PAPER 3

BUSINESS MATHEMATICS

 AND LOGICAL REASONING \& STATISTICSDear sir.
In $\Delta 0$, gratitude, I here to infuonn you that. P had pass November 2018 foundeti - on exam meth the help of your Digital Pocket scanner. This stanneu helps me plot to wrack my exam. Before this I moved from $C P T$ to foundation when, I was in CPT I go the rough so many books but it meas good at CPT level only. and then in foundation i reffered so many books but it provide only CPT based question although I solved pocket scanner. it provide vel good question of $C P T$ as shell vas foundation I could send you through whatapp but I felt that as it should feel good to you. Thank you

MESSAGE

PRACTIC芭 RIT is online book dealing company. It's exclusively deat in a Colourful Books, Chart Book and Handwritten Books.

Some Specification about PRACTICE KIT:
This book covers.

- All chapter wise summary which include smart arts and short note of important topic.
- Practical Question of all relevant topics for Best Practice.
- Past examination question for Better Improvement.
- It highlights Chapter-wise all important topics in tabular format and smart arts.

Our Chart book specialty:

- India's Trusted And Attractive Colourful Chart Book.
- Its Includes All Calculator Tricks And Formulas For Practical Subject.
- Chapter Wise Short Note.
- Working Space Available For Rough Work.

THANK YOU !!!

THANK YOU for preferring the PRACTICE KIT and give all your kind concern, words cannot describe my appreciation for all your kind messages. We really appreciate your understanding and support regarding the changes were making by our team. Thank you for trusting and helping us to grow into a huge success.

If you want to purchase Rest Books of CA Foundation Or any Test series like Sultan, Chapter vise test series of CA or any video Lecture Visit: kitest.ín

Or call on 6262969604/99 for the purchase enquiry.

NOTICE

Our Digital pocket scanner which previously known as Pocket scanner. NOW, is known as PRACTICE KIT .
And for more information download the KIT est app from play store.

SUGGESTION

For any suggestion or if you have any complain about our scanner so please feel free to whatsapp or text on 6262969609

INVITATION

PRACTICE KIT invites all the faculties who wants to publish their Books or wants to associates with PRACTICE KIT, so we welcomes you.
We 中ure apaitable on 6262969604/99 Please feel free to contact us either on whatsapp, Text or on call

INDEX

$\begin{array}{cc}\text { S．NO } & \text { TOPICS } \\ & \text { PARTI：BUSINESS M届THS }\end{array}$

Ghapter 1	Ratio and Proportion，Indices， Logarithms	9－34
Ghapter 2	Equations and Matrices Unit l：ERUATICNS Unit 2：MATRICES	35－78
Grapter 3	Linear Inequalities	79－91
Ghapter 4	Time Value of Money	92－112
Grajpter 5	Basic Concepts of Permutations and Combinations	113－133
Grapter 6	Sequence and Series－Arithmetic and Geometric Progressions	134－156
Grapter 7	Sets，Functions and Relations	157－174
Ghapter 8	Basic Concepts of Differential and Integral Calculus A：DIFFERENTIAL CALLULUS B：INTEGRAL CALCILLUS	175－198

P出RT II：LOGICAL RE出SONING

Visit：Jatindembla．com／kitest．in

Grapters	Number Series, Coding and Decoding and Odd Man Out	200-212
Thapter 10	Direction Tests	213-232
Grapter 11	Seating Arrangements	233-298
Grapter 12	Blood Relations	299-315
Grapter 13	Syllogism	316-349
	PART III: STATISTICS	
Thapter 14	Statistical Description of Data	351-378
Grapter 15	Measures of Central Tendency and Dispersion Unit 1: MEASURES OF CENTRAL TENDECY Unit 2: DISPERSICN	379-423
Thapter 16	Probability	424-447
Grapter 17	Theoretical Distributions	448-466
Grapter 18	Correlation And Regression	467-487
Ghapter 19	Index Number and Time Series Unit 1: MEASURES DF CENTRAL TENDECY Unit 2: DISPERSIDN5	488-521

$$
x=2 \quad\left(x, y, y_{0}\right) \rightarrow 1
$$

$$
(y+A)=\frac{2}{3} A \cap y
$$

$$
6 x+3=12
$$

$$
\begin{aligned}
& d^{2} c=\pi r^{2} \square^{2}-\frac{1}{2} \quad v=2 R v T_{T C E} \quad A_{i r} x_{d} \\
& -\sin \alpha \\
& =\left[\frac{x^{3}}{3}+x^{2}-3 x\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4) } \\
& 2 \tan (a) P=\sum x i \\
& \text { () }-\tan ^{2}(a) y^{i=0}(b) \\
& \text { b) })^{2}=a^{2}+2 a b+b^{2} x \\
& \text { 1 } 2 \pi r=22 \\
& x^{\alpha}
\end{aligned}
$$

CHEPTER 1

RATIO AND PROPORTION, INDICES, LOGARITHMS

Visit: Jatindembla.com / kitest.in

10 | Page
Visit: Jatindembla.com / kitest.in

PROPE RTIES. This is called product rule.
Three quantities a,b,c of the same kind (in same units) are said to be in continuous proportion if $\mathrm{a}: \mathrm{b}=\mathrm{b}: \mathrm{c}$, i.e. $\mathrm{a} / \mathrm{b}=\mathrm{b} / \mathrm{c}$, i.e. $b^{2}=\mathrm{ac}$ If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in continuous proportion, then the middle term b is called the mean proportion between a and c , a is the first proportional and c is the third proportion.
Thus, if b is mean proportional between a and c, then $b^{2}=a c$ i.e. $\sqrt{a c}$

If $\mathrm{a}: \mathrm{b}=\mathrm{c}: \mathrm{d}$ then d is called fourth proportional.
If $a: b=c: d$ are in proportion then $a / b=c / d$ i.e. $a d=b c$
i.e. product of extremes = product of means.

UNIT 3 INDICES

Laws and Properties.
1.
$\mathbf{a}^{\mathbf{m}} \times \mathbf{a}^{\mathbf{n}}=\mathbf{a} \mathbf{m + n}$, when m and n are positive integers (base must be same)
2.
$\mathbf{a}^{\mathbf{m} / \mathbf{a} \mathbf{n}}=\mathbf{a} \mathbf{m} \mathbf{- n}$ when m and n are positive integers and $m>$ n
$\left(\mathbf{a}^{\mathbf{m}}\right)^{\mathbf{n}}=\mathbf{a}^{\mathbf{m n}}$ where m and n are positive integers
4.
$(\mathbf{a b})^{\mathbf{n}}=\mathbf{a}^{\mathbf{n}} \cdot \mathbf{b} \mathbf{n}$ when n can take all of the values.
5.

```
a0 = 1
```

11|Page
Visit: Jatindembla.com / kitest.in

UNIT IV: LOGARITH

LOGARITHM.

-The two equations $a x=n$ and $x=$ logan are only transformations of each other and should be remembered to change one form of the relation into the other.
-The logarithm of 1 to any base is zero. This is because any number raised to the power zero is one.

- Since a0 = $1, \operatorname{loga} 1=0$
-The logarithm of any quantity to the same base is unity. This is because any quantity raised to the power 1 is that quantity.
- Since a1 = a , loga a = 1

Fundamental Laws of Logarithm.

1.

$\log _{a} m / n=\log _{a} m-\log _{a} n$
$\log _{a} m^{n}=n \log _{a} m$
$\log _{a} a=1, \mathrm{a}=1$
$\log _{a} 1=0$
$\log _{b} a \times \log _{a} b=1$
7.
$\log _{b} a \times \log _{\mathrm{c}} \mathrm{b}=\log _{\mathrm{c}} a$
$\log _{b} a=\log a / \log b$
$\log _{b} a=1 / \log _{a} b$

Visit: Jatindembla.com / kitest.in

1. Ratio between 150 gm and 2 kg
a. $3: 40$
b. 3: 40
c. $6: 12$
d. None of these

ANSWER: (a)

SOLUTION:
Ratio between 150 gm and $2000 \mathrm{gm}=150 / 2000=3 / 40=3: 40$
2. a:b = c: d, then b:a = d:c
a. Atlernendo
b. Dividend
c. Invertendo
d. Componendo

ANSWER: C
SOLUTION:
Invertendo Properties of proportion is $a: b=c: d$, then $b: a=d: c$
3. The monthly incomes of two persons are in the ratio $4: 5$ and their monthly expenditures are in the ratio $7: 9$. If each saves Rs. 50 per month, find their monthly incomes.
a. 600 and 100
b. 500 and 400
c. 900 and 700
d. 400 and 500

ANSWER: d

SOLUTION:

Let the monthly incomes of two persons be Rs. 4 x and Rs. 5 x so that the ratio is Rs. 4 x : Rs. $5 \mathrm{x}=4$: 5. If each saves Rs. 50 per month, then the expenditures of two persons are Rs. ($4 \mathrm{x}-50$) and Rs. $(5 \mathrm{x}-50)$.
$\frac{36 \times 450}{5 \times 50}=\frac{35 \times 350}{9}$
or, $36 x-35 x=450-350$,
or, $\mathrm{x}=100$
Hence, the monthly incomes of the two persons are Rs. 4×100 and Rs. 5×100 i.e. Rs. 400 and Rs. 500.
4. Ruhanika weighs 56.7 kg . If he reduces his weight in the ratio $7: 6$, find his new weight.
a. 486.96 kg
b. 48.6 kg
c. 486 kg
d. 4.86 kg

ANSWER b

SOLUTION:

Original weight of Ruhanika $=56.7 \mathrm{~kg}$ He reduces his weight in the ratio 7: 6
His new weight $=(6 \times 56.7) / 7=6 \times 8.1=48.6 \mathrm{~kg}$
5. Find the value of x if $10 / 3: x: 5 / 2: 5 / 4$
a. $5 / 3$
b. $3 / 5$
c. $9 / 5$
d. $5 / 9$

ANSWER: a.

SOLUTION:

10/3: $x=5 / 2: 5 / 4$
Using cross product rule, $x \times 5 / 2=(10 / 3) \times 5 / 4$
Or, $x=(10 / 3) \times(5 / 4) \times(2 / 5)=5 / 3$
6. Find the third proportion to $2.4 \mathrm{~kg}, 9.6 \mathrm{~kg}$.
a. 384 kg
b. 38.4 kg
c. 3804 kg
d. 3.84 kg

ANSWER b

SOLUTION:
Let the third proportion to $2.4 \mathrm{~kg}, 9.6 \mathrm{~kg}$ be x kg .

Then $2.4 \mathrm{~kg}, 9.6 \mathrm{~kg}$ and x kg are in continued proportion since $\mathrm{b}^{2}=\mathrm{ac}$ So, $2.4 / 9.6=9.6 / \mathrm{x}$ or, $\mathrm{x}=(9.6 \times 9.6) / 2.4=38.4$
7. The inverse ratio of $11: 15$ is
a. $15: 11$
b. $11: 11$
c. $15: 15$
d. $\sqrt{ } 11: \sqrt{ } 15$

ANSWER: a

SOLUTION:

One ratio is the inverse of another if their product is 1 . Thus $\mathrm{a}: \mathrm{b}$ is the inverse of $\mathrm{b}:$ a and vice- versa.
8. If $a: b=c: d=e: f=$ \qquad then each of these ratios is equal
a. $(a+c+e+$ \qquad) : (b + d + f +
b. $(\mathrm{a}+\mathrm{c}+\mathrm{e}+\ldots):.(\mathrm{b}+\mathrm{d}+\mathrm{f}+$ \qquad) is
.......) is equal to each ratio greater to each ratio
c. $(a+c+e+$ \qquad ..) : (b + d + f +
d. None
.......) is zero ratio

ANSWER: a

SOLUTION:

Due to addendo property.
9. If $a: b=c: d=2.5: 1.5$, what are the values of $a d: b c$ and $a+$ $\mathrm{c}: \mathrm{b}+\mathrm{d}$?
a. $\mathrm{ad}: \mathrm{bc}$ and $\mathrm{a}+\mathrm{c}: \mathrm{b}+\mathrm{d}$ are $2: 1$ and $8: 3$
b. ad : bc and $\mathrm{a}+\mathrm{c}: \mathrm{b}+\mathrm{d}$ are $1: 1$ and 5 : 3
c. $a d: b c$ and $a+c: b+d$ are $1: 1$
d. None and $5: 5$
ANSWER b
SOLUTION:
we have $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{d}=2.5 / 1.5$ \qquad
From (1) $a d=b c$, or $a d / b c=1, a d: b c=1: 1$
$\frac{a+c}{b+d}=\frac{2.5}{1.5}=\frac{25}{15}=\frac{5}{3}$
i.e., $a+c: b+d=5: 3$

Hence, the values of $a d: b c$ and $a+c: b+d$ are $1: 1$ and $5: 3$ respectively.
10. Simplify $2 x^{1 / 2} 3 x^{-1}$ if $x=4$
a. 3
b. 6
c. 0.3
d. 30

Answer a
SOLUTION:
we have $2 x^{1 / 2} 3 x^{-1}$
$=6 x^{1 / 2} x^{-1}=6 x^{1 / 2-1}$
$=6 x^{1 / 2}$
= 3
11. Find the value of k from $(\sqrt{9})^{-7} \times(\sqrt{3})^{-5} 3^{k}$
a. $19 / 2$
b. $19 / 3$
c. $-19 / 3$
d. $-19 / 2$

ANSWER: d
SOLUTION:

$$
\begin{aligned}
& \left(3^{2 \times 1 / 2}\right)^{-7 \times\left(3^{1 / 2}\right)-5=3^{k}} \\
& 3-19 / 2=3^{k} \\
& k=-19 / 2 \\
& 12 \cdot \log _{2} 1=?
\end{aligned}
$$

a. 0
b. 1
c. x
d. m

ANSWER a

SOLUTION:

According to properties of $\operatorname{logarithm} \log _{a} 1=0$
13. $\log 6+\log 8$ is expressed as
a. $\log 11$
b. $\log 48$
c. $\log 6 / 8$
d. $\log 14$

ANSWER b
SOLUTION:
According to properties of logarithm i.e., $\log _{a} \mathrm{~m}+\log _{a} \mathrm{n}=\log _{a} \mathrm{mn}$
14. $\log _{\mathrm{a}} \mathrm{a}^{x}=\mathrm{x}$
a. Inverse logarithm Property
b. proportionate logarithm Property
c. either a or b
d. none

ANSWER a

SOLUTION:

According to properties of logarithm i.e. Inverse logarithm Property is the base elevated and power is be answer
15. $2^{4}=16 \log 216=4$ is correct or not ?
a. correct
b. not correct
c. partial correct
d. not sure

ANSWER a
SOLUTION:
The logarithm of 16 to the base 2 is equal to 4

$$
\begin{aligned}
& \frac{4}{15} A=\frac{2}{5} B \\
& \Rightarrow A=\left(\frac{2}{5} \times \frac{15}{4}\right)_{B} \\
& \Rightarrow A=\underline{3} B
\end{aligned}
$$

$\Rightarrow \frac{\mathrm{A}}{\mathrm{B}}=\frac{3}{2}$
$A: B=3: 2$.
\therefore B's share $=$ Rs. $\left[1210 \times \frac{2}{5}\right]$
16. A and B together have Rs. 1210. If $\frac{4}{15}$ of A's amount is equal to $\frac{2}{5}$ of B's amount, how much amount does B have?
A. Rs. 460
Rs. 484
C. Rs. 550
Rs. 664

Answer: Option B
Explanation:
Rs. 484.
17. A sum of Rs. 312 was divided among 100 boys and girls in such a way that the boy gets Rs. 3.60 and each girl Rs. 2.40 the number of girls is
a. 35
b. 40
c. 45
d. 50

Answer: Option b

Explanation:

Step (i): Let x be the number of boys and y be the number of girls.
Given total number of boys and girls $=100$
$\mathrm{x}+\mathrm{y}=100$
(i)

Step (ii): A boy gets Rs. 3.60 and a girl gets Rs. 2.40
The amount given to 100 boys and girls = Rs. 312
$3.60 \mathrm{x}+2.40 \mathrm{y}=312$
Step (iii):

Solving (i) and (ii)
$3.60 \mathrm{x}+3.60 \mathrm{y}=360$--------- Multiply (i) by 3.60
$3.60 x+2.40 y=312$
$1.20 y=48$
$y=48 / 1.20$
$=40$
\Rightarrow Number of girls $=40$
18. Two numbers are respectively 20% and 50% more than a third number. The ratio of the two numbers is:
a. $2: 5$
b. 3 : 5
c. 4 : 5
d. $6: 7$

Answer: Option C Explanation:
Let the third number be x.
Then, first number $=120 \%$ of $x=\frac{120 x}{100}=\frac{6 x}{5}$
Second number $=150 \%$ of $x=\frac{150 x}{100}=\frac{3 x}{2}$
\therefore Ratio of first two numbers $=\left(\frac{6 x}{5}: \frac{3 x}{2}\right)=12 x: 15 x=4: 5$.
19.Seats for Mathematics, Physics and Biology in a school are in the ratio $5: 7: 8$. There is a proposal to increase these seats by $\mathbf{4 0 \%}, 50 \%$ and 75% respectively. What will be the ratio of increased seats?
a. $2: 3: 4$
b. $6: 7: 8$
c. $6: 8: 9$
d. None of these

Answer: a
Explanation:
Originally, let the number of seats for Mathematics, Physics and Biology be $5 x, 7 x$ and $8 x$ respectively.

Number of increased seats are (140% of $5 x$), (150% of $7 x$) and (175% of $8 x$).
20. A sum of money is to be distributed among A, B, C, and D in the proportion of 5: 2: 4: 3. If C gets Rs. 1000 more than D, what is B 's share?
a. Rs. 500
b. Rs. 1500
c. Rs. 2000
d. None of these

Answer: Option C

Explanation:

Let the shares of A, B, C and D be Rs. $5 x$, Rs. $2 x$, Rs. $4 x$ and Rs. $3 x$ respectively. Then, $4 x-3 x=1000$

$$
\Rightarrow \quad x=1000
$$

$\Rightarrow \quad \therefore$ B's'share $=$ Rs. $2 x=$ Rs. $(2 \times 1000)=$ Rs. 2000.
$\left(\frac{140}{100} \times \frac{x}{5 x}\right),\left(\frac{150}{100} \times \frac{x}{7 x}\right),\left(\frac{175}{100} \times \frac{x}{8 x}\right)$
$7 x, \frac{21 x}{2}$ and $14 x$
14x: 21x: $28 x$
2:3:4
21. Salaries of Ravi and Sumit are in the ratio $2: 3$. If the salary of each is increased by Rs. 4000, the new ratio becomes $40: 57$. What is Sumit's salary?
a. Rs. 17,000
b. Rs. 20,000
c. Rs. 25,500
d. Rs. 38,000

Answer: Option D
Explanation:
Let the original salaries of Ravi and Sumit be Rs. $2 x$ and Rs. $3 x$ respectively.
Then, $\frac{2 x+4000}{3 x+4000}=\frac{40}{57}$
$\Rightarrow 57(2 x+4000)=40(3 x+4000)$
$\Rightarrow 6 x=68,000$
$\Rightarrow 3 x=34,000$
Sumit's present salary $=(3 x+4000)=$ Rs. $(34000+4000)=$ Rs. $38,000$.
22. The ratio of the number of boys and girls in a college is 7: 8 . If the percentage increase in the number of boys and girls be 20% and 10% respectively, what will be the new ratio?
a. $8: 9$
b. $17: 18$
c. $21: 22$
d. None

Answer: Option C

Explanation:

Originally, let the number of boys and girls in the college be $7 x$ and $8 x$ respectively.
$\left(\frac{120}{100} \times 7 x\right)$ and $\left(\frac{110}{100} \times 8 x\right)$
$\frac{42 x}{5}$ and $\frac{44 x}{5}$
\therefore The required ratio $=\left(\frac{42 x}{5}: \frac{44 x}{5}\right)=21: 22$
Their increased number is $(120 \%$ of $7 x)$ and $(110 \%$ of $8 x)$.
23. If $0.75: x:: 5: 8$, then x is equal to:
a. 1.12
b. 1.2
c. 1.25
d. 1.30
A. 1.12
B. 1.2
C. 1.25
D. 1.30

Answer: Option B
Explanation:
$(x \times 5)=(0.75 \times 8)$
$x=\left[\frac{6}{5}\right]=1.20$
24. The sum of three numbers is 98 . If the ratio of the first to second is $2: 3$ and that of the second to the third is 5 : 8 , then the second number is:
a. 20
b. 30
c. 48
d. 58

Answer: Option B

Explanation:

Let the three parts be A, B, C. Then,
A: $\mathrm{B}=2: 3$ and $\mathrm{B}: \mathrm{C}=5: 8=\left[5 \times \frac{3}{5}\right]:\left[8 \times \frac{3}{5}\right] 3: \frac{24}{5}$
A: B: C $=2: 3: \frac{24}{5}$
= 10: 15: 24
B $=\left[98 \times \frac{15}{49}\right]=30$
25. If Rs. 782 be divided into three parts, proportional to $\frac{1}{2}: \frac{2}{3}: \frac{3}{4}$, then the first part is:
a. Rs. 182
b. Rs. 190
c. Rs. 196
d. Rs. 204

Answer: Option D Explanation:
Given ratio $=\frac{1}{2}: \frac{2}{3}: \frac{3}{4},=6: 8: 9$.
$\therefore 1^{\text {st }}$ part $=\operatorname{Rs}\left[782 \times \frac{6}{23}\right]$
= Rs. 204
26. The salaries A, B, C are in the ratio $2: 3: 5$. If the increments of $15 \%, 10 \%$ and 20% are allowed respectively in their salaries, then what will be new ratio of their salaries?
a. $3: 3: 10$
b. $10: 11: 20$
c. $23: 33: 60$
d. None of these

Answer: Option C

Explanation:

Let $\mathrm{A}=2 k, \mathrm{~B}=3 k$ and $\mathrm{C}=5 k$.

$$
\begin{aligned}
& \begin{array}{lll}
\text { A's new } & \frac{115}{100} & \text { of } \\
\text { salary } & 2 k=\left(\begin{array}{ll}
\frac{115}{100} & \frac{x}{2 k}
\end{array}\right)=\frac{23 k}{10}, ~
\end{array} \\
& \begin{array}{lll}
\text { B's new } \\
\text { salary }=\frac{110}{100} & \text { of } & 3 k=\left(\begin{array}{ll}
\frac{110}{100} & \\
3 k
\end{array}\right)=\frac{33 k}{10}, ~
\end{array} \\
& \begin{array}{lll}
\text { C's new } \\
\text { salary }= & \frac{120}{100} & \text { of } \\
5 k
\end{array}=\left(\begin{array}{cc}
\frac{120}{100} & x \\
5 k
\end{array}\right)= \\
& \left.\begin{array}{c}
\therefore \text { New }\left(\frac{23 k}{10}: \frac{33 k}{10}\right. \\
\quad \\
6 k
\end{array}\right)=23:
\end{aligned}
$$

27. If 40% of a number is equal to two-third of another number, what is the ratio of first number to the second number?
a. $2: 5$
b. $3: 7$
c. $5: 3$
d. $7: 3$

Answer: Option C Explanation:
Let 40% of $A=\frac{2}{3} B$
Then, $\frac{40 \mathrm{~A}}{100}=\frac{2 \mathrm{~B}}{3}$
$\Rightarrow \frac{2 \mathrm{~A}}{5}=\frac{2 \mathrm{~B}}{3}$
$\Rightarrow \frac{\mathrm{A}}{\mathrm{B}}=\left(\frac{2}{3} \times \frac{5}{2}\right)=\frac{5}{3}$
$\therefore \mathrm{A}: \mathrm{B}=5: 3$.
28. The fourth proportional to $5,8,15$ is:
a. 18
b. 24
c. 19
d. 20

Answer: Option B
Explanation:
Let the fourth proportional to $5,8,15$ be x.
Then, $5: 8: 15: x$
$\Rightarrow 5 x=(8 \mathrm{x} 15)$
$x=\frac{(8 \times 15)}{5}=24$.
View Answer Discuss in Forum Workspace Report
29. Two number are in the ratio 3: 5 . If 9 is subtracted from each, the new numbers are in the ratio 12: 23 . The smaller number is:
a. 27
b. 33
c. 49
d. 55

Answer: Option B Explanation:
Let the numbers be $3 x$ and $5 x$.
$3 x-1$
The $\frac{9}{5 x-}=\frac{2}{2}$
93
$\Rightarrow 23(3 x-9)=12(5 x-9)$
$\Rightarrow 9 x=99$
$\Rightarrow x=11$.
\therefore The smaller number $=(3 \times 11)=33$.
View Answer Discuss in Forum Workspace Report
30. In a bag, there are coins of $25 p, 10 p$ and $5 p$ in the ratio of $1: 2: 3$. If there is Rs. 30 in all, how many 5 p coins are there?
a. 50
b. 100
c. 150
d. 200

Answer: c

Explanation:

Let the number of $25 \mathrm{p}, 10 \mathrm{p}$ and 5 p coins be $\mathrm{x}, 2 \mathrm{x}, 3 \mathrm{x}$ respectively.
Then, sum of their values $=$ Rs. $\left[\frac{25 x}{100}+\frac{10 x 2 x}{100}+\frac{5 x 3 x}{100}\right]$
$\therefore \frac{60 x}{100}=30 \rightarrow \frac{30 \times 100}{60}=50$
Hence, the number of 5 p coins $=(3 \times 50)=150$
31. $a^{\text {logb-logc }}$. $b^{\text {logc-loga }}=c^{\text {loga }}-\log b$ has a value of
a. 1
b. 0
c. -1
d. None

Answer: a

Explanation:

Let $x=a^{\log b-\log c}$, bloge-loga . cloga-logb
Taking log on both sides, we get
$\log x=\log \left(a^{\log b}-\log c-b^{\log c-\log a}-c^{\log a}-\log b\right)$
$=\log a^{\log b-\log c+\log b^{\log c-\log a}+\log c^{\log a}-\log b}$
$=(\log b-\log c) \log a+(\log c-\log a) \log b+(\log a-\log b) \log c$

$$
=0
$$

$$
\log x=0
$$

$$
\Rightarrow x=e^{0}
$$

32. If loga $=\frac{1}{2} \log b=\frac{1}{5}$ logc, the value of $a^{4} b^{3} c^{-2}$ is
a. 1
b. 0
c. -1
d. None

Answer: a

Explanation:

```
Let loga \(=\frac{1}{2} \log b=\frac{1}{5} \log c=k\)
then log \(a=k \Rightarrow a=e^{k}\)
    \(\frac{1}{2} \log b=k \Rightarrow \log b=2 k\)
    \(\Rightarrow b=e^{2 k}\)
        \(\frac{1}{5}\) loge \(=k \Rightarrow \log 0=5 k\)
    \(\Rightarrow c=e^{5 k}\)
- \(^{-}-a^{4} b^{3} c^{-2}=e^{4 k} \cdot e^{6 k} \cdot e^{-10 k}\)
    \(=e^{0}=1\)
```

33. The ratio of market prices of wheat and paddy is $2: 3$ and the ratio of quantities consumed in a family is 5:4 . find the ratio of expenditure of wheat and paddy.
a. 6:5
b. 5:6
c. $1: 1$
d. $8: 15$

Answer: b

Explanation:

```
Expenditunre = Price x Quamitity
```



```
Multiplyinglboth ratios
Wheat Price x Wheat Quantity comsumed}=\frac{2\times5}{3\times4
Wheat Expenditure}=\frac{5}{6
Paddly Expenditure =
```

34. If $A: B=2: 3, B: C=4: 5$ and $C: D=6: 7$, then find the value of $A: B: C: D$
a. 15:24:30:35
b. 16:24:30:35
c. 17:24:30:35
d. 18:24:30:35

Answer: b

Explanation:

$$
\begin{array}{r}
A=B=2=3 \\
B=C=4: 5=\left(4 * \frac{3}{4}=5 * \frac{3}{4}\right) \\
=3=\frac{15}{4} \\
C=D=6: 7=\left(6 * \frac{15}{24}=7 * \frac{15}{24}\right) \\
=\frac{15}{4}=\frac{35}{8} \\
A=B=C=D=2: 3=\frac{15}{4}=\frac{35}{8} \\
=16=24=30=35=8: 12=9
\end{array}
$$

35. The value of $\log 2(\log 5625)$ is:
a. 2
b. 5
c. 10
d. 15

Answer: a
Explanation:

```
Let log
Then, 5x}=625=\mp@subsup{5}{}{4}\mathrm{ or }x=4\mathrm{ .
Let }\mp@subsup{\operatorname{log}}{2}{}(\mp@subsup{\operatorname{log}}{5}{}625)=y
Then, }\mp@subsup{\operatorname{log}}{2}{}4=y\mathrm{ or }\mp@subsup{2}{}{y}=4=\mp@subsup{2}{}{2}\mathrm{ or }y=2\mathrm{ . 
= 别2}(\mp@subsup{\operatorname{log}}{5}{}625)=2
```

36. In a library, the ratio of number of story books to that of non-story books was $4: 3$ and total number of story books was 1248 . When some more story books were bought, the ratio became 5:3. Find the number of story books bought.
a. 312
b. 321
c. 936
d. 1560

Answer: a

Explanation:

$\frac{\text { Story books }}{\text { Non-Story books }}=\frac{4}{3}$

\therefore Non-Story books $=\frac{3}{4} \times$ Story books $=\frac{3}{4} \times 1248=936$
LetM story books be added. So number of story books $=1248-\mathrm{M}$
$=\frac{\text { Story books }}{\text { Non-Story books }}=\frac{5}{3}$
$=\frac{1248+M}{936}=\frac{5}{3}$
$\therefore 1248+M=1560$

37. If $A: B=2: 3, B: C=4: 5$ and $C: D=6: 7$, then $A: B: C: D$ is
a. 18:24:30:35
b. 16:24:30:35
c. $16: 22: 30: 35$
d. 16:24:15:35

Answer: b
Explanation:
$A: B=2.3 ; B i C=4: 5 ; C: D=6: 7$
$a=2 ; b=3 ; c=4 ; d=5 ; e=6 ; f=7$;
$\mathrm{A}: \mathrm{B}: \mathrm{C}=\mathrm{D}=[2 \times 4 \times 6]=[3 \times 4 \times 6]=[3 \times 5 \times 6]=[3 \times 5 \times 7]$
$A=B=C=18=72=90=105=16=24=30=35$
38. Price of each article of type P, Q, and R is Rs. 300, Rs. 180 and Rs. 120 respectively. Suresh buys articles of each type in the ratio 3:2:3 in Rs. 6480. How many articles of type \mathbf{Q} did he purchase?
a. 8
b. 14
c. 20
d. None of the above

Answer: a

Explanation:

Let the commonfactorbe k.
Hence, the number of articles of type P, Q and R will be $3 K$, $2 K$
and 3 K respectively
Also,
Unit price of article x Number of articles = Total amount for the articies
$\therefore 300 \times 3 K+180 \times 2 K+120 \times 3 K=6480$
$\therefore K=4$
$=$ Number of articles of Type $Q=2 K=8$
39. Ajay and Raj together have Rs. 1050. On taking Rs. 150 from Ajay, Ajay will have same amount as what Raj had earlier. Find the ratio of amounts with Ajay and Raj initially.
a. 3:4
b. 7:1
c. $1: 3$
d. 4:3

Answer: d

Explanation:

Letinitially money with Ajay be A and with Raj be R
So, A-TR $=1050$
Also, Money is taken from Ajay, so,
$A-150=R$
$二 A-R=150$
Adding both equations,
$2 A=1200$
$二 A=$ Rs $600=$ Initial money with Ajay
$=\mathbf{R}=1050-150=R s .450=$ Initial money with Raj
$=\frac{\text { Amount with Ajay }}{\text { Amount with Raj }}=\frac{600}{450}=\frac{4}{3}$
40. The three numbers are in the ratio $1 / 2: 2 / 3: 3 / 4$. The difference between greatest and smallest numbers is 36 . Find the numbers.
a. $72,84,108$
b. $60,72,96$
c. $72,84,96$
d. $72,96,108$

Answer: a
Explanation:
Let the icommmon factomr be K
So the thinee numibers are $\frac{k}{2}, \frac{2 k}{3}, \frac{3 k}{4}$
Also, we know that, greatest - smallest $=36$
$\therefore \frac{3 K}{4}-\frac{K}{2}=36$
$\therefore K=144$
The numbers ane $\frac{K}{2}=\frac{144}{2}=72$
$\frac{2 K}{3}=\frac{2 \times 144}{3}=84 ; \frac{3 K}{4}=\frac{3 \times 144}{4}=108$
41. If $\log _{x} y=100$ and $\log _{3} x=10$, then the value of y is:
a. 3^{10}
b. 3^{100}
c. 3^{1000}
d. 3^{10000}

Answer: c
Explanation:
$\log _{3} X=10$
Hence, $x=3^{10}$
$\log _{x} y=100$
$y=x^{100}=\left(3^{10}\right)^{100}=y=3^{1000}$
42. The third proportional between $\boldsymbol{a}^{2}-\boldsymbol{b}^{2}$ and $(a+b)^{2}$ is
a. $\frac{a+b}{a-b}$
b. $\frac{a-b}{a+b}$
c. $\frac{(a+b)^{3}}{a-b}$
d. $\frac{(a+b)^{3}}{(a-b)^{3}}$

Answer: c

Explanation:

Let \times be the required third proportional, then

$$
\left(a^{2}-b^{2}\right)=(a+b)^{2}::(a+b)^{2}=x
$$

$\Rightarrow \frac{a^{2}-b^{2}}{(a+b)^{2}}=\frac{(a+b)^{2}}{x}$
$\Rightarrow x\left(a^{2}-b^{2}\right)=(a+b)^{4}$ i.e. $\times(a-b)(a+b)=(a+b)^{4}$
$\Rightarrow \quad x=\frac{(a+b)^{-}}{a-b}$
43. A sum of Rs. 53 is divided in such a way that A gets Rs. 7 more than what B gets and B gets Rs. 8 more than what C gets. The ratio of their share is. \qquad
a. 25:18:10
b. $25: 18: 1$
c. $2: 18: 10$
d. $25: 8: 10$

Answer: a

Explanation:

```
Let the share of \(c=R s . x\),
then share of \(B=\) Rs. \((x+8)\) and share of \(A=\) Rs. \((x+8+7)\)
Therefore \(x+(x+8)+(x+15)=53\)
\(\Rightarrow 3 x=30\) i.e. \(x=10\)
Hence ratio
\(A=B=C=25=18=10\)
```

44 Fourth proportion to $4,6,8$ is
a. 12
b. 32
c. 48
d. None
a. 12
b. 32
c. 48
d. None

Answer: a
Explanation:
Let x be the required fourth proportional. Then $4,6,8, \mathrm{x}$ are in proportion.
:. 4 :6 :: 8 :x or 4/6, 8/x
$=4 \mathrm{x}=48$
$\mathrm{x}=12$
45. The mean proportion between 64 and 81 is
a. 72
b. 62
c. 48
d. None

Answer: a
Explanation:
Let \times be the mean proportional then $64: \times:=x: 81$
$\Rightarrow \frac{64}{x}=\frac{x}{81}$
$\Rightarrow x^{2}=5184$
$\Rightarrow x=72$
46. The ratio of numbers of girls and boys participating in sports of a school is $4: 5$. If the number of girls is 212 , determine the number of boys participating in the sports.
a. 256
b. 265
c. 251
d. 263

Answer: b

Explanation:

As per given condition, $\frac{\text { Number of girls }}{\text { Number of boys }}=\frac{4}{5}$
$\therefore \frac{212}{\text { Number of boys }}=\frac{4}{5}$
\therefore Number offloys $=265$
47. Income ratio of Ramesh and Suresh is 5:6. Their spending ratio is 7:9.

Ramesh saves 4000 and Suresh saves 3000. Income and spending respectively of Ramesh and Suresh are
a. Ramesh - 25000, 21000; Suresh - 30000, 27000
c. Ramesh - 30000, 27000; Suresh - 36000, 32000
b. Ramesh - 36000, 32000; Suresh 30000, 27000
d. None of the above

Answer: a

Explanation:

Income ratio $=$ Ramesh: Suresh $=5: 6=\frac{5}{6} ;$
Commmon factor helps in finding actual values easily
So, take "A" as commonfactor-
Income of Ramesh $=5 \mathrm{~A}$; Income of Suresh $=6 \mathrm{~A}$
$\frac{\text { Spending of Ramesh }}{\text { Spending of Suresh }}=\frac{\text { Ramesh Income-Ramesh Saving }}{\text { Suresh Income-Suresh Saving }}=\frac{7}{9}$
$=\frac{5 A-4000}{6 A-3000}=\frac{7}{9}$
$=9(5 A-4000)=7(6 A-3000)$
$\therefore A=5000$
Income of Ramesh $=5 \mathrm{~A}=25000_{\text {; }}$;
Income of Suresh $=6 \mathrm{~A}=30000$
Spending of Ramesh $=25000-4000=21000$
Spending of Suresh $=30000-3000=27000$

Ramesh - 25000, 21000; Suresh - 30000, 27000
48. Find $A: B: C: D$ when $A: B=2: 3 ; B: C=7: 9 ; C: D=5: 7$
a. $70: 105: 135: 189$
b. $105: 115: 236: 189$
c. $70: 124: 155: 201$
d. $12: 78: 256: 189$

Answer: a
Explanation:

$$
\begin{aligned}
& \mathrm{A}: \mathrm{B}=2: 3 ; \mathrm{B}: \mathrm{C}=7: 9 ; \mathrm{C}=\mathrm{D}=5: 7 \\
& \mathrm{a}=2 \\
& \mathrm{~b}=3 \\
& \mathrm{c}=7 \\
& \mathrm{~d}=9 \\
& \mathrm{e}=5 \\
& \mathrm{f}=7
\end{aligned}
$$

$$
A=B=C=D=[2 \times 7 \times 5]=[3 \times 7 \times 5]=[3 \times 9 \times 5]=[3 \times 9 \times 7]
$$

$A=B=C=D=70=105=135=189$
49. Find the mean proportional between 7 and 63 ?
a. 35
b. 21
c. 27
d. 30

Answer: b
Explanation:
In $\mathbf{a}: \mathbf{b}$: \mathbf{c}, mean proportion $=\mathbf{b}$
a: b: c can be written as \mathbf{a} : b::b c
a: $\mathbf{b}: \mathbf{: b} \mathbf{c}=\frac{a}{b}=\frac{b}{c}=b^{2}=a c$
Here, $a=7$; c=63
$\therefore b=\sqrt{7 \times 63}=21$
50. It was intended that Rs. 585 be divided among P, Q and R in the ratio of $4: 3$:

2 , but by mistake the distribution was made in the proportion of $1 / 4: 1 / 3: 1 / 2$.
How much does 'R' gain by the error?
a. Rs. 99
b. Rs. 126
c. Rs. 140
d. Rs. 152

Answer: c

Explanation:

Total amount = Rs. 585
on dividing it in the ratio of $4: 3: 2$
Share of $\mathrm{P}=4 / 9$ * $585=$ Rs. 260
Share of $\mathrm{Q}=3 / 9 * 585=$ Rs. 195
Share of $\mathrm{R}=2 / 9$ * $585=$ Rs. 130
But the amount has been divided in the proportion of $1 / 4: 1 / 3: 1 / 2$ i.e. $3: 4: 6$
Share of $P=3 / 13 * 585=$ Rs. 135
Share of $\mathrm{Q}=4 / 13$ * $585=$ Rs. 180
Share of $R=6 / 13$ * $585=$ Rs. 270
Therefore, gain for R by virtue of error = Rs. 270 - Rs. $130=$ Rs. 140

CHAPTER 2

UNIT I: EQUATIONS

EQUATION	Equation is defined to be a mathematical statement of equality. If the equality is true for certain value of the variable involved, the equation is often called a conditional equation and equality sign ' $=$ ' is used; while if the equality is true for all values of the variable involved, the equation is called an identity.
TYPES OF	Simultaneous Linear Equations: Two or more linear equations involving two or more variables. Quadratic equation: An equation of degree 2 (highest Power of the variable is 2) Cubic Equation: The equation of degree 3
SIMPLE EQUATION	A simple equation in one unknown x is in the form $\mathrm{a} x+\mathrm{b}=$ 0. Where a, b are known constants and $\mathrm{a}^{1} 0$

$$
35 \| P a g e
$$

Visit: Jatindembla.com / kitest.in

SIMULTANEOUS
 LINEAR
 EQUATIONSIN
 TWO UNKNOWNS

ELIMINATION

 METHODCROSS MULTIPLICATION METHOD

QUADRATIC EQUATION

CONSTRUCT A

 QUADRATIC EQUATIONThe general form of a linear equations in two unknowns x and y is $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ where
a, b are non-zero coefficients and c is a constant. Two such equations $\mathrm{a}_{1} x+\mathrm{b}_{1} y+\mathrm{c}_{1}=0$ and $\mathrm{a}_{2} x+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$ form a pair of simultaneous equations in x and y. A value for each unknown which satisfies simultaneously both the equations will give the roots of the equations.
In this method two given linear equations are reduced to a linear equation in one unknown by eliminating one of the unknowns and then solving for the other unknown.
Let two equations be:
$\mathrm{a}_{1} x+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$a_{2} x+b_{2} y+c_{2}=0$
$x=\frac{b_{1} c_{2}-b_{2} c}{a_{1} b_{2}-a_{2} b_{1}}$
$x=\frac{c_{1} a_{2}-c_{2} a_{1}}{a_{1} b_{2}-a_{2} b}$
An equation of the form $\mathrm{ax}+\mathrm{b} x+\mathrm{c}=0$ where x is a variable and a, b, c are constants with $a^{1} \neq 0$ is called a quadratic equation or equation of the second degree.
When $b=0$ the equation is called a pure quadratic equation; when $b=0$ the equation is called an affected quadratic.
The roots of a quadratic equation:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x^{2}-$ (Sum of the roots) $x+$ Product of the roots $=0$

0

1. If one root of a equation is $2+/ 5$, then the quadratic equation is:;
a. $x^{2}+4 x-1=0$
b. $x^{2}-4 x-1=0$
c. $x^{2}+4 x+1=0$
d. $x^{2}+4 x+1=0$
ANSWER: b
SOLUTION:

If one root is $2+, / 5$, then other root will be $2-, / 5$. because irrational roots always occur in pairs.Now, equation will be:

$$
\begin{aligned}
& {[\mathrm{x}-(2+, / s)][\mathrm{x}-(2-, / 5)]=0} \\
& \mathrm{x}^{2}-(2+, / s) \mathrm{x}-(2 \mathrm{~s}, / \mathrm{S}) \mathrm{x}+(2+, / 5)(2-, / 5)=0 \\
& \mathrm{x}^{2}-2 \mathrm{x}-, / \mathrm{sx}-2 \mathrm{x}+, / \mathrm{sx}+(4-5)=0 \\
& \mathrm{x}^{2} 4 \mathrm{x}-1=0
\end{aligned}
$$

2. The equation of a line which is perpendicular to $5 x-2 y=7$ and passes through the mid-point of the line joining $(2,7)$ and $(-4,1)$ is :
a. $2 \mathrm{x}-5 \mathrm{y}-18=0$
b. $2 x+5 y+18=0$
c. $2 \mathrm{x}+5 \mathrm{y}-18=0$
d. None of these.

ANSWER: C

SOLUTION:
The equation of a line perpendicular to $5 x-2 y-7=0$ is $2 x+5 y+k=0$
mid - point of the line joining $(2,7) \&(-4,1)$
$=(2+t 4)-7 ; 1)=(-1,4)$
Equation - (1) Passes through the mid-point
$2 \mathrm{x}+\mathrm{Sy}+\mathrm{k}=0$
$2(-1)+5 \mathrm{x} 4+\mathrm{k}=0$
$-2+20+\mathrm{k}=0$
$\mathrm{k}=-18$
Therefore, equation of the required line is $2 x+5 y-18=0$
3. Find the positive value of k for which the equations : $x^{2}+k x+64=0$ an $d x^{2}$. $8 x+k=0$ will have real roots :
a. 12
b. 16
c. 18
d. 22 .

