Chapter 11
 Conic Sections

Exercise 11.1

In each of the following Exercise 1 to 5, find the equation of the circle with

Question 1

Centre $(0,2)$ and radius 2?

Solution:-

Given:
Centre (0,2) and radius 2
Let us consider the equation of a circle with centre (h, k) and
Radius r is given as $(x-h)^{2}+(y-k)^{2}=r^{2}$
So, centre (h, k) $=(0,2)$ and radius $(\mathrm{r})=2$
The equation of the circle is
$(x-0)^{2}+(y-2)^{2}=2^{2}$
$x^{2}+y^{2}+4-4 y=4$
$x^{2}+y^{2}-4 y=0$
\therefore The equation of the circle is $\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{y}=0$

Question 2

Centre $(-2,3)$ and radius 4

Solution:

Given:

Centre $(-2,3)$ and radius 4
Let us consider the equation of a circle with centre (h, k) and
Radius r is given as $(x-h)^{2}+(y-k)^{2}=r^{2}$
So, centre (h, k) $=(-2,3$) and radius $(\mathrm{r})=4$
The equation of the circle is
$(x+2)^{2}+(y-3)^{2}=(4)^{2}$
$x^{2}+4 x+4+y^{2}-6 y+9=16$
$x^{2}+y^{2}+4 x-6 y-3=0$
\therefore The equation of the circle is $x^{2}+y^{2}+4 x-6 y-3=0$

Question 3

Centre ($1 / 2,1 / 4$) and radius $(1 / 12)$

Solution:

Given:
Centre ($1 / 2,1 / 4$) and radius $1 / 12$
Let us consider the equation of a circle with centre (h, k) and
Radius r is given as $(x-h)^{2}+(y-k)^{2}=r^{2}$
So, centre $(\mathrm{h}, \mathrm{k})=(1 / 2,1 / 4)$ and radius $(\mathrm{r})=1 / 12$
The equation of the circle is
$\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{4}\right)^{2}=\left(\frac{1}{12}\right)^{2}$
$x^{2}-x+1 / 4+y^{2}-Y / 2+1 / 16=1 / 144$
$144 x^{2}-144 x+36+144 y^{2}-72 y+9-1=0$
$144 x^{2}-144 x+144 y^{2}-72 y+44=0$
$36 x^{2}+36 x+36 y^{2}-18 y+11=0$
$36 x^{2}+36 y^{2}-36 x-18 y+11=0$
\therefore The equation of the circle is $36 x^{2}+36 y^{2}-36 x-18 y+11=0$

Question 4

Centre $(1,1)$ and radius $\sqrt{2}$

Solution:

Given: Centre $(1,1)$ and radius $\sqrt{2}$
Let us consider the equation of a circle with centre (h, k) and
Radius r is given as $(x-h)^{2}+(y-k)^{2}=r^{2}$
So, centre $(\mathrm{h}, \mathrm{k})=(1,1)$ and radius $(\mathrm{r})=\sqrt{2}$
The equation of the circle is
$(x-1)^{2}+(y-1)^{2}=(\sqrt{2})^{2}$
$x^{2}-2 x+1+y^{2}-2 y+1=2$
$x^{2}+y^{2}-2 x-2 y=0$
\therefore The equation of the circle is $x^{2}+y^{2}-2 x-2 y=0$

Question 5

Centre ($-\mathrm{a},-\mathrm{b}$) and radius $\sqrt{ }\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)$

Solution:-

Given:
Centre ($-\mathrm{a},-\mathrm{b}$) and radius $\sqrt{ }\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)$
Let us consider the equation of a circle with centre (h, k) and
Radius r is given as $(x-h)^{2}+(y-k)^{2}=r^{2}$
So, centre (h, k) $=(-a,-b)$ and radius $(r)=\sqrt{ }\left(a^{2}-b^{2}\right)$
The equation of the circle is
$(x+a)^{2}+(y+b)^{2}=\left(\sqrt{\left.\left(a^{2}-b^{2}\right)^{2}\right)}\right.$
$x^{2}+2 a x+a^{2}+y^{2}+2 b y+b^{2}=a^{2}-b^{2}$
$x^{2}+y^{2}+2 a x+2 b y+2 b^{2}=0$
\therefore The equation of the circle is $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{ax}+2 \mathrm{by}+2 \mathrm{~b}^{2}=0$
In each of the following Exercise 6 to 9, find the centre and radius of the circles.

Question 6

$(x+5)^{2}+(y-3)^{2}=36$

Solution:-

Given:
The equation of the given circle is $(x+5)^{2}+(y-3)^{2}=36$
$(x-+(-5))^{2}=(y-3)^{2}=6^{2}\left[\right.$ Which of the form $\left.(x-h)^{2}+(y-k)^{2}=r^{2}\right]$
Where, $\mathrm{h}=-5, \mathrm{k}=3$ and $\mathrm{r}=6$
\therefore The centre of the given circle is $(-5,3)$ and its radius is 6 .

Question 7

$x^{2}+y^{2}-4 x-8 y-45=0$

Solution:-

Given
The equation of the given circle is $x^{2}+y^{2}-4 x-8 y-45=0$
$x^{2}+y^{2}-4 x-8 y-45=0$
$\left(x^{2}-4 x\right)+\left(y^{2}-8 y\right)=45$
$\left(x^{2}-2(x)(2)+2^{2}\right)+\left(y^{2}-2(y)(4)+4^{2}\right)-4-16=45$
$(x-2)^{2}+(y-4)^{2}=65$
$(x-2)^{2}+(y-4)^{2}=(\sqrt{65})^{2}$ [which is form $\left.(x-h)^{2}+(y-k)^{2}=r^{2}\right]$
Where $h=2, K=4$ and $r=\sqrt{65}$
\therefore The centre of the given is $(2,4)$ and its radius is $\sqrt{65}$.

Question 8

$x^{2}+y^{2}-8 x-10 y-12=0$

Solution:-

Given:
The equation of the given circle is $x^{2}+y^{2}-8 x-10 y-12=0$
$x^{2}+y^{2}-8 x-10 y-12=0$
$\left(x^{2}-8 x\right)+\left(y^{2}-10 y\right)=12$
$\left.\left(x^{2}-2(x)(4)+4^{2}\right)+y^{2}-2(y)(5)+5^{2}\right)-16-25=12$
$(x-4)^{2}+(y+5)^{2}=53$
$(x-4)^{2}+(y-(-5))^{2}=(\sqrt{53})^{2}\left[\right.$ Which is form $\left.(x-h)^{2}+(y-k)^{2}=r^{2}\right]$
Where $h=4, k=-5$ and $r=\sqrt{53}$
\therefore The centre of the given circle is $(4,-5)$ and its radius $\sqrt{53}$.

Question 9
$2 x^{2}+2 y^{2}-x=0$

Solution:-

The equation of the given of the circle is $2 x^{2}+2 y^{2}-x=0$
$2 x^{2}+2 y^{2}-x=0$
$\left(2 x^{2}+x\right)+2 y^{2}=0$
$\left(x^{2}-2(x)\left(\frac{1}{4}\right)+\left(\frac{1}{4}\right)^{2}\right)+y^{2}-\left(\frac{1}{4}\right)^{2}=0$
$\left(x-\frac{1}{4}\right)^{2}+(y-0)^{2}=\left(\frac{1}{4}\right)^{2}\left[\right.$ which is form $\left.(x-h)^{2}+(y-k)^{2}=r^{2}\right]$
Where, $\mathrm{h}=1 / 4, \mathrm{k}=0$, and $\mathrm{r} 1 / 4$
\therefore The centre of the given circle is $(1 / 4,0)$ and its radius is $1 / 4$.

Question 10

Find the equation of the circle passing through the points $(4,1)$ and $(6,5)$ and whose centre is on the line $4 x+y=16$.

Solution:

Let us consider the equation of the required circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$
We know that the circle passes through points $(4,1)$ and $(6,5)$
For more Info Visit - www.KITest.in

So,
$(4-h)^{2}+(1-k)^{2}=r^{2}$
$(6-h)^{2}+(5-k)^{2}=r^{2}$
Since, the centre (h, k) of the circle lies on line $4 x+y=16$,
$4 \mathrm{~h}+\mathrm{k}=16$
From the equation (1) and (2), we obtain
$(4-h)^{2}+(1-k)^{2}=(6-h)^{2}+(5-k)^{2}$
$16-8 h+h^{2}+1-2 k+k^{2}=36+12 h+h^{2}+15-10 k+k^{2}$
$16-8 h+1-2 k+12 h-25-10 k$
$4 \mathrm{~h}+8 \mathrm{k}=44$
$\mathrm{h}+2 \mathrm{k}=11$.
On solving equations (3) and (4), we obtain $\mathrm{h}=3$ and $\mathrm{k}=4$.
On substituting the values of h and k in equation (1), we obtain
$(4-3)^{2}+(1-4)^{2}=r^{2}$
$(1)^{2}+(-3)^{2}=r^{2}$
$1+9=r^{2}$
$r=\sqrt{10}$
So now, $(x-3)^{2}+(y-4)^{2}=(\sqrt{10})^{2}$
$x^{2}-6 x+9+y^{2}-8 y+16=10$
$x^{2}+y^{2}-6 x-8 y+15=0$
\therefore The equation of the required circle is $x^{2}+y^{2}-6 x-8 y+15=0$

Question 11

Find the equation of the circle passing through the points $(2,3)$ and $(-1,1)$ and whose centre is on the line $x-3 y-11=0$.

