Chapter - 10
 Circles

Exercise 10.1

Question 1

How many tangents can a circle have?
Answer:
There can be infinite tangents to a circle. A circle is made up of infinite points which are at an equal distance from a point. Since there are infinite points on the circumference of a circle, infinite tangents can be drawn from them.

Question 2

Fill in the blanks:
(i) A tangent to a circle intersects it in \qquad point(s).
(ii) A line intersecting a circle in two points is called a..
(iii) A circle can have \qquad parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called \qquad

Answer:

(i) A tangent to a circle intersects it in one point(s).
(ii) A line intersecting a circle in two points is called a secant.
(iii) A circle can have two parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called the point of contact.

Question 3

A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the centre 0 at a point Q so that $O Q=12 \mathrm{~cm}$. Length $P Q$ is :
a) 12 cm
b) 13 cm
c) 8.5 cm
d) $\sqrt{119} \mathrm{~cm}$

Answer:

In the above figure, the line that is drawn from the centre of the given circle to the tangent $P Q$ is perpendicular to PQ.
And so, OP \perp PQ
Using Pythagoras theorem in triangle $\triangle \mathrm{OPQ}$ we get, $O Q^{2}=O P^{2}+\mathrm{PQ}^{2}$
$(12)^{2}=5^{2}+P Q^{2}$
$\Rightarrow P Q^{2}=144-25$
$\Rightarrow \mathrm{PQ} 2=119$
$\Rightarrow \mathrm{PQ}=\sqrt{119} \mathrm{~cm}$
\Rightarrow So, option D i.e. $\sqrt{ } 119 \mathrm{~cm}$ is the length of PQ.

Question 4

Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Answer:

In the above figure, XY and AB are two the parallel lines. The line segment AB is the tangent at point C while the line segment $X Y$ is the secant.

Exercise 10.2

In Q. 1 to 3, choose the correct option and give justification.

Question 1

From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is
a) 7 cm
b) 12 cm
c) 15 cm
d) 24.5 cm

Answer:

First, draw a perpendicular from the center 0 of the triangle to a point P on the circle which is touching the tangent. This line will be perpendicular to the tangent of the circle.

So, OP is perpendicular to PQ i.e. $\mathrm{OP} \perp \mathrm{PQ}$
From the above figure, it is also seen that $\triangle O P Q$ is a right angled triangle.
It is given that
$O Q=25 \mathrm{~cm}$ and $P Q=24 \mathrm{~cm}$
By using Pythagoras theorem in $\triangle O P Q$,
$O Q^{2}=O P^{2}+\mathrm{PQ}^{2}$
$(25)^{2}=\mathrm{OP}^{2}+(24)^{2}$
$\Rightarrow \mathrm{OP}^{2}=625-576$
$\Rightarrow \mathrm{OP}^{2}=49$
$\Rightarrow \mathrm{OP}=7 \mathrm{~cm}$
\Rightarrow So, option A i.e. 7 cm is the radius of the given circle.

Question 2

In Fig. 10.11, if TP and $T Q$ are the two tangents to a circle with centre 0 so that $\angle P O Q=110^{\circ}$, then $\angle P T Q$ is equal to
a) 60°
b) 70°
c) 80°
d) 90°

Answer:

From the question, it is clear that OP is the radius of the circle to the tangent PT and OQ is the radius to the tangents TQ.

So, $\mathrm{OP} \perp \mathrm{PT}$ and $\mathrm{TQ} \perp \mathrm{OQ}$
$\therefore \angle O P T=\angle O Q T=90^{\circ}$
Now, in the quadrilateral POQT, we know that the sum of the interior angles is 360°
So, $\angle \mathrm{PTQ}+\angle \mathrm{POQ}+\angle \mathrm{OPT}+\angle \mathrm{OQT}=360^{\circ}$
Now, by putting the respective values we get,
$\angle \mathrm{PTQ}+90^{\circ}+110^{\circ}+90^{\circ}=360^{\circ}$
$\Rightarrow \angle \mathrm{PTQ}=70^{\circ}$
So, $\angle \mathrm{PTQ}$ is 70° which is option B .

Question 3

If tangents $P A$ and $P B$ from a point P to a circle with centre 0 are inclined to each other at angle of 80°, then $<$ POA is equal to
a) 50°
b) 60°
c) 70°
d) 80°

Answer:
First, draw the diagram according to the given statement.