ANSWER b

SOLUTION:

For real roots, discriminant $=b^{2}-4 \mathrm{ac} 0$
for $x^{2}+k x+64=0$
$=\mathrm{k}^{2}-4 \times 1 \times 640$
= k2-256.::0
= k2 :::256
= k.: 16
for $\mathrm{x} 2-8 \mathrm{x}+\mathrm{k}=0$
$=(-8)^{2}-4 \times 1 \times 42: 0$
$=64-4 \mathrm{k}=20$
$=4 \mathrm{k}=64$
$=\mathrm{k}=16$
Hence, k=16
4. A man starts his job with a certain monthly salary and earns a fixed increment every year. If his salary was $f 1,500$ after 4 years of service and $\mathbf{1 , 8 0 0}$ after 10 years of service, what was his starting salary and what is the annual increment in rupees?
a. $1,300,50$
b. 1100,50
c. 1500,30
d. None

ANSWER: a

SOLUTION:

Let the starting salary be x and the annual increment be y. Then, $x+4 y=1500$
$X+10 y=1800$
Subtracting (1) from (2)
$X+10 y=1800$
$X+4 y=1500$
$6 y=300$
$\mathrm{Y}=5 \mathrm{O}$
Substituting $y=50$ in (1), we get $\mathrm{x}=1,300$
Therefore, starting salary $=\mathbf{x}=1,300$
Annual increment $=\mathrm{y}=50$.
5. The value of k for which the points $(k, 1),(5,5)$ and $(10,7)$ may be collinear is:
a. $\mathrm{k}=-5$
b. $\mathrm{K}=7$
c. $\mathrm{k}=9$
d. $\mathrm{K}=1$

ANSWER: a SOLUTION:

If the point are collinear, then Area= 0 .
$15 \mathrm{k}+35+10-5-50-7 \mathrm{k}$ I $=0 \mathrm{l}-2 \mathrm{k}-101=0$
$1-(2 \mathrm{k}+10) 1=0$
$2 \mathrm{k}+10=0$
$\mathrm{k}=\frac{-10}{2}=-5$
6. A man went to the Reserve Bank of India with - 1,000. He ask ed the cashier
to give him . 5 and 10 notes only in return. The man got 175 notes in all. Find how many notes of 5 and $f \mathbf{1 0}$ did he receive?
a. $(2,150)$
b. (40.110)
c. $(150,25)$
d. None
ANSWER:c

SOLUTION:

Let the number of notes of, 5 be x and notes of 10 be y .

$$
\begin{align*}
& \text { Then } x+y=175 \tag{1}\\
& 5 x+10 y=1000 \tag{2}
\end{align*}
$$

Solving (1) and (2) simultaneously. we get
$x+5 y=875$
$5 x+10 y=1000$

$-5 y=-125$
$\mathrm{y}=25$
7. If $\left(2+y^{\prime} 3\right)$ is a root of aquadratic equation $x^{2}+P x+q=0$, then find the value of p and q.
a. $(4,-1)$
b. $(4,1)$
c. $(-4,1\}$
d. $(2,3)$

ANSWER: b
SOLUTION:
If one of the roots of the equation is $2+\sqrt{3}$, then other root is $2-\sqrt{3}$
:. Sum of roots $=2+. / 3+2-. / 3=4$
Product of roots $=(2+, / 3)(2-. / 3)=4-3=1$
\therefore Required equation is :
$x^{2}-($ sum of roots $) x+$ product of roots $=0$

Or $\mathrm{x}^{2}-4 \mathrm{x}+1=0$
Now comparing with $\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}=0$
we get, $\mathrm{p}=-4$ and $\mathrm{q}=1$
Required answer is (4.1)
8. If the length of a rectangle is 5 cm more than the breadth and if the perimeter of the rectangle is 40 cm , then the length \& breadth of the rectangle will be :
a. $7.5 \mathrm{~cm}, 2.5 \mathrm{~cm}$
b. $10 \mathrm{~cm}, 5 \mathrm{~cm}$
c. $12.5 \mathrm{~cm}, 7.5 \mathrm{~cm}$
d. $15.5 \mathrm{~cm}, 10.5 \mathrm{~cm}$

ANSWER: C

SOLUTION: Let the breadth of the rectangle be xcm.
Therefore length; $(x+5) \mathrm{cm}$.
Now, Perimeter $=2(1+b)$
$40=2[(x+5)+X]$
$20=\mathrm{X}+5+X$ -
20-2X+5
$2 \mathrm{X}=20-5$
$2 X=15$
$\mathrm{X}=7.5$
So, breadth $=x=7.5 \mathrm{~cm}$ and length $=, \quad<+5=7 ; 5+5=12.5 \mathrm{~cm}$.
9. A straight line of $x=15$ is
a. Parallel to Y axis
b. Parallel to X axis
c. A diagonal line
d. Passes through origin

ANSWER:a

SOLUTION:
A straight line $\mathrm{x}=15$ is parallel to Y axis.
The equation clearly depicts that the line passes through the point $P(15,0)$.
10. The point of intersection of the lines $2, c-5 y=6$ and $X+y=3$
a. $(0,3)$
b. $(3,0)$
c. $(3,3)$
d. $(0,0)$

ANSWER b SOLUTION
$2 \mathrm{x}-5 \mathrm{y}=6$
$\mathrm{X}+\mathrm{Y}=3$
Multiplying eq. (2) by 5 fo make the co-efficients of :vin eq.(1) and eq. \{2)same, we get:-
$5 \mathrm{x}+5 \mathrm{Y}=.15$
Adding eq.(1) and eq. (3)
$2 x-5 y=6$.
$\frac{5 x+5 y=15}{7 x=21}$

$$
\begin{aligned}
& X=21 / 7 \\
& X=3
\end{aligned}
$$

Substituting the value of x in eq (1)
$2 x-5 y=6$
$2 \mathrm{x} 3-5 y=6$
$6-5 y=6$
$5 y=6-6$
$\mathrm{Y}=0$.
Point of intersection is $(3,0)$.
11. Find the equation of the line passing through the point $(1,1)$ and parallel to the line $3 x+S y+17=0$
a. $3 x+5 y+8=0$
b. $5 \mathrm{X}+3 \mathrm{y}+8=0$
c. $5 x+3 y-8=0$
d. $3 x+5 y-8=0$

ANSWER d
SOLUTION:
Let the equation be $3 x+S y+k=0$. This equation passes through the
poin1 $(1,1)$. Therefore, substituting $(1,1)$ in the equation, we get : $3 x+S y+k=0$
$3 \times 1+5 \times 1+k=0$
$3+5+\mathrm{k}=0$.
$k=-8$.
So, the equation of the straight line is $3 x+5 y-8=0$.
12. If one root of the equation $x 2-3 x+k=0$ is 2 , then value of k WILL BE :
a. 10
b. 0
c. 2
d. 10

ANSWER: c
SOLUTION:
$x^{2}-3 x+k=0$
\because one root $=2$--1> it will satisfy the 89 :
Putting $x=2$, we get
$(2)^{2}-3(2)+k=04-6+k=0$
:. $\mathbf{k}=2$
13. If Ix -2 I+ Ix-3I=7 then, ' x ' will be equal to
a. 6
b. -1
c. 6 and -1
d. none

ANSWER: C
SOLUTION:
If Ix - $21+$ Ix $-31=7$
If $x-2 \quad 0$ and $x-30$
($x-2\}+(x-3)=7$
$x-2+x-3=7$
$2 \mathrm{x}=7+2+3$

$$
2 x=12 \Rightarrow X=6
$$

14. If thrice of A's age 6 years ago be subtracted from twice his present age, the result would be equal to his present age. Find A's present age.
a. 9
b. 10
c. 11
d. 12

ANSWER: a SOLUTION:
Let x years be A's present age. By the question $2 x-$ $3(x-6)=x$
or $2 x-3 x+18=x$
or $-x+18=x$
or $2 x=18$
or $x=9$
A's present age is 9 years.
15. A number consists of two digits the digit in the ten's place is twice the digit in the unit's place. If 18 be subtracted from the number the digits are reversed. Find the number.
a. 40
b. 42
c. 39
d. 21
a. 40
b. 42
c. 39
d. 21

ANSWER: b

SOLUTION:
Let x be the digit in the unit's place. So the digit in the ten's place is $2 x$. Thus the number becomes $10(2 x)+x$. By the question
$20 x+x-18=10 x+2 x$
or $21 x-18=12 x$
or $9 x=18$
or $x=2$

So the required number is $10(2 \times 2)+2=42$.
16. For a certain commodity the demand equation giving demand ' d ' in kg , for a
 s in kg. for a price p in rupees per kg . is $s=75(p-3)$. The market price is such at which demand equals supply. Find the market price and quantity that will be bought and sold.
a. 230
b. 300
c. 600
d. 390

ANSWER: b
SOLUTION:
Given $\mathrm{d}=100(10-\mathrm{p})$ and $\mathrm{s}=75(\mathrm{p}-3)$.
Since the market price is such that demand $(\mathrm{d})=$ supply
(s)
we have $100(10-\mathrm{p})=75(\mathrm{p}-3)$
or $1000-100 p=75 p-22$
or $-175 p=1225$.
$\mathrm{P}=\frac{-1225}{-175} \times 7$
So market price of the commodity is ` 7 per kg.
the required quantity bought $=100(10-7)=300 \mathrm{~kg}$.
and the quantity sold $=75(7-3)=300 \mathrm{~kg}$.
17. The denominator of a fraction exceeds the numerator by 5 and if 3 be added to both the fraction becomes $\frac{3}{4}$. Find the fraction.
a. $11 / 17$
b. $12 / 17$
c. $13 / 17$
d. $14 / 18$

ANSWER: b
SOLUTION:
Let x be the numerator and the fraction be $\frac{x}{-x+5}$

By the question $\frac{x+3}{x+5+3} \quad=3$ or
$4 x+12=3 x+24$ or $x=12$
The required fraction is $12 / 17$
18. Solve: $2 x+5 y=9$ and $3 x-y=5$.
a. $x=2, y=1$.
b. $x=2, y=2$.
c. $x=1, \mathrm{y}=1$
d. $x=2, \mathrm{y}=0$.

ANSWER: a.
SOLUTION:
$2 x+5 y=9$
$3 x-y=5$
By making (i) x $1,2 x+5 y=9$
and by making (ii) x $5,15 x-5 y=25$
Adding $17 x=34$ or $x=2$. Substituting this values of x in (i) i.e. $5 y=9-2 x$ we find;
$5 y=9-4=5$
$y=1$
$x=2, y=1$.
19. The age of a man is three times the sum of the ages of his two sons and 5 years hence his age will be double the sum of their ages. Find the present age of the man?
a. 40YEARS
b. 41YEARS
c. 55YEARS
d. 45YEARS

ANSWER: d
SOLUTION:

Let x years be the present age of the man and sum of the present ages of the two sons be y years.

By the condition $x=3 y$........... (i)
And $x+5=2(y+5+5)$
From (i) \& (ii) $3 \mathrm{y}+5=2(\mathrm{y}+10)$
or $3 y+5=2 y+20$
or $3 y-2 y=20-5$
or $\mathrm{y}=15$
$x=3 \times y=3 \times 15=$
45
Hence the present age of the main is 45 years
20. Examine the nature of the roots of the following equation $x^{2}-8 x+16=0$
a. roots are real and equal
b. roots are real, rational and unequal
c. roots are imaginary and
d. roots are real irrational and unequal

ANSWER a

 SOLUTION:$\mathrm{a}=1, \mathrm{~b}=-8, \mathrm{c}=16$
$\mathrm{b}^{2}-4 \mathrm{ac}=(-8)^{2}-4 \cdot 1 \cdot 16=64-64=0$
The roots are real and equal.
22 Two times a number, decreased by 12 equals three times the number, decreased by 15 . Which is the number?
a. -6
b. -62
c. 2
d. 6

Answer: a
Solution:
$2 \mathrm{x}=5 \mathrm{x}+182 \mathrm{x}=5 \mathrm{x}+18$
$3 x=-183 x=-18$
$\mathrm{x}=-6$
23.The roots of a quadratic equation:
a. $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
b. $\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}$
c. Either a or b
d. None

ANSWER: a

SOLUTION:

The nature of the roots α and β of equationax ${ }^{2}+b x+c=0$ depends on the quantity or expression ($b^{2}-4 a c$) under the square root sign. ... Hence, the expression ($b^{2}-4 a c$) is called the discriminant of the quadratic equation $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
24. Which of the following is correct?
I. If $b^{2}-4 a c=0$ the roots are real and equal;
II. If $\mathbf{b}^{2}-4 a c>0$ then the roots are imaginary;
III. If $\mathrm{b}^{2}-4 \mathrm{ac}<0$ then the roots are equal;
IV. If $b^{2}-4 a c$ is a perfect square (0) the roots are real, rational and unequal
V. If $b^{2}-4 a c>0$ but not a perfect square the rots are real, irrational and unequal.
a. All are correct
b. ii \& iii
c. all are correct except ii \& iii
d. i \& iii \& iv is correct

ANSWER: C
SOLUTION:
I. If $\mathrm{b}^{2}-4 \mathrm{ac}=0$ the roots are real and equal;
II. If $b^{2}-4 a c>0$ then the roots are real and unequal (or distinct);
III. If $b^{2}-4 a c<0$ then the roots are imaginary;
IV. If $b^{2}-4 a c$ is a perfect square (0) the roots are real, rational and unequal (distinct);
V. If $b^{2}-4 a c>0$ but not a perfect square the rots are real, irrational and unequal Since $b^{2}-4 a c$ discriminates the roots $b^{2}-4 a c$ is called the discriminant in the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ as it actually discriminates between the roots.
25. Find the roots of the quadratic equation: $x^{2}+2 x-15=0$?
a. 5,3
b. $3,-5$
c. $-3,5$
d. $-3,-5$

ANSWER: b

SOLUTION:

$$
\begin{aligned}
& x^{2}+5 x-3 x-15=0 \\
& x(x+5)-3(x+5)=0 \\
& (x-3)(x+5)=0 \\
& =>x=3 \text { or } x=-5
\end{aligned}
$$

SOLUTION

The discriminant of the quadratic equation is $(-12)^{2}-4(3)(10)$ i.e., 24 . As this is positive but not a perfect square, the roots are irrational and unequal.
27. The sum of the squares of two consecutive positive integers exceeds their product by 91 . Find the integers?
a. 9,10
b. 10,11
c. 11,12
d. 12,13

ANSWER: A

SOLUTION:

Let the two consecutive positive integers be x and $x+1$
$x^{2}+(x+1)^{2}-x(x+1)=91$
$x^{2}+x-90=0$
$(x+10)(x-9)=0=>x=-10$ or 9 .
As x is positive $x=9$
Hence the two consecutive positive integers are 9 and 10.
28. A number is equal to 4 times this number less 75 . What is the number?
a. 15
b. 35
c. 25
d. -20

ANSWER: C

SOLUTION:

Let us denote the number with n. The problem can be rewritten as $n=4 n-75$. By subtracting n from both sides, we get $3 n-75=0$. Now we divide both sides by 3 to get n $25=0$, or $n=25$.
29. If $\sqrt{3-2 x}+\sqrt{7+2 x}=4$, then find the possible value of x ?
a. $-3,1$
b. $3,-1$
c. $3,-2$
d. 3,2

ANSWER: A

SOLUTION:

Squaring the both sides,
$3-2 \mathrm{x}+7+2 \mathrm{x}+2 \sqrt{(3-2 x)(7 x=2 x)}=16$
$\sqrt{21}-8 x-4 x^{2}=3$
Squaring both sides,

$$
\begin{aligned}
& 21-8 x-4 x^{2}=9=4\left(x^{2}+2 x-3\right)=0 \\
& 4(x(x+3)-1(x+3))=0 \\
& 4((x+3)-1(x-1))=0 \\
& \Rightarrow X=1 \text { or } x=-3
\end{aligned}
$$

Both these values satisfy the original equation.
30. I. $\mathrm{a}^{2}+11 a+30=0$,
II. $b^{2}+6 b+5=0$ to solve both the equations to find the values of a and b ?
a. If $\mathrm{a}<\mathrm{b}$
b. If $\mathrm{a} \leq \mathrm{b}$
c. If the relationship between a
d. If $\mathrm{a}>\mathrm{b}$ and b cannot be established

ANSWER: b

SOLUTION:

$$
\begin{aligned}
& \text { I. }(a+6)(a+5)=0 \\
& \quad=>a=-6,-5 \\
& \quad \text { II. }(b+5)(b+1)=0 \\
& \quad=>b=-5,-1=>a \leq b
\end{aligned}
$$

31. A number is equal to 7 times itself minus 18. Which is the number?
a. -3
b. 3
c. 2
d. -2

ANSWER: B

SOLUTION:

The statement is equivalent to the following equation:

$$
\begin{aligned}
& x=7 x-18 x=7 x-18 \\
& 18=7 x-x 18=7 x-x \\
& 6 x=186 x=18 \\
& x=3
\end{aligned}
$$

32. If a and b are the roots of the equation $x^{2}-9 x+20=0$, find the value of $a^{2}+b^{2}+$ ab?
a. -21
b. 1
c. 61
d. 21

ANSWER: C.

SOLUTION:

$a^{2}+b^{2}+a b=a^{2}+b^{2}+2 a b-a b$
i.e., $(a+b)^{2}-a b$
from $x^{2}-9 x+20=0$, we have
$a+b=9$ and $a b=20$. Hence the value of required expression $(9)^{2}-20=61$.
33. If $a+b=29, b+c=45, a+c=44$. Find $a+b+c=$?
a. -21
b. 1
c. 59
d. 118

ANSWER: C.

SOLUTION: .

$(\mathrm{a}+\mathrm{b})+(\mathrm{b}+\mathrm{c})+(\mathrm{a}+\mathrm{c})=29+45+44$
$a+b+b+c+a+c=118$
$2 a+2 b+2 c=118$
$2(a+b+c)=118$
$\mathrm{a}+\mathrm{b}+\mathrm{c}=59$
34. A simple equation in one unknown x is in the form $\mathbf{a x}+\mathbf{b}=\mathbf{0}$. Is true or not?
a. True
b. False
c. Not sure
d. Partial

ANSWER : a
SOLUTION:
A simple equation in one unknown x is in the form $\mathrm{ax}+\mathrm{b}=0$. Where a, b are known constants and $\mathrm{a}=0$

35 If both the rots of $k\left(6 x^{2}+3\right)+r x+2 x^{2}-1=0$ and $6 k\left(2 x^{2}+1\right)+p x+4 x^{2}-$ $2=0$ are common then $2 r-p$ is equal to
a. -1
b. 0
c. 1
d. 2

ANSWER : b
SOLUTION:
Given equation can be written as $\left(6 x^{2}+2\right) x^{2}+r x+3 k-1=0 \ldots \ldots$. (i) and $2\left(6 x^{2}+2\right) x^{2}+p x+2(3 k-1)=0 \ldots$ (ii)

Given equation can be written as $(6 \boldsymbol{k}+2) \boldsymbol{x}^{2}+\boldsymbol{r x}+\mathbf{3 k}-\mathbf{1}=\mathbf{0}$
(i) and
$2(6 k+2) x^{2}+p x+2(3 k-1)=0 \quad$.....(ii) Condition for common roots is $\frac{12 k+4}{6 k+2}$ $=\frac{\boldsymbol{p}}{\boldsymbol{r}}=\frac{\mathbf{6 k}-\mathbf{2}}{\mathbf{3 k}-\mathbf{1}}=\mathbf{2}$ or $\mathbf{2 r}-\boldsymbol{p}=\mathbf{0}$
36. If a root of the equations $x^{2}+p x+q=0$ and $x^{2}+\alpha x+\beta=0$ is common, then its value will be (where $p \neq \alpha$ and $q \neq \beta$)
Condition for common roots is $\frac{12 k+4}{6 k+2}=\frac{p}{e}$
a. $\frac{q-\beta}{\alpha-p}$
b. $\frac{p \beta-\alpha q}{q-\beta}$
c. $\frac{q-\beta}{\alpha-p}-\frac{p \beta-\alpha q}{q-\beta}$
d. None

ANSWER : b

SOLUTION:

Let the common root be y . Then $\boldsymbol{y}^{2}+\boldsymbol{p y}+\boldsymbol{q}=\mathbf{0}$ and $\boldsymbol{y}^{2}+\boldsymbol{\alpha} \boldsymbol{y}+\boldsymbol{\beta}=\mathbf{0}$ on solving by cross multiplication, we have $\frac{y^{2}}{p \beta-q \alpha}=\frac{y}{q-\beta}=\frac{1}{\boldsymbol{\alpha}-\boldsymbol{p}} \backslash y=\frac{q-\beta}{\alpha-\boldsymbol{p}}$ and $\frac{y^{2}}{y}=y=\frac{\boldsymbol{p} \beta-\boldsymbol{q} \alpha}{\boldsymbol{q}-\boldsymbol{\beta}}$
37. If the two equations $x^{2}-c x+d=0$ and $x^{2}-a x+b=0$ have one common root and the second has equal roots, then $2(b+d)=$
a. $\mathrm{a}+\mathrm{c}$
b. 0
c. ac
d. -ac

ANSWER:c
SOLUTION:
Let roots of $\boldsymbol{x}^{2}-\boldsymbol{c x}+\boldsymbol{d}=\mathbf{0}$ be α, β then roots of $\boldsymbol{x}^{2}-\boldsymbol{a x}+\boldsymbol{b}=\mathbf{0}$ be α, α,
$\alpha+\beta=c, \alpha \beta=d, \alpha+\alpha=a, \alpha^{2}=b$ Hence $2(b+d)=2\left(\alpha^{2}+\alpha \beta\right)=2 \alpha(\alpha+\beta)=a c$
38. If $x^{2}-h x-21=0, x^{2}-3 h x+35=0(h>0)$ has a common root, then the value of h is equal to
a. 1
b. 2
c. 3
d. 4

ANSWER: d

SOLUTION:

Subtracting, we get $2 h x=56$ lor $h x=28$ Putting in any, $x^{2}=49 \backslash\left[\frac{28}{h}\right]^{2}=7^{2} \Rightarrow h=4(h>0)$
39. If every pair of the equations $x^{2}+p x+q r=0, x^{2}+q x+r p=0, x^{2}+r x+p q=0$ have a common root, then the sum of three common roots is
a. $\frac{-(\mathrm{p}+\mathrm{q}+\mathrm{r})}{2}$
b. $\frac{-(\mathrm{p}-\mathrm{q}+\mathrm{r})}{2}$
c. $-(p+q+r)$
d. $-p+q+r$

ANSWER: a

SOLUTION:

Let the roots be $\alpha, \beta ; \beta, \gamma$ and γ, α respectively. $\therefore \quad \alpha+\beta=-\boldsymbol{p}, \beta+\gamma=-\boldsymbol{q}, \gamma+\alpha=-\boldsymbol{r}$ Adding all, we get $\Sigma \alpha=-(p+q+r) / 2$ etc.

40 If the equation $x^{2}+p x+q=0$ and $x^{2}+q x+p=0$, have a common root, then $p+q+1$
a. 0
b. 1
c. 2
d. -1
ANSWER: a

SOLUTION:

Let a is the common root, so $\alpha^{2}+p \alpha+q=0$.....(i) and $\alpha^{2}+q \alpha+p=0$ from (i) - (ii), $\Rightarrow(p-q) \alpha+(q-p)=\mathbf{0} \Rightarrow \alpha=\mathbf{1}$ Put the value of α in (i), $\boldsymbol{p}+\boldsymbol{q}+\mathbf{1}=\mathbf{0}$.

$$
\text { If } x^{2}+a x+10=0 \text { and } x^{2}+b x-10=0 \text { have a common root, then } a^{2}-b^{2} \text { is equal to } \mathbf{4 1 .}
$$

a. 10
b. 20
c. 30
d. 40

ANSWER: d

SOLUTION:

Let a be a common root, then $\left.\quad \boldsymbol{\alpha}^{2}+\boldsymbol{a} \boldsymbol{\alpha}+\mathbf{1 0}=\mathbf{0} \square\right) \square \quad \square$ (i) and $\boldsymbol{\alpha}^{2}+\boldsymbol{b} \boldsymbol{\alpha}-\mathbf{1 0}=\mathbf{0}$?..(ii) form (i) - (ii), $(\boldsymbol{a}-\boldsymbol{b}) \boldsymbol{\alpha}+\mathbf{2 0}=\mathbf{0} \Rightarrow \boldsymbol{\alpha}=-\frac{\mathbf{2 0}}{\boldsymbol{a}-\boldsymbol{b}}$ Substituting the value of a in (i),
we get $\left(-\frac{20}{a-b}\right)^{2}+a\left(-\frac{20}{a-b}\right)+10=0 \Rightarrow 400-20 a(a-b)+10(a-b)^{2}=0$ $\Rightarrow 40-2 a^{2}+2 a b+a^{2}+b^{2}-2 a b=0 \Rightarrow a^{2}-b^{2}=40$.

$$
x^{2}-11 x+a \text { and } x^{2}-14 x+2 a \text { will have a common factor, if } a=\mathbf{4 2} .
$$

a. 24
b. 0,24
c. 3,24
d. 0,3

Expressions are $x^{2}-11 x+a$ and $x^{2}-14 x+2 a a_{\text {will }}$ have a common factor, then
$\Rightarrow \frac{x^{2}}{-22 a+14 a}=\frac{x}{a-2 a}=\frac{1}{-14+11}$ ค $\frac{x^{2}}{-8 a}=\frac{x}{-a}=\frac{1}{-3}$ 户 $x^{2}=\frac{8 a}{3}$ and $x=\frac{a}{3}$ 户 $\left(\frac{a}{3}\right)^{2}=\frac{8 a}{3} \Rightarrow \frac{a^{2}}{9}=\frac{8 a}{3} \triangleright a=0,24$. Trick: We can check by putting the values of a from the options.

If x be real, then the minimum value of $x^{2}-8 x+17$ is 43.

a. -1
b. 0
c. 1
d. 2

ANSWER: c
SOLUTION:
$\frac{-4 x}{p+\boldsymbol{q}+\boldsymbol{r}}$ Since x is real, so $(x-4)^{2}$ is always positive and its least value is 0 and so the minimum value of given expression is 1 .
44. Solve the equation $8+2(x-4)=16$.
a. -1
b. 8
c. 10
d. 2

ANSWER:b

SOLUTION:

First, we remove the parentheses and get $8+2 x-2 \cdot 4=16$, or $8+2 x-8=16$, which gives us $2 x=16$. We divide by 2 in order to get $x=8$.
45. Solve the equation: $x 3+10=2 x x 3+10=2 x . A)-1$
a. 6
b. 8
c. 10
d. 2

ANSWER: a
SOLUTION:

Prof. Jatin Dembla

We multiply both sides by 3 to get free of the denominator. This gives us $x+3 \cdot 10=3 \cdot 2 x$, or $x+30=6 x$. By subtracting x from both sides we get $30=5 x$. Dividing both sides by 5 gives us the answer, $x=6$.
46. $2(3 x-7)+4(3 x+2)=6(5 x+9)$
a. 6
b. -5
c. 0
d. 2

ANSWER: b

SOLUTION:

$$
\begin{aligned}
& 2(3 x-7)+4(3 x+2)=6(5 x+9) \\
& 6 x-14+12 x+8=30 x+54 \\
& 6 x+12 x-30 x=14-8+54 \\
& -12 x=60 \\
& x=60 \div(-12) \\
& x=-5
\end{aligned}
$$

47. Solve the equation $5 x+117=35 x+117=3$
a. 6
b. 5
c. 10
d. 20

ANSWER: c

SOLUTION:

We multiply both sides by 17 :
$5 x+117 \cdot 17=3 \cdot 175 x+117 \cdot 17=3 \cdot 17$
$5 x+1=515 x+1=51$
$5 x=505 x=50$
$\mathrm{x}=10$
48. Find the solution x to the equation $x 3-x 4=2 x 3-x 4=2$.
a. 69
b. 51
c. 0
d. 24

ANSWER: d
SOLUTION:

Prof. Jatin Dembla

7415315942

We first find the lowest common multiple of 4 and 3 . It is 12 . Multiplying both sides by 12 gives us $\mathrm{x} 3 \cdot 12-\mathrm{x} 4 \cdot 12=2 \cdot 12 \mathrm{x} 3 \cdot 12-\mathrm{x} 4 \cdot 12=2 \cdot 12$, or $4 x-3 x=24$, which means that $x=24$.
49. A number, multiplied by 5 , equals itself minus 48 . Which is the number?
a. 6
b. -5
c. 0
d. 12

ANSWER: d
SOLUTION:
$5 x=x-485 x=x-48$
$4 x=-484 x=-48$
$x=-12 x=-12$
a. 6
b. -5
c. 0
d. 10
50. Find the solution y to the equation $5 y+49=2+2 y+465 y+49=2+2 y+46$. ANSWER: d

SOLUTION:
First, we find the LCM of the denominators (6 and 9). It is 18 . Multiplying both sides by 18 yields $18 \cdot 5 \mathrm{y}+49=2 \cdot 18+18 \cdot 2 \mathrm{y}+4618 \cdot 5 \mathrm{y}+49=2 \cdot 18+18 \cdot 2 \mathrm{y}+46$, which can be also written as $2(5 y+4)=36+3(2 y+4)$. Removing the parentheses, we get $10 y+8=36+6 y+12$. By subtracting $6 y$ from both sides, we get $4 y+8=48$, or $4 y=40$. Dividing by four gives us $y=10$.

UNIT 2: MATRICES

MATRICES	Matrices applications are used in Business, Finance and Economics. Matrices applications are helpful to solve the linear equations with the help of this cost estimation, sales projection, etc., can be predicted	
CRAMER'S RULE	In this unit basic applications to matrices and determinates has been studied. Matrix is defined. Some special types of matrices are mentioned. Operations of matrices dealt with. Determinants are defined and their properties are discussed. The methods Cramer's rule.	
MA TRIX	A is rectangular matrix with m rows and n columns. The numbers $a_{i j}, i=1,2 \ldots \ldots . . . m ; j=1,2, \ldots . . n$ of this array are called its elements a_{i}, is associated. We shall denote a matrix either using by using brackets []; or (). Order of a Matrix: A matrix A with m rows and n columns is called a matrix of order (m, n) or $\mathrm{m} \times \mathrm{n}$ (read as m by n).	
TYPES OF MARTRICES	Row Matrix	A matrix which has only one row is called a row matrix or row vector. The matrices of the type $\left[\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3} \ldots, \mathrm{a}_{\mathrm{n}}\right] ;[1,2,5]$ are examples of row matrices.
	Column Matrix:	A matrix which has only one column is called a column matrix or a column vector.
	Zero Matrix or	If every element of a $m \times n$ matrix is zero, the matrix is called zero matrix or null matrix of order (m, n) and it is denoted bv: 0

59 | P a g e
Visit: Jatindembla.com / kitest.in

Visit: Jatindembla.com / kitest.in

| | i. The order of both the matrices is same;
 ii. Corresponding elements in both the matrices are
 equal |
| :--- | :--- | :--- |

ALGEBRA OF MATRICES

Addition and Subtraction of matrices: Let A and B be two matrices of the same order. Then the addition of A and B, denoted by $\mathrm{A}+\mathrm{B}$, is the matrix obtained by adding corresponding entries of A and similarly to subtract two matrices we just subtract their corresponding elements

Property: If A, B, C are matrices of same order, then
(i) $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$ (Commutative Law)
(ii) $(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$ (Associative Law)
(iii) $K(A+B)=k . A+m . B$, where m is constant.

Multiplication of two matrices.
The product A B of two matrices A and B defined only if the number of columns in Matrix A is equal to the number of rows in Matrix B.
Properties of matrix Multiplication
(i) Matrix multiplication is not commutative in general, i.e. $A B \neq B A$.
(ii) Matrix multiplication is associative (AB) $C=A(B C)$, where both sides are defined.
(iii) Multiplication distributes over addition of Matrices i.e.,
(a) $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$
(b) $(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{AC}+\mathrm{BC}$
(iv) If A, B and C are three matrices such that $A B=A C$, then the general $B \neq C$.
(v) If \mathbf{A} is $\mathbf{m} \times \mathbf{n}$ matrix and $\mathbf{0}$ is an $\mathbf{n} \times \mathbf{p}$ null matrix, then $\mathbf{A O}=\mathbf{0}, \mathrm{A}=0$
(vi) If A is a square matrix and I is a unit matrix of the same order, then $A I=I A=0$

Product of the two no-zero matrices is non zero matrix

Transpose of Matrix: The matrix is obtained by interchanging rows and columns of a matrix A is called its transpose. Transpose of a matrix by AT or A'.
Properties of transpose of a Matrix:
(1) A matrix is transpose of its matrix i.e. $\mathrm{A}=\left(\mathrm{A}^{\prime}\right)^{\prime}$.
(2) The transpose of the sum of the two matrices is the sum of their transpose matrices, i.e. $(\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$
(3) Transpose of a multiplication of a matrix and constant number is equal to the multiplication of the constant number by the transpose of matrix, i.e. (KA)' = K.A'
${ }^{(4)}$ The transpose of the two matrices are equal to the product of

Visit: Jatindembla.com / kitest.in

$63 \mid P a g e$
Visit: Jatindembla.com / kitest.in

1. If the order of matrix A is $m \times p$. And the order of B is $p \times n$. Then the order of matrix AB is?
a. nxp
b. mxn
c. nxp
d. nxm

ANSWER: b
EXPLAINATION:
By definition, the order of a matrix is number of rows X number of columns, generally denoted by m x n (not compulsory)
2. Select a suitable figure from the four alternatives that would complete the

figure matrix.

(1)
(2) (3)
(4)
a. 1
b. 4
c. 3
d. 2

ANSWER d
EXPLAINATION:
One line is increasing in each subsequent figure.
3 What is the order of a matrix?
a. Number of rows X number of columns
c. number of rows X number of rows
b. number of columns X number of rows
d. number of columns X number of columns

Answer: a
Explanation:
By definition, the order of a matrix is number of rows \boldsymbol{X} number of columns, generally denoted by m X n (not compulsory).

4 How do you allocate a matrix using a single pointer in C? (r and c are the number of rows and columns respectively)
a. int *arr $=$ malloc(r * c* sizeof(int));
b. int *arr = (int *)malloc(r * c * sizeof(int));
c. int *arr $=$ (int *) malloc(r + c * sizeof(int));
d. int *arr = (int *)malloc(r * c * sizeof(arr));

Answer: b

Explanation:

Total number of elements in the matrix will be $r^{*} c$
5 Which of the following are the uses of matrices?
a. In solving linear equations
b. Image processing
c. Graph theory
d. All of the mentioned

Answer: d Explanation:
Solving linear equations is a separate field in Mathematics involving matrices, Image processing stores the pixels in the form of matrices, and the graphs are represented with the help of matrices to indicate the nodes and edges.
6. What is the disadvantage of matrices?
a. Internal complexity
b. Searching through a matrix is complex
c. Not space efficient
d. All of the mentioned

Answer: d

Explanation:
Time complexity of a matrix is $\mathbf{O}\left(\mathbf{n}^{2}\right)$ and sometimes the internal organization becomes tedious.

7 Matrix A when multiplied with Matrix C gives the Identity matrix I, what is C?
a. Identity matrix
b. Inverse of A
c. Square of A
d. Transpose of A

Answer: b
Explanation:
Any square matrix when multiplied with its inverse gives the identity matrix. Note that non square matrices are not invertible.
8.2×3 matrix can be multiplied by a 3×4 matrix. The order of resulting matrix will be
a. 3×4
b. 4×3
c. 2×3
d. 3×2

Answer: a

Explanation:

Two matrices can be multiplied only if the number of columns of the first is the same as the number of rows of the second
9. Select a figure from the four alternatives that would complete the Figure

OQ ふ2

Matrix.
(1)
(2)
(3) (4)
a. 4
b. 3
c. 2
d. 1

Answer: a

Explanation:

Similar small figures are increasing by one in each of the bigger figure.
10. Select a suitable figure from the four alternatives that would complete the figure matrix.

(1) (2)

(3) (4)
a. 4
b. 3
c. 2
d. 1

Answer: b
Explanation:

In each row, the third figure is a collection of the common elements (line segments) of the first and the second figures.
11. For a non-trivial solution | A | is
a. $|\mathrm{A}|>0$
b. $|\mathrm{A}|<0$
c. $|A| \neq 0$
d. $|A|=0$

Answer: D

Explanation:

If A, B and C are three matrices such that $A B=A C$, then the general $B \neq C$
Hence, $|\mathrm{A}|=0$
12. If A is a symmetric matrix, then $\mathrm{At}=$
a. 0
b. A
c. $|\mathrm{A}|$
d. diagonal matrix

Answer: b
Explanation:
Symmetric matrix is a square matrix that is equal to its transpose.
Hence, A is symmetric matrix
13. Additive inverse of a matrix A is
a. adi $\mathrm{A} /|\mathrm{A}|$
b. A^{2}
c. $|\mathrm{A}|$
d. A

Answer: A

Explanation:

The additive inverse of a number a is the number that, when added to a, yields zero.
This number is also known as the opposite (number), sign change, and negation
14. Two matrices A and B are multiplied to get BA if
a. no of rows of A is equal to no
b. no of columns of A is equal to
of columns of B
c. both are rectangular
columns of B
d. both have same order

Answer: a

Explanation:

It is the reverse, the number of columns of the first matrix should match the number of rows of the second matrix.
15. A matrix having m rows and n columns with $m \neq n$ is said to be a
a. scalar matrix
b. identity matrix
c. square matrix
d. rectangular matrix

Answer: A Explanation:
A square diagonal matrix with all its main diagonal entries equal is a scalar matrix, that is, a scalar multiple λ I of the identity matrix
16. [a b c] is a
a. zero matrix
b. row matrix
c. column matrix
d. diagonal matrix

Answer: B
Explanation:
Row matrix consisting of a single row of m elements
17. Transpose of a row matrix is
a. zero matrix
b. row matrix
c. column matrix
d. diagonal matrix

Answer: C
Explanation:
Column matrix is a matrix consisting of a single column of m elements 18. Matrices obtained by changing rows and columns is called
a. symmetric
b. transpose
c. rectangular matrix
d. None of Above

Answer: B
Explanation:
Transpose of a Matrix. A matrix which is formed by turning all the rows of a given matrix into columns and vice-versa.
19. A matrix having m rows and n columns with $m=n$ is said to be a
A. scalar matrix
B. identity matrix
C. Square matrix
D. rectangular matrix

Answer: C

Explanation:

Square matrix is a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order n.
20. Which of the following property does not hold for matrix multiplication?

Associative
Commutative
Answer: c

Distributive
None of the mentioned

Explanation:

In matrix multiplication, AB != BA
21. Solve the equations by using Cramer's Rule
$2 x-y+z=4$
$x+3 y+2 z=12$
$3 x+2 y+3 z=16$
a. infinite solutions
b. finite solutions
c. either a or b
d. none

ANSWER a

 SOLUTION:Considering the equations: $2 x-y+z=4$
$X+3 y+2 z=123 x+2 y+3 z=16$

$$
\mathrm{X}=\frac{\Delta_{\mathrm{X}}}{\Delta}=\frac{\left|\begin{array}{ccc}
4 & -1 & 1 \\
12 & 3 & 2
\end{array}\right|}{\left|\begin{array}{ccc}
6 & 2 & 3 \\
2 & -1 & 1 \\
1 & 3 & 2
\end{array}\right|=\frac{4(9-4)+1(36-32)+1(24-48)}{2(9-4)+1(3-6)+1(2-9)}}
$$

By using Cramer's Rule, the solution of the equations are given below:

$$
\frac{4 \times 5+1 \times 4+(-24)}{2 \times 5-3-7}
$$

Since $\Delta=0 ; \Delta_{\mathrm{X}}=0, \Delta_{\mathrm{y}}=0$ and $\Delta_{\mathrm{Z}}=0$,
There the equations are dependent and will have infinite solutions.
22. If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then which one of the following holds for all $n \geq 1$, (by the principal of mathematical induction)
a. $A^{n}=\boldsymbol{n}^{A}+(\mathrm{n}-1) \mathrm{I}$
b. $A^{n}=2^{n-1} A+(n-1) I$
c. $A^{n}=\mathrm{n}^{A}-(\mathrm{n}-1) \mathrm{I}$
d. $A^{n}=2^{n-1} A-(n-1)$ I

ANSWER c
SOLUTION:

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right] A^{3}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right] \backslash A^{n}=\left[\begin{array}{ll}
1 & 0 \\
n & 1
\end{array}\right] \\
& n A=\left[\begin{array}{ll}
n & 0 \\
n & n
\end{array}\right],(n-1) I=\left[\begin{array}{cc}
n-1 & 0 \\
0 & n-1
\end{array}\right] n A-(n-1) I=\left[\begin{array}{ll}
1 & 0 \\
n & 1
\end{array}\right]=A^{n}
\end{aligned}
$$

23. In a skew symmetric matrix, the diagonal elements are all

Different from each other
One
ANSWER b
SOLUTION:
In a skew symmetric matrix, the diagonal elements are all Zero
24. If $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1\end{array}\right)$ and $B=\left(\begin{array}{ccc}-5 & 7 & 1 \\ 1 & -5 & 7 \\ 7 & 1 & -5\end{array}\right)$ then $A B$ is equal to

a. I_{3}

b. $2 I_{3}$
c. $4 I_{3}$
d. $18 I_{3}$

ANSWER d
SOLUTION:
We have $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1\end{array}\right)$ and $B=\left(\begin{array}{ccc}-5 & 7 & 1 \\ 1 & -5 & 7 \\ 7 & 1 & -5\end{array}\right)$
$\therefore \mathrm{AB}=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1\end{array}\right)\left(\begin{array}{ccc}-5 & 7 & 1 \\ 1 & -5 & 7 \\ 7 & 1 & -5\end{array}\right)$
$\mathrm{AB}=\left(\begin{array}{ccc}18 & 0 & 0 \\ 0 & 18 & 0 \\ 0 & 0 & 18\end{array}\right)=18\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$\mathrm{AB}=18 \mathrm{I}_{3}$

Visit: Jatindembla.com / kitest.in
25. $\left[\begin{array}{lll}7 & 1 & 2 \\ 9 & 2 & 1\end{array}\right]\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]+2\left[\begin{array}{l}4 \\ 2\end{array}\right]$ is equal to
a. $\left[\begin{array}{l}43 \\ 44\end{array}\right]$
b. $\left[\begin{array}{l}43 \\ 45\end{array}\right]$
c. $\left[\begin{array}{l}42 \\ 44\end{array}\right]$
d. $\left[\begin{array}{l}41 \\ 44\end{array}\right]$

ANSWER A SOLUTION:
$\left[\begin{array}{lll}7 & 1 & 2 \\ 9 & 2 & 1\end{array}\right]\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]=\left[\begin{array}{l}35 \\ 40\end{array}\right]+\left[\begin{array}{l}8 \\ 4\end{array}\right]$
$=\left[\begin{array}{l}43 \\ 44\end{array}\right]$
26. Assuming that the sums and products given below are defined, which of the following is not true for matrices
a. $A+B=B+A$
b. $\mathrm{AB}=\mathrm{AC}$ does not imply $\mathrm{B}=\mathrm{C}$
c. $\mathrm{AB}=0$ implies $\mathrm{A}=0$ or $\mathrm{B}=0$
d. $(A B)^{\prime}=B^{\prime} A^{\prime}$

ANSWER C
 SOLUTION:

Assume that A, B are each non-singular - i.e. they are invertible.
Thus, $A^{-1} \mathrm{AB}=-1 \mathrm{AB}=\mathrm{B}$, and,$A B B^{-1}=\mathrm{A}$.
But $A B$ is a zero matrix, so $A=B=0$
27. What is the size of the matrix $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 12 & 3 & 4 & 1 \\ 13 & 14 & 1 & 2\end{array}\right]$?
a. 2×3
b. 3×2
c. 3×4
d. 4×3

ANSWER C
SOLUTION:
A has 3 rows and 4 columns and hence it is a 3×4 matrix.
28. If I is a unit matrix of order 10 , then the determinant of I is equal to
a. 10
b. 1
c. $1 / 10$
d. 9

ANSWER: B
SOLUTION:
Determinants of unit matrix of any order $=1$.
29. Which is true about matrix multiplication
a. It is commutative
b. It is associative
c. Both (a) and (b)
d. None of these

Answer: B

Solution:

Matrix multiplication distributive and associative not commutative
30. If $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 1\end{array}\right]$ then determinant of $A^{2}-2 A$ is
a. 5
b. 25
c. -5
d. -25

Answer: B

Solution:

$$
\begin{aligned}
& \mathrm{B} \neq 0 \backslash A^{2}=\left[\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
7 & 6 \\
4 & 7
\end{array}\right] \text { and } \\
& A^{2}-2 A=\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right],\left(A^{2}-2 A\right)=\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right]=25
\end{aligned}
$$

31. If two matrices A and B are of order $p \times q$ and $r \times s$ respectively, can be subtracted only, if
a. $\mathrm{p}=\mathrm{q}$
b. $\mathrm{p}=\mathrm{q}, \mathrm{r}=\mathrm{s}$
c. $p=r, q=s$
d. None of these

Answer: C
Solution :

For subtraction of two matrix, they should be of the same order i.e.
$\operatorname{abc}\left(1+\sum \frac{1}{a}\right)\left|\begin{array}{ccc}1 & \frac{1}{b} & \frac{1}{c} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$
$\mathrm{q}=\mathrm{s}$
32. Choose the correct answer
a. Every identity matrix is a scalar matrix
c. Every diagonal matrix is an identity matrix
b. Every scalar matrix is an identity matrix
d. A square matrix whose each element is 1 is an identity matrix

Answer: A

Solution:

We know that every identity matrix is a scalar matrix.
33. If $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]$, then $A^{2}=$
a. Unit matrix
b. Null matrix
c. A
d. -A

Answer: A

Solution:

$A^{2}=A \cdot A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & 1\end{array}\right]=I$
34. $A B=0$, if and only if
a. $\mathrm{A} \neq \mathrm{O}, \mathrm{B}=0$
b. $A=0, B \neq 0$
c. $\mathrm{A}=0$ or $\mathrm{B}=0$
d. None of these

Answer: D

Solution:

Since $A B=0$, even if $A \neq 0$ and $B \neq 0$
35. If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], A^{n}=$
a. $\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$
b. $\left[\begin{array}{ll}n & n \\ 0 & n\end{array}\right]$
c. $\left[\begin{array}{ll}n & 1 \\ 0 & n\end{array}\right]$
d. $\left[\begin{array}{ll}1 & 1 \\ 0 & n\end{array}\right]$

Answer: A

Solution:

$A^{2}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$, and
$\mathrm{A}^{3}=\mathrm{A}^{2} \cdot A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$
$\mathrm{A}^{\mathrm{n}}=\mathrm{A}^{\mathrm{n}-1} \cdot A=\left[\begin{array}{cc}1 & n-1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$
36. If $\left[\begin{array}{ll}m & n\end{array}\right]\left[\begin{array}{c}m \\ n\end{array}\right]=[25]$ and $m<n$, then (m, n)
a. $(2,3)$
b. $(3,4)$
c. $(4,3)$
d. None of these

Answer: B

Solution:

It is obvious that $(\mathrm{m}, \mathrm{n})=(3,4)$.
37. If $A=\left[\begin{array}{ccc}0 & 1 & -2 \\ -1 & 0 & 5 \\ 2 & -5 & 0\end{array}\right]$, then
a. $A^{\prime}=A$
b. $A^{\prime}=-A$
c. $\mathrm{A}^{\prime}=2 \mathrm{~A}$
d. None of these

Answer: B

Solution:

$\mathrm{A}^{\prime}\left[\begin{array}{ccc}0 & -1 & 2 \\ 1 & 0 & -5 \\ -2 & 5 & 0\end{array}\right]=-A$
38. If $A=\left[\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right]$ and $I\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], A^{2}-6 A=$
a. 3I
b. 5I
c. -5 I
d. None of these

Answer: C

Solution:

$$
A^{2}-6 A=\left[\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right]\left[\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right]-6\left[\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right]
$$

$=\left[\begin{array}{ll}19 & 6 \\ 18 & 7\end{array}\right]-\left[\begin{array}{cc}24 & 6 \\ 18 & 12\end{array}\right]\left[\begin{array}{cc}-5 & 0 \\ 0 & -5\end{array}\right]$
$=-5 \mathrm{I}$
39. If $A=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, then $A A^{\prime}=$
a. 14
c. $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9\end{array}\right]$

Answer: C
Solution:
$A^{\prime}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$, therefore $A A^{\prime}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9\end{array}\right]$
40. If $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$, then $A^{5}=$
a. 5 A
b. 10 A
c. 16 A
d. 32 A

Answer: C

Solution:

$A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
$A^{5}=\left[\begin{array}{ccc}2^{5} & 0 & 0 \\ 0 & 2^{5} & 0 \\ 0 & 0 & 2^{5}\end{array}\right]$
$2^{4}\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$

Visit: Jatindembla.com / kitest.in

CHEPTER 8

LINEAR INEQUALITIES

INEQUALITIES	Inequalities are statements where two quantities are unequal but a relationship exists between them. These type of inequalities occur in business whenever there is a limit on supply, demand, sales etc.
LINEAR INEQUALITIES IN ONE VARIABLE AND THE SOLUTION SPACE	Any linear function that involves an inequality sign is a linear inequality. It may be of one variable, or, of more than one variable. Simple example of linear inequalities are those of one variable only; viz., $x>0, x \leq 0$ etc.
It involves:	
i.Formulating the linear programming problem, i.e. expressing	
the objective function and constraints in the standardised	
format.	

iii. Identifying feasible region and coordinates of corner points. Mostly it is done by breading the graph, but a point can be identified by solving simultaneous equation relating to two lines which intersect to form a point on graph.
iv.Testing the corner point which gives maximum profit. For this purpose the coordinates relating to the corner point should put in objectives function and the optimal point should be ascertained.
v.For decision - making purpose, sometimes, it is required to know whether optimal point leaves some resources unutilized. For this purpose value of coordinates at the optimal point should be put with constraint to find out which constraints are not fully utilized.
vi.Linear inequalities in two variables may be solved easily by extending our knowledge of straight lines.