Solution:-

Let us consider the equation of the required circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$
We know that the circle passes through points $(2,3)$ and $(-1,1)$
$(2-h)^{2}+(3-k)^{2}=r^{2}$ \qquad
$(1-h)^{2}+(1-k)^{2}=r^{2}$
Since, the centre (h, k) of the circle lies on line $x-3 y-11=0$,
$\mathrm{h}-3 \mathrm{k}=11$ (3)

From the equation (1) and (2), we obtain
$(2-h)^{2}+(3-k)^{2}=(x-h)^{2}+(y-k)^{2}$
$4-4 h+h^{2}+9-6 k+k^{2}=1+2 h+h^{2}+1-2 k+k^{2}$
$4-4 \mathrm{~h}+9-6 \mathrm{k}=1+2 \mathrm{~h}+1-2 \mathrm{k}$
$6 \mathrm{~h}+4 \mathrm{k}=11$
Now let us multiply equation (3) by 6 and subtract it from equation (4) to get,
$6 \mathrm{~h}+4 \mathrm{k}-6(\mathrm{~h}-3 \mathrm{k})=11-66$
$6 h+4 k-6 h+18 k=11-66$
$22 \mathrm{k}=-55$
$\mathrm{K}=-5 / 2$
Substitute this value of K in equation (4) to get,
$6 h+4(-5 / 2)=11$
$6 h-10=11$
$6 h=21$
$\mathrm{h}=21 / 6$
$\mathrm{h}=7 / 2$
We obtain $\mathrm{h}=7 / 2$ and $\mathrm{k}=-5 / 2$
On substituting the values of h and k in equation (1), we get
$\left(2-\frac{7}{2}\right)^{2}+\left(3+\frac{5}{2}\right)^{2}=r^{2}$
$\left[\frac{4-7}{2}\right]^{2}+\left[\frac{(6+5)}{2}\right]^{2}=r^{2}$
$\left(-\frac{3}{2}\right)^{2}+\left(\frac{11}{2}\right)^{2}=r^{2}$
$9 / 4+121 / 4=r^{2}$
$130 / 4=r^{2}$
The equation of the required circle is
$\left(x-\frac{7}{2}\right)^{2}+\left(y+\frac{5}{2}\right)^{2}=130 / 4$
$\left[\frac{2 x-7}{2}\right]^{2}+\left[\frac{2 x+5}{2}\right]^{2}=130 / 4$
$4 x^{2}-28 x+49+4 y^{2}+20 y+25=130$
$4 x^{2}+4 y^{2}-28 x+20 y-56=0$
$4\left(x^{2}+y^{2}-7 x+5 y-14\right)=0$
$x^{2}+y^{2}-7 x+5 y-14=0$
\therefore The equation of the required circle is $x^{2}+y^{2}-7 x+5 y-14=0$

Question 12

Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through the point $(2,3)$.

Solution:

Let us consider the equation of the required circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$
We know that the radius of the circle is 5 and its centre lies on the x -axis, $\mathrm{k}=0$ and $\mathrm{r}=5$. So now, the equation of the circle is $(x-h)^{2}+y^{2}=25$.
It is given that the circle passes through the point $(2,3)$ so the point will satisfy the equation of the circle.
$(2-h)^{2}+3^{2}=25$.
$(2-h)^{2}=25-9$
$(2-h)^{2}=16$
$2-\mathrm{h}= \pm \sqrt{16}= \pm 4$
If $2-h=4$, then $h=-2$
If $2-\mathrm{h}=4$, then $\mathrm{h}=6$

Then, when $\mathrm{h}=-2$, the equation of the circle becomes
$(x+2)^{2}+y^{2}=25$
$x^{2}+12 x+36+y^{2}=25$
$x^{2}+y^{2}+4 x-21=0$
When $h=6$, the equation of the circle becomes
$(x-6)^{2}+y^{2}=25$
$x^{2}-12 x+36+y^{2}=25$
$x^{2}+y^{2}-12 x+11=0$
\therefore The equation of the required circle is $\mathrm{x}^{2}+\mathrm{y}^{2}+4 \mathrm{x}-21=0$ and $\mathrm{x}^{2}+\mathrm{y}^{2}-12 \mathrm{x}+11=0$

Question 13

Find the equation of the circle passing through $(0,0)$ and making intercepts a and b on the coordinate axes.

Solution:

Let us consider the equation of the required circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$
We know that the circle passes through $(0,0)$,
So, $(0-h)^{2}+(0-k)^{2}=r^{2}$
$h^{2}+k^{2}=r^{2}$
Now, the equation of the circle is $(x-h)^{2}+(y-k)^{2}=h^{2}+k^{2}$.
It is given that the circle intercepts a and b on the coordinate axes.
i.e., the circle passes through points $(a, 0)$ and $(0, b)$.

So, $(a-h)^{2}+(0-k)^{2}=h^{2}+k^{2}$
$(0-h)^{2}+(b-k)^{2}=h^{2}+k^{2}$ \qquad
From equation (1), we obtain
$\mathrm{a}^{2}-2 \mathrm{ah}+\mathrm{h}^{2}+\mathrm{k}^{2}=\mathrm{h}^{2}+\mathrm{k}^{2}$
$\mathrm{a}^{2}-2 \mathrm{ah}=0$
$a(a-2 h)=0$
$\mathrm{a}=0$ or $(\mathrm{a}-2 \mathrm{~h})=0$
However, $\mathrm{a} \neq 0$; hence, $(\mathrm{a}-2 \mathrm{~h})=0$
$\mathrm{h}=\mathrm{a} / 2$
From equation (2), we obtain
$h^{2}-2 b k+k^{2}+b^{2}=h^{2}+k^{2}$
$\mathrm{b}^{2}-2 \mathrm{bk}=0$
$b(b-2 k)=0$
$b=0$ or $(b-2 k)=0$
However, $\mathrm{a} \neq 0$; hence, $(\mathrm{b}-2 \mathrm{k})=0$
$\mathrm{K}=\mathrm{b} / 2$
So, the equation is
$\left(x-\frac{a}{2}\right)^{2}+\left(y-\frac{b}{2}\right)^{2}=\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}$
$\left[\frac{2 x-a}{2}\right]^{2}+\left[\frac{2 y-b}{2}\right]^{2}=\left(a^{2}+b^{2}\right) / 4$
$4 x^{2}-4 a x+a^{2}+4 y^{2}-4 b y+b^{2}=a^{2}+b^{2}$
$4 x^{2}+4 y^{2}-4 a x-4 b y=0$
$4\left(x^{2}+y^{2}-7 x+5 y-14\right)=0$
$x^{2}+y^{2}-a x-b y=0$
\therefore The equation of the required circle is $x^{2}+y^{2}-a x-b y=0$

Question 14

Find the equation of a circle with centre $(2,2)$ and passes through the point $(4,5)$.

Solution:

Given:
The centre of the circle is given as $(\mathrm{h}, \mathrm{k})=(2,2)$
We know that the circle passes through point $(4,5)$, the radius (r) of the circle is the distance between the points $(2,2)$ and $(4,5)$.

$$
\begin{aligned}
r & =\sqrt{ }\left[(2-4)^{2}+(2-5)^{2}\right] \\
& =\sqrt{ }\left[(-2)^{2}+(-3)^{2}\right] \\
& =\sqrt{ }[4+9] \\
& =\sqrt{ } 13
\end{aligned}
$$

The equation of the circle is given as
$(x-h)^{2}+(y-k)^{2}=r^{2}$
$(x-h)^{2}+(y-k)^{2}=(\sqrt{13})^{2}$
$(x-2)^{2}+(y-2)^{2}=(\sqrt{13})^{2}$
$x^{2}-4 x+4+y^{2}-4 y+4=13$
$x^{2}+y^{2}-4 x-4 y=5$
\therefore The equation of the required circle is $x^{2}+y^{2}-4 x-4 y=5$

Question 15

Does the point $(-2,5,3.5)$ lie inside, outside or on the circle $x^{2}+y^{2}=25$?

Solution:-

Given:
The equation of the given circle is $x^{2}+y^{2}=25$.
$x^{2}+y^{2}=25$
$(x-0)^{2}+(y-0)^{2}=5^{2}\left[\right.$ which is of the form $\left.(x-h)^{2}+(y-k)^{2}=r^{2}\right]$
Where, $\mathrm{h}=0, \mathrm{k}=0$ and $\mathrm{r}=5$

So the distance between point $(-2.5,3.5)$ and the centre $(0,0)$ is
$\sqrt{ }\left[(-2.5-0)^{2}+(-3.5-0)^{2}\right]$
$\sqrt{ }(6.25+12.25)$
$\sqrt{ } 18.5$
4.3 [which is < 5]

Since, the distance between point $(-2.5,-3.5)$ and the centre $(0,0)$ of the circle is less than the radius of the circle, point $(-2.5,-3.5)$ lies inside the circle.