Now, in the above diagram, OA is the radius to tangent PA and OB is the radius to tangent PB .
So, OA is perpendicular to PA and OB is perpendicular to PB i.e. $\mathrm{OA} \perp \mathrm{PA}$ and $\mathrm{OB} \perp \mathrm{PB}$
So, $\angle O B P=\angle O A P=90^{\circ}$
Now, in the quadrilateral AOBP,

The sum of all the interior angles will be 360°
So, $\angle A O B+\angle O A P+\angle O B P+\angle A P B=360^{\circ}$
Putting their values, we get,
$\Rightarrow \angle A O B+260^{\circ}=360^{\circ}$
$\Rightarrow \angle \mathrm{AOB}=100^{\circ}$
Now, consider the triangles $\triangle \mathrm{OPB}$ and $\triangle \mathrm{OPA}$. Here,
$\mathrm{AP}=\mathrm{BP}$ (Since the tangents from a point are always equal)
$O A=O B$ (Which are the radii of the circle)
OP = OP (It is the common side)
Now, we can say that triangles OPB and OPA are similar using SSS congruency.
$\therefore \triangle \mathrm{OPB} \cong \triangle \mathrm{OPA}$
So, $\angle \mathrm{POB}=\angle \mathrm{POA}$
$\angle A O B=\angle P O A+\angle P O B$
$\Rightarrow 2(\angle \mathrm{POA})=\angle \mathrm{AOB}$
\Rightarrow By putting the respective values, we get,
$=>\angle \mathrm{POA}=100^{\circ} / 2=50^{\circ}$
As angle $\angle \mathrm{POA}$ is 50° option A is the correct option.

Question 4

Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Answer:

First, draw a circle and connect two points A and B such that $A B$ becomes the diameter of the circle. Now, draw two tangents $P Q$ and $R S$ at points A and B respectively.

Now, both radii i.e. AO and OB are perpendicular to the tangents.
So, OB is perpendicular to RS and OA perpendicular to PQ
So, $\angle O A P=\angle O A Q=\angle O B R=\angle O B S=90^{\circ}$
From the above figure, angles OBR and OAQ are alternate interior angles.

Also, $\angle \mathrm{OBR}=\angle \mathrm{OAQ}$ and $\angle \mathrm{OBS}=\angle \mathrm{OAP}$ (Since they are also alternate interior angles)
So, it can be said that line $P Q$ and the line RS will be parallel to each other.
(Hence Proved).

Question 5

Prove that the perpendicular at the point of contact to the tangent to a circle passes through the center.

Solution:

First, draw a circle with center 0 and draw a tangent $A B$ which touches the radius of the circle at point P.
To Proof: PQ passes through point 0.
Now, let us consider that PQ doesn't pass through point 0 . Also, draw a CD parallel to AB through 0 . Here, $C D$ is a straight line and $A B$ is the tangent. Refer the diagram now.

From the above diagram, PQ intersects CD and AB at R and P respectively.
As, $C D \| A B$,
Here, the line segment $P Q$ is the line of intersection.
Now angles ORP and RPA are equal as they are alternate interior angles
So, $\angle O R P=\angle R P A$
And,
$\angle R P A=90^{\circ}$ (Since, PQ is perpendicular to AB)
$\angle O R P=90^{\circ} \Rightarrow$ Now, $\angle R O P+\angle O P A=180^{\circ}$ (Since they are co-interior angles)
$\angle \mathrm{ROP}+90^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{ROP}=90^{\circ}$
Now, it is seen that the $\triangle O R P$ has two right angles which are $\angle O R P$ and $\angle R O P$. Since this condition is impossible, it can be said the supposition we took is wrong.

Question 6

The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm . Find the radius of the circle.

Answer:
Draw the diagram as shown below.

Here, AB is the tangent that is drawn on the circle from a point A .
So, the radius $O B$ will be perpendicular to $A B$ i.e. $O B \perp A B$
We know, $\mathrm{OA}=5 \mathrm{~cm}$ and $\mathrm{AB}=4 \mathrm{~cm}$
Now, In $\triangle A B O$,
$\mathrm{OA}^{2}=\mathrm{AB}^{2}+\mathrm{BO}^{2}$ (Using Pythagoras theorem)
$\Rightarrow 5^{2}=4^{2}+\mathrm{BO}^{2}$
$\Rightarrow \mathrm{BO}^{2}=25-16$
$\Rightarrow \mathrm{BO}^{2}=9$
$\Rightarrow \quad \mathrm{BO}=3$
So, the radius of the given circle i.e. BO is 3 cm .

Question 7

Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.

Answer:

Draw two concentric circles with the center O. Now, draw a chord AB in the larger circle which touches the smaller circle at a point P as shown in the figure below.