1. The Linear relationship between two variables in an inequality

a. $x+b y .5 . c$
b. axby.c
c. axy + by .5..c
d. $a x+b x y . c$

Answer: a

Explanation:

The linear relationship between two variables in an inequality is given by ax+by.5.c
Any linear function that involves an inequality sign is a linear inequality It may be of one variable, or, of more than one variable.
Ex: $3 x+y<6, x-y-2$, etc
2. On solving the inequalities $6 x+y 218, x+4 y 212,2 x+y 210$, we get the following situation
$(0,18),(12,0),(4,2) \&(7,6)$
$(3,0),(0,3),(4,2), \&(7,6)$
$(5,0),(0,10),(4,2) \&(7,6)$
$(0,18),(12,0),(4,2),(0,0)$ and $(7,6)$

Answer: a

Explanation:

We draw the graph of $6 x+y 218, x+4 y 212$, and $2 x+y 210$ in-the same plane. The solution set of system is that portion of the graphs of the given inequality which is represented by the intersection of the above three equations.
3. Solve $x+2<4$
a. $x<2$
b. $x>2$
c. $x \neq 2$
d. $x<4$

Answer: a

 Explanation:We need to subtract 2 from both sides of the inequality.
$x+2<4$
$x<4-2$
$x<2$
4. Solve the inequality $3-2 x \geq 15$
a. $x \leq 6$
b. $x \leq-6$
c. $x>-6$
d. $x>6$

Answer: b
Explanation:
we need to subtract 3 from both sides; then divide both sides by --2(remembering to change the direction of the inequality).
$=3-2 x \geq 15$
$=-2 x \geq 15-3$
$=-2 x \geq 12$
$=x \leq-\frac{12}{-2}$
$=x \leq-6$
5. Solve $-1<2 x+3<6$
a. $-2<x<3 / 2$
b. $2<x<23 / 2$
c. $2<x<3 / 2$
d. $-3<x<23 / 3$

Answer: a

Explanation:

$=-1<2 x+3<6$
Subtract 3 from all 3 sides
$=-1-3<2 x+3-3<6-3$
$=-4<2 x<3$
Divide all sides by 2
$=-2<x<23$
6. Solve $\frac{x}{2}>8$
a. $\mathrm{x}<8$
b. $\mathrm{x}>16$
c. $\mathrm{x}=8$
d. $\mathrm{x}=4$

ANSWER : b
Explanation:
$=\frac{x}{2}>8$
$=x>8 \times 2$
$=x>16$
7. The graph to express the inequality $x+y 56$ is:
a.

b.

c. Either a or b

ANSWER: a
Explanation:
$x+y=56$ is graphically represent by

8. On the average, experienced person does 5 units of work while a fresh one 3 units work daily but the employer have to maintain the output of at least

30 units of work per day. The situation can be expressed as
a. $5 x+3 y=30$
b. $5 x+3 y=30$
c. $5 x+3 y=30$
d. None of these

ANSWER: b
Explanation:
Let Experience Person X unit work per day
Fresh one $=Y$ unit work per day
So situation is $5 \mathrm{x}+3 \mathrm{y}=30$
9. Common region of the inequalities is:

a. BCDB and DEFD
b. Unbounded
c. HFGH
d. ABDFHKA

ANSWER: d
Explanation:
Common Region of the inequalities is ABDFHKA.
10 . The shaded region represents:

a. $\mathrm{X}+\mathrm{y} \mathrm{s} 5, \mathrm{X} .: 1$ '.2, y :s; 1
b. $\mathrm{X}+\mathrm{y}: 1^{\prime} .5, \mathrm{X}: 1^{\prime} .2$, y 1
c. $\mathrm{X}+\mathrm{y}$ s $5, \mathrm{X}: 1!4, \mathrm{y}: 1^{\prime} .1$
d. None of these

ANSWER: b

Explanation:

Region represented by the line $x+y=5$ touch the coordinate axes at $(5,0)$ and $(0,5)$ since the shaded region lies below the line $x+y=5$. Hence it is represented by the inequation $x+y=5$
11. A company produces two products A and B, each of which requires processing in two machines. The first machine can be used at most for 60 hours, the second machine can be used at most for 40 hours. The product A requires 2 hours on machine one and one hour on machine two. The product B requires one hour on machine one and two hours on machine two. Above situation is using linear inequalities?
a. True
b. False
c. Partial
d. None

ANSWER: a

Explanation:
Let the company produce, x number of product A and y number of product B. As each of product A requires 2 hours in machine one and one hour in machine two, x number of product A requires $2 x$ hours in machine one and x hours in machine two. Similarly, y number of product B requires y hours in machine one and $2 y$ hours in machine two. But machine one can be used for 60 hours and machine two for 40 hours. Hence $2 x+y$ cannot exceed 60 and $x+2 y$ cannot exceed 40 . In other words,

$$
2 x+y=60 \text { and } x+2 y=40
$$

Thus, the conditions can be expressed using linear inequalities.
12. The inequalities $5 x_{1}+4 x_{2} \geq 9, x_{1}+x_{2} \geq 3, x_{1} \geq 0$ and $\mathrm{x} 2 \geq 0$ is correct?
a. True
b. False
c. Not sure
d. None

Explanation:

We draw the straight lines $5 x_{1}+4 x_{2}=9$ and $x_{1}+x_{2}=3$.

Table for $5 x_{1}+4 x_{2}=9$					Table for $x_{1}+x_{2}=3$		
x_{1}	0	$9 / 5$	x_{1}	0	3		
x_{2}	$9 / 4$	0	x_{2}	3	0		

Now, if we take the point $(4,4)$, we find
$5 x_{1}+4 x_{2}$ * 9
i.e., $5.4+4.4 * 9$
or, 36 * 9 (True)
$x_{1}+x_{2} * 3$
i.e., $4+4$ * 3

8 * 3 (True)
Hence $(4,4)$ is in the region which satisfies the inequalities
13. Solve the inequality $-2(x+3)<10$
a. $x>-8$
b. $x>16$
c. $\mathrm{x}>8$
d. $x>-16$

ANSWER : a
Explanation:
$-2 x-6<10-2 x-6<10$
$-2 x-6+6<10+6-2 x-6+6<10+6$
$-2 x<16-2 x<16$
$-2 x-2>16-2-2 x-2>16-2$
$x>-8$
14. Is $(1,2)$ a solution to the inequality
a. $7<1$
b. $7>1$

Prof. Jatin Dembla

c. $7>-1$
d. none

ANSWER : b

Explanation:

$2 x+3 y>12 x+3 y>1$
$2 \cdot 1+3 \cdot 2>? 12 \cdot 1+3 \cdot 2>? 1$
$2+5>? 12+5>$? 1
$7>1$
15. Solve the absolute value inequality $2|3 x+9|<36$
a. $-9<x>3$
b. $-9<x<3$
c. $9<x>3$
d. $9<x<3$

ANSWER : b
Explanation:
$2|3 x+9| 2<3622|3 x+9| 2<362$
$|3 x+9|<18|3 x+9|<18$
$-18<3 x+9<18-18<3 x+9<18$
$-18-9<3 x+9-9<18-9-18-9<3 x+9-9<18-9$
$-27<3 x<9-27<3 x<9$
$-273<3 \times 3<93-273<3 \times 3<93$
$-9<x<3$.
16. Solve $x+2<4$
a. $\mathrm{x}<1$
b. $\mathrm{x}>1$
c. $x>-2$
d. $x<2$

ANSWER : d

Explanation:

We need to subtract 2 from both sides of the inequality. $x+2<4$

Prof. Jatin Dembla
7415315942
$x<4-2$
$x<2$
17. Solve $\frac{x}{2}>4$
a. $\mathrm{x}<4$
b. $x>8$
c. $x>-4$
d. $x<2$

ANSWER: b
Explanation:
We need to multiply both sides of the inequality by 2 .
$\stackrel{x}{2}>4$
$x>4 \times 2$
$x>8$
18. Solve the inequality $\frac{3}{2}(1-\mathrm{x})>\frac{1}{4}-\mathrm{x}$
a. $x<\frac{5}{2}$
b. $x<5$
c. $x<\frac{10}{2}$
d. $x<\frac{5}{6}$

ANSWER: a
Explanation:
$\frac{3}{2}(1-x)>\frac{1}{4}-x$
$6-6 x>1-4 \mathrm{x}$
$-6 x+4 x>1-6$
$-2 x>-5$
$x<\frac{5}{2}$
19. The solution of the inequality $8 x+6<12 x+14$ is:
a. $(-2,2)$
b. $(0,-2)$
c. $(2$,
d. $(-2$,

ANSWER: d
Explanation:
$=8 \mathrm{x}+6<12 \mathrm{x}+14$
$=6-14<12 x-8 x$
$=-8<4 x$
$=X>-2$
20. Solve $x-1<2 x+2<3 x+1$
a. $(x>3$ and $x>1$
b. $(x>-3$ and $x<1)$
c. $(x<-3$ and $x>1$
d. $(x>1)$

ANSWER: d
Explanation:
We need to find the intersection of the "true" values.
$x-1<2 x+2$ and $2 x+2<3 x+1$
$x<2 x+3$ and $2 x<3 x-1$
$x>-3$ and $x>1$
The intersection of these 2 regions is $x>1$.
21. Solve $-2(x+4)>1-5 x$
a. $x<3$
b. $x>3$
c. $x \neq 3$
d. $x=3$

Answer: b
Explanation:
$-2(x+4)>1-5 x$
$2 x-8>1-5 x$
$3 x-8>1$
$3 x>9$
$x>3$
22. Solve the inequality $|2 x-1|>5$
a. $x<3$
b. $x>3$
c. $x \neq 3$
d. $x=3$

Answer: b

Explanation:

Applying the relationships discussed earlier:
$2 x-1<-5$ or $2 x-1>5$
Solving both inequalities, we get:

$2 x<-5+1$	or	$2 x>5+1$
$2 x<-4$	or	$2 x>6$
$x<-2$	or	$x>3$

23. Find all pair of consecutive even positive integers, both of the which are larger than 5 such that their sum is less than 23.
a. $(7,8),(7,3)$ and $(2,3)$
b. $(6,8),(8,10)$ and $(10,12)$
c. $(5,7),(7,9)$ and $(2,6)$
d. $(2,3),(4,5)$ and $(3,1)$

Answer: b Explanation:
Let x and $x+2$ be two consecutive even positive integers.
Since both the integer are larger then 5. $x>5 x>5$
Also sum of two is less than 23
$x+x+2<23$
$=>2 x+2<23$
Adding -2 to both sides
$2 x<23-2$
$2 x<212$
Diving by 2 on both sides,
$2 x$
$\frac{2 x}{2}<23-2$
$x<\frac{21}{2}$
$x<10.5$
Step 2:
Since x is an even positive integer greater than 5 and less then $10.5 x$ can take value 6,8,10.
Thus the required pair of numbers is $(6,8),(8,10)$ and $(10,12)$
Hence B is the correct answer.
24. The longest side of a triangle is three times the shortest side and third side is $\mathbf{2 c m} 2 \mathrm{~cm}$ shortest than the longest side. If the perimeter of the triangle is at least 61 cm 61 cm find the minimum length of the shortest side.
a. 9 cm
b. 3 cm
c. 5 cm
d. 5 cm

Answer: A

Explanation:

Let the length of the shortest side be x cm
Length of the largest side is $3 x \mathrm{~cm}$
Length of the third side is $3 x-2 \mathrm{~cm}$
Since the perimeter of the triangle is at least 61 cm , we get,
$x+3 x+3 x-2 \geq 61$
$=>7 x-2 \geq 61$
Adding 2 on both sides,
$=>7 x \geq 61+2$
$7 x \geq 63$
Dividing both sides by positive number 7 .
$\frac{7 x}{7} \geq \frac{63}{7}$
$x \geq 9$
Step 2:
The minimum length of the shortest side is 9 cm .
Hence A is the correct answer.
25. Solve the inequality : $2 \leq 3 x-4 \leq 52 \leq 3 x-4 \leq 5$
a. $[2,8]$
b. $[4,5]$
c. $[3,4]$
d. $[2,3]$

Answer: D
Explanation:
The given inequality is $2 \leq 3 x-4 \leq 5$
Adding $+4+4$ throughout the inequality $2+4 \leq 3 x-4+4 \leq 5+4$
$=>6 \leq 3 x \leq 9$
Dividing by positive number 3 through out the inequality $=>2 \leq x \leq 3$
$=>2 \leq x \leq 3$
Step 2:
Thus all real number, which are greater than or equal to 2 , and less than or equal to 3 , $90 \mid \mathrm{Page}$
Visit: Jatindembla.com / kitest.in

Prof. Jatin Dembla

are solutions to the given inequality .
The solution set is $[2,3]$
Hence D is the correct answer.

26 Graphs of Inequations are drawn below:

L1: $5 x+3 y=30$
L2: $\mathrm{x}+\mathrm{y}=9$
L3: $y=x / 3$
L4: $y=x / 2$

The common region region (shaded part) shown in the diagram refers to the inequalities
(a) $5 x+3 y \leq 30$
(b) $5 x+3 y \geq 30$
$\mathrm{X}+\mathrm{y} \leq 9$
$x+y \leq 9$
$y \leq 1 / 2 x$
$y \geq x / 3$
$\mathrm{y} \leq \mathrm{x} / 2$
$x \geq 0, y \geq 0$
$y \leq x / 2$
(c) $5 x+3 y \geq 9$
$x \geq 0, y \geq 0$
$x+y \geq 9$
$\mathrm{y} \leq \mathrm{x} / 3$
$y \geq x / 2$
$\mathrm{x} \geq 0, \mathrm{y} \geq 0$
Answer: d
Explanation:
$5 x+3 y>30$
$x+y<9$
$y \geq 9$
$y \leq x / 2$
$x \geq 0 ; y \geq 0$

CHEPTER 4

TIME VALUE OFMONEY

TIME VALUE Time value of money means that the value of a unity of money OF MONEY is different in different time periods. The sum of money received in future is less valuable than it is today. In other words the present worth of money received after some time will be less than a money received today.

INTEREST

Interest is the price paid by a borrower for the use of a lender's money. If you borrow (or lend) some money from (or to) a person for a particular period you would pay (or receive) more money than your initial borrowing (or lending).
The interest computed on the principal for the entire period
SIMPLE INTEREST

	$\begin{gathered} I=P i t \\ A=P+I \\ I=A-P \end{gathered}$ Here, $\mathrm{A}=$ Accumulated amount (final value of an investment) $\mathrm{P}=$ Principal (initial value of an investment) $\mathrm{i}=$ Annual interest rate in decimal. I =Amount of Interest $\mathrm{t}=$ Time in years
COMPOUND INTEREST	The interest that accrues when earnings for each specified period of time added to the principal thus increasing the principal base on which subsequent interest is computed. Formula for compound interest: $\mathrm{A}_{\mathrm{n}}=\mathrm{P}(1+\mathrm{i})^{\mathrm{n}}$ where, $\mathrm{i}=$ Annual rate of interest $n=$ Number of conversion periods per year $\text { Interest }=A_{n}-P=P(1+i)^{n}-P$ n is total conversions i.e. $t \times$ no. of conversions per year
EFFECTIVE RATE OF INTEREST	The effective interest rate can be computed directly by following formula: Where E is the effective interest rate $\mathrm{i}=$ actual interest rate in decimal $\mathrm{n}=$ number of conversion period
FUTURE VALUE	Future value of a single cash flow can be computed by above formula. Replace A by future value (F) and P by single cash flow (C.F.) therefore $\mathrm{F}=\text { C.F. }(1+\mathrm{i})^{\mathrm{n}}$

ANNUITY
 Annuity can be defined as a sequence of periodic payments (or receipts) regularly over a specified period of time.

TYPES OF ANNUITY

FUTURE VALUE OF AN
ANNUITY DUE/ANNUITY IMMEDIATE

PRESENT

VALUE OF
ANNUITY DUE OR ANNUITY IMMEDIATE

SINKING FUND

Future value of an Annuity due/Annuity immediate = Future value of annuity regular $\mathrm{x}(1+\mathrm{i})$ where i is the interest rate in decimal.
The present value P of the amount A_{n} due at the end of n period at the rate of i per interest period may be obtained by solving for P the below given equation
$\mathrm{A}_{\mathrm{n}}=\mathrm{P}(1+\mathrm{i})^{\mathrm{n}}$
Present value of annuity due/ immediate for n years is the same as an annuity regular for ($n-1$) years plus an initial receipt or payment in beginning of the period. Calculating the present value of annuity due involves two steps.
Step 1: Compute the present value of annuity as if it were a annuity regular for one period short.
Step 2: Add initial cash payment/receipt to the step 1 value.
It is the fund credited for a specified purpose by way of sequence of periodic payments over a time period at a specified interest rate. Interest is compounded at the end of every period. Size of the sinking fund deposit is computed from $\mathrm{A}=\mathrm{P} . \mathrm{A}(\mathrm{n}, \mathrm{i})$ where A is the amount to be saved the periodic payment, in the payment period.

ANNUITY

Leasing is a financial arrangement under which the owner of the asset (lessor) allows the user of the asset

APPLICATIONS:

	(lessee) to use the asset for a defined period of time (lease period) for a consideration (lease rental) payable over a given period of time. This is a kind of taking an asset on rent
Capital Expenditure	Capital expenditure means purchasing an asset (which results in outflows of money) today in anticipation of benefits (cash inflow) which would flow across the life of the investment
Valuation of Bond	A bond is a debt security in which the issuer owes the holder a debt and is obliged to repay the principal and interest. Bonds are generally issued for a fixed term longer than one year.

1. How much interest will be earned on ` 2000 at 6% simple interest for 2 years?
a. 250
b. 240
c. 260
d. 270

ANSWER: b
EXPLAINATION:
Required interest amount is given by
$\mathrm{I}=\mathrm{P} \times \mathrm{i} \times \mathrm{t}$
$=2000 \times \frac{6}{100} \times 2$
$=240$
2. Sonia deposited ` 50,000 in a bank for two years with the interest rate of 5.5% p.a. How much interest would she earn?
a. 550
b. 55000
c. 55
d. 5500

ANSWER: d
EXPLAINATION:
Required interest amount is given by
$\mathrm{I}=\mathrm{P} \times \mathrm{i} \times \mathrm{t}$
$50000 \times \frac{5.5}{100} \times 2$
= 5500
3. Sachin deposited ` $1,00,000$ in his bank for 2 years at simple interest rate of 6%. How much interest would he earn? How much would be the final value of deposit?
a. 11200
b. 112000
c. 124000
d. 12400

ANSWER: b
EXPLAINATION:
i Required interest amount is given by
$\mathrm{I}=\mathrm{P} \times$ it
$100000 \times \frac{6}{100} \times 2$
$=12,000$
ii. Final value of deposit is given by
$=\mathrm{A}=\mathrm{P}+\mathrm{I}$
$=(1,00,000+12,000)$
$=1,12,000$
4. Rohika invested ` 70,000 in a bank at the rate of 6.5% p.a. simple interest rate.

He received ` 85,925 after the end of term. Find out the period for which sum was invested by Rahul.
a. 3.5 years
b. 35 years
c. 0.35 years
d. 36 years

ANSWER: b
EXPLAINATION:
We know A = P (1+it)
i.e. $85925=70000\left(1+\frac{6.5}{100} \times t\right)$
$\frac{85925}{70000}=\frac{100+6.5 t}{100}$
85925 X100
70000
$22.75=6.5 t$
$\mathrm{t}=3.5$
$=$ time $=3.5$ years
5. Kanti Devi deposited some amount in a bank for $7 \frac{1}{2}$ years at the rate of 6% p.a. simple interest. Kanti Devi received ${ }^{1,01,500}$ at the end of the term. Compute initial deposit of Kanti Devi
a. 70000
b. 7000
c. 70
d. 700000

ANSWER: a
EXPLAINATION:
We know, $\mathrm{A}=\mathrm{P}(1+\mathrm{it})$
i.e. $101500=P\left(1+\frac{6}{100} X \frac{15}{2}\right)$
$1,01,500=P\left(\frac{45}{100}\right)$
$P=\frac{101500 \times 100}{145}$
$=70,000$
Initial deposit of Kanti Devi =` 70,000 6. Shila has a sum of 46,875 was lent out at simple interest and at the end of 1 year 8 months the total amount was` 50,000 . Find the rate of interest percent per annum.
a. 0.4%
b. 4%
c. 40%
d. 0.04%

ANSWER: b
EXPLAINATION:
We know $\mathrm{A}=\mathrm{P}(1+\mathrm{it})$
i.e. $\mathbf{5 0 , 0 0 0}=46875\left(1+i X \frac{8}{12}\right)$
$(1.067-1) \times 3 / 5=\mathrm{i}$
$\mathrm{i}=0.04$
rate $=4 \%$
7. What sum of money will produce Heena` 28,600 as an interest in 3 years and 3 months at 2.5% p.a. simple interest?
a. 35200
b. 352000
c. 32500
d. 325000

ANSWER: b
EXPLAINATION:
We know $\mathrm{I}=\mathrm{P} \times \mathrm{i}$
i. e. $28,600=P \times \frac{2.5}{100} \times 3 \frac{3}{12}$
$28600=\frac{2.5}{100} P \times \frac{13}{4}$
$28600=\frac{32.5}{400} p$
$P=\frac{28600 \times 400}{32.5}$
$=352000$
` \(3,52,000\) will produce \(\begin{gathered} \\ 28,600\end{gathered}\) interest in 3 years and 3 months at \(2.5 \%\) p.a. simple interest. 8. In what time Vansh will do` 85,000 amount to ${ }^{`} 1,57,675$ at 4.5% p.a.?
a. 9 years
b. 91 years
c. 19 years
d. 1year

ANSWER: c

EXPLAINATION:
We know
$A=P(1+i t)$
$157675=85000\left(1+\frac{4.5}{100} \times t\right)$
$\frac{157675}{85000}-\frac{100+4.5 t}{100}$
$4.5 t=\left(\frac{157675}{85000} \times 100\right)-100$
$t \frac{85.5}{4.5}=19$
In 19 years `85,000 will amount to` $1,57,675$ at 4.5% p.a. simple interest rate.
9. A sum of money doubles itself in 10 years. The number of years it would treble itself is:
a. 25 years
b. 20 years
c. 15 years
d. 18 years

ANSWER: b

EXPLAINATION:

Let the sum of money invested be P .
Then, Amount $=2 \mathrm{P}$

Visit: Jatindembla.com / kitest.in

$$
\begin{aligned}
& \mathrm{A}=\mathrm{P}(1+\mathrm{it}) \\
& 2 p=p\left(1+r \times \frac{10}{100}\right) \\
& 2=\frac{100+10 r}{100} \\
& 10 \mathrm{r}=100 \\
& \mathrm{R}=10 \% \text { p.a. } \\
& \text { Now, year be } 20 \text { years }
\end{aligned}
$$

10. A company establishes a sinking fund to provide for the payment of 2 , 00,000 debt maturing in 20 years. Contributions to the fund are to be made at the end of every year. Find the amount of each annual deposit if interest is 5\% per annum
a. 6142
b. 6049
c. 6052
d. 6159

ANSWER: b
EXPLAINATION:
Let the annual deposit be a
F.Y. =; [(1 + i)"-1]
$2,00,000=\left[(1+0.05) 2^{\circ}-1\right]$
$10,000=\mathrm{a}(1.6533)$
$\mathrm{a}=\frac{10000}{1.6533}$
a $=6049$
11. A machine worth $4,90,740$ is depreciated at 15% on its opening value each year. When its value would reduce to $2,00,000$:
a. 5years 6 months
b. 5 years 7 months
c. 5 years 5 months
d. None

ANSWER: a
EXPLAINATION:
Amount $=2,00,000$
In case of depreciation $A=P(1-i) "$
2, 00,000-4, 90,740 (1-0.15)"
$0.4075=(0.85)$ ".
$.(0.85) .55=(0.85)$
$\mathrm{n}=5.5$ or 5 years 6 months (approx)
12. A sum amount to 1,331 at a principal of 1,000 at 10% compounded annually. Find the time.
a. 3.31 years
b. 4 years
c. 3 years
d. 2 years

ANSWER: c
EXPLAINATION:
$\mathrm{P}=1,000$
$\mathrm{A}=1,331$
$\mathrm{i}=0.10$
Time $=\mathrm{n}$ years
A=P(1+i)"
$1331=1000(1+0.10)^{\prime \prime}$
1.331 = (1.10)"
$(1.10)^{3}=(1.10) "$
$\therefore \mathrm{n}=3$
Therefore, Rs. 1,000 amounts to 1,331 at 10\% p.a. C. I. in 3 years
13. If a sum triples in 15 years at simple rate of interest, the rate of interest per annum will be
a. 13.0%
b. 13.3%
c. 1.33%
d. 13.66%

ANSWER: b
EXPLAINATION:
Let Principal $\mathrm{P}=\mathrm{P}$
Amount $\mathrm{A}=3 \mathrm{P}$
$\mathrm{T}=15$ years
S.I. $=\mathrm{A}-\mathrm{P}$
$=3 \mathrm{P}-\mathrm{P}$
$=2 \mathrm{P}$
$R=\frac{S . I . \times 100}{P \times R}$
$R=\frac{40}{3}$
$=13.33 \%$
14. In what time will a sum of money double its y at 6.25 simple interest?
a. 5 years
b. 12 years
c. 8 years
d. 16 years

ANSWER: b
EXPLAINATION:
Let Principal (P) $=100$
R=6.25\%
Amount (A) $=200$
$\mathrm{T}=$?
S.I. $=\mathrm{A}-\mathrm{P}$

200-100
$=100$
$T=\frac{S . I . \times 100}{P \times R}$
$T=\frac{100 \times 100}{6.25 \times 100}$
$\mathrm{T}=16$ years
15. What principal will amount to 370 in 6 years at 8% p.a. at simple interest?
a. 210
b. 250
c. 260
d. 25

ANSWER: b
EXPLAINATION:
Given Amount $(A)=370, T=6$ yrs, $R=8 \%$ p.a.
Let $\mathrm{P}=$ x
$S I=\frac{P R T}{100}$
$=\frac{8 \times 6 \times x}{100}$
$48 x$
$\overline{100}$
$\mathrm{A}=\mathrm{P}+\mathrm{S}$.I.
$X+\frac{48 x}{100}$
$370=\frac{148 x}{100}$
$x=\frac{370 \times 100}{148}$
=250
16. 2,000 is invested at annual rate of interest of 10%. What is the amount after two years if compounding is done Quarterly.
a. 2420
b. 2431
c. 2436.80
d. 2440.58

ANSWER: c
EXPLAINATION:
$\mathrm{n}=4 \times 2=8$
$i=\frac{0.1}{4}=0.025$
$\mathrm{A}_{8}=2,000(1+0.025)^{8}$
$=2,000 \times 1.2184$
$={ }^{`} 2,436.80$
17. Determine the compound amount and compound interest on ` 1000 at 6% compounded semi-annually for 6 years. Given that $(1+i)^{n}=1.42576$ for $i=3 \%$ and $\mathrm{n}=12$
a. 425.76
b. 425.67
c. 851.52
d. 851.25

ANSWER: a
EXPLAINATION:
$i=\frac{0.06}{2 .}=0.03$
$\mathrm{n}=6 \times 2=12$
$\mathrm{P}=1000$
Compound Amount $\left(\mathrm{A}_{12}\right)=\mathrm{P}(1+\mathrm{i})^{\mathrm{n}}$
$={ }^{`} 1,000(1+0.03)^{12}$
$=1,000 \times 1.42576$
$={ }^{`} 1,425.76$
Compound Interest =` \((1,425.76-1,000)\) \(={ }^{`} 425.76\)
18. 200 is invested at annual rate of interest of 10%. What is the amount after two

Visit: Jatindembla.com / kitest.in
years if compounding is done monthly.
a. 2420
b. 2431
c. 2436.80
d. 244.058

ANSWER: d
EXPLAINATION:
$\mathrm{A}_{\mathrm{n}}=\mathrm{P}(1+\mathrm{i})^{\mathrm{n}}$
$\mathrm{n}=12 \times 2=24, \mathrm{i}=0.1 / 12=0.00833$
A2 $4=2,00(1+0.00833)^{24}$
$=2,00 \times 1.22029$
= `2,44.058
19. Which is a better investment 3\% per year compounded monthly or 3.2\% per year simple interest? Given that $(1+0.0025)^{\mathbf{1 2}}=1.0304$.
a. 3.04%
b. 3.4%
c. 3.004%
d. 4.03%

ANSWER: a
EXPLAINATION:
$\mathrm{i}=3 / 12=0.25 \%=0.0025$
$\mathrm{n}=12$
$\mathrm{E}=(1+\mathrm{i})^{\mathrm{n}}-1$
$=(1+0.0025)^{12}-1$
$=1.0304-1=0.0304$
=3.04\%
Effective rate of interest (E) being less than 3.2\%, the simple interest 3.2% per year is the better investment.
20. Bichara invest ${ }^{`} 3000$ in a two year investment that pays you 12% per annum. Calculate the future value of the investment.
a. $3,763.20$
b. 376.320
c. 37632.00
d. 37.6320

ANSWER: a EXPLAINATION:
We know $\mathrm{F}=\mathrm{C} . \mathrm{F} .(1+\mathrm{i}) \mathrm{n}$
Where F = Future value
C.F. = Cash flow =` 3,000 \(\mathrm{i}=\) rate of interest \(=0.12\) \(\mathrm{n}=\) time period \(=2\) \(F=` 3,000(1+0.12)^{2}\)
$=` 3,000 \times 1.2544$
= ` \(3,763.20\) 21. Ascertain the compound value and compound interest of an amount of` 75,000 at 8 percent compounded semiannually for 5 years.
a. 30615
b. 36051
c. 36501
d. 36015

ANSWER: d
EXPLAINATION:
Computation of Compound Value and Compound Interest
Semiannual Rate of Interest (i) $=8 / 2=4 \%$
$\mathrm{n}=5 \times 2=10, \quad \mathrm{P}=` 75,000$
Compound Value $=P(1+\mathrm{i}) \mathrm{n}$
$=75,000(1+4 \%) 10$
$=75,000 \times 1.4802$
$={ }^{`} 1,11,015$
Compound Interest $=` 1,11,015-` 75,000=` 36,015$.
22. A doctor is planning to buy an X-Ray machine for his hospital. He has two options. He can either purchase it by making a cash payment of/5 lakhs or ` 6 , 15,000 are to be paid in six equal annual installments. Which option do you suggest to the doctor assuming the rate of return is 12 percent? Present value of annuity of Re. 1 at 12 percent rate of discount for six years is $\mathbf{4 . 1 1 1}$
a. 421378
b. 412378
c. 487321
d. 421387

ANSWER: a
EXPLAINATION:
Option I:
Cash Down Payment Cash down payment =`5, 00,000
Option II:
Annual Installment Basis

Annual installment $=615000 \times \frac{1}{6}=102500$
Present Value of 1 to 6 instalments @12\%
$=1,02,500 \times 4.111$
$=4,21,378$
23. Calculate if` 10,000 is invested at interest rate of 12% per annum, what is the amount after 3 years if the compounding of interest is done?
a. 14049.28
b. 14185.19
c. 14857.61
d. 14094.28

ANSWER: b
EXPLANATION:
$10,000\left[1+\frac{12}{100 \times 2}\right]^{3 \times 2}$
$10,000(1+0.06)^{6}$
$=10,000 \times 1.418519$
$=` 14,185.19$
24. Present Value" is the current value of a "Future Amount". The statement is correct or not?
a. Correct
b. Incorrect
c. Not sure
d. None

ANSWER: a
EXPLAINATION:
Present Value" is the current value of a "Future Amount". It can also be defined as the amount to be invested today (Present Value) at a given rate over specified period to equal the "Future Amount"
24. Simple Interest may be defined as Interest that is calculated as a simple percentage of the restructured amount, is true or false?
a. True
b. False
c. Partial
d. None

ANSWER: b

EXPLAINATION:
Simple Interest may be defined as Interest that is calculated as a simple percentage of the original principal amount.
25. Time value of money indicates that
a. A unit of money obtained today is worth more than a unit of money obtained in future
b. A unit of money obtained today is worth less than a unit of money obtained in future
c. There is no difference in the value of d. None of the above money obtained today and tomorrow
ANSWER: a
EXPLAINATION:
A unit of money obtained today is worth more than a unit of money obtained in future.
26. Time value of money supports the comparison of cash flows recorded at different time period by
a. Discounting all cash flows to a common point of time
b. Compounding all cash flows to a common point of time
c. Using either a or b

ANSWER: c
EXPLAINATION:
Time value of money supports the comparison of cash flows recorded at different time period by Discounting and compounding all cash flows to a common point of time 27. Accounting; financial management \rightarrow liquidity decisions
a. True
b. False
c. Partial
d. None

ANSWER: b
EXPLAINATION:
False
It should be \rightarrow the controller's responsibilities are primarily - in nature, while the treasurer's responsibilities are primarily related to this.
28. Richa borrowed a sum of Rs. 4800 from Ankita as a loan. She promised Ankita that she will pay it back in two equal installments. If the rate of Interest be 5\% per annum compounded annually, find the amount of each installment.
a. 14049.28
b. 2581.46
c. 24857.61
d. 14094.28

ANSWER: b

EXPLANATION:

Given that principal value $=4800$
Rate =5\%
Two equal installments annually $=2$ years

so, we have here two equal installments.
$\mathrm{P}=\mathrm{X} /(1+\mathrm{r} / 100)^{2}+\mathrm{X} /(1+\mathrm{r} / 100)$
$4800=\mathrm{X} /(1+5 / 100)^{2}+\mathrm{X} /(1+5 / 100)$
on simplifying
we have x= Rs. 2581.46
so, the amount of each installment is Rs 2581.46
29. A builder borrows Rs. 2550 to be paid back with compound interest at the rate of 4% per annum by the end of 2 years in two equal yearly installments. How much will each installment be?
a. Rs. 1352
b. Rs. 1377
c. Rs. 1275
d. Rs. 1283

Answer A
Explanation
Amount = Rs 2550
Rate $=4 \%$ per annum
Time $=2$ years
Applying the formula
$\mathrm{P}=\mathrm{X} /(1+\mathrm{r} / 100)^{\mathrm{n}}+$ X/ (1+r/100)
Here we have two equal installments, so
$P=\frac{X}{\left[1+\frac{r}{100}\right]^{2}}+\frac{X}{\left[1+\frac{r}{100}\right]}$
$=2550=\frac{X}{\left[\frac{4}{100}\right]^{2}}+\frac{X}{\left[1+\frac{4}{100}\right]}$
= Rs. 1352
30. A man buys a scooter on making a cash down payment of Rs. 16224 and promises to pay two more yearly installments of equivalent amount in next two years. If the rate of interest is 4% per annum, compounded yearly, the cash value of the scooter, is
a. Rs. 40000
b. Rs. 46824
c. Rs. 46000
d. Rs. 50000

Answer B
Explanation
Concept used in this question is: you need to calculate principal for every year unlike simple interest where principal used to be same for every year.
Let principal (present worth) for first year be P_{1} and that for two years be P_{2}.
$\therefore 16224=P_{1}\left[1+\frac{4}{100}\right]$
$P_{1}=\frac{16224 \times 25}{26}=R s .15600$
Again, $6224=P_{2}\left[1+\frac{4}{100}\right]^{2}$
$P_{2}=\frac{16224 \times 625}{676}=$ Rs. 15000
The total payment will be (cash down payment + installments paid)
Cash value of the scooter
$=$ Rs. $(16224+15600+15000)=$ Rs. 46824 .
31. The population of Chandigarh is increases at a rate of 1% for first year, it decreases at the rate of 4% for the second year and for third year it again increases at the rate of 5%. Then what will be the population after 3 years if present population of Chandigarh is 50000 .
a. Rs. 51006
b. Rs. 50904
c. Rs. 50836
d. Rs. 51125

Answers: B

Explanations

Since the rate growth of population is increasing first and then decreasing for the second year and again it increases for third year, then the population after T years will be
$50,000 \times\left(1+\frac{1}{100}\right)^{1} \times\left(1+\frac{4}{100}\right)^{1} \times\left(1+\frac{5}{100}\right)^{1}=50904$
32. A person bought a new machine. The value of the machine is Rs. 10000. If rate of depreciation is 5% per annum, then what will be the value of the machine after 2 years?
a. Rs. 9025
b. Rs. 9044
c. Rs. 9110
d. Rs. 9080

Answer: A Explanation
Here P = Rs 10000
Rate of depreciation $=5 \%$
$\mathrm{T}=2$ years
Therefore, the value after 2 years will be $=P(1-R / 100)^{t}$
$=10,000\left(1-\frac{5}{12}\right)^{2}=\operatorname{Rs} 9025$.
33. A sum of Rs. 6600 was taken as a loan. This is to be repaid in two equal annual instalments. If the rate of interest be 20% compounded annually then the value of each instalment is
a. Rs. 4320
b. Rs. 4400
c. Rs. 2220
d. Rs. 4420

Answer: A
Explanation
Present worth of Rs. x due T years hence is given by
Present worth $(\mathrm{PW})=\frac{x}{\left(1+\frac{R}{100}\right)^{T}}$
$\frac{x}{\left(1+\frac{20}{100}\right)^{1}}+\frac{x}{\left(1+\frac{20}{100}\right)^{2}}=6600$
$\frac{x}{\left(\frac{6}{5}\right)}+\frac{x}{\left(\frac{6}{5}\right)^{2}}=6600$
$\frac{5 x}{6}+\frac{25 x}{36}=6600$
$\frac{55 x}{36}=6600$.
$x=\frac{6600 \times 36}{55}=4320$
34. Simple interest on a sum at 5% per annum for 2 years is Rs. 60. The compound interest on the same sum for the same period is
a. Rs. 62.4
b. RS. 61.5
c. Rs. 62
d. Rs. 60.5

Answer: B

Explanation

Principal $=\frac{100 \times S I}{R T}=$ Rs. 600
Compound Interest $=\mathrm{P}\left(1+\frac{R}{100}\right)^{T}-\mathrm{P}$
$=600\left(1+\frac{5}{100}\right)^{2}-600$
$=661.5-600=$ Rs. 61.5
35. What will be the amount if a sum of Rs. 10000 is placed at compound interest for 3 years while rate of interest for the first, second and third years is 2,5 and 10 percent, respectively?
a. 11781
b. 11244
c. 11231
d. 11658

Answer: A

Explanation

When rates are different for different years, say $R_{1} \%, R_{2} \%$ and $R_{3} \%$ for $1^{\text {st }}, 2^{\text {nd }}$ and 3 rd year respectively.
$\mathrm{A}=\mathrm{P}\left(1+\frac{R_{1}}{100}\right)\left(1+\frac{R_{2}}{100}\right)\left(1+\frac{R_{3}}{100}\right)$
Amount after 3 years $=10000\left(1+\frac{2}{100}\right)\left(1+\frac{5}{100}\right)\left(1+\frac{10}{100}\right)$
$=10000\left(\frac{102}{100}\right)\left(\frac{105}{100}\right)\left(\frac{110}{100}\right)$
$\frac{102 \times 105 \times 11 \times}{10}=$ Rs. 11781
36. An electronic type writer worth Rs 12000 deprecates @ 10\% P.A. ultimately it was sold for Rs 200.Estimate its effective life during which it was in use?
a. 389
b. 38.9
c. 3.89
d. None

Answer: B
Explanation
$200=12000$ * (90/100) ^n
$1 / 60=(9 / 10)^{\wedge} \mathrm{n}$

Apply log both sides, we get
$\log (1 / 60)=n * \log (9 / 10)$
$-1.7781=n^{*}-0.0457$
$38.9=\mathrm{n}$
Value of type writer becomes 200 after 38.9 years.
37. An annuity with an extended life is classified as
a. extended life
b. perpetuity
c. deferred perpetuity
d. due perpetuity

Answer: B

Explanation:

A perpetuity is a type of annuity that receives an infinite amount of periodic payments. An annuity is a financial instrument that pays consistent periodic payments. As with any annuity, the perpetuity value formula sums the present value of future cash flows.
38. Periodic rate if it is multiplied with per year number of compounding periods is called
a. extrinsic rate of return
b. intrinsic rate of return
c. annual rate of return
d. nominal annual rate

Answer: D

Explanation:

An interest rate is called nominal if the frequency of compounding (e.g. a month) is not identical to the basic time unit in which the nominal rate is quoted (normally a year).
39. A deposit of Rs. 100 is placed into a college fund at the beginning of every month for 10 years. The fund earns 9% annual interest, compounded monthly, and paid at the end of the month. How much is in the account right after the last deposit?
a. 193751.43
b. 11244.43
c. 11231.67
d. 61658.67

Answer: A

Explanation

The value of the initial deposit is Rs. 100, so $a_{1}=100$. A total of 120 monthly deposits are made in the 10 years, so $\mathrm{n}=120$. To find r , divide the annual interest rate by 12 to find
the monthly interest rate and add 1 to represent the new monthly deposit.
$\mathrm{r}=1+\frac{0.09}{12}=1.0075$
Substitute $a_{1}=100, r=1.0075$
, and $\mathrm{n}=120$ into the formula for the sum of the first n terms of a geometric series, and simplify to find the value of the annuity.
$S_{120}=\frac{100\left(1-1.0075^{120}\right)}{1-1.0075}$
= 19351.73
40. Relationship between annual nominal rate of interest and annual effective rate of interest, if frequency of compounding is greater than one:
a. Effective rate > Nominal rate
b. Effective rate < Nominal rate
c. Effective rate $=$ Nominal rate
d. None of the above

Answer: a

Explanation

Effective rate > Nominal rate

CHEPTER 5

BASIC CONCEPTS OF PERMUTATIONS AND COMBINATIONS

Fundamental principles of counting

Factorial

Multiplication Rule

Addition Rule

If certain thing may be done in ' m ' different ways and when it has been done, a second thing can be done in ' n ' different ways then total number of ways of doing both things simultaneously $=m \times n$.
It there are two alternative jobs which can be done in ' m ' ways and in ' n ' ways respectively then either of two jobs can be done in ($\mathrm{m}+\mathrm{n}$) ways.