Exercise 11.2

In each of the following Exercises 1 to 6, find the coordinates of the focus, axis of the parabola, the equation of the directrix and the length of the latus rectum.

Question 1

$y^{2}=12 x$
Solution:-

Given:

The equation is $y^{2}=12 x$
Here we know that the coefficient of x is positive.
So, the parabola opens towards the right.
On comparing this equation with $y^{2}=4 \mathrm{ax}$, we get,
$4 \mathrm{a}=12$
$\mathrm{a}=3$
Thus, the co-ordinates of the focus $=(a, 0)=(3,0)$
Since, the given equation involves y^{2}, the axis of the parabola is the x -axis.
\therefore The equation of directrix, $\mathrm{x}=-\mathrm{a}$, then,
$x+3=0$
Length of latus rectum $=4 \mathrm{a}=4 \times 3=12$

Question 2

$x^{2}=6 y$

Solution:-

Given:

The equation is $x^{2}=6 y$
Here we know that the coefficient of y is positive.
For more Info Visit - www.KITest.in

So, the parabola opens upwards.
On comparing this equation with $x^{2}=4 \mathrm{ay}$, we get,
$4 \mathrm{a}=6$
$\mathrm{a}=6 / 4$
= 3/2
Thus, the co-ordinates of the focus $=(0, a)=(0,3 / 2)$
Since, the given equation involves x^{2}, the axis of the parabola is the y-axis.
\therefore The equation of directrix, $\mathrm{y}=-\mathrm{a}$, then
, $y=-3 / 2$
Length of latus rectum $=4 \mathrm{a}=4(3 / 2)=6$

Question 3

$y^{2}=-8 x$

Solution:-

Given:
The equation is $y^{2}=-8 x$
Here we know that the coefficient of x is negative.
So, the parabola open towards the left.
On comparing this equation with $y^{2}=-4 a x$, we get,
$-4 \mathrm{a}=-8$
$a=-8 /-4=2$

Thus, co-ordinates of the focus $=(-a, 0)=(-2,0)$
Since, the given equation involves y^{2}, the axis of the parabola is the x -axis.
\therefore Equation of directrix, $\mathrm{x}=\mathrm{a}$, then,
$\mathrm{x}=2$
Length of latus rectum $=4 a=4(2)=8$

Question 4

$x^{2}=-16 y$

Solution:-

Given:
The equation is $x^{2}=-16 y$
Here we know that the coefficient of y is negative.
So, the parabola opens downwards.
On comparing this equation with $x^{2}=-4 a y$, we get,
$-4 a=-16$
$a=-16 /-4$

$$
=4
$$

Thus, co-ordinates of the focus $=(0,-a)=(0,-4)$
Since, the given equation involves x^{2}, the axis of the parabola is the y-axis.
\therefore The equation of directrix, $\mathrm{y}=\mathrm{a}$, then,
$y=4$
Length of latus rectum $=4 a=4(4)=16$

Question 5

$y^{2}=10 x$

Solution:-

Given
The equation is $y^{2}=10 x$
Here we know that the coefficient of x is positive.
So, the parabola open towards the right.
On comparing this equation with $y^{2}=4 \mathrm{ax}$, we get,
$4 \mathrm{a}=10$
$a=10 / 4=5 / 2$
Thus, co-ordinates of the focus $=(a, 0)=(5 / 2,0)$
Since, the given equation involves y^{2}, the axis of the parabola is the x -axis.
\therefore The equation of directrix, $\mathrm{x}=-\mathrm{a}$, then,
$x=-5 / 2$
Length of latus rectum $=4 a=4(5 / 2)=10$

Question 6

$\mathrm{x}^{2}=-9 \mathrm{y}$

Solution:-

Given
The equation is $x^{2}=-9 y$
Here we know that the coefficient of y is negative.
So, the parabola open downwards.
On comparing this equation with $x^{2}==-4$ ay, we get,
$-4 \mathrm{a}=-9$
$a=-9 /-4=9 / 4$
Thus, co-ordinates of the focus $=(0,-\mathrm{a})=(0,-9 / 4)$

Since, the given equation involves $x^{2}=$, the axis of the parabola is the y-axis.
\therefore The equation of directrix, $\mathrm{y}=\mathrm{a}$, then,
$y=9 / 4$
Length of latus rectum $=4 \mathrm{a}=4(9 / 4)=9$

In each of the Exercises 7 to 12, find the equation of the parabola that satisfies the given conditions:

Question 7

Focus $(6,0)$; directrix $x=-6$

Solution:

Given: Focus $(6,0)$ and directrix $x=-6$
We know that the focus lies on the x-axis is the axis of the parabola.
So, the equation of the parabola is either of the form $y^{2}=4 a x$ or $y^{2}=-4 a x$.
It is also seen that the directrix, $x=-6$ is to the left of the y - axis,
While the focus $(6,0)$ is to the right of the y-axis.
Hence, the parabola is of the form $y^{2}=4 a x$.
Here, $\mathrm{a}=6$
\therefore The equation of the parabola is $y^{2}=24 x$.

Question 8

Focus (0,-3); directrix y $=3$

Solution:

Given:
Focus ($0,-3$) and directrix y $=3$
We know that the focus lies on the y-axis, the y-axis is the axis of the parabola.
So, the equation of the parabola is either of the form $x^{2}=4$ ay or $x^{2}=-4 a y$.
It is also seen that the directrix, $\mathrm{y}=3$ is above the x - axis,
While the focus $(0,-3)$ is below the x -axis.
Hence, the parabola is of the form $x^{2}=-4 a y$.
Here, $\mathrm{a}=3$
\therefore The equation of the parabola is $x^{2}=-12 y$.

Question 9

Vertex $(0,0)$; focus $(3,0)$

Solution:

Given: Vertex $(0,0)$ and focus $(3,0)$
We know that the vertex of the parabola is $(0,0)$ and the focus lies on the positive x-axis. [x -axis is the axis of the parabola.]
The equation of the parabola is of the form $y^{2}=4 \mathrm{ax}$.
Since, the focus is $(3,0), a=3$
\therefore The equation of the parabola is $y^{2}=4 \times 3 \times \mathrm{x}$,

$$
y^{2}=12 x
$$

Question 10

Vertex $(0,0)$; focus $(-2,0)$

Solution:

Given:
Vertex $(0,0)$ and focus $(-2,0)$

We know that the vertex of the parabola is $(0,0)$ and the focus lies on the positive x-axis. [X -axis is the axis of the parabola.]
The equation of the parabola is of the form $y^{2}=-4 \mathrm{ax}$.
Since, the focus is $(-2,0), a=2$
\therefore The equation of the parabola is $y^{2}=-4 \times 2 \times \mathrm{x}$,

$$
y^{2}=-8 x
$$

Question 11

Vertex $(0,0)$ passing through $(2,3)$ and axis is along x-axis.

Solution:

We know that the vertex is $(0,0)$ and the axis of the parabola is the x -axis
The equation of the parabola is either of the from $y^{2}=4 \mathrm{ax}$ or $y^{2}=-4 \mathrm{ax}$.
Given that the parabola passes through point $(2,3)$, which lies in the first quadrant.
So, the equation of the parabola is of the form $y^{2}=4 \mathrm{ax}$, while point $(2,3)$ must satisfy the Equation $y^{2}=4 \mathrm{ax}$.
Then,
$3^{2}=4 a(2)$
$3^{2}=8 \mathrm{a}$
$9=8 \mathrm{a}$
a $=9 / 8$
Thus, the equation of the parabola is
$y^{2}=4(9 / 8) x$

$$
=9 x / 2
$$

$2 y^{2}=9 x$
\therefore The equation of the parabola is $2 y^{2}=9 \mathrm{x}$

Question 12

Vertex $(0,0)$, passing through $(5,2)$ and symmetric with respect to y-axis.

Solution:

We know that the vertex is $(0,0)$ and the parabola is symmetric about the y-axis.
The equation of the parabola is either of the from $x^{2}=4$ ay or $x^{2}=-4$ ay.
Given that the parabola passes through point $(5,2)$, which lies in the first quadrant.
So, the equation of the parabola is of the form $x^{2}=4$ ay, while point $(5,2)$ must satisfy the equation $x^{2}=$ 4ay.
Then,
$5^{2}=4 a(2)$
$25=8 \mathrm{a}$
$\mathrm{a}=25 / 8$
Thus, the equation of the parabola is
$x^{2}=4(25 / 8) y$
$x^{2}=25 y / 2$
$2 x^{2}=25 y$
\therefore The equation of the parabola is $2 x^{2}=25 y$

Exercise 11.3

In each of the Exercises 1 to 9, find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

Question 1

$x^{2} / 36+y^{2} / 16=1$

Solution:-

The equation is $x^{2} / 36+y^{2} / 16=1$
Here, the denominator of $x^{2} / 36$ is greater than the denominator of $y^{2} / 16$.
So, the major axis is along the x -axis, while the minor axis is along the y -axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we get
For more Info Visit - www.KITest.in

$$
\begin{aligned}
\mathrm{a} & =6 \text { and } \mathrm{b}=4 . \\
\mathrm{C} & =\sqrt{ }\left(a^{2}-b^{2}\right) \\
& =\sqrt{ }(36-16) \\
& =\sqrt{ } 20 \\
& =2 \sqrt{5}
\end{aligned}
$$