From the above diagram, $A B$ is tangent to the smaller circle to point P.
$\therefore \mathrm{OP} \perp \mathrm{AB}$
Using Pythagoras theorem in triangle OPA,
$\mathrm{OA}^{2}=\mathrm{AP}^{2}+\mathrm{OP}^{2}$
$\Rightarrow 5^{2}=\mathrm{AP}^{2}+3^{2}$
$\mathrm{AP}^{2}=25-9$
$\Rightarrow \mathrm{AP}=4$
Now, as OP $\perp A B$,
Since the perpendicular from the center of the circle bisects the chord, AP will be equal to PB
So, $A B=2 A P=2 \times 4=8 \mathrm{~cm}$
So, the length of the chord of the larger circle is 8 cm .

Question 8

A quadrilateral $A B C D$ is drawn to circumscribe a circle (see Fig. 10.12). Prove that $A B+C D=A D+$ BC

Answer:

The figure given is:

From this figure we can conclude a few points which are:
(i) $\mathrm{DR}=\mathrm{DS}$
(ii) $\mathrm{BP}=\mathrm{BQ}$
(iii) $\mathrm{AP}=\mathrm{AS}$
(iv) CR = CQ

Since they are tangents on the circle from points D, B, A, and C respectively.
Now, adding the LHS and RHS of the above equations we get,
$\mathrm{DR}+\mathrm{BP}+\mathrm{AP}+\mathrm{CR}=\mathrm{DS}+\mathrm{BQ}+\mathrm{AS}+\mathrm{CQ}$
By rearranging them we get,
$(D R+C R)+(B P+A P)=(C Q+B Q)+(D S+A S)$
By simplifying,
$A D+B C=C D+A B$

Question 9

In Fig. 10.13, $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre 0 and another tangent $A B$ with point of contact C intersecting $X Y$ at A and $X^{\prime} Y^{\prime}$ at B. Prove that $\angle A O B=90^{\circ}$.

Answer:

From the figure given in the textbook, join OC. Now, the diagram will be as-

Now the triangles $\triangle O P A$ and $\triangle O C A$ are similar using SSS congruency as:
(i) $\mathrm{OP}=\mathrm{OC} \rightarrow$ They are the radii of the same circle
(ii) $\mathrm{AO}=\mathrm{AO} \rightarrow$ It is the common side
(iii) $\mathrm{AP}=\mathrm{AC} \rightarrow$ these are the tangents from point A

So, $\triangle O P A \cong \triangle O C A$
Similarly,
$\triangle O Q B \cong \triangle O C B$
So,
$\angle \mathrm{POA}=\angle \mathrm{COA} \ldots$ (Equation i)
And, $\angle \mathrm{QOB}=\angle \mathrm{COB} . .$. (Equation ii)
Since the line POQ is a straight line, it can be considered as a diameter of the circle.
So, $\angle \mathrm{POA}+\angle \mathrm{COA}+\angle \mathrm{COB}+\angle \mathrm{QOB}=180^{\circ}$
Now, from equations (i) and equation (ii) we get,
$2 \angle \mathrm{COA}+2 \angle \mathrm{COB}=180^{\circ}$
$\Rightarrow \angle \mathrm{COA}+\angle \mathrm{COB}=90$
$\therefore \angle \mathrm{AOB}=90^{\circ}$

Question 10

Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the center.

Answer:
First, draw a circle with centre 0 . Choose an external point P and draw two tangents PA and PB at point A and point B respectively. Now, join A and B to make AB in a way that it subtends $\angle A O B$ at the center of the circle. The diagram is as follows:

From the above diagram, it is seen that the line segments $O A$ and $P A$ are perpendicular.
So, $\angle \mathrm{OAP}=90^{\circ}$
In a similar way, the line segments $\mathrm{OB} \perp \mathrm{PB}$ and so, $\angle \mathrm{OBP}=90^{\circ}$
Now, in the quadrilateral OAPB,
$\therefore \angle \mathrm{APB}+\angle \mathrm{OAP}+\angle \mathrm{PBO}+\angle \mathrm{BOA}=360^{\circ}$ (since the sum of all interior angles will be 360°)
By putting the values we get,
$\Rightarrow \angle \mathrm{APB}+180^{\circ}+\angle \mathrm{BOA}=360^{\circ}$
So, $\angle \mathrm{APB}+\angle \mathrm{BOA}=180^{\circ}$ (Hence proved).

Question 11
Prove that the parallelogram circumscribing a circle is a rhombus.

Answer:

Consider a parallelogram ABCD which is circumscribing a circle with a center 0 . Now, since $A B C D$ is a parallelogram, $\mathrm{AB}=\mathrm{CD}$ and $\mathrm{BC}=\mathrm{AD}$.