The factorial n, written as n ! or n, represents the product of all integers from 1 to n both inclusive. To make the notation meaningful, when $\mathrm{n}=0$, we define o ! or $\mathrm{o}=1$.

Permutations The ways of arranging or selecting smaller or equal number of persons or objects from a group of persons or collection of objects with due regard being paid to the order of arrangement or selection, are called permutations.
The number of permutations of n things chosen r at a time is given by

$$
{ }^{n} P_{r}=n(n-1)(n-2) \ldots(n-r+1)
$$

Where the product has exactly r factors.

Circular

Permutations
(a) n ordinary permutations equal one circular permutation.

Hence there are nP_{n} / n ways in which all the n things can be arranged in a circle. This equals ($n-1$)!.
(b) The number of necklaces formed with n beads of different colours

- Number of permutations of n distinct objects taken r at a time when a particular object is not taken in any arrangement is $n-1 p_{r}$.
- Number of permutations of r objects out of n distinct objects when a particular object is always included in any arrangement
Combinations
The number of ways in which smaller or equal number of things are arranged or selected from a collection of things where the order of selection or arrangement is not important, are called combinations.

$$
\begin{aligned}
& { }^{n_{C_{r}}}=n!/ r!(n-r)! \\
& { }^{n_{C_{r}}}=n_{C_{n}-r} \\
& { }^{n_{C_{0}}}=n!/\{0!(n-0)!\}=n!/ n!=\mathbf{1} . \\
& { }^{n_{C_{n}}}=n!/\{n!(n-n)!\}=n!/ n!.0!=\mathbf{1} .
\end{aligned}
$$

$\mathrm{n}_{\mathrm{C}_{\mathrm{r}}}$ has a meaning only when r and n are integers 0 回 r n

- ${ }^{n+1} C_{r}={ }^{n_{C}}+{ }^{n_{C}}{ }_{r-1}$
- $n P_{r}=n-1 P_{r}+r^{n-1} P_{r-}$

Permutations Permutations when some of the things are alike, taken all at a time Permutations when each thing may be repeated once, twice,...upto r times in any arrangement = n!.
The total number of ways in which it is possible to form groups by taking some or all of n things ($2^{n}-1$).
The total, number of ways in which it is possible to make groups by taking some or all out of $n\left(=n_{1}+n_{2}+n_{3}+\ldots\right)$ things, where n_{1} things are alike of one kind and so on, is given by
$\left\{\left(n_{1}+1\right)\left(n_{2}+1\right)\left(n_{3}+1\right) \ldots\right\}-1$
The combinations of selecting r_{1} things from a set having n_{1}
objects and r_{2} things from a set having n_{2} objects where
combination of r_{1} things, r_{2} things are independent

1. An examination paper consists of 12 questions divided into parts A and B. Part A contains 7 .questions and part B contains 5 questions. A candidate is required to attempt 8 questions selecting at least from each part. In how many maximum ways can the candidate select the questions?
a. 35
b. 175
c. 210
d. 420

ANSWER: d
EXPLAINATION:

The candidate can select 8 Questions.by selecting at last" three from each part in the following ways:

3 questions from part A and 5 questions from part $B \quad={ }^{7} \mathrm{C}_{3} \mathrm{X}{ }^{5} \mathrm{C} 5=35$ ways
4 questions from part A and part B each
$.={ }^{7} \mathrm{C}_{4} \times{ }^{5} \mathrm{C}_{4}=175$ ways..
Questions from part A and 3 questions from part $\mathrm{B} \cdot={ }^{7} \mathrm{C} 5 \mathrm{x}^{5} \mathrm{C} 3=210$ ways.
Hence, the total number of way\$ in which the candidate can select the question will be $=35+175+210=420$ ways
2. Code word is to consist of two English alphabets followed by two distinct numbers between 1 and 9 . How many such code words are there?
a. $6,15,800$
b. 46,800
c. $7,19,500$
d. $4,10,800$

ANSWER: b

EXPLAINATION:

The number of ways of filling the first two places with English alphabets= $26 \times 25=$ 650

The number of ways of filling the last two places with distinct numbers $=9 \times 8=72$ The number of code words that can be formed are $=650 \times 72$
$=46800$
3. A boy has 3 library tickets and 8 books of his interest in the library of these 8, he does not want to borrow Mathematics part-II unless Mathematics part-I is also borrowed? In how many ways can he choose the three books to be borrowed?
a. 41
b. 51
c. 61
d. 71

ANSWER: a

EXPLAINATION:

There are two cases possible
CASE 1: When Mathematics Part - II is borrowed (i.e. it means Mathematics Part-I has also been borrowed
Number of ways $={ }^{6} \mathrm{C} 1=6$ ways
CASE 2: When Mathematics part-II is not borrowed (i.e. 3 books are to be selected out of 7)
Number of ways $={ }^{7} \mathrm{C} 3=35$ ways
Therefore, total number ways
$35+6=41$ ways
4. Find 5! , 4! And 6!
a. 720
b. 120
c. 380
d. 620

ANSWER: a

EXPLAINATION:
$5!=5 \times 4 \times 3 \times 2 \times 1=120 ; 4!=4 \times 3 \times 2 \times 1=24 ; 6!=6 \times 5 \times 4 \times 3 \times 2 \times 1=720$
5.Find 9! / 6! ; 10! / 7!
a. 630,504
b. 504,720
c. 920,630
d. 121,720

ANSWER: b
EXPLAINATION:
$\frac{9!}{6!}=\frac{9 \times 8 \times 7 \times 6!}{6!}=\frac{9 \times 8 \times 7}{7!}=\frac{504}{7!} ; \frac{10!}{7!}=\frac{10 \times 9 \times 8 \times 7}{7!}$
$10 \times 9 \times 8=720$
6. Find x if $1 / 9!+1 / 10!=x / 11$!
a. 121
b. 112
c. 211
d. 111

ANSWER: a

EXPLAINATION:
$1 / 9!(1+1 / 10)=x / 11 \times 10 \times 9$! or, $11 / 10=x / 11 \times 10$ i.e., $x=121$
7. Find \mathbf{n} if $\mathbf{n}+\mathbf{1 = 3 0}$
a. $\mathrm{n}=30$
b. $\mathrm{n}=-6$
c. $\mathrm{n}=31$
d. $\mathrm{n}=29$

ANSWER: d
EXPLAINATION:
$\mathrm{n}=30-1$
$\mathrm{n}=29$
8. Evaluate each of ${ }^{5} P_{3},{ }^{10} P_{2},{ }^{11} P_{5}$.
a. 540
b. 55440
c. 5440
d. 5540

ANSWER: b
EXPLAINATION:

$$
\begin{aligned}
& { }^{5} P_{3}=5 \times 4 \times(5-3+1)=5 \times 4 \times 3=60 \\
& 10 P_{2}=10 \times \ldots \times(10-2+1)=10 \times 9=90, \\
& 11 P_{5}=11!/(11-5)!=11 \times 10 \times 9 \times 8 \times 7 \times 6!/ 6!=11 \times 10 \times 9 \times 8 \times 7==55440
\end{aligned}
$$

9. How many three letters words can be formed using the letters of the word SQUARE?
a. 110
b. 12
c. 120
d. 210

ANSWER: c EXPLAINATION:
Since the word 'SQUARE' consists of 6 different letters, the number of permutations of choosing 3 letters out of six equals ${ }^{6} \mathrm{P}_{3}=6 \times 5 \times 4=120$
10. In how many different ways can five persons stand in a line for a group photograph?
a. 110 ways
b. 120 ways
c. 130 ways
d. 20ways

ANSWER: b

EXPLAINATION:

Here we know that the order is important. Hence, this is the number of permutations of five things taken all at a time. Therefore, this equals
${ }^{5} P_{5}=5!=5 \times 4 \times 3 \times 2 \times 1=120$ ways.
11. How many three letters words can be formed using the letters of the word HEXAGON?
a. 110
b. 12
c. 120
d. 210

ANSWER: d
EXPLAINATION:
Since the word 'HEXAGON' contains 7 different letters, the number of permutations is ${ }^{7} P_{3}=7 \times 6 \times 5=210$.
12. First, second and third prizes are to be awarded at an engineering fair in which 13 exhibits have been entered. In how many different ways can the prizes be awarded?
a. 1110 ways
b. 1320 ways
c. 1830ways
d. 1716ways

ANSWER: d EXPLAINATION:

Here, order of selection is important and repetitions are not meaningful as no exhibit can receive more than one prize. Hence, the answer is the number of permutations of 13 things taken three at a time. Therefore, we find ${ }^{13} \mathrm{P}_{3}=13!/ 10!=13 \times 12 \times 11=1,716$ ways
13. In how many different ways can 3 students be associated with 4 chartered accountants, assuming that each chartered accountant can take at most one student?
a. 10
b. 12
c. 20
d. 24

ANSWER: d

EXPLAINATION:

This equals the number of permutations of choosing 3 persons out of 4.Hence, the answer is ${ }^{4} P_{3}=4 \times 3 \times 2=24$.
14. Compute the sum of 4 digit numbers which can be formed with the four digits $1,3,5,7$, if each digit is used only once in each arrangement.
a. $1,06,656$
b. $1,46,800$
c. $7,19,500$
d. $4,10,800$

ANSWER: a EXPLAINATION:

The number of arrangements of 4 different digits taken 4 at a time is given by ${ }^{4} P_{4}=$ $4!=24$. All the four digits will occur equal number of times at each of the positions, namely ones, tens, hundreds, thousands.
Thus, each digit will occur $24 / 4=6$ times in each of the positions. The sum of digits in one's position will be $6 \times(1+3+5+7)=96$. Similar is the case in ten's, hundred's and thousand's places. Therefore, the sum will be $96+96 \times 10+96 \times 100+96 \times 1000=$ 1,06,656.
15. In how many different ways can a club with 10 members select a President, Secretary and Treasurer, if no member can hold two offices and each member is eligible for any office?
a. 720
b. 780
c. 960
d. 630

ANSWER: a
EXPLAINATION:
The answer is the number of permutations of 10 persons chosen three at a time. Therefore, it is $10 \mathrm{p}_{3}=10 \times 9 \times 8=720$
16. When Jiana arrives in New York, she has eight shops to see, but he has time only to visit six of them. In how many different ways can he arrange her schedule in New York?
a. 20,160
b. 2016
c. 26105
d. 21560

ANSWER: a
EXPLAINATION:
She can arrange his schedule in ${ }^{8} P_{6}=8 \times 7 \times 6 \times 5 \times 4 \times 3=20,160$ ways
17. When Dr. Ramanujan arrives in his dispensary, he finds 12 patients waiting to see him. If he can see only one patient at a time, find the number of ways, he can schedule his patients if they all want their turn.
a. $479,001,600$ ways
b. $79,833,000$ ways
c. $79,333,600$ ways
d. $78,833,600$ ways

ANSWER: d
EXPLAINATION:
There are $12-3=9$ patients. They can be seen $12 \mathrm{P}_{9}=79,833,600$ ways.
18. How many arrangements can be made out of the letters of the word `DRAUGHT', the vowels never beings separated?
a. 1440
b. 720
c. 740
d. 750

ANSWER: a
EXPLAINATION:
The word `DRAUGHT' consists of 7 letters of which 5 are consonants and two are vowels. In the arrangement we are to take all the 7 letters but the restriction is that the two vowels should not be separated.
We can view the two vowels as one letter. The two vowels A and U in this one letter can be arranged in $2!=2$ ways. (i) AU or (ii) UA. Further, we can arrange the six letters: 5 consonants and one letter compound letter consisting of two vowels. The total number of ways of arranging them is ${ }^{6} P_{6}=6!=720$ ways.
Hence, by the fundamental principle, the total number of arrangements of the letters of the word DRAUGHT, the vowels never being separated $=2 \times 720=1440$ ways.
19. A code word is to consist of two English alphabets followed by two distinct numbers between 1 and 9 . How many such code words are there?
a. $6,15,800$
b. 46,800
c. $7,19,500$
d. $4,10,800$

ANSWER: b
 EXPLAINATION:

The number of ways of filling the first two places with English alphabets $=26 \times 25=$ 650
The number of ways of filling the last two places with distinct numbers $=9 \times 8=72$ The number of code words that can be formed are $=650 \times 72$
$=46,800$
20. A boy has 3 library tickets and 8 books of his interest in the library of these 8, he does not want to borrow Mathematics part-II unless Mathematics part-I is also borrowed? In how many ways can he choose the three books to be borrowed?
a. 61
b. 51
c. 41
d. 31

ANSWER: c
EXPLAINATION:
When Mathematics part-II is not borrowed (i.e. 3 books are to be selected out of 7)
Number of ways $={ }^{7} \mathrm{C} 3=35$ ways
Therefore, total number of ways
$35+6=41$ ways.
21. An examination paper with 10 questions consists of 6 questions in mathematics and 4 questions in statistic part. At least one question from each part is to be attempted in how many ways can this be done?
a. 1024
b. 945
c. 1000
d. 1022

ANSWER: b
 EXPLAINATION:

Total question $=10$
No. of Mathematics questions $=6$ No. of Statistics questions $=4$.
No. of ways.at least one question of Mathematics
$=\left(2^{6} 1\right)=(64-1)=63$
No. of ways at least one question of statistics
$=\cdot\left(2^{4} 1\right)=(16-1)=15$
Total no. of ways $=63 \times 15=945$
22. A student has three books on computer, three books on Economics and five books on Commerce. If these books are to be arranged, subject wise, then these can be placed on a shelf in the number of ways:
a. 25290
b. 25092
c. 4320
d. 25920

ANSWER: d
EXPLAINATION:
No. of ways $=3$! 3! 5! 3!
$=6 \times 6 \times 120 \times 6$
$=216$ X 120
. $=.25,920$
23. A person has ten friends of whom six are relatives. If h invites five guests 'SUCH' that three of them are his relatives, then the tot number of ways in which he can invite them are:
a. 30
b. 60
c. 120
d. 75

ANSWER: c
EXPLAINATION:
Total Friend:: 10
No. of Relative $=6$
No. of Friend = 4
No. of ways to invite five guest such that tl:lree of them are his relatives.
= 6C3 X 4C2
$=6 \mathrm{x} 5 \mathrm{x} 4 \mathrm{x} 4 \mathrm{x} 3$
$3 \times 2 \times 12 x 1$
$=20 \mathrm{X} 6$
$=120$
24. Six seats of articled clerks are vacant in a 'Chartered Accountant Firm'.

How many different batches of candidates can be chosen out of ten candidates?
a. 216
b. 210
c. 220
d. 230

ANSWER: b
EXPLAINATION:
The number of ways in which 6 articled clerks can be selected out of 10 caildidat s $=10$ C $6=210$ ways.
25. Six persons A, B, C, D, E and Fare to be seated at a circular table. In how many ways can this be done, if A must always have either B or C on his right and B must always have either C or D on his right?
a. 3
b. 6
c. 12
d. 18

ANSWER: d
EXPLAINATION:
Using the given restrictions, we must have AB or AC and BC or BD ..
Therefore, we have the following alternatives
ABC, D, E, F which gives ($4-1$)! or 31 ways.
ABD, C, E, F which gives ($4-1$)!'or 31 ways.
$\mathrm{AC}, \mathrm{Sb}, \mathrm{E}, \mathrm{F}$ which gives (4-1) or 31 ways.
Hence, the total number of ways are
$=3!+3!+3$!
$=6+6+6=18$ ways
26. Fundamental principles of counting is:
a. $\mathrm{m} \times \mathrm{n}, \mathrm{m}-\mathrm{n}$
b. $\mathrm{m} \times \mathrm{n}, \mathrm{m}+\mathrm{n}$
c. $\mathrm{m}+\mathrm{n}, \mathrm{m} \div \mathrm{n}$
d. $\mathrm{m} \div \mathrm{n}, \mathrm{m}-\mathrm{n}$

ANSWER: b

EXPLAINATION:
Fundamental principles of counting
a. Multiplication Rule : m $\times n$
b. Addition Rule: $\mathrm{m}+\mathrm{n}$ If ${ }^{n} C_{r}={ }^{n} C_{r-1}$ and ${ }^{n} P_{r}={ }^{n} P_{r+1}$, then the value of n is $\mathbf{2 7 .}$
a. 3
b. 4
c. 2
d. 5

ANSWER: A

EXPLAINATION:

The conditions provided that $n-r=r-1 \triangleright r=\frac{n+1}{2}$. So if we put $n=3$, then $r=2$ satisfies the conditions.
28. ${ }^{n} P_{r} \div{ }^{n} C_{r}=$
a. n !
b. $(\mathrm{n}-\mathrm{r})$!
c. 1 r !
d. r !

ANSWER: D
EXPLAINATION:

${ }^{n} P_{r} \div{ }^{n} C_{r}=$

29. The number of divisors of 9600 including 1 and 9600 are
a. 60
b. 58
c. 48
d. 46

ANSWER: C
EXPLAINATION:
Since $9600=2^{7} \times 3 \times 5^{2}$
Hence, number of divisors
$=(7+1)(1+1)(2+1)=48$
30. The number of ordered triplets of positive integers which are solutions of the equation $x+y+z=100$ is
a. 6005
b. 4851
c. 5081
d. None of these

ANSWER: B
EXPLAINATION:

The number of triplets of positive integers which are solutions of
$x+y+z=100=$ coefficient of x^{100} in $\left(x+x^{2}+x^{3}+\ldots .\right)^{3}$
$=$ coefficient of x^{100} in $x^{3}(1-x)^{-3} \mid=$ coefficient of x^{100} in
$x^{3}\left(1+3 x+6 x^{2}+\ldots+\frac{(n+1)(n+2)}{2} x^{n}+\ldots.\right)$
$=\frac{(97+1)(97+2)}{2}=49 \times 99=4851$
31. If ${ }^{n} P_{4}=24 .{ }^{n} C_{5}$, then the value of n is
a. 10
b. 15
c. 9
d. 5

ANSWER: C
EXPLAINATION:

$$
\begin{aligned}
& \text { Given, }{ }^{n} P_{4}=24 .{ }^{n} C_{5} \text {. Therefore } n(n-1)(n-2)(n-3) \\
& =24 \times \frac{n(n-1)(n-2)(n-3)(n-4)}{5 \cdot 4.3 .2 .1} \Rightarrow 1=\frac{(n-4)}{5} \\
& n-4=5
\end{aligned}
$$

32. The number of way to sit 3 men and 2 women in a bus such that total number of sitted men and women on each side is 3
5!
$6!\times 6_{P_{5}}$
ANSWER: B
EXPLAINATION:
3 men and 2 women equal to 5 . A group of 5 members make 5 ! Permutation with each other. The number of ways to sit 5 members $=5!6$ Places are filled by 5 members by $6_{C_{5}}$ ways. The total number of ways to sit 5 members on 6 seats of a bus $=6_{C_{5}} \times 5$!
33. If $P(n, r)=1680$ and $C(n, r)=70$, then $69 n+r!=$
a. 128
b. 576
c. 256
d. 625

ANSWER: B

EXPLAINATION:
$P(n, r)=1680 \frac{n!}{(n-r)!}=1680 ?$..(i) $C(n, r)=70$ p
$\frac{n!}{r!(n-r)!}=70 ? \ldots$ (ii) $\frac{1680}{r!}=70$. [From (i)
$r!=\frac{1680}{70}=24 \triangleright r=4 \because P(n, 4)=1680$
$n(n-1)(n-2)(n-3)=1680 \triangleright n=8$
$8 \times 7 \times 6 \times 5=1680$ Now $69 n+r!=69 \times 8+4!=552+24$
$=576$.
34. Number of divisors of $n=38808$ (except 1 and n) is
a. 70
b. 68
c. 72
d. 74

ANSWER: A
EXPLAINATION:
Since, $38808=8 \times 4851$
$8 \times 9 \times 539=8 \times 9 \times 7 \times 7 \times 11=2^{3} \times 3^{2} \times 7^{2} \times 11$
Number of divisors $=(3+1)(2+1)(2+1)(1+1)=72$. This includes two divisors 1 and 38808. Hence, the required number of divisors $=72-2=70$.
35. If eleven members of a committee sit at a round table so that the President and Secretary always sit together, then the number of arrangements is
a. $10!\times 2$
b. 10 !
c. $9!\times 2$
d. None of these

ANSWER: B

EXPLAINATION:

Required number of ways $9!\times 2$ \{by fundamental property of circular permutation $\}$.
36. In how many ways can 5 keys be put in a ring
a. $\frac{1}{2} 4$!
b. $\frac{1}{2} 5$!
c. 4 !
d. 5!

ANSWER: A

EXPLAINATION:

Mark the keys as 1,2,3,4,5
Assume the ring as a circle with 5 position.
First position can be taken by any one of them.
The 2nd position has 4 possibility, 3rd has 3 , 4th has 2, 5th has 1
Totally, $4 * 3 * 2 * 1=24$.
37. A question paper is divided into two parts A and B and each part contains 5 questions. The number of ways in which a candidate can answer 6 questions selecting at least two questions from each part is
a. 80
b. 100
c. 200
d. None of these

ANSWER: D
EXPLAINATION:
The number of ways that the candidate may select 2 questions from A and 4 from $B=5_{C_{2}} \times 5_{C_{4}} 3$ questions from A and 3 from $B=5_{C_{3}} \times 5_{C_{3}} 4$ questions from A and 2 from $B=5_{C_{4}} \times 5_{C_{2}}$. Hence total number of ways are 200 .
38. How many numbers lying between 10 and 1000 can be formed from the digits $1,2,3,4,5,6,7,8,9$ (repetition is allowed)
a. 1024
b. 810
c. 2346
d. None of these

ANSWER: B

EXPLAINATION:

The total number between 10 and 1000 are 989 but we have to form the numbers by using numerals $1,2, \ldots \ldots . .9$, i.e. 0 is not occurring so the numbers containing any? 0 ? would be excluded i.e., Required number of ways

$=989-(9+18+19 \times 8)=810$. Aliter: Between 10 and 1000 , the numbers are of 2 digits and 3 digits. Since repetition is allowed, so each digit can be filled in 9 ways.
Therefore number of 2 digit numbers $=9 \times 9=81$ and number of 3 digit numbers $9 \times 9 \times 9=729$. Hence total ways $=81+729=810$
39. The number of ways in which the letters of the word TRIANGLE can be arranged such that two vowels do not occur together is
a. 1200
b. 2400
c. 14400
d. 14400

ANSWER: C

EXPLAINATION:
$\cdot T \cdot R \cdot N \cdot G \cdot L$ Three vowels can be arrange at 6 places in $6_{P_{3}}=120$ ways. Hence the required number of arrangements $=120 \times 5!=14400$
40. There are four balls of different colours and four boxes of colours same as those of the balls. The number of ways in which the balls, one in each box, could be placed such that a ball does not go to box of its own colour is
a. 8
b. 7
c. 9
d. None of these

ANSWER: C
EXPLAINATION:
Since number of derangements in such a problems is given by
$n!\left\{1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!} \cdots \cdots \cdots(-1)^{n} \frac{1}{n!}\right\}$
\therefore Number of derangements are $=4!\left\{\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}\right\}$
$=12-4+1=9$
41. If $56_{P_{r+6}}: 54_{P_{r+3}}=30800: 1$, then $r=$
a. 31
b. 41
c. 51
d. None of these

ANSWER: B
EXPLAINATION:
$\frac{56!}{(50-r)!} \times \frac{(51-r)!}{54!}$
30800
$\frac{30800}{1}=56 \times 55 \times(51-r)=30800$
$r=41$
42. The number of ways of dividing 52 cards amongst four players so that three players have 17 cards each and the fourth player just one card, is
a. $\frac{52!}{(17!)^{3}}$
b. $\frac{52!}{(17!)^{2}}$
c. 52 !
d. none

ANSWER: A
EXPLAINATION:
For the first set number of ways $52_{c_{17}}$. Now out of 35 cards left 17 cards can be put for second in $35_{C_{17}}$ ways similarly for 3 rd in $18_{C_{17}}$. One card for the last set can be put in only one way. Therefore the required number of ways for the proper distribution $=\frac{52!}{35!17!} \times \frac{35!}{18!17!} \times \frac{18!}{17!1!} \times 1!=\frac{52!}{(17!)^{3}}$
43. m men and n women are to be seated in a row so that no two women sit together. If $m>n$, then the number of ways in which they can be seated is
a. $\frac{m!(m+1)!}{(m-n+1)!}$
b. $\frac{m!(m-1)!}{(m-n+1)!}$
c. $\frac{(m-1)!(m+1)!}{(m-n+1)!}$
d. none

ANSWER: A
EXPLAINATION:
First arrange m men, in a row in m ! ways. Since $n<m$ and no two women can sit together, in any one of the m ! arrangement, there are places in which n women can be arranged in $m+1_{P_{n}}=\frac{m!.(m+1)!}{\{(m+1)-n\}!}=\frac{m!(m+1)!}{(m-n+1)!}$
44. The number of times the digit 3 will be written when listing the integers from 1 to 1000 is
a. 369
b. 300
c. 271
d. 302

ANSWER: B

EXPLAINATION:

To find the number of times 3 occurs in listing the integer from 1 to 999. (Since 3 does not occur in 1000). Any number between 1 to 999 is a 3 digit number xyz where the digit $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are any digits from 0 to 9 . Now, we first count the numbers in which 3 occurs once only. Since 3 can occur at one place in $3_{C_{1}}$ ways, there are $3_{C_{1}} .(9 \times 9)+3 \times 1=300$
45. Ten persons, amongst whom are A, B and C to speak at a function. The number of ways in which it can be done if A wants to speak before B and B wants to speak before C is
a. $\frac{10!}{6}$
b. $3!7!$
c. $10_{P_{3}} .7$!
d. None of these

ANSWER: A

EXPLAINATION:

For A, B, C to speak in order of alphabets, 3 places out of 10 may be chosen first in $1.3_{C_{2}=3}$ ways. The remaining 7 persons can speak in 7 ! ways. Hence, the number of ways in which all the 10 person can speak is $10 C_{C_{3}} 7!=\frac{10!}{3!}=\frac{10!}{6}$
46. How many words can be made out from the letters of the word INDEPENDENCE, in which vowels always come together
a. 16800
b. 16630
c. 1663200
d. None of these

ANSWER: A

EXPLAINATION:

Required number of ways are $\frac{8!}{2!3!} \times \frac{5!}{4!}=16800$. \{Since IEEEENDPNDNC $=8$ letters $\}$.
47. The exponent of 3 in 100 ! is
a. 33
b. 44
c. 48
d. 52

ANSWER: C

EXPLAINATION:

Let $\mathrm{E}(\mathrm{n})$ denote the exponent of 3 in n . The greatest integer less than 100 divisible by 3 is 99 . We have

```
E(100!)=E(1 . 2 . 3 . 4....99 . 100)
=E(3.6.9....99)
=E[(3 . 1)(3 . 2)(3 . 3)........(3 . 33)]
=33+E(1 . 2 . 3......33) Now
E(1.2.3.....33)=E(3.6.9...33)
=E[(3 . 1)(3.2)(3 . 3)......(3 . 11)]
=11+E(1.2.3 ....11) and
E(1.2.3 ....11)=E(3 . 6 . 9)=E[(3 . 1)(3.2)(3.3)]
3+E(1.2 . 3)=3+1=4 Thus
E(100!)=33+11+4=48
```

48. A dictionary is printed consisting of 7 lettered words only that can be made with a letter of the word CRICKET. If the words are printed at the alphabetical order, as in an ordinary dictionary, then the number of word before the word CRICKET is
530 480
531 481
ANSWER: A
EXPLAINATION:
The number of words before the word CRICKET is $4 \times 5!+2 \times 4!+2!=530$
49. The number of positive integral solutions of $a b c=30$ is
a. 30
b. 27
c. 8
d. None of these

ANSWER: B
EXPLAINATION:
We have, $30=2 \times 3 \times 5$. So, 2 can be assigned to either a or b or ci.e. 2 can be assigned in 3 ways. Similarly, each of 3 and 5 can be assigned in 3 ways. Thus, the no. of solutions are $3 \times 3 \times 3=27$.
50. The number of different words that can be formed out of the letters of the word 'MORADABAD' taken four at a time is
a. 500
b. 600

Prof. Jatin Dembla

7415315942
c. 620
d. 626

ANSWER: D

EXPLAINATION:

In MORADABAD, we have 6 different types of letters $3 A^{S}, 2 D^{S}$ and rest four different. We have to form words of 4 letters. (i) All different $6_{P_{4}}=6 \times 5 \times 4 \times 3=360$. (ii) Two different two alike $2_{C_{1}} \times 5_{C_{2}} \times \frac{4!}{2!}=240$ (iii) 3 alike 1 different $1_{C_{1}} \times 5_{C_{1}} \times \frac{4!}{2!}=20$ (iv) 2 alike of one type and 2 alike of other type $2_{C_{2}} \times \frac{4!}{3!}=6$ Therefore total number of words $=360+240+20+6=626$

CHEPTER 6

SEQUENCE AND SERIES-ARITHMETIC ANDGEOMETRICPROGRESSIONS

An ordered collection of numbers $a_{1}, a_{2}, a_{3}, a_{4}$, a_{n}, is a sequence if according to some definite rule or law, there is a definite value of a_{n}, called the term or element of the sequence, corresponding to any value of the natural number n
An expression of the form $a_{1}+a_{2}+a_{3}+\ldots . .+a_{n}+$ which is the sum of the elements of the sequenece $\left\{a_{n}\right\}$ is called a series. If the series contains a
finite number of elements, it is called a finite series, otherwise called an infinite series.
A sequence $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots . . ., \mathrm{a}_{\mathrm{n}}$ is called an Arithmetic Progression
(A.P.) when $\mathbf{a}_{2}-\mathbf{a}_{1}=\mathbf{a}_{3}-\mathbf{a}_{2}=\ldots . .=\mathbf{a}_{\mathbf{n}}-\mathbf{a}_{\mathbf{n}} \mathbf{1}$. That means A. P. is a sequence in which each term is obtained by adding a constant d to the preceding term. This constant ' d ' is called the common difference of the A.P. If 3 numbers a, b, c are in A.P., we say $b-a=c-b$ or $a+c$ $=2 b$; b is called the arithmetic mean between a and c.
$n^{\text {th }}$ term $\left(t_{n}\right)=a+(n-1)$
Where $\mathrm{a}=$ First Term
$\mathrm{D}=$ Common difference $=\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{n}}-1$
Sum of 1st n natural or counting numbers

Sum of \boldsymbol{n} terms of AP	$s=\frac{n}{2}[2 a+(n-1) d]$
Sum of the first n terms	Sum of 1 st n natural or counting numbers $S=n(n+1) / 2$
Sum of 1st n odd number	$\mathrm{S}=\mathrm{n}^{2}$
Sum of the Squares of the first, n natural numbers	$\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$

Geometric
Progression (G.P)

If in a sequence of terms each term is constant multiple of the proceeding term, then the sequence is called a Geometric Progression (G.P). The constant multiplier is called the common ratio
$\frac{\text { Any term }}{\text { Preceding term }}=\frac{t_{n}}{t_{n-1}}$
$=\operatorname{ar}^{\mathrm{n}-1} / \operatorname{ar}^{\mathrm{n}-2}=\mathrm{r}$

$\begin{array}{l}\text { Sum of first } \mathrm{n} \\ \text { terms of a G P }\end{array}$	$\mathrm{S}_{\mathrm{n}}=\mathbf{a}\left(\mathbf{1}-\mathbf{r}^{\mathbf{n}}\right) /(\mathbf{1}-\mathbf{r})$ when $\mathbf{r}<\mathbf{1}$

Visit: Jatindembla.com / kitest.in

$$
S_{n}=a\left(r^{n}-1\right) /(r-1) \text { when } r>1
$$

Sum of infinite $\mathrm{S} \infty=\mathrm{a} /(1-\mathrm{r})$ where $0<\mathrm{r}<1$

Geometric mean
A.M. of $\mathrm{a} \& \mathrm{~b}$ is $=(\mathrm{a}+\mathrm{b}) / 2$

If a, b, c are in G.P we get $b / a=c / b=>b^{2}=a c, b$ is called the geometric mean between a and c

1. Find the 7th term of the A.P. 8, 5, 2, $-1,-4, \ldots .$.
a. 10
b. -10
c. 8
d. -8

ANSWER: b

EXPLAINATION:

Here $\mathrm{a}=8, \mathrm{~d}=5-8=-3$
Now $\mathrm{t}_{7}=8+(7-1) \mathrm{d}$
$=8+(7-1)(-3)$
$=8+6(-3)$
$=8-18$
$=-10$
2. If $5^{\text {th }}$ and $12^{\text {th }}$ terms of an A.P. are 14 and 35 respectively, find the A.P.
a. $2,5,8,11,14$,
b. $2,3,8,11,12$,
c. $2,3,4,11,14$,
d. $2,5,8,1,4$,

ANSWER: a
EXPLAINATION:
Let a be the first term \& d be the common difference of A.P.
$\mathrm{t} 5=\mathrm{a}+4 \mathrm{~d}=14$
$\mathrm{t}_{1} 2=\mathrm{a}+11 \mathrm{~d}=35$
On solving the above two equations,
$7 \mathrm{~d}=21$ =i.e., $\mathrm{d}=3$
and $\mathrm{a}=14-(4 \times 3)=14-12=2$
Hence, the required A.P. is $2,5,8,11,14, \ldots \ldots \ldots . .$.
3. Divide 69 into three parts which are in A.P. and are such that the product of the first two parts is 483.
a. $21,23,25$.
b. $21,22,23$.
c. $22,23,25$.
d. $21,22,25$.

ANSWER: a
EXPLAINATION:
Given that the three parts are in A.P., let the three parts which are in A.P. be $\mathrm{a}-\mathrm{d}, \mathrm{a}, \mathrm{a}+$ d.........

Thus $\mathrm{a}-\mathrm{d}+\mathrm{a}+\mathrm{a}+\mathrm{d}=69$
Or $3 \mathrm{a}=69$
or $\quad a=23$
So the three parts are $23-\mathrm{d}, 23,23+\mathrm{d}$
Since the product of first two parts is 483, therefore, we have $23(23-d)=483$
Or $23-\mathrm{d}=483 / 23=21$
or $d=23-21=2$
Hence, the three parts which are in A.P. are $23-2=21,23,23+2=25$
Hence the three parts are $21,23,25$.
4. Find the arithmetic mean between 4 and 10 .
a. 5
b. 7
c. 10
d. 3

ANSWER: b
EXPLAINATION:
We know that the A.M. of $\mathrm{a} \& \mathrm{~b}$ is $=(\mathrm{a}+\mathrm{b}) / 2$ Hence, The A. M between $4 \& 10=$ $(4+10) / 2=7$
5. Find the G.P. series where $4^{\text {th }}$ term is 8 and $8^{\text {th }}$ term is $128 / 625$
a. $125,50,20,9, \ldots$
b. $125,50,20,10, \ldots$.
c. $125,5,20,8, \ldots .$.
d. $125,50,20,8, \ldots$.

ANSWER: d
EXPLAINATION:
$t 4=\operatorname{ar} 3=8$
$\mathrm{t} 8=\operatorname{ar} 7=128 / 625$
Dividing the two terms
t8 /t4 = ar7 / ar3 = $128 / 625^{*} 1 / 8$
$=r 4=16 / 625$
$=r 4=(2 / 5) 4$
$=r=2 / 5$
Now $\operatorname{ar} 4=a(2 / 5) 4=8$
Solving , $\mathrm{a}=125$
Thus $\mathrm{a}=125, \mathrm{r}=2 / 5$, the G.P Series is $125,50,20,8, \ldots$
6. Insert three Geometric Means between $1 / 9$ and 9
a. $1 / 9,1 / 3,1,3,9$.
b. $1 / 8,1 / 5,1,3,9$
c. $11 / 9,1 / 3,1,3,9$
d. $121 / 9,1 / 3,1,3$

ANSWER: a

EXPLAINATION:
G.P. Series 1/9, --, --, --, --, 9

Here t1 = $\mathrm{a}=1 / 9$
t5 = a.r4 = 9
Now, t5 = 1/9.r4 = 9
$=r 4=81$
$=r 4=34$
= $\mathrm{r}=3$
$\mathrm{t} 2=\mathrm{ar}=1 / 9 * 3=1 / 3$
t3 $=\operatorname{ar} 2=1 / 9 * 32=1$
t4 $=\operatorname{ar} 3=1 / 9 * 33=3$
Thus the series $1 / 9,1 / 3,1,3,9$.
7. Find the sum of $1^{\text {st }} 8$ terms of G.P series $1+2+4+8+\ldots .$.

155 255
185 -822
ANSWER: b
EXPLAINATION:
Here $\mathrm{a}=1, \mathrm{r}=2, \mathrm{n}=8$
$\mathrm{S}_{\mathrm{n}}=\mathrm{a} \cdot\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1)$ when $\mathrm{r}>1$
$S_{8}=1 .\left(2^{8}-1\right) /(2-1)$
$=1(256-1)=255$
Thus $\mathrm{S}_{8}=255$
8. Find the sum of the series $-2,6,-18 \ldots7$ terms?

1554 -1094
1094 -8223
ANSWER: b
EXPLAINATION:
Here $\mathrm{a}=-2, \mathrm{r}=-3, \mathrm{n}=7$
$S_{n}=a .\left(1-r^{n}\right) /(1-r)$ whenr <1
$\mathrm{S}_{7}=(-2)\left[1-(-3)^{7}\right] /[1-(-3)]$
$=(-2)(1+2187) / 4$
$=(-2)(2188) / 4$
$\mathrm{S}_{7}=-1094$
9. In a G.P. the product of the $1^{\text {st }}$ three terms $27 / 8$. The middle term is
a. $27 / 8$
b. $3 / 2$
c. $2 / 9$
d. $8 / 27$

ANSWER: b
EXPLAINATION:
Let the three terms of GP are $\mathrm{a} / \mathrm{r}, \mathrm{a}$, ar
Now Product of terms
a/r *a*ar $=27 / 8$
$\mathrm{a}^{3}=27 / 8$
$a^{3}=(3 / 2)^{3}$
$\mathrm{a}=3 / 2$
Thus the middle term, $\mathrm{a}=3 / 2$
10. If you save 1 paisa today, 2 paisa the next day and 4 paisa the succeeding day and so on, then your total savings in two weeks will be.
a. Rs. 168.32
b. Rs. 163.98
c. Rs. 163.83
d. None

ANSWER: c

EXPLAINATION:

Here the pattern of savings shows the G.P series $0.01,0.02,0.04, \ldots .$.
Here $\mathrm{a}=0.01, \mathrm{r}=2, \mathrm{n}=14$
$\mathrm{S}_{\mathrm{n}}=\mathrm{a} .\left(\mathrm{r}^{\mathrm{n}}-1\right) /(\mathrm{r}-1)$ when $\mathrm{r}>1 \mathrm{~S}_{14}=0.01\left(2^{14}-1\right) /(2-1)$
$=0.01(16384-1) / 1$
= 0.01*16383
$\mathrm{S}_{14}=163.83$
Thus the total savings in 14 days would be Rs 163.83.
11. The sum of the Infinite G.P Series $1-1 / 3+1 / 9-1 / 27$.....
a. 0.75
b. 75
c. 0.57
d. 57

ANSWER: a

EXPLAINATION :
Here $\mathrm{a}=1, \mathrm{r}=(-1 / 3)$
$\mathrm{S}_{\infty}=\mathrm{a} /(1-\mathrm{r})=1 /[1-(-1 / 3)]$
$=1 /[1+1 / 3]$
$=1 /[4 / 3]$
$=3 / 4$
$=0.75$
12. Find the $10^{\text {th }}$ term of the A. P. : $2,4,6, \ldots .$.
a. 20
b. 40
c. 2
d. 0.20

ANSWER: a
EXPLAINATION :
Here the first term $(a)=2$ and common difference $d=4-2=2$
Using the formula $t_{\mathrm{n}}=a+(n-1) d$, we have
$t_{10}=2+(10-1) 2=2+18=20$
Hence, the 10 th term of the given A. P. is 20
13. The $10^{\text {th }}$ term of an A. P. is -15 and $31^{\text {st }}$ term is $\mathbf{- 5 7}$, find the $15^{\text {th }}$ term.
a. -20
b. 20
c. -25
d. 25

ANSWER: c

EXPLAINATION :

Let a be the first term and d be the common difference of the A. P. Then from the formula:
$t_{n}=\mathrm{a}+(n-1) d$, we have
$t_{10}=a+(10-1) d=a+9 d t_{31}=a+(31-1) d=a+30 d$
We have,
$a+9 d=-15$
$a+30 d=-57$.
Solve equations (1) and (2) to get the values of a and d. Subtracting (1) from (2), we have $21 d=-57+15=-42$
Again from (1), $a=-15-9 d=-15-9(-2)=-15+18=3$
Now $t_{15}=a+(15-1) d$
$=3+14(-2)=-25$
14. Which term of the A. P.: $5,11,17 \ldots$ is 119 ?
a. $n=20$
b. $n=2$
c. $n=30$
d. $n=19$

ANSWER: a

EXPLAINATION :

Here $a=5, d=11-5=6$
$t_{n}=119$ We know that
$t_{n}=a+(n-1) d$
Q119 $=5+(n-1) \times 6$
$(n-1)=\frac{119-5}{6}=19$
$n=20$,Therefore, 119 is the 20 th term of the given A. P.
15. Is 600 a term of the A. P.: $2,9,16, \ldots$?
yes
not sure
no none

ANSWER: b

EXPLAINATION:
Here, $a=2$, and $d=9-2=7$.