Then,
The coordinates of the foci are $(2 \sqrt{5}, 0)$ and $(-2 \sqrt{5}, 0)$.
The coordinates of the vertices are $(6,0)$ and $(-6,0)$
Length of major axis $=2 \mathrm{a}=2(6)=12$
Length of minor axis $=2 \mathrm{~b}=2(4)=8$
Eccentricity, $e^{c / a}=2 \sqrt{5} / 6=\sqrt{5} / 3$
Length of latus rectum $=2 b^{2} / a=(2 \times 16) / 6=16 / 3$

Question 2

$\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$

Solution:-

The equation is $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$
Here, the denominator of $x^{2} / 25$ is greater than the denominator of $y^{2} / 4$.
So, the major axis is along the x -axis, while the minor axis is along the y -axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we get
$\mathrm{a}=5$ and $\mathrm{b}=2$.
$C=\sqrt{ }\left(a^{2}-b^{2}\right)$
$=\sqrt{ }(25-4)$
$=\sqrt{ } 21$
Then,
The coordinates of the foci are $(0, \sqrt{21})$ and $(0,-\sqrt{2} 1)$.
The coordinates of the vertices are $(0,5)$ and $(0,-5)$
Length of major axis $=2 \mathrm{a}=2(5)=10$
Length of minor axis $=2 b=2(2)=4$
Eccentricity, $e^{c / a}=\sqrt{21 / 5}$
Length of latus rectum $=2 b^{2} / a=\left(2 \times 2^{2}\right) / 5=(2 \times 4) / 5=8 / 5$

Question 3

$\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
Solution:-

Given:
The equation is $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ or $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{3^{2}}=1$
Here, the denominator of $x^{2} / 36$ is greater than the denominator of $y^{2} / 9$.
So, the major axis is along the x -axis, while the minor axis is along the y -axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we get
$\mathrm{a}=4$ and $\mathrm{b}=3$.
$C=\sqrt{ }\left(a^{2}-b^{2}\right)$
$=\sqrt{ }(16-9)$
$=\sqrt{ } 7$
Then,
The coordinates of the foci are $(\sqrt{7}, 0)$ and $(-\sqrt{7}, 0)$.
The coordinates of the vertices are $(4,0)$ and $(-4,0)$
Length of major axis $=2 \mathrm{a}=2(4)=8$

Length of minor axis $=2 b=2(3)=6$
Eccentricity, $e^{c / a}=\sqrt{7} / 4$
Length of latus rectum $=2 b^{2} / a=\left(2 \times 3^{2}\right) / 4=(2 \times 9) / 4=18 / 4=9 / 2$

Question 4

$\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$

Solution:-

Given:
The equation is $\frac{x^{2}}{25}+\frac{y^{2}}{100}=1$
Here, the denominator of $x^{2} / 100$ is greater than the denominator of $x^{2} / 25$.
So, the major axis is along the x -axis, while the minor axis is along the x -axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we get
$\mathrm{B}=5$ and $\mathrm{a}=10$.
$\mathrm{C}=\sqrt{ }\left(a^{2}-b^{2}\right)$
$=\sqrt{ }(100-25)$
$=\sqrt{75}$
$=5 \sqrt{3}$
Then,
The coordinates of the foci are $(0,5 \sqrt{3})$ and $(0,-5 \sqrt{3})$.
The coordinates of the vertices are $(0, \sqrt{ } 10)$ and $(0,-\sqrt{ } 10)$
Length of major axis $=2 \mathrm{a}=2(10)=20$
Length of minor axis $=2 \mathrm{~b}=2(5)=10$
Eccentricity, $e^{c / a}==5 \sqrt{3} / 10=\sqrt{3} / 2$
Length of latus rectum $=2 b^{2} / a=\left(2 \times 5^{2}\right) / 10=(2 \times 25) / 10=5$

Question 5

$\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$

Solution:-

The equation is $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$
Here, the denominator of $x^{2} / 49$ is greater than the denominator of $y^{2} / 36$.
So, the major axis is along the x -axis, while the minor axis is along the y -axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we get
$\mathrm{a}=6$ and $\mathrm{b}=7$.
$C=\sqrt{ }\left(a^{2}-b^{2}\right)$
$=\sqrt{ }(49-36)$
$=\sqrt{ } 13$
Then,
The coordinates of the foci are $(\sqrt{13}, 0)$ and $(-\sqrt{3}, 0)$
The coordinate of the vertices are $(7,0)$ and $(-7,0)$
Length of major axis $=2 \mathrm{a}=2(7)=14$
Length of minor axis $=2 b=2(6)=12$
Eccentricity, $e^{c / a}==\sqrt{13 / 7}$
Length of latus rectum $=2 b^{2} / a=\left(2 \times 6^{2}\right) / 7=(2 \times 36) / 7=72 / 7$

Question 6

$\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$

Solution:-

Given:
The equation is $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$
Here, the denominator of $y^{2} / 400$ is greater than the denominator of $x^{2} / 100$.
So, the major axis is along the y -axis, while the minor axis is along the x -axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we get
$\mathrm{b}=10$ and $\mathrm{a}=20$.
$\mathrm{C}=\sqrt{ }\left(a^{2}-b^{2}\right)$
$=\sqrt{ }(400-100)$

$$
\begin{aligned}
& =\sqrt{300} \\
& =10 \sqrt{3}
\end{aligned}
$$

Then,
The coordinates of the foci are $(0,10 \sqrt{3})$ and $(0,-10 \sqrt{3})$.
The coordinates of the vertices are $(0,20)$ and $(0,-20)$
Length of major axis $=2 \mathrm{a}=2(10)=20$
Length of minor axis $=2 \mathrm{~b}=2(5)=10$
Eccentricity, $e^{c / a}==10 \sqrt{3} / 20=\sqrt{3} / 2$
Length of latus rectum $=2 b^{2} / \mathrm{a}=\left(2 \times 10^{2}\right) / 20=(2 \times 100) / 20=10$

Question 7
$36 x^{2}+4 y^{2}=144$

Solution:-

Given:
The equation is $36 x^{2}+4 y^{2}=144$ or $\frac{x^{2}}{4}+\frac{y^{2}}{36}=1$ or $\frac{x^{2}}{2^{2}}+\frac{y^{2}}{6^{2}}=1$
Here, the denominator of $y^{2} / 6^{2}$ is greater than the denominator of $x^{2} / 2^{2}$.
So, the major axis is along the y-axis, while the minor axis is along the x-axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we get
$\mathrm{b}=2$ and $\mathrm{a}=6$.
$\mathrm{C}=\sqrt{ }\left(a^{2}-b^{2}\right)$
$=\sqrt{ }(36-4)$
$=\sqrt{ } 32$
$=4 \sqrt{3}$
Then,
The coordinates of the foci are $(0,4 \sqrt{2})$ and $(0,-4 \sqrt{2})$.
The coordinates of the vertices are $(0,6)$ and $(0,-6)$
Length of major axis $=2 \mathrm{a}=2(6)=12$
Length of minor axis $=2 \mathrm{~b}=2(2)=4$
Eccentricity, $e^{c / a}==4 \sqrt{2 / 6}=2 \sqrt{2} / 3$
Length of latus rectum $=2 b^{2} / a=\left(2 \times 2^{2}\right) / 6=(2 \times 4) / 6=4 / 3$

Question 8

$16 x^{2}+y^{2}=16$
Solution:-

Given:
The equation is $16 x^{2}+y^{2}=16$ or $\frac{x^{2}}{1}+\frac{y^{2}}{16}=1$ or $\frac{x^{2}}{1^{2}}+\frac{y^{2}}{4^{2}}=1$
Here, the denominator of $y^{2} / 4^{2}$ is greater than the denominator of $x^{2} / 1^{2}$.
So, the major axis is along the y -axis, while the minor axis is along the x -axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we get
$\mathrm{b}=1$ and $\mathrm{a}=4$.
$\mathrm{C}=\sqrt{ }\left(a^{2}-b^{2}\right)$
$=\sqrt{ }(16-1)$
$=\sqrt{ } 15$
Then,
The coordinates of the foci are $(0, \sqrt{ } 15)$ and $(0,-\sqrt{15})$.
The coordinates of the vertices are $(0,4)$ and $(0,-4)$
Length of major axis $=2 \mathrm{a}=2(4)=8$
Length of minor axis $=2 \mathrm{~b}=2(1)=2$
Eccentricity, $e^{c / a}==\sqrt{15 / 4}$
Length of latus rectum $=2 b^{2} / a=\left(2 \times 1^{2}\right) / 4=2 / 4=1 / 2$

Question 9

$4 x^{2}+9 y^{2}=36$

Solution:-

Given:

