## Question18

Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\bar{r}=(2 \hat{\imath}-\hat{\jmath}+2 \widehat{k})+\lambda(3 \hat{\imath}+4 \hat{\jmath}+2 \hat{k})$ and the plane $\underset{r}{\bar{\imath}}(\hat{\imath}-\hat{\jmath}+\hat{k})=5$

## Solution:

Given:
The equation of line is
$\bar{r}=(2 \hat{\imath}-\hat{\jmath}+2 \widehat{k})+\lambda(3 \hat{\imath}+4 \hat{\jmath}+2 \hat{k})$
And the equation of the plane is given by
$\overline{\mathrm{r}} .(\hat{\imath}-\hat{\jmath}+\hat{k})=5$ $\qquad$
Now to find the intersection of line and plane, substituting the value of $\overline{\mathrm{r}}$ from equation
(1) of line into equation of plane (2), we get
$[(2 \hat{\imath}-\hat{\jmath}+2 \hat{k})+\lambda(3 \hat{\imath}+4 \hat{\jmath}+2 \hat{k})](\hat{\imath}-\hat{\jmath}+\hat{k})=5$
$[(2+3 \lambda) \hat{\imath}+(-1+4 \lambda) \hat{\jmath}+(2+2 \lambda) \hat{k}](\hat{\imath}-\hat{\jmath}+\hat{k})=5$
$(2+3 \lambda) \times 1+(-1+4 \lambda) \times(-1)+(2+2 \lambda) \times 1=5$
$2+3 \lambda+1-4 \lambda+2+2 \lambda=2$
So the equation of line is
$\bar{r}=(2 \hat{\imath}-\hat{\jmath}+2 \widehat{k})$
Let the point of intersection be ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ )
So,
$\overline{\mathrm{r}}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$
$x \hat{\imath}+y \hat{\jmath}+z \hat{k}=2 \hat{\imath}-\hat{\jmath}+2 \hat{k}$
Where
$\mathrm{X}=2, \mathrm{y}=-1, \mathrm{z}=2$
So, the point of intersection is $(2,-1,2)$.
Now, the distance between points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}$ is given by
$\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}+\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)^{2}}$ Units
Distance between the points $A(2,-12)$ and $B(-1,-5,-10)$ is given by
$\mathrm{AB}=\sqrt{(2-(-1))^{2}+(-1-(-5))^{2}+(2-(-10))^{2}}$
$=\sqrt{(3)^{2}+(4)^{2}+(12)^{2}}$
$=\sqrt{9+6+144}$
$=\sqrt{169}$
= 13 units
$\therefore$ The distance is 13 units.

## Question19

Find the vector equation of the line passing through $(1,2,3)$ and parallel of the planes $\overline{\mathbf{r}}(\hat{\mathbf{l}}-\hat{\mathbf{\jmath}}+2 \hat{\mathbf{k}})=5$ and $\overline{\mathbf{r}}(3 \hat{\mathbf{i}}+\hat{\mathbf{\jmath}}+\hat{\mathbf{k}})=\mathbf{6}$

## Solution:

The vector equation of a line passing through a point with position vector $\overline{\mathrm{a}}$ and parallel to a vector $\overline{\mathrm{b}}$ is
$\bar{r}=\bar{a}+\lambda \bar{b}$

It is given that line passes through ( $1,2,3$ )
So,
$\bar{a}=1 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
It is also given that the is line is parallel to both planes.
So line is perpendicular to normal of both planes
i.e. $\overline{\mathrm{b}}$ is perpendicular to normal of both planes.

We know that
$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is perpendicular to both $\bar{a}$ and $\bar{b}$
So, $\bar{b}$ is cross product of normal of plane $\bar{r}(\hat{\imath}-\hat{\jmath}+2 \hat{k})=5$ and $\bar{r}(3 \hat{\imath}-\hat{\jmath}+\hat{k})=6$
Required Normal $=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & -1 & 2 \\ 3 & 1 & 1\end{array}\right|$
$=\hat{i}[(-1)(1-1(2)]-\hat{\jmath}[1(1)-3(-1)$
$=\hat{\imath}[-1-2]-\hat{\jmath}[1-6]+\hat{\mathrm{k}}[1+3]$
$=-3 \hat{\imath}+5 \hat{\jmath}+4 \hat{k}$
So,
$\overline{\mathrm{b}}=-3 \hat{\imath}+5 \hat{\jmath}+4 \hat{\mathrm{k}}$
Now, substitute the value of $\overline{\mathrm{a}}$ \& $\overline{\mathrm{b}}$ in the formula, we get
$\bar{r}=\bar{a}+\lambda \bar{b}$
$-(1 \hat{\imath}+2 \hat{\jmath}+3 \hat{k})+\lambda(-3 \hat{\imath}+5 \hat{\jmath}+4 \widehat{k})$
$\therefore$ The equation of the line is
$\bar{r}=(1 \hat{\imath}+2 \hat{\jmath}+3 \hat{k})+\lambda(-3 \hat{\imath}+5 \hat{\jmath}+4 \widehat{k})$