Let 600 be the $n^{\text {th }}$ term of the A. P. We have $t_{\mathrm{n}}=2+(n-1) 7$
According to the question
$2+(n-1) 7=600$
$(n-1) 7=598$
Or $n=\frac{598}{7}+1 \quad n=86 \frac{3}{7}$
Since n is a fraction, it cannot be aterm of the given A. P. Hence, 600 is not a term of the given A.P.
16. The common difference of an A.P. is 3 and the $15^{\text {th }}$ term is 37 . Find the first term.
a. -5
b. 5
c. 42
d. -42

ANSWER: a
EXPLAINATION :
Here, $d=3, t_{15}=37$, and $n=15$ Let the first term be a. We have
$t_{n}=a+(n-1) d$
$37=a+(15-1) 3$
or, $\quad 37=a+42$
$a=-5$
Thus, first term of the given A. P. is -5
17. Geometric mean G between two numbers a and b is
a. ab
b. $a b^{2}$
c. $a^{2} b$
d. $\sqrt{a b}$

ANSWER: d
EXPLAINATION:
If a single geometric mean ' G ' is inserted between two given numbers 'a' and 'b', then G is known as the geometric mean between 'a' and ' b '.
G.M. $=\mathrm{G}=G^{2}=\sqrt{\boldsymbol{a} \boldsymbol{b}}$
18. If A and G are arithmetic and geometric mean respectively between two positive numbers a and b, then $A(A M)<G(G M)$ is correct?
a. yes
b. no
c. not sure
d. none

ANSWER: b
EXPLAINATION:
We have
A.M. $=\mathrm{A}=\frac{a+b}{2}$ and G.M. $=\mathrm{G}=G^{2}=\sqrt{\boldsymbol{a b}}$
$\mathrm{A}-\mathrm{G}=\frac{a+b}{2}-\sqrt{\boldsymbol{a b}}$
$=\frac{a+b-2 \sqrt{a b}}{2}$
$\frac{\left(\sqrt{a-b)^{2}}\right.}{2}>0$
$\therefore \mathrm{A}-\mathrm{G}>0$
$\Rightarrow A>G$
19. Find the sum of the AP : 11, 17, 23, 29, ... of first 10 terms.
a. 380
b. 568
c. 960
d. 593

ANSWER: a
EXPLAINATION:
=> nth term for the given AP $=5+6 \mathrm{n}$
\Rightarrow First term $=5+6=11$
\Rightarrow Tenth term $=5+60=65$
$\Rightarrow>$ Sum of 10 terms of the AP $=0.5 \mathrm{n}$ (first term + last term) $=0.5 \times 10(11+65)$
=> Sum of 10 terms of the $\mathrm{AP}=5 \times 76=380$
20. Find the G. M. between $\frac{3}{2}$ and $\frac{27}{2}$
a. $9 / 2$
b. $2 / 9$
c. $6 / 3$
d. $3 / 6$

ANSWER: a

EXPLAINATION:
We know that if a is the G. M. between a and b, then
$\mathrm{G}=\sqrt{a b}$
G. M. between $\frac{3}{2}$ and $\frac{27}{2}=\sqrt{\frac{3}{2} \times \frac{27}{2}}$
$=\frac{9}{2}$
21. Insert three geometric means between 1 and 256.
a. $4,16,64$,
b. $-4,16,-64$.
c. Both
d. None

ANSWER: c
EXPLAINATION:
Let $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}$, be the three geometric means between 1 and 256 . Then $1, \mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, 256$ are in G.P.
If $\quad r$ be the common ratio, then $t_{5}=256$ i.e, $a r^{4}=256$ 回 1. $r^{4}=256$
or, $\quad r^{2}=16$
or, $\quad r=4$
When $r=4_{1} G=1.4=4, G=1 .(4)^{2}=\frac{1}{3} 6$ and $G=1 .(4)^{3}=64$
When $r=-4, \mathrm{G}=-\frac{4}{2}, \mathrm{G}=(1)(-4)^{2}=\frac{1}{3} 6$ and $\mathrm{G}=(1)(-4)^{3}=-64$
G.M. between 1 and 256 are $4,16,64$, or, $-4,16,-64$.
22. If 4, 36, 324 are in G. P. insert two more numbers in this progression so that it again forms a G. P.
a. 12,108
b. 14,180
c. 16,120
d. 12,10

ANSWER: a

EXPLAINATION:
G. M. between 4 and $36=\sqrt{4 \times 36}=\sqrt{144}=12$
G. M. between 36 and $324=\sqrt{36 \times 324}=6 \times 18=108$

If we introduce 12 between 4 and 36 and 108 betwe 36 and 324 , the numbers
$4,12,36,108,324$ form a G. P.
The two new numbers inserted are 12 and 108.
23. The distance travelled (in cm) by a simple pendulum in consecutive seconds are 16, 12, $9, \ldots$ How much distance will it travel before coming to rest?
a. 64 cm
b. 46 cm
c. 1 cm
d. none

ANSWER: a

EXPLAINATION:

The distance travelled by the pendulum in consecutive seconds are, 16, 12, $9, \ldots$ is an infinite geometric progression with the first term $a=16$ and $\mathrm{r}=\frac{12}{16}=\frac{3}{4}<1$
Hence, using the formula $S=\frac{a}{1-r}$ we have
$S=\frac{16}{1-\frac{3}{4}}=\frac{16}{\frac{1}{4}}=64$
Distance travelled by the pendulum is 64 cm .
24. Which term of the G. P.: $5,-10,20,-40, \ldots$ is 320 ?
a. 7
b. 6
c. 3
d. 12

ANSWER: a

EXPLAINATION:

In this case, $a=5 ; r=\frac{-10}{2}=-2$
Suppose that 320 is the $n^{\text {th }}$ term of the G. P.
By the formulate $=a r^{\mathrm{n}-1}$, we get
$t=5$. $(-2)^{\mathrm{n}-1}$

$$
\begin{aligned}
& \text { 5. }(-2)^{n-1}=320 \quad \text { (Given) } \\
& (-2)^{\mathrm{n}-1}=64=(-2)^{6} \\
& n-1=6 \\
& n=7
\end{aligned}
$$

Hence, 320 is the $7^{\text {th }}$ term of the G. P.
25. The common difference of an A. P. is 3 and the $15^{\text {th }}$ term is 37 . Find the first term.
a. 5
b. -5
c. 6
d. -6

ANSWER: b

EXPLAINATION:

Here, $d=3, t_{15}=37$, and $n=15$ Let the first term be a. We have
$t_{n}=a+(n-1) d$
$37=a+(15-1) 3$
or, $37=a+42$
$a=-5$
Thus, first term of the given A. P. is -5 .
26. If a, b, c are in G.P., then
a. $a\left(b^{2}+a^{2}\right)=c\left(b^{2}+c^{2}\right)$
b. $a\left(b^{2}+a^{2}\right)=c\left(a^{2}+b^{2}\right)$
c. $b\left(b^{2}+a^{2}\right)=c\left(b^{2}+c^{2}\right)$
d. None

ANSWER: B
EXPLAINATION:
If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P. Then $b^{2}=a c$
$b^{2}=(a-c)=a c(a-c)$
$b^{2} a-b^{2} c=a^{2} c-a c^{2}$
$a\left(b^{2}+c^{2}\right)=c\left(a^{2}+b^{2}\right)$
Trick: Put $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=4$ and check the alternates.
27. The sum to infinity of the progression $9-3+1-13+. . .$. is
a. 9
b. $9 / 2$
c. $27 / 4$
d. $15 / 2$

ANSWER: B
EXPLAINATION:
Infinite series $9-3+1-\frac{1}{3} \ldots \ldots \propto$ is a G.P. with
$\mathrm{a}=9, \mathrm{r}=\frac{-1}{3} \backslash S_{\alpha}=\frac{a}{1-r}=\frac{9}{1+\left(\frac{1}{3}\right)}=\frac{9 \times 3}{4}=\frac{27}{4}$
28. The product (32) (32) $1 / 6(32) 1 / 36$...... to ∞ is
a. 16
b. 32
c. 64
d. 0

ANSWER: C
EXPLAINATION:
$(32)(32) 1 / 6(32) 1 / 36 \ldots \ldots . . \infty=(32)^{1+\frac{1}{6}+\frac{1}{36}+\cdots \infty}=(32)^{\frac{1}{1-(1 / 6)}}$
$(32)^{\frac{1}{5 / 6}}=(32)^{6 / 5}=2^{6}=64$
29. Obtain the sum of all positive integers up to 1000 , which are divisible by 5 and not divisible by 2 .
a. 10050
b. 5050
c. 5000
d. 50000

ANSWER: D

EXPLAINATION:

The positive integers, which are divisible by 5, are 5, 10, 15, ..., 1000
Out of these $10,20,30, \ldots . .1000$ are divisible by 2
Thus, we have to find the sum of the positive integers $5,15,25, \ldots, 995$
If n is the number of terms in it the sequence then
$995=5+10(\mathrm{n}-1)=>1000=10 \mathrm{n}$
Therefore, $\mathrm{n}=100$.
Thus the sum of the series $=(n / 2)(a+1)=(100 / 2)(5+995)=50000$.
30. If s is the sum of an infinite G.P., the first term a then the common ratio r given by
a. $\frac{a-s}{s}$
b. $\frac{s-a}{s}$
c. $\frac{\stackrel{S}{a}}{1-s}$
d. none

ANSWER: B
EXPLAINATION:

$$
\begin{aligned}
& \frac{a}{1-r} \\
& \mathrm{~s}-\mathrm{sr}=\mathrm{a} \\
& -\mathrm{sr}=\mathrm{a}-\mathrm{s} \\
& \mathrm{r}=\frac{s-a}{s}
\end{aligned}
$$

31. If in an infinite G.P. first term is equal to the twice of the sum of the remaining terms, then its common ratio is
a. 1
b. 2
c. $1 / 3$
d. $-1 / 3$

ANSWER: C
EXPLAINATION:
Given, $\mathrm{a}=2\left(\frac{a r}{1-r}\right)$
$1-r=2 r$
$r=\frac{1}{3}$
32. If n geometric means between a and b be $G_{1}, G_{2}, \ldots . G_{n}$ and a geometric mean be G, then the true relation is
a. $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots . \mathrm{G}_{\mathrm{n}}=\mathrm{G}$
b. $G_{1}, G_{2}, \ldots . G_{n}=G^{\frac{1}{n}}$
c. $G_{1}, G_{2}, \ldots . G_{n}=G^{n}$
d. none

ANSWER: C

EXPLAINATION:
Here G $=(a b)^{\frac{1}{2}}$ and
$G_{1}=a r^{1}, G_{2}=a r^{2}, \ldots . . G_{n}=a r^{n}$. Therefore
$G_{1} \cdot G_{2} \cdot G_{3} \ldots . . G_{n}=a^{n} r^{1+2+\ldots+n}=a^{n} r^{n(n+1) / 2}$ but
$a r^{n+1}=b$
$\mathrm{r}=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$
Therefore, the required product is $a^{n}\left(\frac{b}{a}\right)^{\frac{1}{1(n+1)} \cdot n(n+1) 2}$
$=(a b)^{n / 2}$
$=\left\{(a b)^{1 / 2}\right\}^{n}$
$=G^{n}$
Note: It is a well-known fact.
33. $7^{\text {th }}$ term of the sequence $\sqrt{2}, \sqrt{10}, 5 \sqrt{2}$...is
a. $125 \sqrt{10}$
b. $25 \sqrt{2}$
c. 125
d. $125 \sqrt{2}$

ANSWER: D
EXPLAINATION:
Given sequence is $\sqrt{2}, \sqrt{10}, \sqrt{50} \ldots$ common ratio
$r=\sqrt{5}$, first term $a=\sqrt{2}$, then $7^{\text {th }}$ term
$t_{7}=\sqrt{2}(\sqrt{5})^{7-1}=\sqrt{2}(\sqrt{5})^{6} \sqrt{2}(5)^{3}$
$125 \sqrt{2}$
34. If the first term of a G.P. be 5 and common ratio be -5 , then which term is 3125 ?
a. $6^{\text {th }}$
b. $5^{\text {th }}$
c. $7^{\text {th }}$
d. $8^{\text {th }}$

ANSWER: B

EXPLAINATION:

Given that first term $\mathrm{a}=5$ and common ratio $\mathrm{r}=-5$.Suppose that $\boldsymbol{n}^{\text {th }}$ term is 3125 ,
then $a r^{n-1}=3125$
$5(-5)^{n-1}=5^{4}$.
Hence $=\mathbf{5}^{\text {th }}$
35. The sums of \boldsymbol{n} terms of three A.P.'s whose first term is 1 and common differences are 1,2,3 are S_{1}, S_{2}, S_{3} respectively. The true relation is
a. $S_{1}+S_{2}=S_{3}$
b. $S_{1}+S_{3}=2 S_{2}$
c. $S_{1}+S_{2}=2 S_{3}$
d. None

ANSWER: B

EXPLAINATION:

We have $a_{1}=a_{2}=a_{3}=1$
$d_{1}=1, d_{2}=2, d_{3}=3$
Therefore, $S_{1}=\frac{n}{2}(n+1)$
$S_{2}=\frac{n}{2}(2 n)$
$S_{3}=\frac{n}{2}(3 n+1)$
.... (iii) Adding (i) and (iii),
$S_{1}+S_{3}=\frac{n}{2}[(n+1)+(3 n-1)]$
$=2\left[\frac{n}{2}(2 n)\right]=2 S_{2}$
Hence correct relation $S_{1}+S_{3}=2 S_{2}$
36. What is the sum of all 3 digit numbers that leave a remainder of ' 2 ' when divided by 3?
a. 897
b. 164,850
c. 164,749
d. 149,700

ANSWER: B
EXPLAINATION:
The smallest 3 digit number that will leave a remainder of 2 when divided by 3 is 101 . The next number that will leave a remainder of 2 when divided by 3 is $104,107, \ldots$. The largest 3 digit number that will leave a remainder of 2 when divided by 3 is 998 .

So, it is an AP with the first term being 101 and the last term being 998 and common difference being 3 .

Sum of an AP $=\frac{\text { First term }+ \text { Last Term }}{2} \times$ Number of Term
We know that in an A.P., the nth term $a_{n}=a_{1}+(n-1) * d$
In this case, therefore, $998=101+(\mathrm{n}-1)^{*} 3$
i.e., $897=(n-1) * 3$

Therefore, $\mathrm{n}-1=299$
Or $\mathrm{n}=300$.
Sum of the AP will therefore, be $\frac{101+998}{2} \times 300=164,850$
37. Obtain the sum of all positive integers up to 1000 , which are divisible by 5 and not divisible by 2 .
a. 10050
b. 5050
c. 5000
d. 50000

ANSWER: D

EXPLAINATION:

The positive integers, which are divisible by 5 , are $5,10,15, \ldots, 1000$ Out of these $10,20,30, \ldots . .1000$ are divisible by 2
Thus, we have to find the sum of the positive integers $5,15,25, \ldots ., 995$
If n is the number of terms in it the sequence then
$995=5+10(\mathrm{n}-1)=>1000=10 \mathrm{n}$
Therefore, $\mathrm{n}=100$.
Thus the sum of the series $=(n / 2)(a+1)=(100 / 2)(5+995)=50000$.
38. What is the sum of the following series? $-64,-66,-68, \ldots . .,-100$
a. - 1458
b. -1558
c. -1568
d. -1664

ANSWER: B

EXPLAINATION:

The sequence is -64, -66, -68, -100.
The given set of numbers are in an arithmetic progression.
Key Data: First term is -64 . The common difference is -2 . The last term is -100 .

Sum of the first n terms of an $\mathrm{AP}=\frac{n}{2}\left[2 a_{1}+(\mathrm{n}-1) \mathrm{d}\right]$
To compute the sum, we know the first term $a_{1}=-64$ and the common difference $d=-2$. We do not know the number of terms n. Let us first compute the number of terms and then find the sum of the terms.

Step to compute number of terms of the sequence
$a_{n}=a_{1}+(n-1) d$
$-100=-64+(n-1)(-2)$
Therefore, $\mathrm{n}=19$.
Sum $\mathrm{S}_{\mathrm{n}}=\frac{19}{2}[2(-64)+(19-1)(-2)]$
$S_{n}=\frac{19}{2}[-128-36]$
$\mathrm{S}_{\mathrm{n}}=19 \times(-82)=-1558$
39. The sum of third and ninth term of an A.P is 8 . Find the sum of the first 11 terms of the progression.
a. 44
b. 22
c. 19

ANSWER: A
EXPLAINATION:
The third term $\mathrm{t}_{3}=\mathrm{a}+3 \mathrm{~d}$
The ninth term $\mathrm{t}_{9}=\mathrm{a}+8 \mathrm{~d}$
$\mathrm{t}_{3}+\mathrm{t}_{9}=2 \mathrm{a}+10 \mathrm{~d}=8$
Sum of first 11 terms of an AP is given by
$S_{11}=\frac{11}{2}[2 a+10 d]$
$S_{11}=\frac{11}{2}[8]=44$
40. The sum of the three numbers in A.P is 21 and the product of the first and third number of the sequence is 45 . What are the three numbers?
a. 9,7 and 5
b. 3,7 , and 11
c. Both A \& B
d. None of these

Prof. Jatin Dembla

7415315942

ANSWER: C
 EXPLAINATION:

Let the numbers are be $a-d, a, a+d$
Then $a-d+a+a+d=21$
$3 \mathrm{a}=21$
$\mathrm{a}=7$
and $(a-d)(a+d)=45$
$\mathrm{a}^{2}-\mathrm{d}^{2}=45$
$\mathrm{d}^{2}=4$
$\mathrm{d}= \pm 2$
Hence, the numbers are 5,7 and 9 when $d=2$ and 9,7 and 5 when $d=-2$. In both the cases numbers are the same.
41. If the first term of G.P. is 7 , its $n^{\text {th }}$ term is 448 and sum of first m terms is 889 , then finct the fifth term of G.P.
a. 112
b. 110
c. 62
d. 39

ANSWER: A
EXPLAINATION:
Given $a=7$ the first term $t_{n}=a r^{n-1}=7(r)^{n-1}=44$
$7 r^{n}=448 r$
Also $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{7\left(r^{n}-1\right)}{r-1}$
$889=\frac{448 r-7}{r-1}$
$\mathrm{R}=2$.
Hence $T_{5}=a r^{4}=7(2)^{4}=112$

a. 54
b. 27
c. 23
d. 79

ANSWER: A
EXPLAINATION:

Prof. Jatin Dembla

Sol. $\mathrm{a}, \mathbf{(a + d) ,}(\mathrm{a}+2 \mathrm{~d}),(\mathrm{a}+3 \mathrm{~d})$ in A.P.
$a, a+d,(a+2 d+3),(a+3 d+8)$ are in G.P.
hence $a+d=a r$
also $r=\frac{a+d}{\frac{a}{a}}=\frac{a d+3}{a+d}=\frac{a+3 d+8}{a+2 d+3}$
$\therefore \frac{d+3}{d}=\frac{d+5}{d+3}$
$\Rightarrow \mathrm{d}^{2}+6 \mathrm{~d}+9=\mathrm{d}^{2}+5 \mathrm{~d} \Rightarrow \quad \mathrm{~d}=-9$
$\therefore \frac{\mathrm{a}-9}{\mathrm{a}}=\frac{\mathrm{a}-15}{\mathrm{a}-9}$
$\Rightarrow a^{2}-18 a+81=a^{2}-15 a \Rightarrow 3 a=81 \Rightarrow a=27$
hence A.P. is $27,18,9,0$,

Sum of the first four terms of AP $=54$
43. Three positive numbers form a G.P. If the second term is increased by 8 , the resulting sequence is an A.P. In turn, if we increase the last term of this A.P. by 64, we get a G.P. Find the three numbers.
a. $4,12,36$
b. $4,8,16$
c. $5,15,20$
d. none

ANSWER: A


```
sever tewras is 765. Whatils the commmom mationim thas bewies-
```

EXPLAINATION:
a. 3
b. 2
c. 6
d. 56

ANSWER: B

Sol. Let the numbers be a, a r, a r^{2} where $r>0$
Hence $a,(a r+8)$, $a^{2}{ }^{2}$ in A.P. - (1)
Also $\mathrm{a},(\mathrm{ar}+8)$, $\mathrm{ar} \mathrm{r}^{2}+64$ in G.P. - (2)
$\Rightarrow(a r+8)^{2}=a\left(a r^{2}+64\right) a=4 / 4-r-(3)$
Also(1) $\Rightarrow 2(a r+8)=\left(a+a r^{2}\right) \Rightarrow(1-r)^{2}=16 / a$ - (4)
From (3) and (4) $r=3$ or -5 (rejected).
Hence $a=4$ numbers are $=4,12,36$

EXPLAINATION:

$S_{5}=189 ; S_{6}=381 ; S_{7}=765 ; t_{6}=S_{6}-S_{5}=381-189=192$
$t_{7}=S_{7}-S_{6}=765-3^{81}=384$
now common ratio $=\frac{t_{7}}{t_{6}}=\frac{384}{192}=2$
45. Find the $3^{\text {rd }} \mathrm{n}$ th term for the AP: 11, 17, 23, 29, ...
a. 23
b. 17
c. 11
d. 6

ANSWER: A

EXPLAINATION:

Here, $\mathrm{a}=11, \mathrm{~d}=17-11=23-17=29-23=6$
We know that nth term of an AP is a $+(n-1) d$
$=>$ nth term for the given AP $=11+(n-1) 6$
$=>$ nth term for the given $A P=5+6 n$
We can verify the answer by putting values of ' n '.
=> n = 1 -> First term = 5 + 6 = 11
$\Rightarrow>n=2->$ Second term $=5+12=17$
=> n = 3 -> Third term $=5+18=23$
46. The sum of three numbers in a GP is 26 and their product is 216. and the numbers.
a. 2, 6 and 18 .
b. 3,7 , and 11
c. Both
d. None of these

ANSWER: C
EXPLAINATION:
Let the numbers be $\mathrm{a} / \mathrm{r}, \mathrm{a}$, ar.
=> (a / r) $+a+a r=26$

Prof. Jatin Dembla

=> $a\left(1+r+r^{2}\right) / r=26$
Also, it is given that product $=216$
$=>(a / r) x(a) x(a r)=216$
$\Rightarrow a^{3}=216$
$\Rightarrow \mathrm{a}=6$
$=>6\left(1+r+r^{2}\right) / r=26$
$=>\left(1+r+r^{2}\right) / r=26 / 6=13 / 3$
$\Rightarrow 3+3 r+3 r^{2}=13 r$
$\Rightarrow 3 r^{2}-10 r+3=0$
$=>(r-3)(r-(1 / 3))=0$
$\Rightarrow r=3$ or $r=1 / 3$
Thus, the required numbers are 2, 6 and 18.
47. A sequence in which the ratio of two consecutive terms is always constant $(1,0)$ is called
a. AP
b. GP
c. HP
d. NP

ANSWER: b
EXPLAINATION :
A sequence in which the ratio of two consecutive terms is always constant $(1,0)$ is called a Geometric Progression (G. P.)
48. For the elements 4 and 6 , verify
a. $\mathrm{A} \geq \mathrm{G} \geq \mathrm{H}$.
b. $\mathrm{A}<\mathrm{G} \geq \mathrm{H}$
c. $\mathrm{A}>\mathrm{G} \geq \mathrm{H}$
d. None

ANSWER: A
EXPLAINATION:
$A=$ Arithmetic Mean $=(4+6) / 2=5$
$G=$ Geometric Mean $=\sqrt{4 \times 6}=4.8989$
$H=$ Harmonic Mean $=(2 \times 4 \times 6) /(4+6)=48 / 10=4.8$
Therefore, $\mathrm{A} \geq \mathrm{G} \geq \mathrm{H}$
49. Which term of the G. P.: $5,-10,20,-40, \ldots$ is 320 ?
a. $7^{\text {th }}$
b. $8^{\text {th }}$
c. $10^{\text {th }}$
d. $1^{\text {st }}$

ANSWER: A

EXPLAINATION:

In this case, $\mathrm{a}=5 ; \mathrm{r}=\frac{-10}{5}=-2$.
Suppose that 320 is the nth term of the G. P. By the formula , $\mathrm{t} \mathrm{n}=a r^{n-1}$, we get
$t_{n}=5 .(-2)^{n-1}$
$\therefore 5 .(-2)^{n-1}=320 \quad$ (Given)
$\therefore(-2)^{n-1}=64=(-2)^{6}$
$\therefore \mathrm{n}-1=6$
$\therefore \mathrm{n}=7$
Hence, 320 is the 7 th term of the G. P.
50. A sequence of numbers is called?
a. geometric progression
b. Arithmetic Progression (AP)
c. Harmonic Progression (HP)
d. All

ANSWER: D

EXPLAINATION:
Harmonic Progression (HP)
A sequence of numbers is called a harmonic progression if the reciprocal of the terms are in AP. In simple terms, a, b, c, d, e, f are in HP if $1 / a, 1 / b, 1 / c, 1 / d, 1 / e, 1 / f$ are in AP.

Arithmetic Progression (AP)

A sequence of numbers is called an arithmetic progression if the difference between any two consecutive terms is always same.

Geometric Progression (GP)

A sequence of numbers is called a geometric progression if the ratio of any two consecutive terms is always same.

CHAPTER 7

SETS, RELATIONS AND FUNCTIONS

A set is defined to be a collection of well-defined distinct objects. This collection may be listed or described. Each object is called an element of the set. We usually denote sets by capital letters and their elements by small letters.

Singleton Set	A set containing one element is called Singleton
Equal Set	Two sets A \& B are said to be equal, written as A = B if every element of A is in B and every element of B is in A.
A Venn diagram is a diagram that shows all possible logical relation between a fine collections of different sets. These diagram depict elements as point in the plane, and sets as regions inside closed curves.	

Equivalent Set	Two finite sets A \& B are said to be equivalent if $n(A)=n(B)$.
Power Set	The collection of all possible subsets of a given set A is called the power set of A, to be denoted by $P(A)$. 1. A set containing n elements has 2^{n} subsets. 2. A set containing n elements has $2^{n}-1$ proper subsets
PRODUCT SETS	Ordered Pair Two elements a and b, listed in a specific order, form an ordered pair, denoted by (a, b).
	Cartesian Product of sets If A and B are two non-empty sets, then the set of all ordered pairs (a, b) such that a belongs to A and b belongs to B, is called the Cartesian product of A and B, to be denoted by $A \times B$. Thus, $A \times B=\{(a, b): a: A$ and b $: B\}$
Relation and Function	Any subset of the product set X.Y is said to define a relation from X to Y and any relation from X to Y in which no two different ordered pairs have the same first element is called a function. Let A and B be two non-empty sets. Then, a rule or a correspondence f which associates to each element x of A, a unique element, denoted by $f(x)$ of B, is called a function or mapping from A to B and we write f : A ? B
Domain \& Range of a function	Let f : A ? B, then A is called the domain of f, while B is called the co-domain of f. The $\operatorname{set} f(A)=\{f(x): x$ 团 $\}$ is called the range of f.

VARIOUS TYPES OF FUNCTION

IODENTITY FUNCTION

EQUAL FUNCTION

INVERSE FUNCTION

ONE -ONE FUNCTION

ONTO Or SURNECTIVE FUNCTION

BIJECTION FUNCTION

-Let A be a non-empty set. Then, the function I defined by I : A* A : I $(x)=x$ for all $x=A$ is called an identity function on A
-Two functions f and g are said to be equal, written as $f=g$ if they have the same domain and they satisfy the condition $f(x)=g(x)$, for all x.

- Let f be a one-one onto function from A to B. Let y be an arbitrary element of B. Then f being onto, there exists an element x in A such that $f(x)=y$ A function is invertible if and only if f is oneone onto.
- Let $f: A^{*} B$. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping
- Let $f: A * B$. If every element in B has at least one pre-image in A, then f is said to be an onto function. If f is onto, then corresponding to each $y=B$, we must be able to find at least one element x ? A such that $y=f(x)$ Clearly, f is onto if and only if range of $f=B$
- A one-one and onto function is said to be bijective

Different types of relations	Let $S=\{a, b, c, \ldots .$.$\} be any set then the relation R$ is a subset of the product set $S \times S$ i) If R contains all ordered pairs of the form (a, a) in $S \times S$, then R is called reflexive. In are flexive relation ' a ' is related to itself. For example, 'Is equal to' is a reflexive relation for $\mathrm{a}=\mathrm{a}$ is true. ii) If $(a, b)=R=(b, a) R$ for every $a, b * S$ then R is called symmetric For Example $\mathrm{a}=\mathrm{b} \mathrm{b}=\mathrm{a}$. Hence the relation 'is equal to' is a symmetric relation. iii) If $(a, b)=R$ and $(b, c)=R(a, c) R$ for every a, b, c, S then R is called transistive. For Example $\mathrm{a}=\mathrm{b}, \mathrm{b}=\mathrm{c}, \mathrm{a}=\mathrm{c}$. Hence the relation 'is equal to' is a transitive relation. A relation which is reflexive, symmetric and transitive is called an equivalence relation or simply an equivalence. 'is equal to' is an equivalence relation. Similarly, the relation "is parallel to" on the set S of all straight lines in a plane is an equivalence relation.
Domain \& Range of relation	If R is a relation from A to B, then the set of all first coordinates of elements of R is called the domain of R, while the set of all second co-ordinates of elements of R is called the range of R.

1. Which of the following statements is used to create an empty set?
(a) $\}$
(b) $\operatorname{Set}()$
(c) []
(d) 1$)$

ANSWER: b
EXPLAINATION:
\{ \} creates a dictionary not a set. Only set () creates an empty set.
2. What is the output of the following piece of code when executed in the python shell?
$a=\{1,2,3\}$ a intersection update $(\{2,3,4,5\})$
a. $\{2,3\}$
b. Error, duplicate item present in list
c. Error, no method called intersection
d. $\{1,4,5\}$ update for set data type
ANSWER: a
EXPLAINATION:
The method intersection update returns a set which is an intersection of both the sets.
3. Which of the following lines of code will result in an error?
a. $s=\{a b s\}$
b. $s=\{4$, 'abc', $(1,2)\}$
c. $s=\{2,2.2,3, ~ ' x y z '\}$
d. $s=\{s a n\}$

ANSWER: d
EXPLAINATION:
The line: $\boldsymbol{s}=\{s a n\}$ will result in an error because 'san' is not defined. The line $s=\{a b s\}$ does not result in an error because abs is a built-in function. The other sets shown do not result in an error because all the items are hashable.
4. What is the output of the code shown below?
$s=\operatorname{set}([1,2,3])$
s.union([4, 5])
s|([4, 5])
a. $\{1,2,3,4,5\}\{1,2,3,4,5\}$
b. Error $\{1,2,3,4,5\}$
c. $\{1,2,3,4,5\}$ Error
d. Error Error
ANSWER: c
EXPLAINATION:

The first function in the code shown above returns the set $\{1,2,3,4,5\}$. This is because the method of the function union allows any alterable. However the second function results in an error because f unsupported data type, that is list and set.
5. What is the output of the line of code shown below, if $s 1=\{1,2,3\}$? $s 1$.is subset(s1)
a. True
b. Error
c. No output
d. False

ANSWER: a EXPLAINATION:
Every set is a subset of itself and hence the output of this line of code is true.
6. A \qquad is an ordered collection of objects.
a. Relation
b. Function
c. Set
d. Proposition

Answer: c

Explanation:

By the definition of set.
7. The set 0 of odd positive integers less than 10 can be expressed by \qquad
a. $\{1,2,3\}$
b. $\{1,3,5,7,9\}$
c. $\{1,2,5,9\}$
d. $\{1,5,7,9,11\}$

Answer: b
Explanation:
Odd numbers less than 10 is $\{1,3,5,7,9\}$.
8. Power set of empty set has exactly \qquad subset.
a. 1
b. 2
c. 0
d. 3

Answer: a

Explanation:

Power set of null set has exactly one subset which is empty set.
9. What is the Cartesian product of $A=\{1,2\}$ and $B=\{a, b\}$?
a. $\{(1, a),(1, b),(2, a),(b, b)\}$
b. $\{(1,1),(2,2),(a, a),(b, b)\}$
c. $\{(1, a),(2, a),(1, b),(2, b)\}$
d. $\{(1,1),(a, a),(2, a),(1, b)\}$

Answer: c Explanation:
A subset R of the Cartesian product $\mathrm{A} x \mathrm{~B}$ is a relation from the set A to the set B .
10. The Cartesian Product B X A is equal to the Cartesian product A x B. Is it True or False?
a. True
b. False
c. partial true
d. not sure

Answer: b

Explanation:

Let $A=\{1,2\}$ and $B=\{a, b\}$. The Cartesian product $A \times B=\{(1, a),(1, b),(2, a),(2, b)\}$ and the Cartesian product $\mathrm{B} \times \mathrm{A}=\{(\mathrm{a}, 1),(\mathrm{a}, 2),(\mathrm{b}, 1),(\mathrm{b}, 2)\}$. This is not equal to $\mathrm{A} \times \mathrm{B}$.
11. What is the cardinality of the set of odd positive integers less than 10 ?
a. 10
b. 5
c. 3
d. 20

Answer: b

Explanation:

Set S of odd positive an odd integer less than 10 is $\{1,3,5,7,9\}$. Then, Cardinality of set S $=|S|$ which is 5.
12. Which of the following two sets are equal?
a. $A=\{1,2\}$ and $B=\{1\}$
b. $A=\{1,2\}$ and $B=\{1,2,3\}$
c. $A=\{1,2,3\}$ and $B=\{2,1,3\}$
d. $A=\{1,2,4\}$ and $B=\{1,2,3\}$

Answer: c

Explanation:

Two set are equal if and only if they have the same elements.
13. The set of positive integers is \qquad
a. Infinite
b. Finite
c. Subset
d. Empty

Answer: a

Explanation:

The set of positive integers is not finite.
14. What is the Cardinality of the Power set of the set $\{0,1,2\}$.
a. 8
b. 6
c. 7
d. 9

Answer: a

Explanation:

Power set $P(\{0,1,2\})$ is the set of all subsets of $\{0,1,2\}$. Hence, $P(\{0,1,2\})=\{$ null , $\{0\}$, $\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$.
15. The members of the set $S=\{x \mid x$ is the square of an integer and $x<100\}$ is
a. $\{0,2,4,5,9,58,49,56,99,12\}$
b. $\{0,1,4,9,16,25,36,49,64,81\}$
c. $\{1,4,9,16,25,36,64,81,85,99\}$
d. $\{0,1,4,9,16,25,36,49,64,121\}$

Answer: b

Explanation:

The set S consists of the square of an integer less than 10.
16. Let the set A is $\{1,2,3\}$ and B is $\{2,3,4\}$. Then number of elements in $A U B$ is
a. 4
b. 5
c. 6
d. 7

Answer: a Explanation:
AUB is $\{1,2,3,4\}$.
17. Let the set A is $\{1,2,3\}$ and B is $\{2,3,4\}$. Then number of elements in $A \cap B$ is
a. 1
b. 2
c. 3
d. 4

Answer: b
Explanation:
$A \cap B$ is $\{2,3\}$.
18. Let the set A is $\{1,2,3\}$ and B is $\{2,3,4\}$. Then the set $A-B$ is
a. $\{1,-4\}$
b. $\{1,2,3\}$
c. $\{1\}$
d. $\{2,3\}$

Answer: c Explanation:
In $\mathrm{A}-\mathrm{B}$ the common elements get cancelled.
19. In which of the following sets $A-B$ is equal to $B-A$
a. $A=\{1,2,3\}, B=\{2,3,4\}$
b. $A=\{1,2,3\}, B=\{1,2,3,4\}$
c. $A=\{1,2,3\}, B=\{2,3,1\}$
d. $A=\{1,2,3,4,5,6\}, B=\{2,3,4,5,1\}$

Answer: c Explanation:
A-B=B-A = Empty set.
20. Let A be set of all prime numbers; B be the set of all even prime numbers, C be the set of all odd prime numbers, then which of the following is true?
a. $\mathrm{A} \equiv \mathrm{B} U \mathrm{C}$
b. B is a singleton set
c. $A \equiv \mathrm{CU}\{2\}$
d. All of the mentioned

Answer: d Explanation:
2 is the only even prime number.
21. If A has 4 elements B has 8 elements then the minimum and maximum number of elements in $A U B$ are respectively
a. 4,8
b. 8,12
c. 4,12
d. None of the mentioned

Answer: b Explanation:
Minimum would be when 4 elements are same as in 8 , maximum would be when all are distinct.
22. If A is $\{\{\Phi\},\{\Phi,\{\Phi\}\}$, then the power set of A has how many element?
a. 2
b. 4
c. 6
d. 8

Answer: b

Explanation:

The set A has got 2 elements so $n(P(A))=4$.
23. Two sets A and B contains a and b elements respectively .If power set of A contains $\mathbf{1 6}$ more elements than that of B, value of ' b ' and ' a ' are respectively
a. 5,4
b. 6,7
c. 2,3
d. None of the mentioned

Answer: a Explanation:
$32-16=16$, hence $a=5, b=4$.
24. Let A be $\{1,2,3,4\}$, U be set of all natural numbers, then $U-A^{\prime}$ (complement of A) is given by set.
a. $\{1,2,3,4,5,6, \ldots .$.
b. $\{5,6,7,8,9, \ldots . .$.
c. $\{1,2,3,4\}$
d. All of the mentioned

Answer: c Explanation:
$\mathrm{U}-\mathrm{A}^{\prime} \equiv \mathrm{A}$.
25. Which sets are not empty?
a. $\{x: x$ is a even prime greater than 3$\}$
b. $\{x: x$ is a multiple of 2 and is odd $\}$
c. $\{x: x$ is an even number and $x+3$ is even\}
d. $\{x$: x is a prime number less than 5 and is odd\}

Answer: d

Explanation:

Because the set is $\{3\}$
26. If A, B and C are any three sets, then $A-(B \cap C)$ is equal to
a. $(\boldsymbol{A}-\boldsymbol{B}) \cup(\boldsymbol{A}-\boldsymbol{C})$
b. $(A-B) \cap(A-C)$
c. $(A-B) \cup C$
d. NONE

Answer: A

Explanation:

From De Morgan's Law, $\mathbf{A}-(\mathbf{B} \cap \mathbf{C})=(\boldsymbol{A}-\boldsymbol{B}) \cup(\boldsymbol{A}-\boldsymbol{C})$
27. Which of the following is the empty set
a. $\left\{x: x\right.$ is a real number and $\left.\boldsymbol{x}^{2}-\mathbf{1 = 0}\right\}$
b. $\left\{\mathrm{x}: \mathrm{x}\right.$ is a real number and $\left.\boldsymbol{x}^{2}+\mathbf{1}=\mathbf{0}\right\}$
c. $\left\{\mathrm{x}: \mathrm{x}\right.$ is a real number and $\left.\boldsymbol{x}^{2}-9=0\right\}$
d. $\left\{\mathrm{x}: \mathrm{x}\right.$ is a real number and $\left.\boldsymbol{x}^{2}=\mathrm{x}+2\right\}$

Answer: D

Explanation:

Since $\boldsymbol{x}^{2}-1=0$, given $x^{2}=-1$
$x= \pm i$
\therefore No value of x is possible
28. If a set A has n elements, then the total number of subsets of A is
a. n
b. n^{2}
c. 2^{n}
d. 2 n

Answer: c
Explanation:
Number of subsets of $A=n_{C_{0}}+n_{C_{1}} \ldots . .+n_{C_{n}}=2^{n}$
29. If A and B are any two sets, then $A \cup(A \cap B)$ is equal to
a. A
b. B
c. A^{c}
d. B^{c}

Answer: A

Explanation:

$A \cap B \subseteq A$. Hence $A \cup(A \cap B)=A$
30. If two sets A and B are having 99 elements in common, then the number of elements common to each of the sets $A \times B$ and $B \times A$ are
a. 2^{99}
b. 99^{2}
c. 100
d. 18

Answer: B

Explanation:

$$
\begin{aligned}
& n((A \times B) \cap(B \times A)) \\
& =n((A \cap B) \times(B \cap A))=n(A \cap B) \cdot n(B \cap A) \\
& =n(A \cap B) \cdot n(A \cap B)=(99)(99)=99^{2}
\end{aligned}
$$

31. If $A=\{x: x$ is a multiple of 4$\}$ and $B=\{x: x$ is a multiple of 6$\}$ then A I B consists of all multiples of?
a. 16
b. 12
c. 8
d. 4

Answer: B
Explanation:
$A=\{4,8,12,16,20,24, \ldots . .$.
$B=\{6,12,18,24,30, \ldots . \backslash A \subset B=\{12,24, \ldots\}$.
$=\{\mathrm{x}: \mathrm{x}$ is a multiple of 12$\}$.
32. If $A=\{1,2,3,4,5\}, B=\{2,4,6\}, C=\{3,4,6\}$, then $(A \cup B) \cap C$ is
a. $\{3,4,6\}$
b. $\{1,2,3\}$
c. $\{1,4,3\}$
d. None of these

Answer: A

Explanation:

$A \cup B=\{1,2,3,4,5,6\} \backslash(A \cup B) \cap C=\{3,4,6\}$
33. If $n(A)=4, n(B)=3, n(A \times B \times C)=24$, then $n(C)=$
a. 288
b. 1
c. 2
d. 17

Answer: C

Explanation:

$$
\begin{aligned}
& \mathrm{n}(\mathrm{~A})=4, \mathrm{n}(\mathrm{~B})=3 \mathrm{n}(\mathrm{~A}) \times \mathrm{n}(\mathrm{~B}) \times \mathrm{n}(\mathrm{C})=\mathrm{n}(\mathrm{~A} \times \mathrm{B} \times \mathrm{C}) 4 \times 3 \times \mathrm{n}(\mathrm{C})=24 \\
& \mathrm{n}(\mathrm{C})=\frac{24}{12}=2
\end{aligned}
$$

34. If $A=\{2,3,5\}, B=\{2,5,6\}$, then $(A-B) \times(A \cap B)$ is
a. $\{(3,2),(3,3),(3,5)\}$
b. $\{(3,2),(3,5),(3,6)\}$
c. $\{(3,2),(3,5)\}$
d. None of these

Answer: C

Explanation:

$$
\begin{aligned}
& A-B=\{3\}, A \cap B=\{2,5\} \\
& (A-B) \times(A \cap B)=\{(3,2) ;(3,5)\}
\end{aligned}
$$

35. The set of intelligent students in a class is [AMU 1998]
a. A null set
b. A singleton set
c. A finite set
d. Not a well defined collection

Answer: D

Explanation:

Since, intelligence is not defined for students in a class i.e., Not a well defined collection.
36. If A and B be any two sets, then $(A \cap B)^{\prime}$ is equal to
a. $A^{\prime} \cap B^{\prime}$
b. $A^{\prime} \cup B^{\prime}$
c. $A \cap B$
d. $A \cup B$

Answer: D

Explanation:

From De' Morgan's law, $A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
37. In a class of $\mathbf{1 0 0}$ students, 55 students have passed in Mathematics and 67 students have passed in Physics. Then the number of students who have passed in Physics only is
a. 22
b. 33
c. 10
d. 45

Answer: D

Explanation:

$n(M)=55, n(P)=67, n(M \cup P)=100$ Now,
$n(M \cup P)=n(M)+n(P)-n(M \cap P)$
$100=55+67-n(M \cap P) \backslash n(M \cap P)=122-100=22$
Now $n(P$ only $)=n(P)-n(M \cap P)=67-22=45$
38. 20 teachers of a school either teach mathematics or physics. 12 of them teach mathematics while 4 teach both the subjects. Then the number of teachers teaching physics only is
a. 12
b. 8
c. 16
d. None of these

Answer: A

Explanation:

Let $n(P)=$ Number of teachers in Physics. $n(M)$
$=$ Number of teachers in Maths $n(P \cup M)=n(P)+n(M)-n(P \cap M)$
$20=\mathrm{n}(\mathrm{P})+12-4$
$=n(\mathrm{P})=12$
39. In a battle 70% of the combatants lost one eye, 80% an ear, 75% an arm, 85% a leg, $x \%$ lost all the four limbs. The minimum value of x is
a. 10
b. 12
c. 15
d. None of these

Answer: A

Explanation:

Minimum value of $1+\mathrm{ba}>0$
$=100-90=10$
40. If A and B are not disjoint sets, then $n(A \cup B)$ is equal to
a. $n(A)+n(B)$
b. $n(A)+n(B)-n(A \cap B)$
c. $n(A)+n(B)+n(A \cap B)$
d. $n(A) n(B) n(A)-n(B)$

Answer: B

Explanation:

$n(A \cup B)=n(A)+n(B)-n(A \cap B)$
41. Let A and B be two sets such
that $n(A)=0.16, n(B)=0.14, n(A \cup B)=0.25$. Then $n(A \cap B)$ is equal to
a. 0.3
b. 0.5
c. 0.05
d. None of these

Answer: C

Explanation:

$n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$0.25=0.16+0.14-n(A \cap B)$
$n(A \cap B)=0.30-0.25=0.05$
42. Let A and B be two sets then $(A \cup B)^{\prime} \cup\left(A^{\prime} \cap B\right)$ is equal to
a. A^{\prime}
c. B^{\prime}

Answer: A

Explanation:

From Venn-Euler's Diagr:
$\therefore(A \cup B)^{\prime} \cup\left(A^{\prime} \cap B\right)=A^{\prime}$
b. A
d. None of these

43. If A and B are two sets then $(A-B) \cup(B-A) \cup(A \cap B)$ is equal to
a. $A \cup B$
b. $A \cap B$
c. A
d. B^{\prime}

Answer: A
Explanation:
From Venn-Euler's di;
$\therefore(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{A}) \cup(\mathrm{A} \cap \mathrm{B})-\Pi \square$
44. The shaded region in the given figure is

a. $A \cap(B \cup C)$
b. $A \cup(B \cap C)$
c. $A \cap(B-C)$
d. $A-(B \cup C)$

Answer: D

Explanation:

From Venn-Euler's diagram, \mathbf{A} - ($\mathbf{B} \cup \mathbf{C}$)
45. If A and B are two sets, then $A \cup B=A \cap B$
a. A*B
b. $\mathrm{B}+\mathrm{A}$
c. $A=B$
d. None of these

Answer: C

Explanation:

Let $x \in A \Rightarrow x \in A \cup B,[\because A \subseteq A \cup B]$
$=x \in A \cap B,[\because A \cup B=A \cap B]$
$=x \in A$ and $x \in B$
$P x \in B, \backslash A \subseteq B$
Similarly $x \in B$
$=x \in A \backslash B \subseteq A$ Now $A \subseteq B, B \subseteq A$
$=A=B$
46. The number of non-empty subsets of the set $\{1,2,3,4\}$ is
a. 15
b. 14
c. 16
d. 17

Answer: A

Explanation:

The number of non- empty subsets $=2^{n}-1$
$2^{4}-1=16-1=15$
47. Which set is the subset of all given sets
a. $\{1,2,3,4, \ldots \ldots$.
b. $\{1\}$
c. $\{0\}$
d. $\}$

Answer: D
Explanation:
Null set is the subset of all given sets.
48. $A=\{x: x \neq x\}$ represents
a. $\{0\}$
b. $\}$
c. $\{1\}$
d. $\{x\}$

Answer: B

Explanation:

It is fundamental concept.
49. If $A=\{2,4,5\}, B=\{7,8,9\}$, then $n(A \times B)$ is equal to
a. 6
b. 9
c. 3
d. 0

Answer: B

Explanation:

$A \times B=\{(2,7),(2,8),(2,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9)\} n(A \times B)=n$. $\mathrm{n}=3 \times 3=9$.

Prof. Jatin Dembla

7415315942
50. In a city 20 percent of the population travels by car, 50 percent travels by bus and 10 percent travels by both car and bus. Then persons travelling by car or bus is
a. 80 percent
b. 40 percent
c. 60 percent
d. 70 percent

Answer: C

Explanation:

$n=20, n=50, n(C, C)=10 \operatorname{Nown} n(C$ È $B)=n+n-n(C$ Ç B $)=20+50-10=60$.
Hence, required number of persons $=60 \%$.

CHAPTER 8

BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS
(A) DIFFERENTIAL CALCULUS

Integral Calculus

Methods of
Basic

Substitution

Formulas

Basic Laws of Differentiation

Differential Calculus

INTRODUCTION
Differentiation is one of the most important fundamental operations in calculus. Its theory primarily depends on the idea of limit and continuity of function.
DERIVATIVE OR DIFFERENTIAL COEFFICIENT

Let $y=f(x)$ be a function. If h be the small increment in x and the corresponding increment in y or $f(x)$ be $y=f(x+h)-f(x)$

IMPLICIT FUNCTIONS	A function in the form $\mathrm{f}(\mathrm{x}, \mathrm{y})=0$. For example $\mathrm{x}^{2} \mathrm{y}^{2}+3 \mathrm{xy}+\mathrm{y}=0$ where y cannot be directly defined as a function of x is called an implicit function of x.
PARAMETRIC EQUATION	When both the variables x and y are expressed in terms of a parameter (a third variable), the involved equations are called parametric equations. For the parametric equations $\mathrm{x}=\mathrm{f}(\mathrm{t})$ and $\mathrm{y}=\mathrm{h}(\mathrm{t})$ the differential coefficient $\frac{d y}{d x}$
LOGARITHMIC DIFFERENTIAT ION	The process of finding out derivative by taking logarithm in the first instance is called logarithmic differentiation.