The equation is $4 x^{2}+9 y^{2}=36$ or $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ or $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1$
Here, the denominator of $y^{2} / 6^{2}$ is greater than the denominator of $y^{2} / 2^{2}$.
So, the major axis is along the y -axis, while the minor axis is along the x -axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, we get
$\mathrm{a}=3$ and $\mathrm{b}=2$.
$C=\sqrt{ }\left(a^{2}-b^{2}\right)$
$=\sqrt{ }(9-4)$
$=\sqrt{5}$
Then,
The coordinates of the foci are $(\sqrt{5}, 0)$ and $(-\sqrt{5}, 0)$.
The coordinates of the vertices are $(3,0)$ and $(-3,0)$
Length of major axis $=2 \mathrm{a}=2(3)=6$
Length of minor axis $=2 b=2(2)=4$
Eccentricity, $e^{c / a}==\sqrt{5} / 3$
Length of latus rectum $=2 b^{2} / a=\left(2 \times 2^{2}\right) / 3=(2 \times 4) / 3=8 / 3$

In each of the following Exercises 10 to 20, find the equation for the ellipse that satisfies the given conditions:

Question 10

Vertices $(\pm 5,0)$, foci $(\pm 4,0)$

Solution:-

Vertices ($\pm 5,0$), foci $(\pm 4,0)$
Here, the vertices are on the $\mathrm{x}-$ axis.
So, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where ' a^{\prime} is the semi-major axis.
Then, $\mathrm{a}=5$ and $\mathrm{c}=4$.
It is known that $a^{2}=b^{2}+c^{2}$.
So, $5^{2}=b^{2}+4^{2}$
$25=b^{2}+16$
$b^{2}=25-16$
$b=\sqrt{9}$
= 3
\therefore The equation of the ellipse is $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{3^{2}}=1$ or $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

Question 11

Vertices $(0, \pm 13)$, foci $(0, \pm 5)$

Solution:-

Given:
Vertices ($0, \pm 13$), foci ($0, \pm 5$)
Here, the vertices are on the y - axis.
So, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where ' a ' is the semi-major axis.
Then, $\mathrm{a}=13$ and $\mathrm{c}=5$.
It is known that $a^{2}=b^{2}+c^{2}$.
So, $13^{2}=b^{2}+5^{2}$
$169=b^{2}+15$
$b^{2}=169-125$
$\mathrm{b}=\sqrt{ } 144$
$=12$
\therefore The equation of the ellipse is $\frac{x^{2}}{12^{2}}+\frac{y^{2}}{13^{2}}=1$ or $\frac{x^{2}}{144}+\frac{y^{2}}{169}=1$
Question 12

Vertices $(\pm 6,0)$, foci $(\pm 4,0)$

Solution:-

Vertices ($\pm 6,0$), foci $(\pm 4,0)$
Here, the vertices are on the $y-$ axis.
So, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where ' a ' is the semi-major axis.
Then, $\mathrm{a}=6$ and $\mathrm{c}=4$.
It is known that $a^{2}=b^{2}+c^{2}$.
So, $6^{2}=b^{2}+4^{2}$
$36=b^{2}+16$
$b^{2}=36-16$
$\mathrm{b}=\sqrt{20}$
\therefore The equation of the ellipse is $\frac{x^{2}}{6^{2}}+\frac{y^{2}}{(\sqrt{20})^{2}}=1$ or $\frac{x^{2}}{36}+\frac{y^{2}}{20}=1$

Question 13

Ends of major axis $(\pm 3,0)$, ends of minor axis $(0, \pm 2)$

Solution:-

Given:-
Ends of major axis $(\pm 3,0)$, ends of minor axis $(0, \pm 2)$
Here, the major axis is along the x - axis.
So, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where ' a ' is the semi-major axis. Then, $\mathrm{a}=3$ and $\mathrm{b}=2$.
\therefore The equation of the ellipse is $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1$ or $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$

Question 14

Ends of major axis $(0, \pm \sqrt{ } 5)$, ends of minor axis $(\pm 1,0)$

Solution:-

Ends of major axis $(0, \pm \sqrt{5})$, ends of minor axis $(\pm 1,0)$
Here, the major axis is along the y - axis.
So, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where ' a ' is the semi-major axis. Then, $\mathrm{a}=\sqrt{5}$ and $\mathrm{b}=1$.
\therefore The equation of the ellipse is $\frac{x^{2}}{1^{2}}+\frac{y^{2}}{(\sqrt{5})^{2}}=1$ or $\frac{x^{2}}{1}+\frac{y^{2}}{5}=1$

Question 15

Length of major axis 26 , foci $(\pm 5,0)$

Solution:

Given:
Length of major axis is 26 and foci $(\pm 5,0)$
Since the foci are on the y-axis, the major axis is along the x-axis.
So, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where ${ }^{\prime}$ is the semi-major axis.
Then, $2 \mathrm{a}=26$

$$
\mathrm{a}=13 \text { and } \mathrm{c}=5 .
$$

It is known that $a^{2}=b^{2}+c^{2}$.
So, $13^{2}=b^{2}+5^{2}$
$169=b^{2}+25$
$b^{2}=169-25$
$\mathrm{b}=\sqrt{144}$
$=12$
\therefore The equation of the ellipse is $\frac{x^{2}}{13^{2}}+\frac{y^{2}}{12^{2}}=1$ or $\frac{x^{2}}{169}+\frac{y^{2}}{144}=1$

Question 16

Length of major axis 16 , foci $(0, \pm 6)$

Solution:

Given:
Length of major axis is 16 and foci $(0, \pm 6)$
Since the foci are on the y-axis, the major axis is along the y-axis.
So, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where ' a ' is the semi-major axis.
Then, $2 \mathrm{~b}=16$

$$
\mathrm{b}=8 \text { and } \mathrm{c}=6 \text {. }
$$

It is known that $a^{2}=b^{2}+c^{2}$.
So, $a^{2}=8^{2}+6^{2}$
$=64+36$
$=100$
$\mathrm{b}=\sqrt{100}$
$=10$
\therefore The equation of the ellipse is $\frac{x^{2}}{8^{2}}+\frac{y^{2}}{10^{2}}=1$ or $\frac{x^{2}}{64}+\frac{y^{2}}{100}=1$

Question 17

Foci $(\pm 3,0), a=4$

Solution:-

Given:

Foci $(\pm 3,0)$, $a=4$
Since the foci are on the x-axis, the major axis is along the x-axis.
So, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where ${ }^{\prime} a^{\prime}$ is the semi-major axis.
Then, $\mathrm{c}=3$ and $\mathrm{a}=4$.
It is known that $a^{2}=b^{2}+c^{2}$.
So, $a^{2}=8^{2}+6^{2}$
$=64+36$
$=100$
$16=b^{2}+9$
$b^{2}=16-9$
$=7$
\therefore The equation of the ellipse is $\frac{x^{2}}{16}+\frac{y^{2}}{7}=1$

Question 18

$b=3, c=4$, centre at the origin; foci on the x axis.

Solution:

Given:
$b=3, c=4$, centre at the origin and foci on the x axis.
Since the foci are on the x -axis, the major axis is along the x -axis.
So, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where ' a ' is the semi-major axis.
Then, $\mathrm{b}=3$ and $\mathrm{c}=4$.
It is known that $a^{2}=b^{2}+c^{2}$.
So, $a^{2}=3^{2}+4^{2}$
$=9+16$
$=25$
$\mathrm{b}=\sqrt{25}$
$=5$
\therefore The equation of the ellipse is $\frac{x^{2}}{5^{2}}+\frac{y^{2}}{3^{2}}=1$ or $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

Question 19

Centre at $(0,0)$, major axis on the y-axis and passes through the points $(3,2)$ and $(1,6)$.

Solution:

Given:
Centre at $(0,0)$, major axis on the y-axis and passes through the points $(3,2)$ and $(1,6)$.
Since the centre is at $(0,0)$ and the major axis is on the y-axis, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where ' a ' is the semi-major axis.
The ellipse passes through points $(3,2)$ and $(1,6)$.
So, by putting the values $x=3$ and $y=2$, we get,
$\frac{3^{2}}{b^{2}}+\frac{2^{2}}{a^{2}}=1$
$\frac{9}{b^{2}}+\frac{4}{a^{2}}$
(1)

And by putting the values $x=1$ and $y=6$, we get,
$\frac{1^{1}}{b^{2}}+\frac{6^{2}}{a^{2}}=1$
$\frac{1}{b^{2}}+\frac{36}{a^{2}}=1$
(2)

On solving equation (1) and (2), we get
$\mathrm{b}^{2}=10$ and $a^{2}=40$.
\therefore The equation of the ellipse is $\frac{x^{2}}{10}+\frac{y^{2}}{40}=1$ or $4 x^{2}+y^{2}=40$

Question 20

Major axis on the x-axis and passes through the points $(4,3)$ and $(6,2)$.

Solution:

Given:
Major axis on the x -axis and passes through the points $(4,3)$ and $(6,2)$.
Since the major axis is on the x-axis, the equation of the ellipse will be the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \ldots$ (1) [where ' a ' is the semi - major axis.]

