) divides the line segment joining the points P (2, -3, 4) and Q (8, 0, 10) in the ratio k: 1. By using Section Formula, We know that the coordinates of the point R which divides the line segment joining two points P (x_1, y_1, z_1) and Q (x_2, y_2, z_2) internally in the ratio m: n is given by: $(mx_2 + nx_1 my_2 + ny_1 mz_2 + nz_1)$ $\left(\frac{1}{m+n}, \frac{3}{m+n}, \frac{3}{m+n}, \frac{3}{m+n}, \frac{3}{m+n}\right)$ So we have, $\left(\frac{8k+2}{k+1}, \frac{-3}{k+1}, \frac{10k+4}{k+1}\right) = (4, y, z)$ $\Rightarrow \frac{8k+2}{k+1} = 4$ 8k + 2 = 4(k + 1)8k + 2 = 4k + 48k - 4k = 4 - 24k = 2k= 2/4 $= \frac{1}{2}$ Now let us substitute the values, we get $\Rightarrow y = \frac{-3}{\frac{1}{2}+1} = \frac{-3}{\frac{3}{2}} = \frac{-3 \times 2}{3} = -2$ $z = \frac{10\left(\frac{1}{2}\right) + 4}{\frac{1}{2} + 1} = \frac{5+4}{\frac{3}{2}} = \frac{9 \times 2}{3} = 3 \times 2$ = 6 \therefore The coordinates of the required point are (4, -2, 6). **Question 6**

6262969699

If A and B the points (3, 4, 5) and (-1, 3, -7), respectively, find the equation of the set of points P such that $PA^2 + PB^2 = k^2$, where k is a constant.

Solution:

Given: The points A (3, 4, 5) and B (-1, 3, -7) $x_1 = 3, y_1 = 4, z_1 = 5;$ $x_2 = -1, y_2 = 3, z_2 = -7;$ Let the point be (x, y, z)Now, by using distance formula, We know that the between two points P (x_1, y_1, z_1) and Q (x_2, y_2, z_2) is given by $PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ So, $PA = \sqrt{(3-x)^2 + (4-y)^2 + (5-z)^2}$ And $PB = \sqrt{(-1-x)^2 + (3-y)^2 + (-7-z)^2}$ Now, substituting these values in (1), we have $[(3-x)^{2} + (4-y)^{2} + (5-z)^{2}] + [(-1-x)^{2} + (3-y)^{2} + (-7-z)^{2}] = k^{2}$ [(9+x^{2}-6x) + (16+y^{2}-8y) + (25+z^{2}-10z)] + [(1 + x² + 2x) + (9 + y² - 6y) + (49 + z² + 14z)] = k²9 + x² - 6x + 16 + y² - 8y + 25 + z² - 10z + 1 + x² + 2x + 9 + y² - 6y + 49 + z² + 14z = k² $2x^{2} + 2y^{2} + 2z^{2} - 4x - 14y + 4z + 109 = k^{2}$ $2(x^{2} + y^{2} + z^{2} - 2x - 7y + 2z) = k^{2} - 109$ $(x^{2} + y^{2} + z^{2} - 2x - 7y + 2z) = (k^{2} - 109)/2$ Hence, the required equation is $(x^2 + y^2 + z^2 - 2x - 7y + 2z) = (k^2 - 109)/2$

A Complete KIT of Education