GEOMETRIC INTERPRETATION OF THE DERIVATIVE

(B) INTEGRAL CALCULUS

Visit: Jatindembla.com / kitest.in

INTEGRATION	Integration is the
reverse process of	

INTEGRATION

1. Find an expression for y given $\frac{d y}{d x}=7 x^{5}$
a. 6
b. 2
c. 3
d. 5

ANSWER: A EXPLAINATION:

$$
\begin{array}{rl}
7 x=\int 7 x^{3} d x & \text { Use } \int a x^{\circ} d x=a \int x^{2} d x=\frac{a x}{n} \\
=\frac{1}{6} x^{6}+c & n=5, n+1=5+1=6
\end{array}
$$

2. Find an expression for given $\frac{d y}{d x}=x^{-\frac{3}{4}}$
a. $2 / 3$
b. $1 / 4$
c. $5 / 4$
d. NONE

ANSWER: B
EXPLAINATION:

Prof. Jatin Dembla

7415315942
3.- $-12 x^{-4}=\int-12 x^{-4}-d x$ solve it:
a. 6
b. 2
c. 3
d. 4

ANSWER: D
EXPLAINATION:
$-12 x-\int-12 x+8 d x$
$=-1 \geqslant \int x-\cos$
Use $\int \infty c^{-a t}=a \iint^{2} d x=\frac{a x^{-1} 1}{n+1}+c$
$=\left[\frac{-12 x^{-3}}{-3}\right]+c$
$x=-4 x+48-4+2=-3$
$=4 x^{-3}+c \quad$ simplifyinetrection $\frac{-12}{-3}=4$
4. Given $f^{\prime}(x)=\frac{1}{2} x^{\frac{1}{3}}-\frac{1}{4} x^{\frac{1}{3}}+\pi$, find $f(x)$
a. 6
b. 2
c. 3
d. NONE

ANSWER: D
EXPLAINATION:
5. Given $f^{\prime}(x)=\int\left(\frac{2}{x}+\frac{3}{x^{2}}+\frac{1}{x^{5}}\right) d x$
a. -6
b. 2
c. -3
d. None

ANSWER: C

Visit: Jatindembla.com / kitest.in

$$
\begin{aligned}
& \frac{1}{2} x^{3}-\frac{1}{4} x^{3}+
\end{aligned}
$$

$$
\begin{aligned}
& x x^{3}=\int x^{4} d x \\
& \text { Use } \int x x^{2} d x=\frac{1}{n+1} x^{*}-c \\
& =\frac{1^{1}}{\frac{1}{4}} x^{2}+C \\
& n=-\frac{3}{n^{3}} n-1=-\frac{3}{4}+1 n^{3}-\frac{3}{4}-\frac{1}{4} \\
& \text { 正 } 4 x^{\frac{4}{4}}+\mathrm{Cl} \\
& \text { cilval } 16 y \frac{1}{4}
\end{aligned}
$$

EXPLAINATION:

$f\left(\frac{2}{x}+\frac{2}{x^{2}}-\frac{1}{x^{2}}\right)=$
$-\int\left(\frac{1}{4}+3 x^{-2}-3\right) d x$
$-\int \frac{2}{x} d x+\int 3 x x^{2} d x+\int x-\infty$
$-2 \ln x-\frac{3 x-1}{-6}-\frac{x^{2}}{-6}$
$-2 \tan x-\frac{3}{3}-\frac{1}{6 x^{\circ}}+5$
6. Integrate $\int \frac{3}{x^{\frac{1}{2}}} d x$
a. $6 \sqrt{x+c}$
b. $\sqrt{x+c}$
c. $8 \sqrt{x+c}$
d. $9 \sqrt{x+c}$

ANSWER: A
EXPLAINATION:
$\int \frac{3}{x^{\frac{1}{2}}} d x=\int 3 x^{\frac{-1}{2}} d x$

$$
\begin{aligned}
& =\frac{3 x^{-\frac{1}{2}} 1}{-\frac{1}{2}+1}+c \\
& \frac{3 x^{\frac{1}{2}}}{\frac{1}{2}}+c \\
& =6 x^{\frac{1}{2}}+c \\
& =6 \sqrt{x}+c
\end{aligned}
$$

7. Find y as a function of x if $\quad \frac{d^{2} y}{d x^{2}}=2 x \quad$ when $x=2, y=7$
a. $y=\frac{x^{3}}{3}+c$
b. $y=\frac{x^{2}}{3}+c$
c. $y=\frac{x}{3}+c$
d. None

ANSWER: A
EXPLAINATION:
Visit: Jatindembla.com / kitest.in

```
\(\int 2 x+\infty=\iint x+\infty\)
    \(=\left(\frac{2 x^{2}-1}{1-1}\right)+c\)
    \(\frac{b}{b x}-x^{3} \rightarrow=\)
Findine \(y=\int \frac{b y}{b x}=\int x^{2}+\infty\)
Ax 42,0 .
    \(7-\frac{2^{3}}{3} \rightarrow c\)
    \(=-\frac{21}{8}\)
```

 \(y=\frac{x^{3}}{3} \rightarrow 0 \quad\) use \(\int x^{-\infty}+\frac{1}{x_{2} \rightarrow x^{-2}} \rightarrow=\)
 8 Integrate $\int\left(w+\frac{1}{w}\right)\left(w-\frac{1}{w}\right) d w$
a. $\frac{w^{3}}{3}+\frac{1}{w}$
b. $\frac{w^{3}}{3}+\frac{1}{W}+c$
c. $\frac{W}{3}+\frac{1}{W}+\mathrm{C}$
d. None

ANSWER: B

EXPLAINATION:
$\int\left(w+\frac{1}{w}\right)\left(w-\frac{1}{w}\right) d w$
$=\int\left(w^{2}-\frac{1}{w^{2}}\right) d w$
$=\int w^{2} d w-\int \frac{1}{w^{2}} d w$
$=\int w^{2} d w-\int w^{-2} d w$
$=\frac{w^{3}}{3}+\frac{1}{w}+c$

Use $\int f(x) d x+g(x) d x=\int f(x) d x+\int g(x) d x$
Express the product as a difference of two squares

Express in negative exponential form

Use $\int x^{n} d x=\frac{1}{n+1} x^{n-1}+c$. Simplify

9If $\frac{d^{2} y}{d x^{2}}=10-3 x$, find $\frac{d y}{d x}+c$
a. $10 x-\frac{3}{2} x^{2}+c$
b. $10 x-\frac{3}{2}+c$

Visit: Jatindembla.com / kitest.in
c. $10-\frac{3}{2} x^{2}+c$
d. none

ANSWER: A

EXPLAINATION:

$$
\begin{array}{rlrl}
\frac{d y}{d x}=\int(10-3 x) d x=\int 10 d x-\int 3 x d x & & \text { Use } \int f(x) d x+g(x) d x=\int f(x) d x+\int g(x) d x \\
& =10 x-\left(\frac{3 x^{1-1}}{1+1}\right)+c & & \text { Use } \int a x^{*} d x=a \int x^{\circ} d x=\frac{d x^{n-1}}{n+1}+c \\
& =10 x-\left(\frac{3 x^{2}}{2}\right)+c & & \text { simplify } \\
& =10 x-\frac{3}{2} x^{2}+c & &
\end{array}
$$

10. Calculate $\int x^{7} d x$
a. $\frac{1}{8} x^{7}+c$
b. $\frac{1}{7} x^{7}+c$
c. $\frac{1}{8} x^{8}+c$
d. None

ANSWER: C
EXPLAINATION

$$
\begin{aligned}
\int x^{7} d x & =\frac{1}{7+1} x^{7-1}+c \quad \text { use } \int x^{0} d x=\frac{1}{n+1} x^{n-1}+c \text { and substitute } n=7 \\
& =\frac{1}{8} x^{0}+c
\end{aligned}
$$

12.

If $\int f(x) d x=x e^{-\log |x|}+f(x)$, then $f(x)$ is
a. 1
b. 0
c. $\underline{c} \boldsymbol{e}^{x}$
d. $\log x$

Answer: C

$\int f(x) d x=x e^{\log \left|\frac{1}{x}\right|}+f(x) \Rightarrow \int f(x) d x=\frac{x}{|x|}+f(x)$
On differentiating both sides, we get
$f(x)=0+f^{\prime}(x)$
we know
$\frac{d}{d x}\left(e^{x}\right)=e^{x}, \therefore f(x)=c e^{x}$.
Explanation:
13. If $f(t)=\int_{-t}^{t} \frac{d x}{1+x^{2}}$, then $f^{\prime}(1)$ is
a. 0
b. $2 / 3$
c. -1
d. -1

Answer: D
Given $f(t)=\int_{-t}^{t} \frac{d x}{1+x^{2}}=\left[\tan ^{-1} x\right]_{t}^{t}=2 \tan ^{-1} t$
Differentiating with respect to $\mathrm{t}, \boldsymbol{f}^{\prime}(t)=\frac{\mathbf{2}}{\mathbf{1 + t ^ { 2 }}}$
$p f^{\prime}(1)=\frac{2}{2}=1$.

Explanation:

14. The existence of first order partial derivatives implies continuity

True
Not Sure
Answer: b
Explanation:
The mere existence cannot be declared as a condition for contnuity because the second order derivatives should also be continuous.
15. $y=\left(x^{2}\left(1+x^{3}\right)\right)$
a. $-\left(2 x+5 x^{4}\right) \sin \left(x^{2}+x^{5}\right)$
b. $\left(2 x+5 x^{4}\right) \sin \left(x^{2}+x^{5}\right)$
c. $\left(2 x+5 x^{4}\right)\left(x^{2}+x^{5}\right)$
d. none

ANSWER: D
False
Invalid Question

EXPLAINATION:

$$
\begin{aligned}
& \frac{d y}{d x}=-\sin \left(x^{2}+x^{5}\right) \frac{d}{d x}\left(x^{2}+x^{5}\right) \quad \text { using the Chain Rule } \\
& \frac{d y}{d x}=-\left(\sin \left(x^{2}+x^{5}\right)\right)\left(2 x+5 x^{4}\right) \quad \text { using basic derivativese } \\
& \frac{d y}{d x}=-\left(2 x+5 x^{4}\right) \sin \left(x^{2}+x^{5}\right) \text { reordering factors }
\end{aligned}
$$

16. If $\mathrm{f}(\mathrm{x})=x^{k}$ and $\mathrm{f}^{\prime}(1)=10$, then the value of k is
a. 10
b. -10
c. $1 / 10$
d. None

ANSWER: A
EXPLAINATION:
$\mathrm{f}(\mathrm{x})=x^{k}$
$f(x)=\frac{d}{d x}\left(x^{k}\right)$
$10=\mathrm{kx} 1$
$\mathrm{K}=10$
17. The points of discontinuity of the function, $f(x)=\frac{x^{2}+2 x+5}{x^{2}-3 x+2}$ are
a. $\mathrm{X}=0, \mathrm{x}=1$
b. $X=1, x=2$
c. $X=0, x=2$
d. None

ANSWER: B
EXPLAINATION:
$f(x)=\frac{x^{2}+2 x+5}{x^{2}-3 x+2}$
Denominator $=0$
$x^{2}-3 x+2=0$
$(\mathrm{x}-1)(\mathrm{x}-2)=0$
$X=1, x=2$
18. The gradient of a function is parallel to the velocity vector of the level curve

True
Not Sure
Answer: b

Invalid Question

Explanation:

The gradient is perpendicular and not parallel to the velocity vector of the level curve.
19. $y=\left(8+x^{3}\right)\left(x^{3}-8\right)$
a. $6 x^{5}$
b. x^{5}
c. 6 x
d. None

ANSWER: A

EXPLAINATION:
This problem is solvable as a product but if you realize that you are looking at a difference of two squares, it becomes very simple.
$y=\left(8+x^{3}\right)\left(x^{3}-8\right)=x^{6}-64$
$\frac{d y}{d x}=6 \mathrm{x}^{5}$
20. If($x, y, z, t)=x y+z t+x^{2} y z t ; x=k^{3} ; y=k^{2} ; z=k ; t=\sqrt{ } k$

Find $\mathrm{dt} / \mathrm{dt}$ at $\mathrm{k}=1$
a. 34
b. 16
c. 32
d. 61

Answer: b Explanation:

Using Chain rule we have

$$
\begin{aligned}
& \frac{d f}{d t}=f_{x} \cdot \frac{d x}{d k}+f_{y} \cdot \frac{d y}{d k}+f_{z} \cdot \frac{d z}{d k}+f_{t} \cdot \frac{d t}{d k} \\
& =(y+2 x y z t) \cdot\left(3 k^{2}\right)+\left(x+x^{2} z t\right) \cdot(2 k)+\left(t+x^{2} y t\right) \cdot(1)+\left(z+x^{2} y z\right) \cdot\left(\frac{1}{2 \sqrt{k}}\right)
\end{aligned}
$$

Put k=1; we have $\mathrm{x}=\mathrm{y}=\mathrm{z}=\mathrm{t}=1$
$9+4+2+1=16$.
21. If $(x, y)=x^{2}+y^{3} ; X=t^{2}+t^{3} ; y=t^{3}+t^{9}$ Find df/dt at $t=1$.
a. 0
b. 1
c. -1
d. 164

Answer: d
Explanation:

Using chain rule we have
$\frac{d f}{d t}=f_{x} \cdot \frac{d x}{d t}+f_{y} \cdot \frac{d y}{d t}$
$=(2 \mathrm{x}) \cdot\left(2 \mathrm{t}+3 \mathrm{t}^{2}\right)+\left(3 \mathrm{y}^{2}\right) \cdot\left(3 \mathrm{t}^{2}+9 \mathrm{t}^{8}\right)$
Put $t=1$; we have $x=2 ; y=2$
$=4 .(5)+12 .(12)=164$.
22. $f(x, y)=x^{2}+x y z+z$ Find f_{x} at $(1,1,1)$
a. 0
b. 1
c. 3
d. -1

Answer: c
Explanation:
$f_{x}=2 x+y z$
$\operatorname{Put}(x, y, z)=(1,1,1)$
$f_{x}=2+1=3$.

23. Necessary condition of euler's theorem is

z should be homogeneous and of order n
z should be implicit
Answer: a
Explanation:
Answer `a` is correct as statement of euler's theorem is "if z is an homogeneous function of x and y of order ${ }^{`}{ }^{\prime}$ ' then $x z^{\partial z} / \partial x+y \partial z / \partial y=n z$ "
Answer `\({ }^{\circ}\) ` is incorrect as z should be homogeneous.
Answer `\({ }^{\circ}\) ' is incorrect as z should not be implicit. Answer`d` is incorrect as z should be the homogeneous function of x and y not nonhomogeneous functions.
24. If $f(x, y)=x+y / y, x \partial z / \partial x+y z / \partial y=$?
a. 0
b. 1
c. 2
d. 3

Answer: a

Given function $f(x, y)=\frac{x+y}{y}$ Can be written as $\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{\left[1+\frac{y}{x}\right]}{\frac{y}{x}}=x^{0} f\left(\frac{y}{x}\right)$,
Hence by euler's theorem,
$x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=0$

Explanation:

25. Find the approximate value of $\left[0.98^{2}+2.01^{2}+1.94^{2}\right](1 / 2)$
a. 1.96
b. 2.96
c. 0.04
d. -0.04

Answer: b
Explanation:
Let $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{(1 / 2)}$
Hence, $x=1, y=2, z=2$ so that, $d x=-0.02, d y=0.01, d z=-0.06$
From (1),
$\partial \mathrm{f} / \partial \mathrm{x}=\mathrm{x} / \mathrm{f}$
$\partial \mathrm{f} / \partial \mathrm{y}=\mathrm{y} / \mathrm{f}$
$\partial \mathrm{f} / \partial \mathrm{z}=\mathrm{z} / \mathrm{f}$
$d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z=\frac{(x d x+y d y+z d z)}{f}=\frac{-0.02+0.02-0.12}{3}=-0.04$
Hence,

$$
\left[0.98^{2}+2.01^{2}+1.94^{2}\right]^{\frac{1}{2}}=f(1,2,2)+d f=3-0.04=2.96
$$

26. $f(x, y)=\frac{x^{3}+y^{3}}{x^{99}+y^{98} x+y^{99}}$ find the value of f_{y} at $(x, y)=(0,1)$
a. 101
b. -96
c. 210
d. 0

Answer: b

Explanation:

Using Euler theorem
$x f_{x}+y f_{y}=n f(x, y)$

Substituting $\mathrm{x}=0 ; \mathrm{n}=-96$ and $\mathrm{y}=1$ we have
$\mathrm{f}_{\mathrm{y}}=-96 . \mathrm{f}(0,1)=-96 .(1 / 1)$
$=-96$.
27. $f(x, y)=x^{3}+x y^{2}+901$ satisfies the Eulers theorem
a. True
b. False
c. Not Sure
d. Invalid Question

Answer: b

Explanation:

The function is not homogenous and hence does not satisfy the condition posed by eulers theorem.
28. For a homogenous function if critical points exist the value at critical points is

Answer: c

Explanation:

Using Euler theorem we have
$\mathrm{xf}_{\mathrm{x}}+\mathrm{yf}-\mathrm{nff} \mathrm{f}_{\mathrm{v}}$.
At criti $\mathrm{l} t_{(x, y, z) \rightarrow(0,0,0} \frac{y^{2} \cdot z^{2}}{x^{3}+x^{2} \cdot(y)^{\frac{1}{3}}+x^{2} \cdot(z)^{\frac{4}{3}}}$
$\mathrm{f}(\mathrm{a}, \mathrm{b})=\mathrm{v}(\mathrm{a}, \mathrm{v}) \rightarrow$ cilucar pulits.
29. Find
a. 1
b. 0
c. ∞
d. Does Not Exist

Answer: d Explanation:

Put $x=t: y=a_{1} * t^{3} / 4: z=a_{2} * t^{3} / 4$
$=l t_{(x, y, z) \rightarrow(0,0,0)} \frac{\left(a_{1}\right)^{2} \cdot t^{\frac{3}{2}} \cdot\left(a_{2}\right)^{2} \cdot t^{\frac{3}{2}}}{t^{3}+t^{2} \cdot t \cdot\left(a_{1}\right)^{\frac{4}{3}}+t^{2} \cdot t \cdot\left(a_{2}\right)^{\frac{4}{3}}}$
$=l t_{(x, y, z) \rightarrow(0,0,0)} \frac{t^{3}}{t^{3}} \times \frac{\left(a_{1}\right)^{2} \cdot\left(a_{2}\right)^{2}}{1+\left(a_{1}\right)^{\frac{4}{3}}+\left(a_{2}\right)^{\frac{4}{3}}}$
$=l t_{(x, y, z) \rightarrow(0,0,0)} \frac{\left(a_{1}\right)^{2} \cdot\left(a_{2}\right)^{2}}{1+\left(a_{1}\right)^{\frac{4}{3}}+\left(a_{2}\right)^{\frac{1}{3}}}$
30. $\lim _{n \rightarrow \infty}\left[\frac{n}{1+n^{2}}+\frac{n}{4+n^{2}}+\frac{n}{9+n^{2}}+\ldots+\frac{1}{2 n}\right]$ is equal to
a. $\frac{\pi}{2}$
b. $\frac{\pi}{4}$
c. 1
d. None of these

Answer: d
Explanation:

$$
\begin{aligned}
& \text { We have, } \begin{aligned}
&\left.\lim _{n \rightarrow \infty} \left\lvert\, \frac{n}{1+n^{2}}+\frac{n}{4+n^{2}}+\ldots . .+\frac{1}{2 n}\right.\right] \\
& \left.=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{n}{r^{2}+n^{2}}=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{n}{n^{2}\left(1+\frac{r^{2}}{n^{2}}\right)} \right\rvert\, \\
& \left.=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{n\left(1+\frac{r^{2}}{n^{2}}\right)}=\int_{0}^{1} \frac{d x}{1+x^{2}} \right\rvert\,
\end{aligned}
\end{aligned}
$$

$\left\{\right.$ Applying formula, $\left.\lim _{n \rightarrow \infty} \sum_{r=0}^{n-1}\left\{f\left(\frac{r}{n}\right)\right\} \cdot \frac{1}{n}=\int_{0}^{1} f(x) d x\right\}$

$$
=\left[\tan ^{-1} x\right]_{0}^{1}=\tan ^{-1} 1-\tan ^{-1} 0=\frac{\pi}{4}
$$

31. For homogenous function with no saddle points we must have the minimum value as

90
equal to degree 1 0

Answer: d

Explanation:

Substituting $\mathrm{f}_{\mathrm{x}}=\mathrm{f}_{\mathrm{y}}=0$ At critical points in euler theorem we have $\mathrm{nf}(\mathrm{a}, \mathrm{b})=0 \Rightarrow \mathrm{f}(\mathrm{a}, \mathrm{b})=0(\mathrm{a}, \mathrm{b}) \rightarrow$ critical points.
32. ${ }^{x \rightarrow a} g(x)-g(a)^{2}$
a. $\frac{9}{100}$
b. $\frac{-1}{2}$
c. $\frac{1}{99}$
d. $\frac{1}{101}$

Answer: B
Explanation:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1^{99}+2^{99}+\ldots \ldots+n^{99}}{n^{100}}=\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left(\frac{r^{99}}{n^{100}}\right) \\
&=\lim _{n \rightarrow \infty} \frac{1}{n}\left[\sum_{r=1}^{n}\left(\frac{r}{n}\right)^{99}=\int_{0}^{1} x^{99} d x=\left[\frac{x^{100}}{100}\right]_{0}^{1}=\frac{1}{100} .\right.
\end{aligned}
$$

33. Let $f(x)=\int_{1}^{x} \sqrt{2-t^{2} d t}$. Then real roots of the equation $x 2-f^{\prime}(x)=0$ are
a. ± 1
b. $\pm \frac{1}{\sqrt{2}}$
c. $\pm \frac{1}{2}$
d. 0 and 1

Answer: A

Explanation:

$$
\begin{aligned}
& \quad f^{\prime}(x)=\sqrt{2-x^{2}} \Rightarrow x^{2}-\sqrt{2-x^{2}}=0 \\
& x^{4}+x^{2}-2=0 \text { or }\left(x^{2}+2\right)\left(x^{2}-1\right)=0 \\
& \therefore x^{2}-1=0, \quad \therefore x= \pm 1 .
\end{aligned}
$$

34. The value of the integral $\sum_{k=1}^{n} \int_{0}^{1} f(k-1+x) d x$ is
A. $\int_{0}^{1} f(x) d x$
B. $\int_{0}^{2} f(x) d x$.
C. $n \int_{0}^{n} f(x) d x$
D. $n \int_{0}^{1} f(x) d x$
A.

Answer: C

Explanation:

$$
\text { Let } I=\int_{0}^{1} f(k-1+x) d x
$$

$$
b
$$

$I=\int_{k-1}^{k} f(t) d t$, where $t=k-1+x$ - $I=\int_{k-1}^{k} f(x) d x$
$\therefore \sum_{k=1}^{n} \int_{k-1}^{k} f(x) d x=\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x+\ldots .+\int_{n-1}^{n} f(x) d x$

$$
=\int_{0}^{\pi} f(x) d x
$$

35.

The derivative of $F(x)=\int_{x^{2}}^{x^{3}} \frac{1}{\log t} d t,(x>0)$ is
a. $\frac{1}{3 \log x}-\frac{1}{2 \log x}$
b. $\frac{1}{3 \log x}$
c. $\frac{3 x^{2}}{3 \log x}$
d. $(\log x)^{-1} \cdot x(x-1)$

Answer: D

Explanation:

$\frac{d}{d x}\left(\int_{a}^{b} f(t) d t\right)=\frac{d b}{d x} f(b)-\frac{d a}{d x} f(a)$
are functions of $x \quad \therefore F(x)=\int_{x^{2}}^{x^{3}} \frac{1}{\log t} d t \quad$ D
$F^{F}(x)=\frac{d}{d x}\left(x^{3}\right) \frac{1}{\log x^{3}}-\frac{d}{d x}\left(x^{2}\right) \frac{1}{\log x^{2}}$
$=\frac{3 x^{2}}{3 \log x}-\frac{2 x}{2 \log x}=x(x-1)(\log x)^{-1}$.
36. The greatest value of the function $\mathrm{F}(\mathrm{x})=\int_{1}^{x}|t| d t$ on the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$ is given by?
a. $\frac{3}{8}$
b. $-\frac{1}{2}$
c. $-\frac{3}{8}$
d. $\frac{2}{5}$

Answer: C
Explanation:
Visit: Jatindembla.com / kitest.in

$$
F^{\prime}(x)=|x|>0 \forall x \in\left[\begin{array}{cc}
1 & 1 \\
-2 & 1 \\
2
\end{array}\right] \quad \text { Hence the }
$$

function is increasing on $\left[-\frac{\mathbf{1}}{\mathbf{2}}, \frac{\mathbf{1}}{2}\right]$ and therefore $\boldsymbol{F}(\boldsymbol{x})$ has
maxima at the right end point of $\left[-\frac{1}{2}, \frac{1}{2}\right]$.
p $\operatorname{Max} \boldsymbol{F}(x)=F\left(\frac{1}{2}\right)=\int_{1}^{1 / 2}|t| d t=-\frac{3}{8}$.
37. For homogenous function the linear combination of rates of independent change along x and y axes is

Integral multiple of function value real multiple of function value
no relation to function value depends if the function is a polynomial

Answer: c

Explanation:

Eulers theorem is nothing but the linear combination asked here, The degree of the
38. $\int_{0}^{b-c} f^{\prime \prime}(x+a) d x=$
homogenous function can be a real number. Hence, the value is integral multiple of real number.
a. $f^{\prime}(a)-f^{\prime}(b)$
b. $f^{\prime}(b-c+a)-f^{\prime}(a)$
c. $\mathrm{f}^{\prime}(\mathrm{b}+\mathrm{c}-\mathrm{a})+\mathrm{f}^{\prime}(\mathrm{a})$
d. None of these

Answer: B

Explanation:

$$
\int_{0}^{b-c} f^{\prime \prime}(x+a) d x
$$

$$
=\left[f^{\prime}(x+a)\right]_{o}^{b^{-c}}=f^{\prime}(b-c+a)-f^{\prime}(a) .
$$

$39 \int_{0}^{\infty} \frac{x^{3} d x}{\left(x^{2}+4\right)^{2}}=$
a. 0
b. ∞
c. $1 / 2$
d. None of these

Answer: B
Explanation:

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{x^{3} d x}{\left(x^{2}+4\right)^{2}}=\frac{1}{2} \int_{0}^{\infty} \frac{x^{2} 2 x d x}{\left(x^{2}+4\right)^{2}} d x \\
& \left.=\frac{1}{2} \int_{0}^{\infty} \frac{t}{(t+4)^{2}} d t \quad \quad \text { [Putting } x^{2}=t\right] \\
& =\frac{1}{2} \int_{0}^{\infty}\left[\frac{1}{t+4}-\frac{4}{(t+4)^{2}}\right] d t=\frac{1}{2}\left[\log (t+4)+\frac{4}{t+4}\right]_{0}^{\infty} \\
& =\frac{1}{2}[\log \infty+0-(\log 4+1)]=\infty .
\end{aligned}
$$

40. The points of intersection of $F 1(x)=/_{2}$
$(2 t-5) d t$ and $F_{2}(x)=\int_{0}^{x} 2 t d t$, are
a. $\left(\frac{6}{5}, \frac{36}{25}\right)$
b. $\left(\frac{2}{3}, \frac{4}{5}\right)$
c. $\left(\frac{1}{3}, \frac{3}{6}\right)$
d. $\left(\frac{5}{4}, \frac{5}{7}\right)$

Answer: A

Explanation:

$$
\begin{aligned}
& \qquad L_{2} F_{1}(x)=y_{1}=\int_{2}^{x}(2 t-5) d t \text { and } \\
& F_{2}(x)=y_{2}=\int_{0}^{x} 2 t d t \quad \text { Now point of intersection } \\
& \text { means those point at which } \\
& y_{1}=y_{2}=y \Rightarrow y_{1}=x^{2}-5 x+6 \text { and } y_{2}=x^{2} \\
& \text { On solving, we get } \\
& x^{2}=x^{2}-5 x+6 \Rightarrow x=\frac{6}{5} \text { and } y=x^{2}=\frac{36}{25} \text {. Thus point of } \\
& \text { intersection is }\left(\frac{6}{5}, \frac{36}{25}\right) \text {. }
\end{aligned}
$$

41. $\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{n} e^{\frac{r}{n}}$ is
a. $\mathrm{e}+1$
b. $e-1$
c. 1-e
d. e

Answer: B
Explanation:

$$
\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{1}{n} e^{\frac{r}{n}}=\int_{0}^{1} e^{x} d x=\left[e^{x}\right]_{0}^{1}=e-1
$$

42.

a. $\frac{1}{p=1}$
b. $\frac{1}{1-p}$
c. $\frac{1}{p}-\frac{1}{p-1}$
d. None

Answer: A

Explanation:

$$
\lim _{n \rightarrow \infty} \frac{1^{p}+2^{p}+3^{p}+\ldots \ldots+n^{p}}{n^{p+1}}=\lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left[\frac{r^{p}}{n^{p+1}}\right]
$$

$\lim _{n \rightarrow \infty} 1 \sum_{r=1}^{n}\binom{r}{n}^{p}=\int_{0}^{1} x^{p} d x=\left[\begin{array}{c}x^{p+1} \\ p+1\end{array}\right]_{0}^{1}=\begin{gathered}1 \\ p+1\end{gathered}$.
43.

a. $2+2 \sqrt{2}$
b. $2 \sqrt{2}-2$
c. $2 \sqrt{2}$
d. 2

Answer: B

Explanation:

$$
\begin{aligned}
& y=\lim _{x \rightarrow \infty}\left[\frac{1}{x}+\frac{1}{\sqrt{x^{2}+n}}+\cdots+1+\frac{1}{\sqrt{n^{2}+(n-1) n}}\right] \\
& p \\
& y=\lim _{x \rightarrow \infty}\left[\frac{1}{n}+\frac{1}{m \sqrt{1+\frac{1}{n}}}+\cdots+\frac{1}{m \sqrt{1+\frac{(m-1)}{m}}}\right] \\
& p y=\frac{1}{n} \lim _{x \rightarrow \infty}\left[1+\frac{1}{\sqrt{1+\frac{1}{n}}}+\ldots+\frac{1}{\sqrt{1+\frac{(n-1)}{n}}}\right] \\
& y=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\sqrt{1+\frac{(k-1)}{n}}} \text {, Put } \frac{k-1}{n}=x \text { and } \\
& \frac{1}{\mathbf{x}}=d x \quad \text { is } y=\lim _{z \rightarrow \infty} \\
& \int_{0}^{\frac{\pi}{m}} \frac{d x}{\sqrt{1+x}} \\
& =\lim _{n \rightarrow \infty} 2[\sqrt{1+x}]_{0}^{\left(\frac{n-x}{m}\right)} \\
& p \\
& y=2 \lim _{x \rightarrow \infty}[\sqrt{2 n-1}-1]=2 \lim _{x \rightarrow \infty} \sqrt{2 n-1}-2 \\
& \text { p } y=2 \lim _{x \rightarrow \infty} \sqrt{2-\frac{1}{n}}-2=2 \sqrt{2}-2 \text {. }
\end{aligned}
$$

44.

$$
\lim _{n \rightarrow \infty}\left[\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\ldots \ldots \frac{1}{2 n}\right]=
$$

a. 0
b. $\log _{e} 4$
c. $\log _{e} 3$
d. $\log _{e} 2$

Answer: D

Explanation:

$$
=
$$

45. The solution of the equation $\frac{x^{2} d^{2} y}{d x^{2}}==\ln \mathrm{x}$, when $\mathrm{x}=1, \mathrm{y}=0$ and $\frac{d y}{d x}=-1$
a. $\frac{1}{2}(\operatorname{In} x)^{2}+\operatorname{In} x$
b. $\frac{1}{2}(\operatorname{In} x)^{2}-\operatorname{In} x$
c. $-\frac{1}{2}(\operatorname{In} x)^{2}+\operatorname{In} x$
d. $-\frac{1}{2}(\operatorname{In} x)^{2}-\operatorname{In} x$

Answer: D

Explanation:

$$
\frac{d^{2} y}{d x^{2}}=\frac{\log x}{x^{2}} \Rightarrow \frac{d y}{d x}=\frac{-(\log x+1)}{x}+c
$$

At $\frac{d y}{d x}=-1, x=1, y=0,1 e=0$
$y=-\int \frac{\log x+1}{x} d x=-\frac{1}{2}(\log x)^{2}-\log x$.
46. The rate of increase of bacteria in a certain culture is proportional to the number present. If it double in $\mathbf{5}$ hours then in $\mathbf{2 5}$ hours, its number would be
a. 8 times the original
b. 16 times the original
c. 32 times the original
d. 64 times the original

Answer: C

Explanation:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[\begin{array}{l}
1 \\
n \\
n+1
\end{array}+\underset{n+2}{1}+\ldots \ldots+\begin{array}{c}
1 \\
2 n
\end{array}\right] \\
& \lim _{n \rightarrow \infty}\left[\begin{array}{l}
1 \\
n
\end{array} \underset{n+1}{1}+\underset{n+2}{1}+\ldots+\underset{n+n}{1}{ }_{n+1}^{1}\right. \\
& =\frac{1}{n} \lim _{n \rightarrow \infty}\left[1+\frac{1}{1+\frac{1}{n}}+\frac{1}{1+\frac{2}{n}}+\ldots+\frac{1}{1+\frac{n}{n}}\right] \\
& =\frac{1}{n} \lim _{n \rightarrow \infty} \sum_{r=0}^{n}\left[\frac{1}{1+/ n}\right]=\int_{0}^{1} \frac{1}{1+x} d x \\
& =\left[\log _{e}(1+x)\right]_{0}^{1}=\log _{e} 2-\log _{e} 1=\log _{e} 2 \text {. }
\end{aligned}
$$

Let $\boldsymbol{P}_{\mathbf{0}}$ be the initial population and let the
population after t years be P. Then $\frac{d P}{d t}=\boldsymbol{k P} \Rightarrow \frac{d \boldsymbol{P}}{\boldsymbol{P}}=\boldsymbol{k} d \boldsymbol{t}$
On integrating, we have $\log P=k t+c \quad$ At $t=0$,
$P=P_{0} \quad \therefore \log P_{0}=0+c, \therefore \log P=k t+\log P_{0} D$
$\log \begin{aligned} & \boldsymbol{P} \\ & P_{0}\end{aligned}=\boldsymbol{k} t \quad$ When $t=5$ hrs, $P=\mathbf{2} \boldsymbol{P}_{0} \quad \therefore$
$\log \frac{2 P_{0}}{P_{0}}=5 k$ ゅ $K=\frac{\log 2}{5} ; \therefore \log \frac{P}{P_{0}}=\frac{\log 2}{5} t \quad$ When
$\boldsymbol{t}=\mathbf{2 5}$ hours, we have
$\log \frac{P}{P_{\mathrm{0}}}=\frac{\log 2}{5} \times 25=5 \log 2=\log 32 ; \therefore P=32 P_{0}$.
47. The degree of the equation $3 \frac{d^{2} y}{d \pi^{2}}=\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{3 / 2}$ is differential
a. 1
b. 2
c. 3
d. 6

Answer: B
Explanation:
$3 \frac{d^{2} y}{d x^{2}}=\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}_{3}^{3 / 2} \quad$ on squaring, we
get $9\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{3} \quad$ obviously the
highest derivative $\frac{d^{2} y}{d x^{2}}$ contains a degree 2 .
48. The differential equation representing the family of curves $\boldsymbol{y}^{2}=2 c(x+\sqrt{c})$, where c is a positive parameter, is of
a. Order 1
b. Order 2
c. Degree 3
d. Degree 4

Answer: A
Explanation:
Given curve is $y^{2}=2 c(x+\sqrt{c})$.
Differentiate w.r.t. x, $2 y \frac{d y}{d x}=2 c \triangleright c=y \frac{d y}{d x} \quad$ Hence
differential equation is $\quad y^{2}=2 y \frac{d y}{d x}\left(x+\sqrt{y \frac{d y}{d x}}\right)$ p
$\underset{2 d y / d x}{y}-x=\sqrt{y_{d x}^{d y}} \quad$ Squaring and multiplying by
$\left(\frac{d y}{d x}\right)^{2}$
$y\left(\frac{d y}{d x}\right)^{3}-x^{2}\left(\frac{d y}{d x}\right)^{2}+x y\left(\frac{d y}{d x}\right)-\frac{y^{2}}{4}=0$
Hence order is 1 and degree is 3 .

Prof. Jatin Dembla

7415315942
49. The order and degree of the differential equation $\left(1+3 \frac{d y}{d x}\right)^{\frac{2}{3}}=4 \frac{d^{3} y}{d x^{3}}$ are
a. $1,2 / 3$
b. 3,1
c. 3,3
d. 1,2

Answer: C

Explanation:

To check, order and degree, the given differential equation should be free from radicals, hence taking cube on both sides,
$\left(1+3 \cdot \frac{d y}{d x}\right)^{2}=\left(4 \cdot \frac{d^{3} y}{d x^{3}}\right)^{3}$
Order $=3$, degree $=3$.
50. The solution of the differential equation $y-x \frac{d y}{d x}=a\left(y^{2}+\frac{d y}{d x}\right)$ is
a. $y=c(x+a)(1+a y)$
b. $y=c(x+a)(1-a y)$
c. $y=c(x-a)(1+a y)$
d. None of these

Answer: B
Explanation:

$$
y-x \frac{d y}{d x}=a\left(y^{2}+\frac{d y}{d x}\right)
$$

$y-a_{y^{2}}^{2}=(x+a) \frac{d y}{d x} \quad$ p $\frac{d y}{y(1-a y)}=\frac{d x}{x+a}$
On integrating both sides, we get
b
$\log y-\log (1-a y)=\log (x+a)+\log c$
p
$\frac{y}{(1-a y)}=c(x+a)$ or $c(x+a)(1-a y)=y$

Visit: Jatindembla.com / kitest.in

CHAPTER 9

NUMBER SERIES, CODING DECODING AND ODD MAN OUT SERIES

Before transmitting, the data is encoded and at receiver side encoded at a is decoded in order to obtain original data by determining common key in encoded data.
Type 1: Letter Coding
Type 2: Number coding

ODD

 MANOUTClassification means 'to assort the items' of a given group on the
basis of a certain common quality they possess and then spot the stranger or 'odd one out'.

1. Find the missing term of the series $2,7,16, \ldots, 46,67,92$
a. 29
b. 30
c. 19
d. 39

ANSWER: a

EXPLAINATION:

Here the terms of the series are $+5,+9,+13,+17,+21,+25 \ldots$
Thus, $2+5=6$;and $7+9=16$...
So missing term $=16+13=29$
2. Find the wrong terms of the series $9,29,65,126,217,344$
a. 30
b. 29
c. 28
d. 27

30
a. 29
b. 28
c. 27

ANSWER: b

EXPLAINATION:

$2^{3}+1,3^{3}+1,4^{3}+1, \ldots \ldots .$. Here 29 is wrong term of series
3 . Find the missing term of the series $1,9,25,49,81,121$,
a. 129
b. 149
c. 169
d. 139

ANSWER: c
EXPLAINATION:

Prof. Jatin Dembla

The given terms of the series are consists square of consecutive odd number $1^{2}, 3^{2}$, $5^{2}, 7^{2}, \ldots$. So missing value $=13^{2}=169$
4. Find the next term of the series BKS, DJT, FIU, HHV?
a. JGW
b. a. JGV
c. JVG
d. d. BBA

ANSWER: a
EXPLAINATION:
This type of question usually consist of a series of small letters which follow a certain pattern. However some letters are missing from the series. These missing letters are then given in a proper sequence as one of the alternatives.
5. 3, 5, 11, 14, 17, 21 Find the odd man out
a. 21
b. 17
c. 14
d. 3

ANSWER: C

EXPLAINATION:

Each of the numbers except 14 is an odd number.
The number ' 14 ' is the only EVEN number.
6. $8,27,64,100,125,216,343$ Find the odd man out?
a. 27
b. 100
c. 125
d. 343

Answer: B

Explanation:
EXCEPT 100 ALL ARE CUBE OF 2,3,4,5,6 and 7
7. $6,9,15,21,24,28,30$
a. 28
b. 21
c. 24
d. 30

Answer: Option A Explanation:
Each of the numbers except 28, is a multiple of 3.
8. $582,605,588,611,634,617,600$ Find out the wrong number in the given sequence of numbers.
a. 634
b. 611
c. 605
d. 600

Answer: Option A

Explanation:

Alternatively 23 is added and 17 is subtracted from the terms. So, 634 is wrong.
9. 1, 2, 6, 15, 31, 56, 91 Find out the wrong number in the given sequence of numbers.
a. 31
b. 91
c. 56
d. 15

Answer: Option B
Explanation:
$1,1+1^{2}=2,2+2^{2}=6,6+3^{2}=15,15+4^{2}=31,31+5^{2}=56,56+6^{2}=92$
Last number of given series must be 92 not 91
10. 1, $8,27,64,124,216,343$ Find out the wrong number in the given sequence of numbers.
a. 8
b. 27
c. 64
d. 124

Answer: Option D

Explanation:

The numbers are $1^{3}, 2^{3}, 3^{3}, 4^{3}$ etc. So, 124 is wrong; it must have been 5^{3} i.e., 125 11. $8,13,21,32,47,63,83$. Find out the wrong number in the given sequence of numbers.
A. 47
B. 63
C. 32
D. 83

Answer: Option A Explanation:

Go on adding $5,8,11,14,17,20$.
So, the number 47 is wrong and must be replaced by 46
12. Insert the missing number.

16, 33, 65, 131, 261, (....)
a. 523
b. 521
c. 613
d. 721

Answer: Option A Explanation:

Each number is twice the preceding one with 1 added or subtracted alternatively.
So, the next number is $(2 \times 261+1)=523$
13. Insert the missing number
$2,4,12,48,240,(\ldots$.
a. 960
b. 1440
c. 1080
d. 1920

Answer: Option B
Explanation:
Go on multiplying the given numbers by $2,3,4,5,6$.
So, the correct next number is 1440
14. Insert the missing number $8,7,11,12,14,17,17,22,(\ldots .$.
a. 27
b. 20
c. 22
d. 24

Answer: Option B Explanation:

There are two series $(8,11,14,17,20)$ and $(7,12,17,22)$ increasing by 3 and 5 respectively.
15. Find out the wrong number in the series.

7, 8, 18, 57, 228, 1165, 6996
a. 8
b. 18
c. 57
d. 228

Answer: Option D Explanation:

Let the given numbers be A, B, C, D, E, F, G.
Then, $\mathrm{A}, \mathrm{A} \times 1+1, \mathrm{~B} \times 2+2, \mathrm{C} \times 3+3, \mathrm{D} \times 4+4, \mathrm{E} \times 5+5, \mathrm{~F} \times 6+6$ are the required numbers.

Clearly, 228 is wrong
16. Find out the wrong number in the series $1,2,6,24,96,720$

Visit: Jatindembla.com / kitest.in
a. 720
b. 96
c. 24
d. 6

Answer: Option B Explanation:

Go on multiplying with $1,2,3,4,5,6$ to get next number.
So, 96 is wrong
17. Find out the wrong number in the series $196,169,144,121,100,80,64$
a. 169
b. 144
c. 121
d. 80

Answer: Option D
Explanation:
Numbers must be $(14)^{2},(13)^{2},(12)^{2},(11)^{2},(10)^{2},(9)^{2},(8)^{2}$.
So, 80 is wrong
18. Find out the wrong number in the series $445,221,109,46,25,11,4$
a. 221
b. 109
c. 46
d. 25

Answer: Option C Explanation:

Go on subtracting 3 and dividing the result by 2 to obtain the next number.
Clearly, 46 is wrong.
19. Find out the wrong number in the series $190,166,145,128,112,100,91$
a. 100
b. 166
c. 145
d. 128

Answer: Option D

Explanation:

Go on subtracting $24,21,18,15,12,9$ from the numbers to get the next number.
190-24 = 166
166-21 = 145
145-18=127 [Here, 128 is placed instead of 127]
$127-15=112$
112-12 = $100 \ldots$ and so on.
Therefore, 128 is wrong
20 . In a certain code DELHI is written as CDKGH. How is SUSPECT written in code?
a. RTRODBS.
b. QTRODBS
c. RTIODBS
d. RTROIBS.

Answer: A
Explanation:
Clearly, we can see that each letter of the word DELHI is moved one step backward to obtain the code.

Similarly, SUSPECT will be coded as RTRODBS.
21. In a certain code COURAGE is written as UOCREGA. How will JOURNAL be written in the code.
a. UOJRLAN.
b. UOMRLAN.
c. UPJRLAN
d. ULOJRLAN

Answer:

Explanation: A

Clearly, when COURAGE is coded, some letters are interchange with respect to their positions, i.e., odd position are interchanged.

Position of 1 changes to 3 and 3 to 1 . Position of 5 changes to 7 and 7 to 5 .
can be coded as UOJRLAN
22. Find out the wrong number in the series.