The ellipse passes through points $(4,3)$ and $(6,2)$.
So by putting the values $\mathrm{x}=4$ and $\mathrm{y}=3$ in equation (1), we get,
$\frac{16}{a^{2}}+\frac{9}{b^{2}}=1$
Putting , $x=6$ and $y=2$ in equation (1), we get,
$\frac{36}{a^{2}}+\frac{4}{b^{2}}=1 \ldots .$.
From equation (2)
$\frac{16}{a^{2}}=1-\frac{9}{b^{2}}$
$1 / a^{2}=\left(1 / 16\left(1-9 / b^{2}\right)\right) \ldots \ldots(4$
Substituting the value of $1 / a^{2}$ in equation (3) we get,
$36 / a^{2}+\frac{4}{b^{2}}=1$
$36\left(1 / a^{2}\right)+\frac{4}{b^{2}}=1$
$\left.36 / 16\left(1-9 / b^{2}\right)\right]+4 / b^{2}=1$
$\left.9 / 4\left(1-9 / b^{2}\right)\right]+4 / b^{2}=1$
$9 / 4-81 / 4 b^{2}+4 / b^{2}=1$
$-81 / 4 b^{2}+\frac{4}{b^{2}}=1-9 / 4$
$(-81+16) 4 b^{2}=(4-9) / 4$
$-65 / 4 b^{2}=-5 / 4$
$-5 / 4\left(13 / b^{2}\right)=-5 / 4$
$13 / b^{2}=1$
$1 / b^{2}=1 / 13$
$b^{2}=13$
Now substitute the value of b^{2} in equation (4) we get,
$1 / a^{2}=1 / 16\left(1-9 / b^{2}\right)$
$=1 / 16(1-9 / 13)$
$=1 / 16((13-9) / 13)$
$=1 / 16(4 / 13)$
$=1 / 52$
$a^{2}=52$
Equation of ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
By substituting the values of a^{2} and b^{2} in above equation we get,
$\frac{x^{2}}{52}+\frac{y^{2}}{13}=1$

Exercise 11.4

In each of the Exercise 1 to 6, find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas.

Question 1

$\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
Solution:-

Given:-
The equation is $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ or $\frac{x^{2}}{4^{2}}-\frac{y^{2}}{3^{2}}=1$
On comparing this equation with the standard equation of hyperbola $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$,
We get $\mathrm{a}=4$ and $\mathrm{b}=3$,
It is known that, $a^{2}+b^{2}=c^{2}$
So,
$c^{2}=4^{2}+3^{2}$
$=\sqrt{25}$
$\mathrm{C}=5$
Then,
The coordinates of the foci are $(\pm 5,0)$.
The coordinates of the vertices are $(\pm 4,0)$.
Eccentricity, e = c/a=5/4
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 3^{2}}{4}=(2 \times 9) / 4=18 / 4=9 / 2$

Question 2

$\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$

Solution:-

Given:-
The equation is $\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$ or $\frac{y^{2}}{3^{2}}-\frac{x^{2}}{27^{2}}=1$
On comparing this equation with the standard equation of hyperbola $\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1$,
We get $\mathrm{a}=3$ and $\mathrm{b}=\sqrt{27}$,
It is known that, $a^{2}+b^{2}=c^{2}$
So,
$c^{2}=3^{2}+(\sqrt{27})^{2}$
$=9+27$
$c^{2}=36$
$\mathrm{C}=\sqrt{36}$

$$
=6
$$

Then,
The coordinates of the foci are $(0,6)$ and $(0,-6)$
The coordinates of the vertices are $(0,3)$ and $(0,-3)$
Eccentricity, $\mathrm{e}=\mathrm{c} / \mathrm{a}=6 / 3=2$
Length of latus rectum $=\frac{2 b^{2}}{a}=(2 \times 27) / 3=(2 \times 27) / 3=(54) / 3=18$
Question 3
$9 y^{2}-4 x^{2}=36$

Solution:-

Given:-
The equation is $9 y^{2}-4 x^{2}=36$ or $\frac{y^{2}}{4}-\frac{x^{2}}{9}=1$ or $\frac{y^{2}}{2^{2}}-\frac{x^{2}}{3^{2}}=1$
On comparing this equation with the standard equation of hyperbola $\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1$,
We get $\mathrm{a}=2$ and $\mathrm{b}=3$,
It is known that, $a^{2}+b^{2}=c^{2}$
So,
$c^{2}=4+9$
$c^{2}=13$
$C=\sqrt{13}$
Then,
The coordinates of the foci are $(0, \sqrt{13})$ and $(0,-\sqrt{13})$
The coordinates of the vertices are $(0,2)$ and $(0,-2)$
Eccentricity, $\mathrm{e}=\mathrm{c} / \mathrm{a}=\sqrt{13} / 2$
Length of latus rectum $=\frac{2 b^{2}}{a}=\left(2 \times 3^{2}\right) / 2=(2 \times 9) / 2=18 / 2=9$

Question 4

$16 x^{2}-9 y^{2}=576$

Solution:-

Given:-

The equation is $16 x^{2}-9 y^{2}=576$
Let us divide the whole Equation by 576, we get
$\frac{16 x^{2}}{576}-\frac{9 y^{2}}{576}=\frac{576}{576}$
On comparing this equation with the standard equation of hyperbola $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$,
We get $\mathrm{a}=6$ and $\mathrm{b}=8$,
It is known that, $a^{2}+b^{2}=c^{2}$
So,
$c^{2}=36+64$

$$
\begin{aligned}
& c^{2}=\sqrt{ } 100 \\
& C=10
\end{aligned}
$$

Then,
The coordinates of the foci are $(10,0)$ and $(-10,0)$
The coordinates of the vertices are $(6,0)$ and $(-6,0)$

Eccentricity, e=c/a=10/6=5/3
Length of latus rectum $=\frac{2 b^{2}}{a}=\left(2 \times 8^{2}\right) / 6=(2 \times 64) / 6=64 / 3$

Question 5

$5 y^{2}-9 x^{2}=36$

Solution:-

Given:-

The equation is $5 y^{2}-9 x^{2}=36$
Let us divide the whole Equation by 36, we get
$\frac{5 y^{2}}{36}-\frac{9 x^{2}}{36}=\frac{36}{36}$
$\frac{y^{2}}{\left(\frac{36}{5}\right)}-\frac{x^{2}}{4}=1$
On comparing this equation with the standard equation of hyperbola $\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1$,
We get $\mathrm{a}=6 / \sqrt{5}$ and $b=2$,
It is known that, $a^{2}+\mathrm{b}^{2}=c^{2}$
So,
$c^{2}=\frac{36}{5}+4$
$c^{2}=56 / 5$
$c=\sqrt{ }\left(\frac{56}{5}\right)$
$=2 \sqrt{14} / \sqrt{5}$
Then,
The coordinates of the foci are $(0,2 \sqrt{14} / \sqrt{5})$ and $(0,-2 \sqrt{14} \sqrt{5})$
The coordinates of the vertices are $(0,6 / \sqrt{5})$ and $(0,-6 \sqrt{5})$
Eccentricity, $\mathrm{e}=\mathrm{c} / \mathrm{a}=(2 \sqrt{14} / \sqrt{5}) /(6 / \sqrt{5})=\sqrt{14} / 3$
Length of latus rectum $=\frac{2 b^{2}}{a}=\left(2 \times 2^{2}\right) / 6 \sqrt{5}=(2 \times 4) / 6 \sqrt{5}=4 / \sqrt{5} / 3$

Question 6

$49 y^{2}-16 x^{2}=784$

Solution:-

Given:-
The equation is $49 y^{2}-16 x^{2}=784$
Let us divide the whole Equation by 784, we get
$\frac{49 y^{2}}{784}-\frac{16 x^{2}}{784}=\frac{784}{784}$
$\frac{y^{2}}{16}-\frac{x^{2}}{49}=1$
On comparing this equation with the standard equation of hyperbola $\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1$,
We get $\mathrm{a}=4$ and $\mathrm{b}=7$,
It is known that, $a^{2}+b^{2}=c^{2}$
So,
$c^{2}=16+49$
$c^{2}=65$
$c=\sqrt{65}$
Then,
The coordinates of the foci are $(0, \sqrt{65})$ and $(0,-\sqrt{65})$
The coordinates of the vertices are $(0,4)$ and $(0,-4)$
Eccentricity, $\mathrm{e}=\mathrm{c} / \mathrm{a}=\sqrt{65} / 4$
Length of latus rectum $=\frac{2 b^{2}}{a}=\left(2 \times 7^{2}\right) / 4=(2 \times 49) / 4=49 / 2$
In each Exercise 7 to 15 , find the equations of the hyperbola satisfying the given conditions

Question 7

Vertices $(\pm 2,0)$, foci $(\pm 3,0)$

Solution:

Given:
Vertices $(\pm 2,0)$ and foci $(\pm 3,0)$
Here, the vertices are on the x-axis.
So, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Since, the vertices are $(\pm 2,0)$, so $a=2$
Since, the foci are $(\pm 3,0)$, so, $c=3$
It is know that, $a^{2}+b^{2}=c^{2}$
So, $2^{2}+b^{2}=3^{2}$
$b^{2}=9-4=5$
\therefore The equation of the hyperbola is $x^{2} / 4-y^{2} / 5=1$

Question 8

Vertices $(0, \pm 5)$, foci $(0, \pm 8)$

Solution:

Given:
Vertices $(0, \pm 5)$, foci $(0, \pm 8)$

Here, the vertices are on the y-axis.
So, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1$
Since, the vertices are $(0, \pm 5)$, so $a=5$
Since, the foci are ($0, \pm 8$), so, c $=8$
It is know that, $a^{2}+b^{2}=c^{2}$
So, $5^{2}+b^{2}=8^{2}$
$b^{2}=64-25=39$
\therefore The equation of the hyperbola is $y^{2} / 25-x^{2} / 39=1$

Question 9

Vertices $(0, \pm 3)$, foci $(0, \pm 5)$

Solution:

Given:
Vertices $(0, \pm 3)$, foci $(0, \pm 5)$
Here, the vertices are on the y - axis.
So, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1$
Since, the vertices are $(0, \pm 3)$, so $a=3$
Since, the foci are $(0, \pm 5)$, so, c $=5$
It is know that, $a^{2}+b^{2}=c^{2}$
So, $3^{2}+b^{2}=5^{2}$
$b^{2}=25-9=16$
\therefore The equation of the hyperbola is $y^{2} / 9-x^{2} / 16=1$ \qquad

Question 10

Foci $(\pm 5,0)$, the transverse axis is of length 8.