For more Info Visit - www.KITest.in

From the above figure, it is seen that,
(i) $\mathrm{DR}=\mathrm{DS}$
(ii) $\mathrm{BP}=\mathrm{BQ}$
(iii) $\mathrm{CR}=\mathrm{CQ}$
(iv) AP = AS

These are the tangents to the circle at D, B, C, and A respectively.
Adding all these we get,
$\mathrm{DR}+\mathrm{BP}+\mathrm{CR}+\mathrm{AP}=\mathrm{DS}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{AS}$
By rearranging them we get,
$\Rightarrow \quad(B P+A P)+(D R+C R)=(C Q+B Q)+(D S+A S)$
Again by rearranging them we get,
$\Rightarrow A B+C D=B C+A D$
\Rightarrow Now, since $A B=C D$ and $B C=A D$, the above equation becomes
$2 \mathrm{AB}=2 \mathrm{BC}$
$\therefore \mathrm{AB}=\mathrm{BC}$
Since $A B=B C=C D=D A$, it can be said that $A B C D$ is a rhombus.

Question 12

A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which $B C$ is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see Fig. 10.14). Find the sides $A B$ and $A C$.

Answer:

The figure given is as follows:

Consider the triangle ABC ,
We know that the length of any two tangents which are drawn from the same point to the circle is equal. So,
(i) $\mathrm{CF}=\mathrm{CD}=6 \mathrm{~cm}$
(ii) $\mathrm{BE}=\mathrm{BD}=8 \mathrm{~cm}$
(iii) $\mathrm{AE}=\mathrm{AF}=\mathrm{x}$

Now, it can be observed that,
(i) $\mathrm{AB}=\mathrm{EB}+\mathrm{AE}=8+\mathrm{x}$
(ii) $\mathrm{CA}=\mathrm{CF}+\mathrm{FA}=6+\mathrm{x}$
(iii) $\mathrm{BC}=\mathrm{DC}+\mathrm{BD}=6+8=14$

Now the semi perimeter " s " will be calculated as follows
$\Rightarrow 2 \mathrm{~s}=\mathrm{AB}+\mathrm{CA}+\mathrm{BC}$
\Rightarrow By putting the respective values we get,
$\Rightarrow 2 s=28+2 \mathrm{xs}=14+\mathrm{x}$
Area of $\triangle A B C=\sqrt{s(s-a)(s-b)(S-c)}$
By solving this we get,
$=\sqrt{ }(14+x) 48 x$
Again, the area of $\triangle \mathrm{ABC}=2 \times$ area of $(\triangle \mathrm{AOF}+\triangle \mathrm{COD}+\triangle \mathrm{DOB})$
$=2 \times[(1 / 2 \times O F \times A F)+(1 / 2 \times C D \times O D)+(1 / 2 \times D B \times O D)]$
$=2 \times 1 / 2(4 \mathrm{x}+24+32)=56+4 \mathrm{x}$. (ii)
Now from (i) and (ii) we get,
$\sqrt{ }(14+x) 48 x=56+4 x$
Now, square both the sides,
$48 x(14+x)=(56+4 x)^{2}$
$\Rightarrow 48 x=[4(14+x)]^{2} /(14+x)$
$\Rightarrow 48 x=16(14+x)$
$\Rightarrow 48 x=224+16 x$
$\Rightarrow 32 x=224$
$\Rightarrow x=7 \mathrm{~cm}$
So, $A B=8+x$
I.e. $A B=15 \mathrm{~cm}$

And, $C A=x+6=13 \mathrm{~cm}$.

Question 13

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Answer:

First draw a quadrilateral $A B C D$ which will circumscribe a circle with its centre 0 in a way that it touches the circle at point P, Q, R, and S. Now, after joining the vertices of $A B C D$ we get the following figure:

Now, consider the triangles OAP and OAS, AP = AS (They are the tangents from the same point A) $O A=O A$ (It is the common side) OP = OS (They are the radii of the circle) So, by SSS congruency $\triangle O A P \cong \triangle O A S$ So, $\angle \mathrm{POA}=\angle \mathrm{AOS}$
Which implies that $\angle 1=\angle 8$
Similarly, other angles will be,
$\angle 4=\angle 5$
$\angle 2=\angle 3$
$\angle 6=\angle 7$
Now by adding these angles we get,

$\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ}$
Now by rearranging,
$(\angle 1+\angle 8)+(\angle 2+\angle 3)+(\angle 4+\angle 5)+(\angle 6+\angle 7)=360^{\circ}$
$\Rightarrow 2 \angle 1+2 \angle 2+2 \angle 5+2 \angle 6=360^{\circ}$
Taking 2 as common and solving we get,
$(\angle 1+\angle 2)+(\angle 5+\angle 6)=180^{\circ}$
Thus, $\angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}$
Similarly, it can be proved that $\angle B O C+\angle D O A=180^{\circ}$
Therefore, the opposite sides of any quadrilateral which is circumscribing a given circle will subtend supplementary angles at the center of the circle.