19, 26, 33, 46, 59, 74, 91
a. 26
b. 33
c. 46
d. 59

Answer: Option B
Explanation:
Go on adding $7,9,11,13,15,17$ respectively to obtain the next number.
So, 33 is wrong. It must be 35
23. Find out the wrong number in the series $1,3,10,21,64,129,356,777$
a. 10
b. 21
c. 64
d. 356

Answer: Option D Explanation:
$\mathrm{A} \times 2+1, \mathrm{~B} \times 3+1, \mathrm{C} \times 2+1, \mathrm{D} \times 3+1$ and so on.
So, 356 is wrong
24. Find out the wrong number in the series $6,12,48,100,384,768,3072$
a. 768
b. 384
c. 100
d. 48

Answer: Option C Explanation:

Each even term of the series is obtained by multiplying the previous term by 2.

Visit: Jatindembla.com / kitest.in
$2^{\text {nd }}$ term $=\left(1^{\text {st }}\right.$ term $) \times 2=6 \times 2=12$
$4^{\text {th }}$ term $=\left(3^{\text {rd }}\right.$ term $) \times 2=48 \times 2=96$.
$6^{\text {th }}$ term $=\left(5^{\text {th }}\right.$ term $) \times 2=384 \times 2=768$.
$\therefore 4^{\text {th }}$ term should be 96 instead of 100
25. Insert the missing number. $7,26,63,124,215,342,(\ldots .$.
a. 391
b. 421
c. 481
d. 511

Answer: D
Explanation:
Numbers are (23-1), (33-1), (43-1), (53-1), (63-1),(73-1) etc.
So, the next number is $\left(8^{3}-1\right)=(512-1)=511$.
26. Find the odd man out? $396,462,572,427,671,264$
a. 671
b. 462
c. 427
d. 264

Answer: C
Explanation:
Here the given series is $396,462,572,427,671,264$.
In all the terms, the middle digit is the sum of first and third digit except 427.
So the Odd number in the given series is 427 .
27. Insert the missing number.2, 4, 12, 48, 240, (....)
a. 960
b. 1440
c. 1080
d. 1920

Answer: B

Explanation:

Go on multiplying the given numbers by $2,3,4,5,6$.
So, the correct next number is 1440 .
28. Find the odd man out.41, 43, 47, 53, 61, 71, 73, 81
a. 41
b. 61
c. 71
d. 81

Answer: D

Explanation:

Each of the numbers except 81 is a prime number
29. Find out the wrong number in the given sequence of numbers. $582,605,588$, 611, 634, 617, 600
a. 634
b. 611
c. 605
d. 600

Answer: A

Explanation:

Alternatively 23 is added and 17 is subtracted from the terms. So, 634 is wrong.
30. Find out the wrong number in the given sequence of numbers.1, 2, 6, 15, 31, 56, 91
a. 31
b. 91
c. 101
d. 15

Answer: B
Explanation:
$1,1+1^{2}=2,2+2^{2}=6,6+3^{2}=15,15+4^{2}=31,31+5^{2}=56,56+6^{2}=92$
Last number of given series must be 92 not 91
31. find odd number: $324,244,136,352,514$
a. 324
b. 244
c. 136
d. 352

Answer: B
Explanation:
Sum of the digits in each other number is 10 .
32. find odd number: $43,53,63,73,83$
a. 43
b. 53
c. 63
d. 73

Answer: c

Explanation:

Each of the numbers except 63, is a prime number.
33. find odd number: $10,26,24,21,18$
a. 10
b. 26
c. 24
d. 21

Answer: D
Explanation:
Each of the numbers except 21 , is an even number.
34. Find odd number: $51,144,64,121,256$
a. 51
b. 144
c. 64
d. 121

Answer: A
Explanation:
Each of the number except 51 , is a perfect square.
35. find odd number: $15,21,24,28,30$
a. 15
b. 21
c. 24
d. 28

Answer: D
Explanation:
Each of the numbers except 28, is divisible by 3 .
36. Find odd number: 2384 , 1592 , 3756 , 4298 , 3629
a. 2384
b. 1592
c. 3756
d. 3629

Answer: D

Explanation:

In all other numbers, the last digit is two times the first, All are EVEN but 3629 is ODD.
37. Choose odd number: $7359,1593,9175,3781,9317$
a. 7359
b. 1593
c. 9175
d. 3781

Answer: D

Explanation:

All other numbers consist of odd digits only. Sum of all digits is a prime in D.
38. find odd number: 8314, 2709, 1315, 2518, 3249
a. 8314
b. 2709
c. 1315
d. 2518

Answer: A Explanation:

In all number except 8314, the sum of first three digits is equal to the unit's digit. Hence, the answer is (a).
39. Find odd number: 48, 12, 36, 24, and 59
a. 48
b. 12
c. 36
d. 59

Answer: D

Explanation:

In all numbers except 59, the unit's digit is twice the ten's digit. Hence, the answer is (d), and all are multiples of 12 too except 59
40. Find odd number: $2345,3456,5467$, and 5678
a. 2345
b. 3456
c. 5467
d. 567

Answer: C
Explanation:
All other numbers contain four consecutive digits in order.

CHEPTER 10

DIRECTION SENSE TEST

Always Remember

LEFT \& LEFT	
RIGHT\& LEFT	
LEFT\& RIGHT	
RIGHT \& RIGHT	
UP \& LEFT	
UP \& RIGHT	UP
DOWN \& LEFT	
DOWN \& RIGHT	Left

Visit: Jatindembla.com / kitest.in

1. One morning Udai and Vishal were talking to each other face to face at a crossing. If Vishal's shadow was exactly to the left of Udai, which direction was Udai facing?

a. East.
b. West
c. North
d. South

Answer: Option C

Explanation:

2. Y is in the East of X which is in the North of Z. If P is in the South of Z, then in which direction of Y, is P ?
A. North
B. South
C. South-East
D. None of these

Answer: Option D
Explanation:

P is in South-West of Y
3. If South-East becomes North, North-East becomes West and so on. What will West become?
A. North-East
B. North-West
C. South-East
D. South-West

Answer: Option C
Explanation:

Visit: Jatindembla.com / kitest.in

It is clear from the diagrams that new name of West will become South-East
4. A man walks 5 km toward south and then turns to the right. After walking 3 km he turns to the left and walks 5 km . Now in which direction is he from the starting place?
a. North-East
b. North-West
c. South-East
d. South-West

Answer: Option D Explanation:
$=\mathrm{km}$.

km along the main road. What would be the distance between two cars at this point?
a. 65 km
b. 75 km
c. 80 km
d. 85 km

Answer: Option A Explanation:

4. Starting from the point X, Jayant walked 15 m towards west. He turned left and walked 20 m . He then turned left and walked 15 m . After this he turned to his right and walked 12 m . How far and in which directions is now Jayant from X ?
a. 32 m , South
b. 47 m , East
c. 42 m , North
d. 27 m , South

Answer: Option A Explanation:

Required distance $=20+12$
$=32 \mathrm{~m}$ in sauth direction
5. One evening before sunset Rekha and Hema were talking to each other face to face. If Hema's shadow was exactly to the right of Hema, which direction was Rekha facing?
A. North
B. South
C. East
D. Data is inadequate

Answer: Option B
Explanation:

In the evening sun sets in West. Hence then any shadow falls in the East. Since Hema's shadow was to the right of Hema. Hence Rekha was facing towards South.
6. A boy rode his bicycle Northward, then turned left and rode 1 km and again turned left and rode 2 km . He found himself 1 km west of his starting point. How far did he ride northward initially?
a. 1 km
b. 2 km .
c. 3 km
d. 5 km

Answer: Option B
Explanation:

The boy rode 2 km . Northward.
7. K is 40 m South-West of L. If M is 40 m South-East of L, then M is in which direction of K ?
a. East
b. West
c. North-East
d. Sout

Answer: Option A Explanation:

Hence M is in the East of K.
8. A man walks 2 km towards North. Then he turns to East and walks 10 km. After this he turns to North and walks 3 km . Again he turns towards East and walks 2 km . How far is he from the starting point?
a. 10 km
b. 13 km
c. 15 km
d. None of these

Answer: Option B
Explanation:

$=\sqrt{5^{2}+12^{2}}$
$=13 \mathrm{~km}$.
9. The length and breadth of a room are 8 m and 6 m respectively. A cat runs along all the four walls and finally along a diagonal order to catch a rat. How much total distance is covered by the cat?
a. 10
b. 14
c. 38
d. 48

Answer: Option C Explanation:

Required distance $=8+6+8+6+\sqrt{8^{2}+6^{2}}$
$=28+\sqrt{100}$
$=28+10$
$=38 \mathrm{~m}$
10. One morning sujata started to walk towards the Sun. After covering some distance she turned to right then again to the right and after covering some distance she again turns to the right. Now in which direction is she facing?
a. North
b. South
c. North-East
d. South-West

Answer: Option A

Explanation:

Hence finally Sujata will face towards North.
11. Some boys are sitting in three rows all facing north such that A is in the middle row. P is just to the right of A but in the same row. Q is just behind of P while R is in the North of A. In which direction of R is Q ?
a. North
b. South- East
c. North-East
d. South-West

Answer: Option b Explanation:

Q is in South-East of R
12. One morning after sunrise, Vimal started to walk. During this walking he met Stephen who was coming from opposite direction. Vimal watch that the shadow of Stephen to the right of him (Vimal). To Which direction Vimal was facing?
a. East
b. West
c. South
d. Data inadequate

Answer: Option C Explanation:
Sun rises in the east. So the shadow of a man will always falls towards the west. Since the shadow of Stephen is to the right of Vimal. Hence Vimal is facing towards South.
13. Golu started from his house towards North. After covering a distance of $8 \mathbf{k m}$. he turned towards left and covered a distance of 6 km . What is the shortest distance now from his house?

10 km
14 km
Answer: Option A

14 km
2 km

Explanation:

$=\Delta \sigma$
$=\sqrt{s^{2}+\sigma^{2}}$
$-\sqrt{64+36}$
$=\sqrt{100}$
$=10 \mathrm{kma}$
14. P started from his house towards west. After walking a distance of 25 m . He turned to the right and walked 10 m . He then again turned to the right and walked 15 m . After this he is to turn right at 1350 and to cover 30 m . In which direction should he go?
a. West
b. South
c. South-West
d. South-East

Answer: Option C Explanation:

Hence he should go in the South-West direction.
15. X-Men started to walk straight towards south. After walking 5 m he turned to the left and walked 3 m . After this he turned to the right and walked 5 m Now to which direction X is facing?
a. North-East
b. South
c. North
d. South-West

Answer: Option B
Explanation:
$\stackrel{\widehat{t}=\cdots}{\rightarrow \cdots}=\ldots$
Hence X-Men will face in the end towards South.
16. Hemant in order to go to university started from his house in the east and came to a crossing. The road to the left ends in a theatre, straight ahead is the
hospital. In which direction is the university?
a. North
b. South
c. East
d. West

Answer: Option A
Explanation:

(S)

Therefore university is in North
17. If a boy starting from Nilesh, met to Ankur and then to Kumar and after this he to Dev and then to Pintu and whole the time he walked in a straight line, then how much total distance did he cover?
a. 215 m
b. 155 m
c. 245 m
d. 185 m

Answer: Option A
Explanation:
Required distance $=25 m+40 m+60 m+90 m$
Required distance $=215 \mathrm{~m}$
18. Each of the following questions is based on the following information:

1. Six flats on a floor in two rows facing North and South are allotted to P, Q, R, S, T and U.
2. Q gets a North facing flat and is not next to S.
3. S and U get diagonally opposite flats.
4. R next to U, gets a south facing flat and T gets North facing flat.
5. If the flats of P and T are interchanged then whose flat will be next to that of U?
a. P
b. Q
c. R
d. T

Answer: Option C

Explanation:

Hence flat R will be next to U.
19. Which of the following combination get south facing flats?
a. QTS
b. UPT
c. URP
d. Data is inadequate

Answer: Option C Explanation:

Required distance $=A F$

$$
=30+15
$$

$$
=45 \mathrm{~m}
$$

From the above diagram, F is in East direction from A.
Hence the required answer is ' 45 m East'.

Hence URP flat combination get south facing flats.
20. Rasik walked 20 m towards north. Then he turned right and walks 30 m . Then he turns right and walks 35 m . Then he turns left and walks 15 m . Finally he turns left and walks 15 m . In which direction and how many meters is he from the starting position?
a. 15 m West
b. 30 m East
c. 30 m West
d. 45 m East

Answer: Option D
Explanation:
21. Eight persons M through T are standing in such a way that 0 is $\mathbf{2 0} \mathbf{m}$ apart from N towards West, N is 30 m South with respect to $M . M$ is 40 m towards West with respect to Q. P is 50 m towards South with respect to Q. R is 15 m apart from S towards North. T is 20 m towards East with respect to S. R is 40 m towards West with respect to P. In which direction is \mathbf{Q} standing with respect to R ?
a. North-West
b. North
c. North-East
d. Cannot be determined

Answer: Option c
Explanation:

22. Two buses start from the opposite points of a main road, 150 km apart. The first bus runs for 25 km and takes a right turn and then runs for 15 km . It then turns left and runs for another 25 km and takes the direction back to reach the main road. In the meantime, due to the minor break down the other bus has run only 35 km along the main road. What would be the distance between the two buses at this point?
a. 65 km
b. 80 km
c. 75 km
d. 85 km

Answer: Option a

Explanation:

Visit: Jatindembla.com / kitest.in

Required distance $=P Q=150-(25+25+35)=65 \mathrm{~km}$
23. Mohan walked 30 m towards South, took a left turn and walked 15 m . He, then took a right turn and walked 20 m . He again took a right turn and walked 15 m .
How far is he from the starting point?
a. 95 m
b. 50 m
c. 70 m
d. Cannot be determined

Answer: Option b
Explanation:

Required distance $=O D=O A+A D=O A+B C$
$=30+20=50 \mathrm{~m}$
24. Starting from the point X, Jayant walked 15 m towards west. He turned left and walked 20 m . He then turned left and walked 15 m . After this he turned to his right an walked 12 m . How far and in which directions is now Jayant from X?
a. 32 m , South
b. 47 m , East
c. 42 m , North
d. 27 m , South

Answer: Option A Explanation:

25. Lakshman went 15 kms to the West of his house, then turned left and walked 20 kms . He then turned East and walked 25 kms and finally turning left covered 20 kms . How far was he from his house?
a. 5 kms
b. 10 kms
c. 40 kms
d. 80 kms

Answer: Option C Explanation:

26. A starts from a point and walks 5 kms north, then turns left and walks 3 kms . Then again turns left and walks 5 kms . Point out the direction in which he is going.
a. West
b. South
c. North
d. East

Answer: Option b
Explanation:

27. A person walks 4 km towards west, then turns to his right to travel $9 \mathbf{k m}$. He turns towards east and travels $\mathbf{1 2} \mathbf{~ k m}$. Finally, he travels $\mathbf{3} \mathbf{~ k m}$ towards south. How far is he from the initial position (in km)?
a. 15
b. 23
c. 18
d. 10

Answer: Option d Explanation:

From the figure, the distance OE is to be calculated. In triangle $\mathrm{ODE}, \mathrm{OE}=\sqrt{(}\left(\mathrm{OD}^{2}\right)+$ $\left(\mathrm{DE}^{2}\right)$
$=\sqrt{ }(\mathrm{BC}-\mathrm{AO})^{2}+(\mathrm{AB}-\mathrm{CE})^{2} \mathrm{OE}=\sqrt{ }\left(8^{2}+6^{2}\right)=10 \mathrm{~km}$.
28. One evening before sunset two friends Sumit and Mohit were talking to each other face to face. If Mohit's shadow was exactly to his right side, which direction was Sumit facing?
a. North
b. south
c. West
d. Data inadequate

Answer: Option b

Explanation:

In the evening, sun is in the west and so the shadows fall towards east. Now, since Mohit's shadow fell towards right, therefore, Mohit is facing North. So, Sumit standing face to face with Mohit, was facing South.
29. A girl leaves from her home. She first walks 30 meters in North-west direction and then 30 meters in South-west direction. Next, she walks 30 meters in South-east direction. Finally, she turns towards her house. In which direction is she moving?
a. North-East
b. North-West
c. South-East
d. South-East

Answer: Option a Explanation:

The movements of the girl are as shown in Fig. (A to B, B to C, C to D, D to A).

Clearly, she is finally moving in the direction DA i.e. north east.
30. A man goes towards East 5km, then he takes a turn to South-West and goes 5 km . He again takes a turn towards North-West and goes 5 km With respect to the point from where he started, where is he now?
a. At the starting point
b. In the West
c. In the East
d. In the North East

Answer: Option a

Explanation:

According to the question, the direction diagram is as follows

It is clear from the diagram that both starting and finishing point are same i.e. , the man is at starting point ' A '.
31. Nikhil walked 30 m towards East took a left turn and walked 20m. He again took a left turn and walked 30 m . How far and in which direction is he from his starting point?
a. 20 m , North
b. 80 m , North
c. 20 m , South
d. 80 m , South

Answer: Option a

Explanation:

According to the question, the direction diagram is as follows

Required distance $=\mathrm{AD}=\mathrm{BC}=20 \mathrm{~m}$
So, Nikhil is 20 m North from his starting point
32. Rakesh is standing at a point. He walks 20 m towards the East and further 10 m towards the South, then he walks 35 m towards the West and further 5 m towards the North, then he walks 15 m towards the East. What is the straight distance (in m) between his starting point and the point where he reached last?
a. 0
b. 5
c. 10
d. CANNOT BE DETERMINED

Answer: Option b

Explanation:

According to the question. The direction diagram is as follows

From diagram, AB
$=20 \mathrm{mBC}=\mathrm{HD}$
$=10 \mathrm{~m}$
$\mathrm{ED}=$
5 m CD
$=35 \mathrm{~m}$
$\mathrm{HE}=$
AF
Required distance, $\mathrm{AF}=\mathrm{HF}=\mathrm{HD}-\mathrm{ED}$
$=10-5=5 \mathrm{~m}$
33. Anoop starts walking towards South. After walking 15 m he turns towards North. After walking 20m, he turns towards East and walks 10 m . He, then turns towards South and walks 5 m . How far is he from his original position in which direction?
a. 10 m , North
b. 10 m , South
c. 10 m , West
d. 10 m , East

Answer: Option

Explanation:

According to the question, the direction diagram is as follows
$\mathrm{A}=$ Original position, $\mathrm{E}=$ Finishing point

$\mathrm{BC}=20, \mathrm{AB}=15 \mathrm{~m}, \mathrm{AC}=\mathrm{ED}=5 \mathrm{~m}, \mathrm{CD}=\mathrm{AE}=10 \mathrm{~m}$
Clearly, at finishing point E, Anoop is 10 m East from original position A.
34. From a point, Rajneesh started walking East and walked 35m. He, then turned on his right and walked 35 m . He, then turned on his right and walked 20 m and he again/turned to right and walked 35m. Finally, he turned his left and walked 20 m and reached his destination. Now, how far is he from the starting point?
a. 50 m
b. 55 m
c. 20 m
d. 40 m

Answer: Option d

Explanation:

According to the question, the direction diagram is as follows

Required distance, $\mathrm{AE}=\mathrm{AD}+\mathrm{DE}$
$=20+20=40 \mathrm{~m}$
35. A rat runs 20 m towards East and turns to right, then runs 10 m and turns to right, runs 9 m and again turns to left, runs 5 m and then turns to left, runs 12 m and finally turns to left and runs 6 m . Now, which direction is the rat facing?
a. East
b. North
c. West
d. South

Answer: Option b

Explanation:

According to the question, the direction diagram is as follows

Clearly, the rat is facing North at finishing point.
36. Starting from a point S, Mahesh walked 25m towards South. He turned to his left and walked 50 m . He, then again turned to his left and walked 25 m . He again turned to his left and walked 60 m and reached a point T. How far Mahesh is from point S and in which direction?
a. 10 m , West
b. 25 m , North
c. 10 m , East
d. 25 m , West

Answer: a

Explanation:

According to the question, the direction diagram is as follows

S = Starting point, $\mathrm{T}=$
Finishing point $\mathrm{AS}=\mathrm{BC}=$ 25m
$\mathrm{AB}=\mathrm{SC}=$
50 m CT $=$
60m

Required distance, ST = CT $-\mathrm{SC}=60$

- $50=10 \mathrm{~m}$ clearly, at point T,

Mahesh is 10 m West from S .
37. Village Chimur is $\mathbf{2 0} \mathbf{~ k m}$ to the North of village Rewa. Village Rahate is $\mathbf{1 8} \mathbf{~ k m}$ to the East of village Rewa. Village Angne is 12 km to the West of Chimur. If Sanjay starts from village Rahate and goes to village Angne, in which direction is he from his starting point?
a. North
b. North-West
c. South
d. South-East

Answer: Option b
Explanation:
According to the question, the direction diagram will be as follows

Clearly, Sanjay will go North-West starting from Rahate to reach Angne.
38. A boy is looking for his mother. He went 90 metres in the east before turning to his right. He went 20 metres before turning to his right again to look for his mother at his uncle's place 30 metres from this point. His mother was not there. From here he went 100 metres to his north before meeting his mother in a street. How far did the son meet his mother from the starting point?
a. 110 m
b. 100 m
c. 90 m
d. 240 m

Answer: b
Explanation:

39. Kashmira facing towards south moved straight 8 km and from there turned to her right 90° and travelled 7 km . Then she took a 45° turn to her left and travelled 4 km . Where would she be now with respect to the starting point?
a. South
b. South-west
c. North-east
d. South-east

Answer: b

Explanation:

40. Pinky walks 12 m towards southeast and stops at point P and then she walks $\mathbf{2 4 m}$ towards west and again she walks 7 m towards northwest direction and stops at point Q. Finally she walks 5 m towards east and stops at point S. She is facing which direction from starting point?
a. Northeast
b. Northwest
c. East
d. Southwest

Answer: d

Explanation:

South West
41. A man walks 40 m towards north and he turns his left and walked 40 m . He then turns his left and walked 15 m . He finally turns his right and walked 20 m . What is the distance he is from starting point and in which direction?
a. 55 m , Northwest
b. 36 m , Northeast
c. 65 m , Southeast
d. 65 m , Northwest

Answer: d

Explanation:

$40+20=60$
$40-15=25$
$=\sqrt{6} 0^{2}+25^{2}=>=\sqrt{4} 225=65 \mathrm{~m}$, North West

CHAPTER 11

SEATING ARRANGEMENTS

VARIOUS PATTERN OF SITTING ARRANGEMENTS

- POLYGON ARRANGEMENTS

LINEAR
 ARRANGEMENTS

we arrange objects or persons in a line or row. The arrangement is done only on one 'axis' and hence, the position of persons or objects assumes importance in terms of order like positions. In this type of arrangement, we take directions according to our left and right.
Steps to Solve the Linear Arrangements:
(a) Identify the number of objects and their names.
(b) Use pictorial method to represent the people or objects and their positions.
(c) Arrange the information with relevant facts and their positions and try to find out the solution.
(d) Answer the questions based on the arrangement having made.

One Row Sequence When direction of face is not clear. Two Row SequenceWhen direction of face is clear at every level to each and every person.			

CIRCULAR ARRANGEMENT
some persons are sitting around a circle and they are facing the center

QUESTIONS:

1. Four Children's are sitting in arrow. A is occupying seat next to B but not next to C. If C is not sitting next to D ? Who is occupying seat next to adjacent to D .?
a. B
b. B and A
c. Impossible to tell
d. A

ANSWER: (d)

EXPLAINATION:

The arrangements as per given information is possible only if C is sitting next to B and D is sitting next to A .
Therefore, two possible arrangements are C, B, A, D, or D, A, B, C Clearly, only A is sitting adjacent to D
2. P, Q, R, S, T, U, V and W are sitting in a row facing North.
a. P is fourth to the right of T
b. W is fourth to the left of S
c. R and U, which are not at the ends, are neighbours of Q and T respectively
d. W is next to the left of P and P is the neighbour of Q, who are sitting at the extreme ends

ANSWER: a

EXPLAINATION:

There are three persons between P and TXXXP.
In the information (iv), it is given that W is next to the left of P and Q is the neighbour of P. Using the information with (i), we get TXXWPQ.
3. A, P, R, X, S and Z are sitting in a row. S and Z are in the centre. A and P are at the ends. R is sitting to the left of A. Who is to the right of P ?
a. A
b. X
c. S
d. Z

Answer: Option B

Explanation:

The seating arrangement is as follows:

\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
P	X	S	z	R	A

Therefore, right of P is X
4. A, B, C, D and E are sitting on a bench. A is sitting next to B, C is sitting next to
D, D is not sitting with E who is on the left end of the bench. C is on the second position from the right. A is to the right of B and $E . A$ and C are sitting together. In which position A is sitting?
a. Between B and D
b. Between B and C
c. Between E and D
d. Between C and E

Answer: Option B

Explanation:

$$
\bar{E} \quad \bar{C} \quad \dot{C} \quad \bar{D}
$$

Therefore, A is sitting in between B and C
5. P, Q, R, S, T, U, V and W are sitting round the circle and are facing the centre:

1. P is second to the right of T who is the neighbour of R and V.
2. S is not the neighbour of P.
3. V is the neighbour of U.
4. Q is not between S and W. W is not between U and S

According to this answer bellowed Questions:

5.1. Which two of the following are not neighbours?

a. RV
b. UV
c. RP
d. QW

Answer: Option A Explanation:

5.2.Which one is immediate right to the V ?
a. P
b. U
c. R
d. T

Answer: Option D Explanation:

5.3. Which of the following is correct?
a. P is to the immediate right of Q
b. R is between U and V
c. Q is to the immediate left of W
d. U is between W and S

Answer: Option C Explanation:

5.4. What is the position of S ?
a. Between U and V
b. Second to the right of P
c. To the immediate right of W
d. Data inadequate.

Answer: Option C Explanation:

6 . Five girls are sitting on a bench to be photographed. Seema is to the left of Rani and to the right of Bindu. Mary is to the right of Rani. Reeta is between Rani and Mary. According to this answer bellowed Questions:
6.1. Who is sitting immediate right to Reeta?

Visit: Jatindembla.com / kitest.in
a. Bindu
b. Rani
c. Mary
d. Seema

Answer: Option C Explanation:

Mary is sitting immediate right to Reeta.
6.2. Who is in the middle of the photograph?
a. Bindu
b. Rani
c. Reeta
d. Seema

Answer: Option B

Explanation:

Bindu
Seema
Rani
Reeta Mary
Rani is in the middle of the photograph.
6.3. Who is second from the right?
a. Mary
b. Rani
c. Reeta
d. Bindu

Answer: Option C Explanation:

Bindu Seema Rani Reeta Mary
Reeta is sitting second from the right.
6.4. Who is second from the left in photograph?
a. Reeta
b. Mary
c. Bindu
d. Seema

Answer: Option D

Explanation:

```
Bindu Seema Rani Reeta Mary
```

Seema is sitting second from the left in photograph.
7. Six friends are sitting in a circle and are facing the centre of the circle. Deepa is between Prakash and Pankaj. Priti is between Mukesh and Lalit. Prakash and Mukesh are opposite to each other.

7.1. Who is sitting right to Prakash ?

a. Mukesh
b. Deepa
c. Pankaj
d. Lalit

Answer: Option D Explanation:

Hence, Lalit is sitting right to Prakash.
7.2. .Who is just right to Pankaj?
a. Deepa
b. Lalit
c. Prakash
d. Priti

Answer: Option A Explanation:

Hence, Deepa is sitting just right to Pankaj.
8. Who are the neighbours of Mukesh?
a. Prakash and Deepa
b. Deepa and Priti
c. Priti and Pankaj
d. Lalit and Priti

Answer: Option C Explanation:

Hence, Priti and Pankaj are the neighbours of Mukesh.
9. Who is sitting opposite to Priti ?
a. Prakash
b. Deepa
c. Pankaj
d. Lalit

Answer: Option B
Explanation:

Hence, Deepa is sitting opposite to Priti.
10. In an Exhibition seven cars of different companies - Cadillac, Ambassador, Fiat, Maruti, Mercedes, Bedford and Fargo are standing facing to east in the following order :

1. Cadillac is next to right of Fargo.
2. Fargo is fourth to the right of Fiat.

Visit: Jatindembla.com / kitest.in

3．Maruti car is between Ambassador and Bedford．
4．Fiat which is third to the left of Ambassador，is at one end． 10．1．Which of the cars are on both the sides of cadillac car？
a．Ambassador and Maruti
b．Maruti and Fiat
c．Fargo and Mercedes
d．Ambassador and Fargo

Answer：Option C Explanation：

```
\(\longrightarrow F i . ヨ\) t
\(\rightarrow\) Bedfirar
\(\longrightarrow\) M.ヨrıルi
* \(\quad\) - mbassadar
\(\rightarrow\) Fargロ
- Ca』illac
- M Mercedes
\(\rightarrow\) Mercedes
```


Fargo and Mercedes are on both the sides of cadillac car．
10．2．Which of the following statement is correct？
a．Maruti is next left of Ambassador．
b．Bedford is next left of Fiat．
c．Bedford is at one end．
d．Fiat is next second to the right of Maruti．

Answer：Option A Explanation：

```
\longrightarrow\longrightarrow Figt 
~Maruti
* Ambassadar
* Farg口
C Cadillac
* Mercedes
```

Therefore，Maruti is next left of Ambassador．
11. Which one of the following statements is correct?
a. Fargo car is in between
Ambassador and Fiat.
b. Cadillac is next left to Mercedes car.
c. Fargo is next right of Cadillac.
d. Maruti is fourth right of Mercedes.

Answer: Option B Explanation:

```
\longrightarrow Fiat 
MMaruti
| Ambassadar
|Farga
CCadillac
```

Therefore, Cadillac is next left to Mercedes car.
12. Which of the following groups of cars is to the right of Ambassador?
a. Cadillac, Fargo and Maruti
b. Mercedes, Cadillac and Fargo
c. Maruti, Bedford and Fiat
d. Bedford, Cadillac and Fargo

Answer: Option B Explanation:

Mercedes, Cadillac and Fargo cars are to the right of Ambassador.
13. Which one of the following is the correct position of Mercedes?
a. Next to the left of Cadillac
b. Next to the left of Bedford
c. Between Bedford and Fargo
d. Fourth to the right of Maruti.

Answer: Option D

Explanation:

\rightarrow Fiat \rightarrow Bedford \longrightarrow Maruti \rightarrow Ambassa \longrightarrow Fargo \longrightarrow Cadillac

The correct position of Mercedes is fourth to the right of Maruti.
14. Six friends P, Q, R, S, T and U are sitting around the hexagonal table each at one corner and are facing the centre of the hexagonal. P is second to the left of U. Q is neighbour of R and S. T is second to the left of S.
14.1. Which one is sitting opposite to P ?
a. R
b. Q
c. T
d. S

Answer: Option D Explanation:

S is sitting opposite to P .
14.2. Who is the fourth person to the left of Q ?
a. P
b. U
c. R
d. Data inadequate

Answer: Option A
Explanation:

P is the fourth person to the left of Q .
14.3. Which of the following are the neighbours of P ?
a. U and P
b. T and R
c. U and R
d. Data inadequate

Answer: Option B Explanation:

T and R are the neighbours of P.
14.4.Which one is sitting opposite to T ?
a. R
b. Q
c. Cannot be determined
d. S

Answer: Option B Explanation:

Q is sitting opposite to T .
15. Each of these questions are based on the information given below:

1. A ,B, C, D and E are five men sitting in a line facing to south - while $M, N, 0, P$ and Q are five ladies sitting in a second line parallel to the first line and are facing to North.
2. B who is just next to the left of D, is opposite to Q.
3. C and N are diagonally opposite to each other.
4. E is opposite to 0 who is just next right of M .
5. P who is just to the left of Q, is opposite to D.
6. M is at one end of the line
15.1. Who is sitting third to the right of 0 ?
a. Q
b. N
c. M
d. Data inadequate

Answer: Option B Explanation:

15.2. If B shifts to the place of E, E shifts to the place of Q, and Q shifts to the place of B, then who will be the second to the left of the person opposite to 0 ?
a. Q
b. P

c. E

d. D

Answer: Option A Explanation:
Initial arrangement:

New arrangement after shifting :

```
C
\uparrow
```

B is opposite to 0 and second person left to B is Q.
15.3. Which of the following pair is diagonally opposite to each other?
a. EQ
b. BO
c. AN
d. AM

Answer: Option D Explanation:

15.4. If O and P, A and E and B and Q interchange their positions, then who will be the second person to the right of the person who is opposite to the person second of the right of P ?
a. D
b. A
c. E
d. 0

Answer: Option B Explanation:
Old arrangement :
$\begin{array}{ll}C & E \\ I & I \\ I & I \\ M & D\end{array}$

\square
I

E
I
I

$$
24-1+1
$$

New arrangement:

$$
\begin{array}{ccccc}
C & A & O & Q & E \\
\perp & \perp & \perp & \perp & \perp \\
I & T & T & I & T \\
M & - & D & \text { E } & \text { I }
\end{array}
$$

16. Who sits to the left of Shiksha?
a. Rani
b. Radha
c. Chinu
d. Snigdha

Answer - A

Explanation

After observation, we can conclude that the sitting arrangement is like this -

So, Rani sits to the left of Shiksha.
17. If Radha and Snigdha change their places then who will be second to the left of Rani?

Visit: Jatindembla.com / kitest.in
a．Radha
b．Snigdha
c．Shiksha
d．None of the above

Answer－B

Explanation

Second to the left of Rani will be Snigdha．Hence，option B is correct．
18．How many girls are there in between Shiksha and Chinu if we count anti clockwise？
a． 1
b． 2
c． 3
d．None of the above

Answer－B
Explanation－
Only two girls are there in between Shiksha and Chinu if we count anti clockwise？
19．What is the position of Major Batra？
a．Major Batra is sitting between Major Kumar and Major Kalia．
c．Major Batra is sitting to the immediate right of Major Kumar
Answer－Option D Explanation－
b．Major Batra is sitting to the left of Major Kalia．
d．All the above are true．

D三八ミ

All the options (A),(B) and (C) satisfy our condition. Therefore option (D) is correct.
20. Who is sitting to the immediate left of Major Kumar?
a. Major Bakshi
b. Major Batra
c. Major Nanda
d. Major Sodhi

Answer - Option C
Explanation -
According to the diagram -

Visit: Jatindembla.com / kitest.in

By observing the diagram, we can clearly say that Major Nanda is sitting to the immediate left of Major Kumar.
21. Who is sitting to the immediate right of Major Kalia?
a. Major Nanda
b. Major Kumar
c. Major Kalia
d. Major Bakshi

Answer - Option D Explanation-
According to the diagram -

By observing the diagram, one can easily conclude that major Bakshi is sitting to the immediate right of Major Kalia.
22. Which of the following statement is true?
a. Major Sodhi is sitting second to the left of Major Bakshi.
b. Major Kalia is sitting between Major Nanda and Major Kumar
c. Major Batra is sitting to the left of Major Kalia
d. Major Nanda is sitting to the left of Major Kalia.

Answer - Option C
Explanation -
According to the diagram -

By observing the diagram, we can conclude that options (A), (B) and (D) do not satisfy the condition. But option (C) does.
23. How many Majors are sitting between Major Sodhi and Major Kumar, if counted in clockwise direction?
a. Six
b. Two
c. Three
d. Five

Answer - Option C Explanation -
According to the diagram -

Major Bakshi, Major Kalia and Major Batra are the three majors sitting between Major Sodhi and Major Kumar.
24. What is Major Batra position with respect to Major Sodhi?
a. Second to the left
b. Immediate Right.
c. Fourth to the Right
d. Third to the left
Answer - Option D

Explanation -

According to the diagram -
251 | Page
Visit: Jatindembla.com / kitest.in

By observing the diagram, we can conclude that Major Bakshi is sitting to the immediate left of Major Sodhi. Major Kalia is sitting to the second left of Major Sodhi and Major Batra is sitting third to the left of Major Sodhi. So, our required answer is option (D).
25. Study the given information carefully and answer the following questions.

Four friends U, V, W and X are sitting in a row and facing towards north direction. U and X are sitting at two extreme ends. V is sitting between U and $W . V$ is sitting second to the left of X.
25.1. Who is sitting to the immediate right of V ?
a. X
b. U
c. W
d. None of these

Answer - Option C Explanation -
According to the diagram -

By applying (CASE 1) and (CASE 2), we get

From the diagram, it is clear that W is sitting immediate right of V .
25.2. Who is sitting to the immediate left of X ?
a. W
b. U
c. V
d. None of these

Answer - Option A Explanation -
According to the diagram -

By observing the diagram, we can conclude that W is sitting immediate left of X.
25.3. What is the number of People sitting between X and U ?
a. Three
b. Five
c. One
d. Two

Answer - Option D Explanation According to the diagram -

By observing the diagram, we can conclude that V and W are the two people sitting between U and X.
25.4. Which statement is true?
a. X is sitting to the left of U
b. U and X are sitting at extreme ends.
c. U is sitting between V and X

Answer - Option B

Explanation -

According to the diagram -

U and X are the two people sitting at extreme ends whereas V is sitting to the right of U and W is sitting to the left of X.
25.5. Which of the following pairs is the first person sitting to the immediate right of second person?
VW
UV
Answer - Option B

Explanation -

According to the diagram -

Here in option (B), the second person is V and the first person is W. So according to the condition, that is the first person sitting to the immediate right of the second person, only satisfies in option (B).
25.6. How many persons are there to the right of U ?
a. Two
b. Four
c. One
d. Three
Answer - Option D

Explanation -

According to the diagram -

${ }^{w}$

By observing the diagram, we can conclude that three person V, W and X are sitting to the right of U.
26. Study the following information carefully and answer the questions given below.
Certain number of people was sitting in a circle facing towards the Centre. Some of the person's arrangements are known. A was sitting fourth to the left of B.J was sitting seventh to the right of A. Number of person sitting between A and B was same as the number of persons sitting between A and F. J was the neighbor of D who sits at the seventh position from F (either left or right of F). Number of person sitting between F and M was same as the number of persons sitting between M and D.K was the neighbor of J.M is not the immediate neighbor of A.

26.1. What is the position of M with respect to A ?

Third to the left
Immediate right
Seventh to the right
Second to the right
Answer: D
26.2 How many persons were sitting in a circle?
a. 07
b. 08
c. 16
d. 19

Answer: D
26.3. How many known persons were sitting between A and J when counted from left of A ?
a. Three
b. Four
c. Five
d. Two

Answer: D
26.4. Who sits second to the right of B ?
a. K
b. F
c. A
d. J

Answer: A

Explanation:

26.5. If C sits exactly between A and K when counted from right of A, then what is the

position of C with respect to D ?

a. Fifth to the left
b. Fourteenth to the right
c. Fifth to the left
d. Either (a) or (b)

Answer: D

Explanation of Question 26 is:

A certain number of people were sitting in a circle facing center.
A was sitting fourth to the left of B

J was sitting seventh to the right of A.

Visit: Jatindembla.com / kitest.in

Prof. Jatin Dembla

Number of person sitting between A and B was same as the number of persons sitting

between A and F .
J was the neighbor of D who sits at the seventh position from F (either left or right of F).

Number of person sitting between F and M was same as the number of persons sitting between M and D.
K was the neighbor of J.

M is not the immediate neighbor of A. From this statement case 1 is eliminated because M and A are immediate neighbors.
26. Direction(27.1 to 27.5)Twelve persons A, B, C, D, E, F, P, Q, R, S, T and U are sitting in two parallel rows with equidistance from each other. In Row-1, A, B, C, D, E and F are sitting and all of them are facing south and in Row-2, P, Q, R, S, T and U are sitting and all of them are facing north but not necessary in the same order.
E sits second to the left of the one who faces P and either one of them sits at the extreme ends of the rows. Two persons are sitting between P and Q. F faces one of the immediate neighbour of Q. U faces the person the one who sits to the immediate right of A. Two persons are sitting between U and S. As many persons sitting to the right of T is same as the number of persons sitting to the right of C and neither of them sits at the extreme ends of the rows. R is not an immediate neighbour of S. C does not face Q. B sits one of the places to the left of E.
27.1. Who sits diagonally opposite to S ?
a. B
b. A
c. D
d. F

Answer: c)
27.2. How many persons are sitting between T and the one who faces D ?
a. None
b. One
c. Two
d. Three

Answer: d
27.3. Four of the following five are alike in a certain way and hence form a group. Which one of the following that does not belong to the group?
a. Q
b. P
c. D
d. S

Answer: a)
27.4. Which of the following statements is true?
a. Only two persons are sitting to
b. U faces E the right of A
c. Q sits exactly between T and R
d. C sits at one of the extreme ends of the row

Answer: b)
27.5. If R is related to A and F is related to U in a certain way. Then, Q is related to which of the following?
a. C
b. R
c. E
d. B

Answer: d)

Explanation:

- E sits second to the left of the one who faces P and either one of them sits at the extreme ends of the rows. Two persons are sitting between P and Q.F faces one of the immediate neighbors of Q .

- U faces the person the one who sits to the immediate right of A. Two persons are sitting between U and S.

- As many persons sitting to the right of T is same as the number of persons sitting to the right of C and neither of them sits at the extreme ends of the rows. R is not an immediate neighbor of S. C does not face Q.
- So, Case-1(b), Case-2(a) and Case-2(b) will be dropped.
B sits one of the places to the

28. Direction (28.1 to 28.5): Read the following information carefully and answer the questions given below. Eight persons P, Q, R, S, T, U, V and W are sitting in a square table such that four of them are sitting at the corners and remaining are sitting at the middle of the each side. The persons who are sitting at the corners are facing towards centre of the table and the persons who are sitting at the middle of the sides are facing away from the centre of the table. R sits third to the left of T, who does not sit at one of the middle side of the table. Only one person sits between R and P (Either from right or left). Q sits second to the left of U and not an immediate neighbour of R. W sits opposite to S, who is not an immediate neighbour of P. More than one persons sit between W and R (Either from left or right)
28.1. Who among the following persons sits third to the right of the one who sits to the immediate left of Q ?
a. S
b. R
c. Q
d. P

Answer: b)
28.2. How many persons are sitting between P and T, when counted from left of T ?
a. Two
b. One
c. Four
d. Three

Answer: c)
28.3. Four of the following five are alike in a certain way and hence form a group. Which one of the following that does not belong to the group?
a. V
b. P
c. U
d. R

Answer: a)
28.4. If R is related to Q and U is related to P in a certain way. Then, V is related to which of the following?
a. W
b. S
c. R
d. T
Answer: d)
28.5. Which of the following statements is true?
a. U sits second to the right of R
b. V sits at one of the corners
c. P sits opposite to T
d. W faces outside from the center
Answer: b)

Explanation:

Prof. Jatin Dembla

R sits third to the left of T, who does not sit at one of the middle of the sides. Only one person sits between R and P (Either from right or left).
Q sits second to the left of U and not an immediate neighbour of R.

W sits opposite to S , who is not an immediate neighbour of P .
More than one persons sit between W and R (Either from left or right). So, Case-1(b), Case-2(a) and Case-2 (b) will be dropped.

Visit: Jatindembla.com / kitest.in
29. Direction (21-25): Read the following information carefully and answer the questions given below.
A certain number of people sitting in the linear row facing north. Only three people sit between A and R. Only four people sit between K and W. Only five people sit between R and K.T sits third to the right of W. Only six people sit between R and Y. Not more than three people sit between K and Y. More than four people are between T and Y. Q sits third to the right of Y. None of them sits between Q and W.J sits eighth to the left of K. Not more than three persons sit between A and J.
29.1 How many people are sitting in the linear row?
a. Nineteen
b. Twenty
c. Twenty One
d. Twenty Two

Answer: a)
29.2 How many people sits between A and J?
a. Seven
b. Three
c. Ten
d. One
Answer: d)
29.3 If three people sits between W and H , then which of the following statement is definitely true?
a. Three people sit between T and H
b. W sits fourth to the right of H .
c. More than six people sit between Q and H .
d. More than five people sit between Y and H .

Answer: d)
29.4 How many people sits between Y and W ?
a. Sixteen
b. Three
c. Ten
d. Eight

Answer: b)
29.5 How many people sit to the left of K ?
a. Ten
b. Eight
c. Sixteen
d. Thirteen

Answer: a)

Explanation:

i). Only three people sit between A and
R. ii).Only six people sit between R and

Y.

Case(i): A \qquad R \qquad Y
Case(ii):Y \qquad A \qquad R

Case(iii):Y \qquad
\qquad R A Case(iv): R \qquad
\qquad A \qquad Y
iii).Only five people sit between R and
K. iv).Only four people sit between K and W.v). T sits third to the right of W.
vi).Not more than three people sit between K and Y

Case (i): A \qquad R \qquad K Y \qquad W \qquad T Case
(ii)a: Y K \qquad A \qquad W R \qquad T

Case (ii)b: W \qquad TY K A \qquad R Case
(iii)a: Y K \qquad W R__T \qquad A

Case (iii)b: W \qquad TY K \qquad R A Case (iv)a: R \qquad A__K Y
\qquad W \qquad T Case (iv)b: R W \qquad
does not follow condition (v) vii).More than four people are between T and Y .
viii). Q sits third to the right of Y.
ix).None of them sits between Q and W.
x).Not more than three persons sit between A and J. xi).J sits eighth to the left of K.