Solution:

Given:
Foci $(\pm 5,0)$ and the transverse axis is of length 8.
Here, the foci are on x - axis
So, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Since, the foci are ($\pm 5,0$), so, c = 5
Since the length of the transverse axis is 8,
$2 \mathrm{a}=8$
a $=8 / 2$
$=4$

It is know that, $a^{2}+b^{2}=c^{2}$
So, $4^{2}+b^{2}=5^{2}$
$b^{2}=25-16$

$$
=9
$$

\therefore The equation of the hyperbola is $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$

Question 11

Foci $(0, \pm 13)$, the conjugate axis is of length 24 .

Solution:

Given:
Foci $(0, \pm 13)$ and the conjugate axis is of length 8 .
Here, the foci are on y - axis
So, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1$
Since, the foci are ($0, \pm 13$), so, c = 13
Since the length of the transverse axis is 24 ,
$2 \mathrm{~b}=24$
b $=24 / 2$
$=12$
It is know that, $a^{2}+b^{2}=c^{2}$
So, $a^{2}+12^{2}=13^{2}$
$a^{2}=169-144$
$=25$

\therefore The equation of the hyperbola is $\frac{y^{2}}{25}-\frac{x^{2}}{144}=1$

Question 12

Foci $(\pm 3 \sqrt{5}, 0)$, the latus rectum is of length 8 .

Solution:-

Foci $(\pm 3 \sqrt{5}, 0)$, the latus rectum is of length 8 .
Here, the foci are on x - axis.
The equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Since, the foci are ($\pm 3 \sqrt{5}, 0$), so, c $= \pm 3 \sqrt{5}$
Length of latus rectum is 8
$\frac{2 b^{2}}{a}=8$
$2 b^{2}=8 a$

$$
\begin{aligned}
b^{2} & =\frac{8 a}{2} \\
& =4 a
\end{aligned}
$$

It is known that, $a^{2}+b^{2}=c^{2}$
$a^{2}+4 a=45$
$a^{2}+4 a-45=0$
$a^{2}+9 a-5 a-45=0$
$(a+9)(a-5)=0$
$a=-9$ or 5
Since, a is non - negative, a = 5
So, $b^{2}=4 \mathrm{a}$

$$
\begin{aligned}
& =4 \times 5 \\
& =20
\end{aligned}
$$

\therefore The equation of the hyperbola is $\frac{x^{2}}{25}-\frac{y^{2}}{20}=1$

Question 13

Foci $(\pm 4,0)$, the latus rectum is of length 12 .

Solution:-

Foci $(\pm 4,0)$, the latus rectum is of length 12 .
Here, the foci are on x-axis.
The equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Since, the foci are ($\pm 4,0$), so, c $=4$
Length of latus rectum is 12

$$
\begin{aligned}
& \frac{2 b^{2}}{a}=12 \\
& 2 b^{2}=12 a \\
& b^{2}=\frac{12 a}{2} \\
& \quad=6 \mathrm{a}
\end{aligned}
$$

It is known that, $a^{2}+b^{2}=c^{2}$
$a^{2}+6 a=16$
$a^{2}+6 a-16=0$
$a^{2}+6 a-2 a-16=0$
$(a+8)(a-2)=0$
$a=-8$ or 2
Since, a is non - negative, $a=2$
So, $b^{2}=6 \mathrm{a}$

$$
\begin{aligned}
& =6 \times 2 \\
& =12
\end{aligned}
$$

\therefore The equation of the hyperbola is $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$

Question 14

Vertices $(\pm 7,0)$, and $e=4 / 3$

Solution:-

Vertices $(\pm 7,0)$, and e $=4 / 3$
Here, the vertices are on x - axis.
The equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Since, the foci are $(\pm 7,0)$, so, $\mathrm{a}=7$
It is given that $\mathrm{e}=4 / 3$
c/a $=4 / 3$
$3 \mathrm{c}=4 / \mathrm{a}$
Substitute the value of a, we get
3c $=4$ (7)
C $=28 / 3$
It is known that, $a^{2}+b^{2}=c^{2}$
$7^{2}+b^{2}=(28 / 3)^{2}$
$b^{2}=\frac{784}{9}-49$
$=(784-441) / 9$
$=343 / 9$
\therefore The equation of the hyperbola is $\frac{x^{2}}{49}-\frac{9 y^{2}}{343}=1$

Question 15

Foci $(0, \pm \sqrt{10})$, passing through $(2,3)$

Solution:-

Given:
Foci $(0, \pm \sqrt{ } 10)$, and passing though $(2,3)$
Here, the foci are on y-axis
The equation of the hyperbola is of form $\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1$
Since, the foci are $(\pm \sqrt{10}, 0)$, so, $c=\sqrt{10}$
It is known that, $a^{2}+b^{2}=c^{2}$
$b^{2}=10-a^{2} \ldots \ldots$ (1)
It is given that the hyperbola passes through point $(2,3)$
So, $9 / a^{2}-4 / b^{2}=1$
From equations (1) and (2), we get
For more Info Visit - www.KITest.in
$9 / a^{2}-4 /(10-a)^{2}=1$
$9\left(10-a^{2}\right)-4 a^{2}=a^{2}\left(10-a^{2}\right)$
$90-9 a^{2}-4 a^{2}=10 a^{2}-a^{4}$
$a^{4}-23 a^{2}+90=0$
$a^{4}-18 a^{2}-5 a^{2}+90=0$
$a^{2}\left(a^{2}-18\right)-5\left(a^{2}-18\right)=0$
$\left(a^{2}-18\right)\left(a^{2}-5\right)=0$
$a^{2}=18$ or 5
In hyperbola, $\mathrm{c}>$ a i.e., $c^{2}>a^{2}$
So, $a^{2}=5$
$b^{2}=10-a^{2}$
$=10-5$
= 5
\therefore The equation of the hyperbola is $\frac{y^{2}}{5}-\frac{x^{2}}{5}=1$

MISCELLANEOUS EXERCISE

Question 1

If a parabolic reflector is $\mathbf{2 0 \mathrm { cm }}$ in diameter and 5 cm deep, find the focus.
Solution:
We know that the origin of the coordinate plane is taken at the vertex of the parabolic reflector, where the axis of the reflector is along the positive x - axis.
Diagrammatic representation is as follows:

We know that the equation of the parabola is of the form $y^{2}=4 \mathrm{ax}$ (as it is opening to the right)
Since, the parabola passes through point $\mathrm{A}(10,5)$,
$y^{2}=4 a x$
$10^{2}=4 \mathrm{a}(5)$
$100=20 a$
$a=100 / 20$
$=5$
The focus of the parabola is $(a, 0)=(5,0)$, which is the mid - point of the diameter. Hence, the focus of the reflector is at the mid-point of the diameter.

Question 2

An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?

Solution:

We know that the origin of the coordinate plane is taken at the vertex of the arch, where its vertical axis is along the negative y -axis.
Diagrammatic representation is as follows:

The equation of the parabola is of the form $x^{2}=4$ ay (as it is opening upwards). It is given that at base arch is 10 m high and 5 m wide.
So, $y=10$ and $x=5 / 2$ from the above figure.
It is clear that the parabola passes through point $(5 / 2,10)$
So, $x^{2}=4 a y$
$\left(\frac{5}{2}\right)^{2}=4 \mathrm{a}(10)$
$4 \mathrm{a}=25 /(4 \times 10)$
a $=5 / 32$
We know the arch is in the form of a parabola whose equation is $x^{2}=\frac{5}{8 y}$
We need to find width, when height $=2 \mathrm{~m}$.
To find x , when $\mathrm{y}=2$
When, $\mathrm{y}=2$,
$\mathrm{x}^{2}=5 / 8$ (2)
$=5 / 4$
$X=\sqrt{ }(5 / 4)$
$=\frac{\sqrt{5}}{2}$
$A B=2 \times \sqrt{5} / 2 m$
$=\sqrt{5} \mathrm{~m}$
= 2.23m (approx.)

Hence, when the arch is 2 m from the vertex of the parabola, its width is approximately 2.23 m .

Question 3

The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m . Find the length of a supporting wire attached to the roadway 18 m from the middle.