## Question20

Find the vector equation of the line passing through the point $(1,2,-4)$ and perpendicular to the two lines:
$\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$

## Solution:

The vector equation of a line passing through a point with position vector $\overline{\mathrm{a}}$ and parallel to a vector $\overline{\mathrm{b}}$ is $\overline{\mathrm{r}}=\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}$
It is given that, the line passes through $(1,2,4)$
So,
$\bar{a}=1 \hat{\imath}+2 \hat{\jmath}+4 \hat{k}$
It is also given that; line is parallel to both planes.
We know that
$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is perpendicular to both $\bar{a} \& \bar{b}$
So, $\bar{b}$ is cross product of normal planes
$\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$
Required Normal $=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 & 16 & 7 \\ 3 & 8 & 5\end{array}\right|$
$=\hat{i}[(-16)(-5)-8(7)]-\hat{\jmath}[3(-5-3(7)]+\hat{\mathrm{k}}[3(8)-3(-16)]$
$=\hat{\mathrm{i}}[80-56]-\hat{\mathrm{j}}[-15-21]+\hat{\mathrm{k}}[24+48]$
$=24 \hat{\imath}+36 \hat{\jmath}+72 \hat{k}$

So,
$\bar{b}=24 \hat{\imath}+36 \hat{\jmath}+72 \hat{\mathrm{k}}$
Now, by substituting the value of $\bar{a} \& \bar{b}$ in the formula, we get
$\bar{r}=\bar{a}+\lambda \bar{b}$
$=(1 \hat{\imath}+2 \hat{\jmath}-4 \hat{k})+\lambda(24 \hat{\imath}+36 \hat{\jmath}+72 \hat{k}$
$=(=(1 \hat{\imath}+2 \hat{\jmath}-4 \hat{\mathrm{k}})+12 \lambda(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{\mathrm{k}})$
$=(1 \hat{\imath}+2 \hat{\jmath}-4 \hat{k})+\lambda(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})$
$\therefore$ The equation of the line is
$\overline{\mathrm{r}}=(1 \hat{\imath}+2 \hat{\jmath}-4 \hat{\mathrm{k}})+\lambda(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{\mathrm{k}})$

## Question21

Prove that if a plane has the intercepts $a, b, c$ and is at a distance of $p$ units from the origin, then
$\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}}=\frac{1}{\mathrm{p}^{2}}$

## Solution:

We know that the distance of the point $\left(x_{1}, y_{1}, z_{1}\right)$ from plane $A x+B y+C z=D$ is given as $\left|\frac{\mathrm{Ax}_{1}+\mathrm{By}_{1}+\mathrm{Cz}_{1}-\mathrm{D}}{\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}}}\right|$
The equation of a plane having intercepts $a, b, c$ on the $x-, y-z$ axis respectively is given us
$\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}+\frac{\mathrm{z}}{\mathrm{z}}-=1$
Let us compare it with $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}=\mathrm{D}$, we get
$A=1 / a, B=1 / b, C=1 / c, D=1$
It is given that, the plane is at a distance of ' $p$ ' units from the origin.
So, the origin point is o $(0,0,0$,
Where, $\mathrm{x}_{1}=0, \mathrm{y}_{1}=0, \mathrm{z}_{1}=0$
Now,
Distance $=\left|\frac{\mathrm{Ax}_{1}+\mathrm{By}_{1}+\mathrm{Cz}-\mathrm{D}}{\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}}}\right|$
By substituting values in above equation, we get
$\mathrm{p}=\left|\frac{\frac{1}{\mathrm{a}} \times 0+\frac{1}{\mathrm{~b}} \times 0+\frac{1}{\mathrm{c}} \times 0-1}{\sqrt{\left(\frac{1}{\mathrm{a}}\right)^{2}}+\left(\frac{1}{\mathrm{~b}}\right)^{2}+\left(\frac{1}{c}\right)^{2}}\right|$
$\mathrm{p}=\left|\frac{0+0+0-1}{\sqrt{\frac{1}{a^{2}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}}\right|$
$p=\left|\frac{-1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}\right|$
$\mathrm{p}=\frac{1}{\sqrt{\frac{1}{\mathrm{a}^{2}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}}$
$\frac{1}{\mathrm{p}}=\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}}}$
Now let us square on both sides, we get

$$
\begin{aligned}
& \frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}} \\
& \text { Hence proved. }
\end{aligned}
$$