Solution:

For more Info Visit - www.KITest.in

We know that the vertex is at the lowest point of the cable. The origin of the coordinate plane is taken as the vertex of the parabola, while its vertical axis is taken along the positive y-axis.
Diagrammatic representation is as follows:

Here, AB and $O C$ are the longest and the shortest wires, respectively, attached to the cable.
DF is the supporting wire attached to the roadways, 18 m from the middle.
So, $A B=30 \mathrm{~m}, \mathrm{OC}=6 \mathrm{~m}$, and $\mathrm{BC}=50 \mathrm{~m}$.
The equation of the parabola is of the from $x^{2}=4 a y$ (as it is opening upwards).
The coordinates of point A are $(50,30-6)=(50,24)$
Since, A $(50,24)$ is a point on the parabola.
$y^{2}=4 \mathrm{ax}$
$(50)^{2}=4 \mathrm{a}(24)$
$a=(50 \times 50) /(4 \times 24)$
$=625 / 24$

Equation of the parabola $x^{2}=4 a y=4 \times\left(\frac{625}{24}\right) y$ or $6 x^{2}=625 y$
The x - coordinate of point D is 18 .
Hence, at $\mathrm{x}=18$,
$6(18)^{2}=625 y$
$Y=(6 \times 18 \times 18) / 625$
$=3.11$ (approx.)
Thus, DE $=3.11 \mathrm{~m}$
$\mathrm{DF}=\mathrm{DE}+\mathrm{EF}=3.11 \mathrm{~m}+6 \mathrm{~m}=9.11 \mathrm{~m}$
Hence, the length of the supporting wire attached to the roadway 18 m from the middle is approximately 9.11m.

Question 4

An arch is in the form of a semi-ellipse. It is $\mathbf{8} \mathbf{~ m}$ wide and $\mathbf{2 ~ m}$ high at the centre. Find the height of the arch at a point 1.5 m from one end.

Solution:

Since, the height and width of the arc from the centre is 2 m and 8 m respectively, it is clear that the length of the major axis is 8 m , while the length of the semi- minor axis is 2 m .

The origin of the coordinate plane is taken as the centre of the ellipse, while the major axis is taken along the x -axis.
Hence, Diagrammatic representation of semi- ellipse is as follows:

The equation of the semi - ellipse will be of the from $x^{2} / 16+y^{2} / 4=1, y \geq 0 \ldots$ (1) Let A be a point on the major axis such that $A B=1.5 \mathrm{~m}$.
Now draw AC \perp OB.
$\mathrm{OA}=(4-1.5) \mathrm{m}=2.5 \mathrm{~m}$
The x - coordinate of point C is 2.5
On substituting the value of x with 2.5 in equation (1), we get,
$(2.5)^{2} / 16+y^{2} / 4=1$
$6.25 / 16+y^{2} / 4=1$
$y^{2}=4(1-6.25 / 16)$
$=4(9.75 / 16)$
$=2.4375$
$\mathrm{y}=1.56$ (approx.)
So, $A C=1.56 \mathrm{~m}$
Hence, the height of the arch at a point 1.5 m from one end is approximately 1.56 m .

Question 5

A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x-axis.

Solution:

For more Info Visit - www.KITest.in

Let $A B$ be the rod making an angle θ with $O X$ and $P(x, y)$ be the point on it such that $A P=3 \mathrm{~cm}$. Diagrammatic representation is as follows:

Then, $\mathrm{PB}=\mathrm{AB}-\mathrm{AP}=(12-3) \mathrm{cm}=9 \mathrm{~cm}[\mathrm{AB}=12 \mathrm{~cm}]$
From P , draw $\mathrm{PQ} \perp \mathrm{OY}$ and $\mathrm{PR} \perp \mathrm{OX}$.
In $\triangle P B Q, \cos \theta=P Q / P B=x / 9$
$\operatorname{Sin} \theta=P R / P A=y / 3$
We know that, $\sin ^{2} \theta+\cos ^{2} \theta=1$,
So,
$\left(\frac{y}{3}\right)^{2}+\left(\frac{x}{9}\right)^{2}=1$ or
$x^{2} / 81+y^{2} / 9=1$
Hence, the equation of the locus of point P on the rod is $x^{2} / 81+y^{2} / 9=1$

Question 6

Find the area of the triangle formed by the lines joining the vertex of the parabola $x^{2}=12 y$ to the ends of its latus rectum.

Solution:

The given parabola is $x^{2}=12 y$.
On comparing this equation with $x^{2}=4 a y$, we get,
$4 \mathrm{a}=12$
$\mathrm{a}=12 / 4$
= 3
The coordinates of foci are $S(0, a)=S(0,3)$.
Now let AB be the latus rectum of the given parabola.
The given parabola can be roughly drawn as

$x^{2}=36$
$\mathrm{x}= \pm 6$
So, the coordinates of A are $(-6,3)$, while the coordinates of B are $(6,3)$
Then, the vertices of $\triangle \mathrm{OAB}$ are $\mathrm{O}(0,0), \mathrm{A}(-6,3)$ and $\mathrm{B}(6,3)$.
By using the formula,
Area of $\triangle \mathrm{OAB}=1 / 2[0(3-3)+(-6)(3-0)+6(0-3)]$ unit 2

$$
\begin{aligned}
& =1 / 2[(-6)(3)+6(-3)] \text { unit }^{2} \\
& =1 / 2[-18-18] \text { unit }^{2} \\
& =1 / 2[-36] \text { unit }^{2} \\
& =18 \text { unit }^{2}
\end{aligned}
$$

\therefore Area of $\triangle \mathrm{OAB}$ is 18 unit 2 \qquad
Question 7
A man running a racecourse notes that the sum of the distances from the two flag posts from him is always 10 m and the distance between the flag posts is $\mathbf{8} \mathrm{m}$. Find the equation of the posts traced by the man.

Solution:

Let A and B be the positions of the two flag posts and $P(x, y)$ be the position of the man.
So, $\mathrm{PA}+\mathrm{PB}=10$.
We know that if a point moves in plane in such a way that the sum of its distance from two fixed point is constant, then the path is an ellipse and this constant value is equal to the length of the major axis of the ellipse.
Then, the path described by the man is an ellipse where the length of the major axis is 10 m , while points A and B are the foci.
Now let us take the origin of the coordinate plane as the centre of the ellipse, and taking the major axis along the x - axis,

For more Info Visit - www.KITest.in

The diagrammatic representation of the ellipse is as follows:

The equation of the ellipse is in the form of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where ' a ' is the semi-major axis,
So, $2 \mathrm{a}=10$
$\mathrm{a}=10 / 2$
= 5
Distance between the foci. $2 \mathrm{c}=8$

$$
\begin{aligned}
C & =8 / 2 \\
& =4
\end{aligned}
$$

By using the relation $c=\sqrt{ }\left(a^{2}-b^{2}\right)$, we get,

$$
\left.4=\sqrt{(25}-b^{2}\right)
$$

$$
16=25-b^{2}
$$

$$
\mathrm{b}^{2}=25-1
$$

$$
=9
$$

$$
\mathrm{b}=3
$$

Hence, equation of the path traced by the man is $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

Question 8

An equilateral triangle is inscribed in the parabola $y^{2}=4 a x$, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.

Solution:

Let us consider $O A B$ be the equilateral triangle inscribed in parabolay ${ }^{2}=4 \mathrm{ax}$.
Let $A B$ intersect the $x-$ axis at point C.
Diagrammatic representation of the ellipse is as follows:
For more Info Visit - www.KITest.in

Now let $\mathrm{OC}=\mathrm{k}$
From the equation of the given parabola, we have,
So, $y^{2}=4 \mathrm{ak}$
$Y= \pm 2 \sqrt{ }$ ak
The coordinates of points A and B are (k, 2 $\sqrt{ } \mathrm{ak}$), and ($k-2 \sqrt{ } \mathrm{ak}$)
$\mathrm{AB}=\mathrm{CA}+\mathrm{CB}$

$$
\begin{aligned}
& =2 \sqrt{ } \mathrm{ak}+2 \sqrt{\mathrm{ak}} \\
& =4 \sqrt{\mathrm{ak}}
\end{aligned}
$$

Since, $O A B$ is an equilateral triangle, $O A^{2}=A B^{2}$
Then,
$\mathrm{k}^{2}+(2 \sqrt{\mathrm{ak}})^{2}=(4 \sqrt{\mathrm{ak}})^{2}$
$\mathrm{k}^{2}+4 \mathrm{ak}=16 \mathrm{ak}$
$\mathrm{k}^{2}=12 \mathrm{ak}$
$\mathrm{K}=12 \mathrm{a}$
Thus, $\mathrm{AB}=4 \sqrt{\mathrm{ak}}=4 \sqrt{ }(\mathrm{a} \times 12 \mathrm{a})$

$$
\begin{aligned}
& =4 \sqrt{12 a^{2}} \\
& =4 \sqrt{ }(4 a \times 3 a) \\
& =4(2) \sqrt{3 a} \\
& =8) \sqrt{3 a}
\end{aligned}
$$

Hence, the side of the equilateral triangle inscribed in parabola $y^{2}=4 a x$ is $8 \sqrt{3 a}$.

For more Info Visit - www.KITest.in

For more Info Visit - www.KITest.in

For more Info Visit - www.KITest.in