Case (i): A_J \qquad R \qquad K Y \qquad Q W \qquad T

Case (ii)a: Y K_A \qquad W R \qquad T 3 does not follow condition (viii)

Case (ii)b: W \qquad T Y K__A \qquad R ? does not follow condition (vii) Case (iii)a: Y K_Q \qquad W R \qquad T \qquad A does not follow condition (ix) Case (iii)b: W \qquad T Y K \qquad R \qquad A does not follow condition (vii) Case (iv)a: J \square R \qquad K Y \qquad Q W_
\qquad T does not follow condition (x)
30. Direction (30.1 to 30.5): Study following information carefully and answer the questions given below.
Seven friends- S, T, U, V, W, X and Y are sitting in a straight line. Some of them facing north and some of them are facing south.
Y faces north. Only two persons sit to the left of V. S sits second to the left of W. Only one person sits between S and
U. X sits third to the left of U. The immediate neighbours of S face the opposite directions. T is not an immediate neighbour of W. The immediate neighbours of U face same the directions. Only two persons sit between V and W. S faces the same direction as U. W sits to the immediate left of Y.
30.1. How many persons sit between Y and T ?
a. One
b. Two
c. Three
d. None of these

Answer: d)
30.2. Four of the following five are alike in certain way and thus form a group as per the given arrangement. Which of the following does not belong to that group?
a. X
b. T
c. W
d. Y

Answer: a)
30.3. What is the position of V with respect to T ?
a. Second to the left
b. Fourth to the right
c. Immediate left
d. Second to the right
Answer: d)
30.4. How many persons face south directions?
a. Two
b. Three
c. Four
d. Five

Answer: b)
30.5. Which of the following statement is correct?
a. W sits at the extreme ends of the line
c. Only three person sits between Y and the one who sits second to the right of T
b. T faces south and sits to the immediate right of U
d. W faces north and sits second to the right of the one who sits immediate left of T

Answer: c)

Case 1:

Explanation:

- Only two persons sit to the left of V.
- Only two persons sit between V and W.
- S sits second to the left of W.
- Now we have 2 Cases.
- The immediate neighbors of S face the opposite directions.
- Only one person sits between S and U.
- X sits third to the left of U

Case 1:

Case 2:

- T is not an immediate neighbour of W .
- The immediate neighbor of U faces same the directions.

Case 1:

- S faces the same direction as U
- W sits to the immediate left of Y.
- Y faces north.
- From the above condition Case 2 was dropped.
- So the final arrangement is..

Case 1:

31. Direction (31.1 to 31.5): Read the following information carefully and answer the questions given below.
Eight persons are sitting in a circular table and all of them are facing away from the center of the table. V sits third to the right of M. Only one person sits between V and N (Either from right or left from V). K sits second to the left of G, who is not an immediate neighbour of M. As many persons are sitting between N and S is same as the number of persons sitting between R and S. T sits to the immediate
right of R. T does not sit opposite to K.
31.1. Who among the following sits second to the right of S ?
a. R
b. T
c. N
d. G

Answer: a)
31.2. How many persons are sitting between G and V, when counted from left of G ?
a. Three
b. Four
c. One
d. Two

Answer: d)
31.3. Who among the following sits opposite to T?
a. V
b. S
c. K
d. G

Answer: d)
31.4. Four of the following five are alike in a certain way and hence form a group. Which one of the following that does not belong to the group?
a. TG
b. KM
c. MN
d. VS

Answer: c)
31.5. If all the persons in the final arrangement are made to sit in the alphabetical order as in the English alphabetical series from G in clockwise direction, then how many of them remains their original position (Excluding G)?
a. None
b. One
c. Two
d. Three

Answer: b)

Explanation:

- V sits third to the right of M. Only one person sits between V and N (Either from right or left from V).
- K sits second to the left of G , who is not an immediate neighbour of M.

- As many persons are sitting between N and S is same as the number of persons sitting between R and
S . T sits to the immediate right of R .
- So, Case-1(a) and Case-2(b) will be dropped.
- T does not sit opposite to K.
- So, Case-2(a) will be dropped

Visit: Jatindembla.com / kitest.in
32. Direction (32.1 to 32.5): study the given information carefully and the answer the following question below.
Ten persons are sitting in a parallel row. In Row $1 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$ and E are sitting in Row 1 facing north. In Row 2 P, Q, R, S and T are sitting in Row 2 facing south. The person in row 1 exactly faces the person in row 2.
R doesn't sits opposite to C.A sits second from the extreme end. Only one person sits between one who faces A and Q. B is not an immediate neighbour of A and doesn't sits opposite to Q.E sits second to the left of B.T doesn't faces E and never sits at extreme ends. S is not an immediate neighbour of T.C doesn't sits opposite to Q.
32.1. Four of the five among the following are similar in the arrangement to form a group, which one of the following doesn't belongs to the group?
a. CA
b. ED
c. SQ
d. BD

Answer: d)
32.2. What is the position of A with respect toB?
a. Third to the left
b. Third to the right
c. Second to the left
d. Immediate left

Answer: a)
32.3. Which of the following statement is not true?
a. A sits to the immediate left of E
b. The one who sits opposite to D sits second to the left of T
c. C and B doesn't sit at the extreme ends
d. Q is the immediate neighbour of R and S

Answer: c)
32.4. Who sits second to the right of R ?
a. The one who sits opposite to A
b. S
c. P
d. None of these

Answer: d)

32.5. How many person sits between D and B ?
a. One
b. Two
c. Three
d. None
Answer: d)

Explanation:

- A sits second from the extreme end.
- Only one person sits between one who faces A and Q.

- B is not an immediate neighbour of A and doesn't sit opposite to Q.

- E sits second to the left of B.

- T doesn't faces E and never sits at extreme ends.

- S is not an immediate neighbour of T.
- C doesn't sits opposite to Q.

R doesn't sits opposite to C.

33. Direction (33.1 to 33.5): Study following information carefully and answer the questions given below.
Eight friends - Sundar, Satya, Mark, Cook, Putin, Obama, Trump and Nitish are sitting around the circular table facing center, but not necessarily in the same order. Putin and Obama are not immediate neighbours. Only two persons sit between Sundar and Trump. Obama is not an immediate neighbour of Trump and Cook. Putin is not an immediate neighbour of Mark and Trump. Sundar sits second to the left of Cook. Nitish is not an immediate neighbour of Putin. Only three persons sit between Mark and Obama. Satya sits not opposite of Cook. Trump is not an immediate neighbour of Putin.

33.1. What is the position of Cook with respect to Putin?

a. Third to the right
b. . Immediate right
c. . Immediate right
d. . Fourth to the right

Answer: c)
33.2. How many persons sit between the one who sits the second to the left
of Cook and Mark, when counted from left of Mark?
a. One
b. Two
c. Three
d. No one

Answer: b)

33.3. Which of the following statement is correct?

a. Cook sits to the immediate left of Trump
b. Only three persons sit between Satya and Sundar
c. Sundar and Mark is an immediate neighbours
d. Only one person sits between Nitish and the one who sits to the immediate left to Sundar

Answer: c)
33.4. What is the position of the one who sits second to the left of Sundar with respect to Trump?
a. Immediate right
b. Fourth to the right
c. Second to the right
d. Second to the right

Answer: a)

33.5. Which of the following statement is correct?

a. Nitish sits to the immediate left of Obama
b. Cook is an immediate neighbour of Satya
c. Only two persons sit between

Mark and Nitish when counted from left of Nitish
Answer: d)

Explanation:

Prof. Jatin Dembla

Satya

- Only two persons sit between Sundar and Trump.
- Sundar sits second to the left of Cook.
- Now we have 2 cases

- Obama is not an immediate neighbour of Trump and Cook.
- Only three persons sit between Mark and Obama

Obama

- Putin is not an immediate neighbour of Mark and Trump.
- Satya sits not opposite of Cook.
- Putin and Obama are not immediate neighbours.
- Nitish is not an immediate neighbour of Putin. Trump is not an immediate neighbour of Putin.
- From the above condition Case 1 was dropped.
- So the final arrangement is..

34. Direction (34.1 to 34.5): Read the following information carefully and answer the questions given below.
Eight people I, J, K, L, M, N, \mathbf{O} and P are sitting in a rectangular table. Only three persons are sitting in the longer side of the rectangle. The people sits at longer side of table faces outside the table, while the people sits at smaller side of the table faces inside the table. All the information is not necessary to be in the same order.
N sits second to the left of M. Only two persons sit between M and P, who is not an immediate neighbour of N . J sits immediate right of L. P sits opposite to I. Neither K nor L is an immediate neighbour of P. J sits second to the right of O and both are facing same direction. J does not sit opposite to 0 .
34.1. Name the person who sits opposite to J?
a. M
b. O
c. N
d. I

Answer: c)
34.2. Who sits second to the left of P ?
a. L
b. K
c. J
d. O

Answer: b)
34.3. If all the people are made to sit in alphabetical order in clockwise direction from I, then how many of them remains in their original position?
a. One
b. Two
c. Three
d. More than Three

Answer: a)

34.4. Name the person who sits second to the right of L ?
a. L
b. K
c. J
d. None of these

Answer: d)
34.5. Who sits fourth to the left of J?
a. L
b. M
c. J
d. O

Answer: b)

Explanation:

i). N sits second to the left of M .
ii). Only two persons sit between M and P, who is not an immediate neighbour of N. iii). P sits opposite to I.
iv). Neither K nor L is an immediate neighbour of P .
v). J sits second to the right of 0 and both are facing same direction.
vi). J does not sit opposite to 0 .
vii).J sits immediate right of L.

35. Direction (35.1 to 35.5): Study the following information carefully to answer the given questions.

Six Students- Sita, Smita, Sunita, Sarita, Sujitha and Sneha lives on a building which has Six Floors with top floor numbered as 6. They got different Ranks from 1 to 6 in a School exam. They are also having different Lucky numbers from 1 to 6. These Six Students are also sitting in a row which has six seats and all are facing north. All students are having unique floor number, Lucky number, and Rank (i.e., No two numbers will be same for a particular student).
Students who sit at extreme ends of the row live neither on the top floor nor on the bottom floor. Sujitha lives on an even numbered floor. Sarita Floor number and Sita Lucky number are same. Two students live between Sita and Smita. Smita sits third to the left of Sujitha. One who lives on top floor sits third to the left of

Sneha. A student whose Lucky number is 3 sits third to the right of the student whose lucky number is 5 . Sita's Rank is 5 . Two students live between Sujitha and Sarita. Smita Lucky number is same as Sita Floor number. Sunita Rank is 6 and she lives on an even numbered floor. Sneha's Rank is same as Sita's Lucky number. Sneha sits second to the right of Smita. Sneha's Lucky number is same as Sarita's Rank. Sujitha Rank is same as Sarita Lucky number.
35.1. Which of the following Pair is sitting at extreme ends?
a. . Sita and Sneha
b. Sunita and Sarita
c. Sujitha and Smita
d. Sunita and Sarita

Answer: d
35.2. Who among the following is living on Bottom Floor?
a. Sarita
b. Smita
c. Sneha
d. Sita

Answer: a
35.3. What is the Lucky number of Sita?
a. One
b. Two
c. Three
d. Four

Answer: a
35.4. Who among the following got Rank 2?
a. Sita
b. Sneha
c. Smita
d. Sujitha

Answer: c
35.5. Which of the following statement is false?

Sita lives on top floor Sujitha Lucky number is 2

Sneha's Rank is 1
Sarita Rank is 3

Answer: d
Explanation-

Floor No	Rank	Lucky No	Person
6	5	1	Sita
5	1	4	Sneha
4	3	2	Sujitha
3	2	6	Smita
2	6	5	Sunita
1	4	3	Sarita

Sunita Sita Smita SaritaSneha Sujitha
36. Direction (36.1 to 36.5): Eight persons - A, B, C, D, E, F, G, and H are sitting in two rows having Five seats in each row. In each row, one seat is vacant. Some of them are facing north and some are facing south.
Two persons are sitting between D and B. C sits opposite to D. G sits opposite to E . H sits opposite to the person who is sitting second to the left of F . F is not adjacent to E. Vacant seats are not opposite to each other. A, C and G face the same direction (i.e., All face either North or South). D, B, and E face the same direction (i.e., All face either North or South). C sits second to the right of E. H faces north. C doesn't sit at the extreme end. E sits second to the right of C . E sits to the adjacent left of H.
36.1. How many persons are sitting between A and H ?
a. One
b. Two
c. Three
d. Four

Answer - 2.Two
36.2. Who among the following pair is sitting opposite to vacant seats?
a. A and D
b. B and A
c. $C \operatorname{nad} F$
d. A and F

Answer - 5.A and F
36.3. Who among the following is facing South?
a. A
b. B
c. F
d. G

Answer - 3.F
36.4. Which of the following pair is sitting in the same row?
a. A and D
b. C and F
c. E and B
d. B and F

Answer - 5.B and F
36.5. Which of the following statement is false based on above arrangement?
a. A faces North
b. B sits at one of the extreme ends
c. D sits third to the right of B
d. Both the vacant seats are at extreme ends

Answer - 4.Both the vacant seats are at extreme ends Explanation:

37. Study the following information carefully to answer the given questions.

Eight members P, Q, R, S, T, U, V and W of a family are sitting around a rectangular table with all of them facing outwards. Each one of them like different type of music instruments viz. XYLOPHONE, Balafon, Guitar, Piano, VIOLIN, TRUMPET, Accodion and Flute. Three married couples are there in the family.

W is the only sister-in-law of P whereas Q likes TRUMPET and daughter-in-law of $R P$ who is the father of U and uncle of V, sits to the left of the person who likes XYLOPHONE. U is an immediate neighbor of her aunty W who does not sit next to S. R does not like Flute or Accodion. The two youngest members sit next to each other. The one who likes the Balafon sits between V and the one who likes VIOLIN. V is third to the left of S. The one who likes TRUMPET sits between the persons who like Accodion and Flute Respectively. S's husband and son sit next to her. Piano is not liked by V's father. V does not like Guitar or Accodion. S is the mother of P and T, and sits second to the left of T.
37.1. Which of the following statements is true regarding the family?
a. P is the brother of W
b. R is the father-in-law of P
c. Q is the aunty of V
d. U and V are married couple

Answer - c. Q is the aunty of V
37.2. Who among the following sits between Q and the one who likes Balafon?
a. P
b. T
c. S
d. V

Answer-d. V
37.3. What is the position of the person who likes Piano with respect to the one who likes TRUMPET?
a. Third to the right
b. Second to the left
c. Immediate left
d. Third to the left

Answer - a. Third to the right
37.4. Who among the following likes Guitar?
a. W
b. U
c. V
d. T

Answer-d. T
37.5. Which of the following options represent a pair?
a. Y, X
b. W, T
c. W, R
d. S, U

Answer - b. W, T

Explanation-

38. Study the following information carefully to answer the given questions.

Eight players - P, Q, R, S, T, U, V and \mathbf{W} sit around a square table in such a way that four of them sit on the four sides while the rest at corners. They play different instruments namely Xylophone, Balafon, Guitar, Piano, Violin, Trumpet, Accodion

Visit: Jatindembla.com / kitest.in
and Flute. Some of them are facing the centre while some are facing outside.(i.e away from the centre)

Note: Same directions means that if one person facing the centre then the other person also faces the centre and vice versa. Opposite direction means if one person is facing the centre then the other person faces outside and vice versa.

- Q faces the centre of the table and does not sit on any corner. V sits on one of the corner between the Flute player and Trumpet player. W sits second to the right of Balafon player who faces the centre.
- The Violin player sits third to the left of Q. S sits opposite to W. P sits on the corner exactly opposite to T. The Balafon player sits third to the right of Accodion player. The Xylophone player does not facing the centre.
- The Trumpet sits opposite to \mathbf{Q}, also faces in opposite direction of \mathbf{Q} and sits between Accodion player and Violin player. T who is the Violin player sits immediate right to the Piano player.
- The Piano player faces the same direction of the U. The immediate neighbours of Q are facing opposite directions. The Accodion player sits exactly opposite to Guitar player.
- The one who is on the immediate left of U is facing the same direction as W. R sits third to the left of \mathbf{W}.
38.1. Who among the following is a Trumpet player?
a. P
b. U
c. T
d. Can't be determined

Answer - B. U
38.2. R is related to which of the following Instruments?
a. Guitar
b. Xylophone
c. Accodion
d. Can't be determined

Answer - A. Guitar
38.3. Who among the following sits exactly between R and the Xylophone Player?
a. The person who plays Flute
b. The person who plays Accodion
c. The person who plays Balafon
d. Trumpet

Answer - C. The person who plays Balafon
38.4. How many persons sit facing the centre?
a. None
b. One
c. Two
d. Four

Answer - D. Four
38.5. Which of the following pairs are the immediate neighbors of the Flute player?
a. P, V
b. P, R
c. V, R
d. Q, R

Answer - A. P, V

Explanation-

39. Study the following information carefully to answer the given questions. There are 16 persons - B,C,D,E,F,G,H,I,P,Q,R,S,T,U,V and W standing in a square plot. Inside a Square plot, a square shaped garden is developed. The persons who are standing inside the garden facing outside. The persons who are standing outside the garden facing inside the centre and likes colours namely viz., - Red, Blue, Black, Brown, Yellow, Green, Violate and Pink. So all the persons standing in the inner square faces the persons standing in the outer Square and likes fruits namely viz., - Apple, Orange, Mango, Grapes, Papaya, Pomegranate, Guava and Banana.

G faces the centre and W faces G. D sits second to the right of G. There are four persons sits between G and E. D is not an immediate neighbour of E. There are three persons standing between I and E. There are two persons standing between I and B. B stands exactly between the E and F. F stands to the immediate left of G. There are two persons standing between W and U. U faces H. T faces outside. There are two persons standing between T and Q. T faces C. Q stands to the immediate left of W. R, the one who faces B stands exactly between the persons P and V. P faces E. The one who sits in the corner of the square likes Red. The one who likes Red sits between the persons who like Black and Blue. The one who likes Blue sits second to the right of the person who likes Green. Three persons sit between one who likes Black and one who likes Green. Two persons sit between one who likes Black and one who likes Yellow. Two persons sit between one who likes Yellow and one who likes Pink. G and F do not like Violate and Yellow respectively. The one who likes Red faces P. The immediate neighbours of P are the one who likes apple and the one who likes Grapes. The one who likes Apple faces the one who likes Black. Three persons sit between the one who likes apple and the one who likes Guava. The immediate neighbours of the person who likes Orange are the one who likes apple and the one who likes Pomegranate. The one who likes Papaya sits exactly behind to the one who likes Orange. The one who likes Banana sits exactly behind to the one who likes Mango. The one who likes Banana faces E .
39.1. In the given arrangement, if three people come and stand to the immediate left of E, how many people will sit between F (F rom the left of F) and C ?
a. Two
b. Three
c. Five
d. More than four

Answer - C. Five
39.2. Who amongst the following likes Green?
a. C
b. B
c. Other than those given as options
d. D

Answer - D. D
39.3. How many people stand between V and U ?
e. Two
f. Three
g. Four
h. More than four

Answer - B. Three
39.4. Four of the following five are alike in a certain way based upon their arrangement and so form a group. Which of the following does not belong to the group?
a. FV
b. UH
c. EP
d. GW

Answer - D. GW
39.5. Who amongst the following likes Papaya?
a. P
b. U
c. Q
d. E

Answer - B. U

Explanation-

40. Study the following information carefully to answer the given questions.

There are 16 persons - B,C,D,E,F,G,H,I,P,Q,R,S,T,U,V and W standing in a Circular plot. Inside a circular plot, a circularly shaped garden is developed. The persons who are standing inside the garden facing outside. The persons who are standing outside the garden facing inside the centre and lives in a different number of floors. So all the persons standing in the inner circle faces the persons standing in the outer circle and hold a different number of chocolates.

G faces outside and S faces G. D sits immediate right of G. There are four persons sits between G and E. H is not an immediate neighbour of E. There are two persons standing between D and H. H faces R. There are three persons standing between R and U. U stands exactly between the B and F. B faces D. There are two persons standing between P and C. Neither S nor R is an immediate neighbour of P. I stands to the immediate left of H. I faces T. The one who faces F stands exactly between the persons Q and W. W faces P. H stands second to the left of G. B lives on the second floor and sits exactly opposite to the person who lives on the floor which is the square number of the floor of B. F lives on the third floor and stands exactly opposite to the person who lives on the floor which is the square number of the floor of F. P lives on 6th floor and S lives immediately above P. U lives immediately below B. R lives immediately above T. The one who faces P holds chocolates two less than the number of the floor occupied by P. The one who faces U holds chocolates six more than the number of the floor occupied by U. Number of chocolates hold by E is the difference between the number of chocolates hold by D and W. Number of chocolates hold by G is the sum of the number of chocolates hold by D and E also equals to number of chocolates hold by V and H. Number of chocolates hold by I is the square of the number of chocolates hold by H .
40.1. In the given arrangement, how many people will sit between B and T ?
a. Five
b. Three
c. Four
d. More than four

Answer - B. Three
40.2. Who amongst the following lives on the seventh floor?
a. S
b. Q
c. Other than those given as options
d. U

Answer - A. S
40.3. If persons counted from the right of G , then how many people stand between G and E as per the given arrangement?
e. Five
f. Three
g. Four
h. More than four

Answer - E. Two

40.4. Four of the following five are alike in a certain way based upon their seating arrangement and so form a group. Which of the following does not belong to the group?
a. F
b. E
c. C
d. G

Answer - D. G
40.5. Who amongst the following have seven chocolates?
a. T
b. F
c. Q
d. P

Answer - C. Q
Explanation-

41. Study the following information carefully to answer the given questions.

Ten persons from ten different countries viz. Mumbai, Chennai, Bengaluru, Kolkatta, Pune, Hyderabad, Jaipur, Ahmedabad, Surat and Kochi are sitting in two parallel rows containing five people each, in such a way that there is an equal distance between adjacent persons. In row 1-A, B, C, D and E are seated and some of them are facing South and some of them are facing North. In row $2-P, Q$, R, S and T are seated and some of them are facing South and some of them are
facing North. Therefore in the given seating arrangement, each member seated in a row either faces another member of the other row or seated behind each other.(All the information given above does not necessarily represent the order of seating in the final arrangement.). Each person stays in ten different floors numbered 1 to 12.(From Ground floor to Top floor)

There is only one floor between the person from Mumbai and the person from Pune. S is not from Bengaluru. D is neither from Pune nor from Hyderabad. P sits immediate right of the person from Surat. R sits one of the extreme ends of the line and from Surat. C sits third to the right of the person from Chennai. P does not face A and faces south direction. The person from Mumbai sits exactly between the persons from Kochi and Pune. The person from Hyderabad faces the person from Kochi. The person from Surat stays on the odd numbered floor. T faces North Direction and sits immediate left of Q. Only one person sit between the persons from Bengaluru and Kolkatta. The person from Kolkatta sits to the immediate right of Q, who seated exactly in the middle of the row. P faces one of the immediate neighbors of the person from Chennai. D faces one of the immediate neighbors of the person from Bengaluru. The person from Kochi stays on the top floor. Only One person sits between the person from Surat and Q. C sits to the immediate right of the person who faces S. The person from Hyderabad stays on the $4^{\text {thfloor. Only two people sit between C and E. } S \text { is neither from Mumbai nor }}$ from Ahmedabad. The person from Pune sits second to the right of the one who faces North Direction. One of the immediate neighbors of the person from Pune behind the person from Bengaluru. A faces the opposite direction to the person from Jaipur. The persons from Bengaluru, Jaipur and Kolkatta stay on the consecutive floors. The floor number of the person from Chennai is the double of the floor number of the person from Surat. The floor number of the B is the square of the floor number of P. Neither E nor A stays on floor numbered 6.
41.1. Who amongst the following faces the person from Hyderabad?
a. The person from Mumbai
b. D
c. The person from Pune
d. The person from Surat

Answer - B. D
41.2. T stays on which of the following floors?
a. 1
b. 2
c. 4
d. 6

Answer - A. 1
41.3. Which of the following is true regarding C ?
a. C faces south direction
b. None of the given options is true
c. C is from Bangladesh
d. The person from India faces C

Answer. C faces south direction.
41.4. R is related to Kolkatta in the same way as C is related to Pune based on the given arrangement, To who amongst the following is T related to the following same pattern?
a. Mumbai
b. Sri Nagar
c. Bengaluru
d. Hyderabad

Answer - D. Hyderabad
41.5. Who amongst the following sit at extreme ends of the row?
a. The person stays on $8^{\text {th }}$ floor and
b. The persons from Ahmedabad and A R
c. D and the person stays on $10^{\text {th }}$ floor
d. The persons from Hyderabad and Bengaluru

Answer - C. D and the person stays on $10^{\text {th }}$ floor

Explanation-

42. Study the following information carefully to answer the given questions.

Ten friends are sitting in two parallel rows of six seats each. One seat is vacant in each row. M, N, O, P and Q are sitting in row- 1 facing South. D, E, F, G and H are facing North. Each likes a different Chocolate i.e. 5star, Dairy Milk, Munch, Kitkat, Perk, Snickers, Bourneville, Gems, Eclairs and Galaxy. Each person has different number of their favourite chocolates - $2,3,4,6,7,8,9,11,15$ and 16.

The difference between the chocolates hold by N and 0 is 3 . G sits third to the right of F and likes Kitkat. Only two people sit between E and the vacant seat. E does not like Perk or Munch Chocolate. Q is not an immediate neighbour of O. N likes Galaxy. The persons who sit at the extreme end of the line have chocolates in consecutive order. Neither E nor \mathbf{H} has 8 chocolate. One of the neighbors of vacant seat in both rows have chocolates in odd number. The one who likes Munch Chocolate faces the one who likes Gems. The one who likes Munch sits opposite to the one who sits third right of the person who sits opposite to G. 0 is not an immediate neighbour of P. H, who likes neither Perk nor Snickers, does not face the vacant seat. Neither G nor F sits at any of the extreme ends of the row. P faces F. Vacant seats are not opposite to each other. Two seats are there between 0 and N , who sits third right of the one who likes Bournville. The one who likes Eclairs Chocolate faces the one who likes Kitkat. The persons who like the 5star and Gems are adjacent to each other. Vacant seat of row - 1 is not an immediate neighbour of P. E sits at one of the extreme ends of the row. F does not like 5 star and Gems. Vacant seat of row- 1 does not face G who doesn't sit at any of the extreme ends of the row. The person who likes 5star has 3 chocolates. The total number of chocolates hold by Q is the half of the total number of chocolates hold by H. The total numbers of chocolates hold by M, F and G is the Square of the total number of chocolates hold by P, Q and M respectively. Neither P nor G has 4 chocolate.
42.1. In the given arrangement, if two people come and sit to the immediate left of E, how many people will sit between D and E ?
a. Two
b. Three
c. Four
d. More than four

Answer - B. Three
42.2. Who amongst the following sits third to the right of F?
a. The one who likes Kitkat
b. E
c. Other than those given as options
d. D

Answer - A. The one who likes Kitkat
42.3. Which of the following faces the vacant seat of Row -1 ?
a. The one who likes Kitkat
b. E
c. Other than those given as options
d. The one who has 15 chocolate

Answer - D. The one who has 15 chocolate
42.4. Four of the following five are alike in a certain way based upon their seating arrangement and so form a group. Which of the following does not belong to the group?
a. QE
b. ND
c. HO
d. FP

Answer - D. FP
42.5. Who among the following has 11 chocolate?
a. Q
b. N
c. D
d. E

Answer - B. N

Explanation-

43. Study the following information carefully to answer the given questions.

Eight friends C, D, E, F, L, M, N and 0 are seated in a straight line, but not necessarily in the same order. Some of them are facing north while some face South. Only three people sit to the right of M. E sits second to the left of M. F sits third to the right of 0.0 is not an immediate neighbour of M .0 does not sit at any of the extreme ends of the line. Both the immediate neighbours of 0 face south. D sits second to the right of N. As many people sit between M and D as between M and L. Immediate neighbours of F face opposite directions(i.e., If one person faces north then the other person faces south and vice-versa). C faces south. L and F face direction opposite to C.(i.e If C faces north then both L and F face south and viceversa)
43.1. Which of the following is true, based on the given arrangement?
a. D faces North
b. Only three people face South
c. L sits at one of the extreme ends
d. O and E face the same directions of the line

Answer - D. 0 and E face the same directions
43.2. How many people sit to the left of 0 ?
a. Two
b. Three
c. One
d. More than four

Answer - C. One
43.3. Who amongst the following faces South?
a. E
b. M
c. F
d. L

Answer: B. M

43.4. Who amongst the following sits second to the left of L ?
a. 0
b. F
c. D
d. No one as less than two people sit to the left of L

Answer -B. F
43.5. Who amongst the following represent the persons sitting at extreme ends of the line?
a. D, N
c. L, N

Answer - B. C, D
Explanation-

44. Study the following information carefully to answer the given questions. Eight people B, C, D, E, F, G, H and I are sitting in a straight line with equal distances between each other, but not necessarily in the same order. Some of them are facing north and some of them are facing south.

- E sits immediate right of the person who sits at one of the extreme ends of the line. Only three people sit between E and G. B sits exactly between D and H.
- C sits third to the right of H . F is an immediate neighbour of G and faces south. G sits second to the right of C. D sits third to the left of G. B and E face the same direction as C(i.e if C faces north then B and E also face North and Vice-Versa).
- Immediate neighbours of G face opposite directions(i.e. if one neighbour faces North then the other neighbour faces south and Vice-Versa)
- Person who sit at the extreme ends of the line face opposite directions(i.e. if one neighbour faces North then the other neighbour faces south and ViceVersa)
- D and H face the same direction as I(i.e if I faces north then D and H also face North and Vice-Versa).
44.1. In the given arrangement, how many people will sit between D and G ?
a. Two
b. Three
c. Four
d. More than four

Answer - A. Two
44.2. Who amongst the following sits third to the right of B?
a. E
b. I
c. Other than those given as options
d. F

Answer - B. I
44.3. How many people face South as per the given arrangement?
e. Two
f. Three
g. Four
h. More than four

Answer - C. Four
44.4. Four of the following five are alike in a certain way based upon their seating arrangement and so form a group. Which of the following does not belong to the group?
a. IH
b. EG
c. DF
d. EB

Answer - D. EB
44.5. Who amongst the following sits at the extreme right end of the row?
a. G
b. C
c. I
d. H

Answer - B. C
Explanation-

45. Study the following information carefully to answer the given questions.

Ten persons from ten different countries viz. Switzerland, Spain, Italy, USA, UK, Australia, New Zealand, Brazil, Canada and Singapore are sitting in two parallel rows containing five people each, in such a way that there is an equal distance between adjacent persons. In row 1-A, B, C, D and E are seated and some of them are facing South and some of them are facing North. In row $2-P, Q, R, S$ and T are seated and some of them are facing South and some of them are facing North. Therefore in the given seating arrangement, each member seated in a row either faces another member of the other row or seated behind each other.(All the information given above does not necessarily represent the order of seating in the final arrangement.). Each person stays in ten different floors numbered 1 to 12.(From Ground Floor to Top floor)

There is only one floor between the person from Switzerland and the person from UK. S is not from Italy. D is neither from UK nor from Australia. P sits immediate right of the person from Canada. R sits one of the extreme ends of the line and from Canada. C sits third to the right of the person from Spain. P does not face A and faces south direction. The person from Switzerland sits exactly between the persons from Singapore and UK. The person from Australia faces the person from Singapore. The person from Canada stays on the odd numbered floor. T faces North Direction and sits immediate left of Q. Only one person sit between the persons from Italy and USA. The person from USA sits to the immediate right of Q, who seated exactly in the middle of the row. P faces one of the immediate neighbors of the person from Spain. D faces one of the immediate neighbors of the person from Italy. The person from Singapore stays on the top floor. Only One person sits between the person from Canada and Q. C sits to the immediate right of the person who faces S. The person from Australia stays on the $4^{\text {th }}$ floor. Only two people sit between C and E. S is neither from Switzerland nor from Brazil. The person from UK sits second to the right of the one who faces North Direction. One
of the immediate neighbors of the person from UK behind the person from Italy. A faces the opposite direction to the person from New Zealand. The persons from Italy, New Zealand and USA stay on the consecutive floors. The floor number of the person from Spain is the double of the floor number of the person from Canada. The floor number of the B is the square of the floor number of P. Neither E nor A stays on floor numbered 6.
45.1. Who amongst the following faces the person from Australia?
a. The person from Switzerland
b. D
c. The person from UK
d. The person from Canada

Answer - B. D
45.2. T stays on which of the following floors?
a. 1
b. 2
c. 4
d. 6

Answer - a. 1
45.3. Which of the following is true regarding C ?
a. C faces south direction
b. None of the given options is true
c. C is from Bangladesh
d. The person from India faces C

Answer-A. C faces south direction.
45.4. R is related to USA in the same way as C is related to UK based on the given arrangement, To who amongst the following is Trelated to the following same pattern?
a. Switzerland
b. Sri Nagar
c. Italy
d. Australia

Answer - D. Australia
45.5. Who amongst the following sit at extreme ends of the row?
a. The person stays on $8^{\text {th }}$ floor and R
b. The persons from Brazil and A

Prof. Jatin Dembla

7415315942
c. D and the person stays on $10^{\text {th }}$ floor
d. The persons from Australia and Italy

Answer - C. D and the person stays on $10^{\text {th }}$ floor

Explanation-

CHEPTER 12

BLOOD RELATIONS

A person who is related to another by birth rather than by marriage.

```
S.no
Father's son (or) mother's son
Father's daughter (or) mother's daughter
Mother's brother
Father's brother
Mother's sister
Father's sister
Son's wife
Daughter's husband
Sister's husband
Husband's brother (or) wife's brother
Brother's wife
Husband's sister (or) wife's sister
Husband's father (or) wife's father
Husband's mother (or) wife's mother
Brother's son (or) sister's son
Brother's daughter (or) Sister's
Uncle's daughter (or) Aunt's daughter
Uncle's Grand son (or) Aunt's Grand son
Father's father (or) mother's father
Father's mother (or) mother's mother
Father of Grandfather or Father of grandmother
Father of Grandfather (or) father of grandmother
```


Brother

Sister
Uncle (Paternal Uncle)
Uncle (Maternal Uncle)
Aunt (Paternal Aunt)
Aunt (Maternal Aunt)
Daughter-in-law
Son-in-law
Brother-in-law
Brother-in-law
Sister-in-law
Sister-in-law
Father-in-law
Mother-in-law
Nephew
Niece
Cousin
Nephew
Grandfather
Grancimother
Great Grandmother
Great Grandfather

Visit: Jatindembla.com / kitest.in

Family or Blood Relationship means persons connected by relations like - fathermother, son-daughter, brother-sister, grandfather-grandmother, uncle-aunty, nephewniece, brother-in-law, sister-in-law etc. The list can go on and on adding members from father's side and mother's side etc.

Pointing to a photograph of a boy Shinzo said, "He is the son of the only son of 1. my mother." How is Shinzo related to that boy?
a. Father
b. Brother
c. Uncle
d. Cousin

Answer: Option B

Explanation:

The boy in the photograph is the only son of the son of Suresh's mother ie., the son of Shinzo. Hence, Shinzo is the father of boy.
2. If $A+B$ means A is the mother of $B ; A-B$ means A is the brother $B ; A \% B$ means A is the father of B and $A \times B$ means A is the sister of B, which of the following shows that P is the maternal uncle of Q ?
a. $\mathrm{Q}-\mathrm{N}+\mathrm{MxP}$
b. $P+S \times N-Q$
c. $\mathrm{P}-\mathrm{M}+\mathrm{Nx} \mathrm{Q}$
d. $\mathrm{Q}-\mathrm{S} \% \mathrm{P}$

Answer: Option C Explanation:
$\mathrm{P}-\mathrm{M} \rightarrow \mathrm{P}$ is the brother of M
$\mathrm{M}+\mathrm{N} \rightarrow \mathrm{M}$ is the mother of N
$N \mathrm{XQ} \rightarrow \mathrm{N}$ is the sister of Q
Therefore, P is the maternal uncle of Q
3. If A is the brother of B; B is the sister of C; and C is the father of D, how D is related to A ?
a. Brother
b. Sister
c. Nephew
d. Cannot be determined

Answer: Option D Explanation:

If D is Male, the answer is Nephew.
If D is Female, the answer is Niece.
As the sex of D is not known, hence, the relation between D and A cannot be determined.
Note: Niece - A daughter of one's brother or sister, or of one's brother-in-law or sister-in-law. Nephew - A son of one's brother or sister, or of one's brother-in-law or sister-inlaw
4. If A + B means A is the brother of B; A - B means A is the sister of B and A x B means A is the father of B. Which of the following means that C is the son of M ?
a. $\mathrm{M}-\mathrm{NxC}+\mathrm{F}$
b. $\mathrm{F}-\mathrm{C}+\mathrm{Nx} \mathrm{M}$
c. $\mathrm{N}+\mathrm{M}-\mathrm{Fx} \mathrm{C}$
d. $\mathrm{M} \times \mathrm{N}-\mathrm{C}+\mathrm{F}$

Answer: Option D
Explanation:
$\mathrm{M} \times \mathrm{N} \rightarrow \mathrm{M}$ is the father of N
$\mathrm{N}-\mathrm{C} \rightarrow \mathrm{N}$ is the sister of C
and $\mathrm{C}+\mathrm{F} \rightarrow \mathrm{C}$ is the brother of F .
Hence, M is the father of C or C is the son of M
5. Introducing a boy, a girl said, "He is the son of the daughter of the father of my uncle." How is the boy related to the girl?
a. Brother
b. Nephew
c. Uncle
d. Son-in-law

Answer: Option A
Explanation:

The father of the boy's uncle \rightarrow the grandfather of the boy and daughter of the grandfather \rightarrow sister of father
6. Pointing to a photograph Lata says, "He is the son of the only son of my grandfather." How is the man in the photograph related to Lata?
a. Brother
b. Uncle
c. Cousin
d. Data is inadequate

Answer: Option A Explanation:
The man in the photograph is the son of the only son of Lata's grandfather i.e., the man is the son of Lata's father. Hence, the man is the brother of Lata
7. If $A+B$ means A is the brother of $B ; A \times B$ means A is the son of B; and $A \% B$ means B is the daughter of A then which of the following means M is the maternal uncle of N
a. $\mathrm{M}+\mathrm{OXN}$
b. $\mathrm{M} \% \mathrm{O} \times \mathrm{N}+\mathrm{P}$
c. $\mathrm{M}+\mathrm{O} \% \mathrm{~N}$
d. None of these

Answer: Option D
Explanation:
Because the sex of 0 is not known
8. If D is the brother of B, how B is related to C ? To answer this question which of the statements is/are necessary?
The son of D is the grandson of C.
B is the sister of D.
a. Only 1
b. Only 2
c. Either 1 or 2
d. 1 and 2 both are required

Answer: Option D Explanation:
Given: D is the brother of B.

From statement 1, we can detect that D is son of C (son of D is the grandson of C).
From statement 2, we can detect that B is 'Female' (sister of D).
Therefore, B is daughter of C .
9. If $A+B$ means A is the father of $B ; A$ - B means A is the brother $B ; A \% B$ means A is the wife of B and $A \times B$ means A is the mother of B, which of the following shows that M is the maternal grandmother of T ?
a. $\mathrm{MxN} \% \mathrm{~S}+\mathrm{T}$
b. $\mathrm{MxN}-\mathrm{S} \% \mathrm{~T}$
c. $\mathrm{MxS}-\mathrm{N} \% \mathrm{~T}$
d. $\mathrm{MxNxS} \% \mathrm{~T}$

Answer: Option A
Explanation:
$\mathrm{MxN} \rightarrow \mathrm{M}$ is the mother of N
$\mathrm{N} \% \mathrm{~S} \rightarrow \mathrm{~N}$ is the wife of S
and $\mathrm{S}+\mathrm{T} \rightarrow$ is the father of T .
Hence, M is the maternal grandmother of T
10. Pointing to a photograph. Bajpai said, "He is the son of the only daughter of the father of my brother." How Bajpai is related to the man in the photograph?
a. Nephew
b. Brother
c. Father
d. Maternal Uncle

Answer: Option D

Explanation:

The man in the photo is the son of the sister of Bajpai. Hence, Bajpai is the maternal uncle of the man in the photograph
11. Deepak said to Nitin, "That boy playing with the football is the younger of the two brothers of the daughter of my father's wife." How is the boy playing football related to Deepak?
a. Son
b. Brother
c. Cousin
d. Brother-in-law

Answer: Option B

Explanation:

Father's wife \rightarrow mother. Hence, the daughter of the mother means sister and sister's younger brother means brother. Therefore, the boy is the brother of Deepak.
12. Pointing a photograph X said to his friend Y, "She is the only daughter of the father of my mother." How X is related to the person of photograph?
a. Daughter
b. Son
c. Nephew
d. Cannot be decided

Answer: Option B Explanation:
'The only daughter of the father of X's mother' means mother of X.
Hence X is the son of the lady in the photograph.
Note: Still have doubt like "How X is a male?"
13. Veena who is the sister-in-law of Ashok, is the daughter-in-law of Kalyani. Dheeraj is the father of Sudeep who is the only brother of Ashok. How Kalyani is related to Ashok?
a. Mother-in-law
b. Aunt
c. Wife
d. None of these

Answer: Option D

Explanation:

Ashok is the only brother of Sudeep and Veena is the sister-in-law of Ashok. Hence Veena is the wife of Sudeep. Kalyani is the mother-in-law of Veena. Kalyani is the mother of Ashok.
14. If $A+B$ means A is the sister of $B ; A \times B$ means A is the wife of $B, A \% B$ means A is the father of B and $A-B$ means A is the brother of B. Which of the following means T is the daughter of P ?
a. $\mathrm{P} \times \mathrm{Q} \% \mathrm{R}+\mathrm{S}-\mathrm{T}$
b. $\mathrm{P} \times \mathrm{Q} \% \mathrm{R}-\mathrm{T}+\mathrm{S}$
c. $\mathrm{P} \times \mathrm{Q} \% \mathrm{R}+\mathrm{T}-\mathrm{S}$
d. $\mathrm{PxQ} \% \mathrm{R}+\mathrm{S}+\mathrm{T}$

Answer: Option B
Explanation:
$P \times Q \rightarrow P$ is the wife of Q
$\mathrm{Q} \% \mathrm{R} \rightarrow \mathrm{Q}$ is the father of R
$R-T \rightarrow R$ is the brother of T
$T+S \rightarrow T$ is the sister of S.
Therefore, T is the daughter of P .
15. Pointing to a woman, Abhijit said, "Her granddaughter is the only daughter of my brother." How is the woman related to Abhijit?
a. Sister
b. Grandmother
c. Mother-in-law
d. Mother

Answer: Option D Explanation:
Daughter of Abhijit's brother \rightarrow niece of Abhijit. Thus the granddaughter of the woman is Abhijit's niece.
Hence, the woman is the mother of Abhijit.
16. Amit said - "This girl is the wife of the grandson of my mother". How is Amit related to the girl?
a. Brother
b. Grandfather
c. Husband
d. Father-in-law

Answer: Option D Explanation:
The girl is the wife of grandson of Amit's mother i.e., the girl is the wife of son of Amit. Hence, Amit is the father-in-law of the girl.
17. A and B are children of D. Who is the father of A ? To answer this question which of the statements (1) and (2) is necessary?
C is the brother of A and the son of E.
F is the mother B.
a. Only (1)
b. Only (2)
c. Either (1) or (2)
d. (1) and (2) both

Answer: Option B
Explanation:
A and B are children of D.
From (1), C is the brother B and son of E.
Since, the sex of D and E are not known. Hence (1) is not sufficient to answer the question.

From (2). F is the mother of B. Hence, F is also the mother of A. Hence D is the father of A.

Thus, (2) is sufficient to answer the question.
18. Pointing towards a man, a woman said, "His mother is the only daughter of my mother." How is the woman related to the man?
a. Mother
b. Grandmother
c. Sister
d. Daughter

Answer: Option A Explanation:

Only daughter of my mother \rightarrow myself.
Hence, the woman is the mother of the man.
19. If P \$ Q means P is the brother of $Q ; P$ \# Q means P is the mother of $Q ; P$ * Q means P is the daughter of Q in A \# $B \$ C$ * who is the father?
a. D
b. B
c. C
d. Data is inadequate

Answer: Option A Explanation:
A is the mother of B, B is the brother of C and C is the daughter of D. Hence, D is the father.
A (Parents)
D
| |

B - is - Brother - of - C
20. Introducing Sonia, Aamir says, "She is the wife of only nephew of only brother of my mother." How Sonia is related to Aamir?
a. Wife
b. Sister
c. Sister-in-law
d. Data is inadequate

Answer: Option A
Explanation:
Brother of mother means maternal uncle. Hence only nephew of Aamir's maternal uncle means Aamir himself. Therefore Sonia is the wife of Aamir
21. If $A+B$ means A is the brother of $B ; A \% B$ means A is the father of B and $A x B$ means A is the sister of B. Which of the following means M is the uncle of P ?
a. $\mathrm{M} \% \mathrm{NxP}$
b. $\mathrm{NxP} \% \mathrm{M}$
c. $\mathrm{M}+\mathrm{S} \% \mathrm{R} \% \mathrm{P}$
d. $\mathrm{M}+\mathrm{K} \% \mathrm{Tx} \mathrm{P}$

Answer: Option D

Explanation:

$M+K \rightarrow M$ is the brother of K
$\mathrm{K} \% \mathrm{~T} \rightarrow \mathrm{~K}$ is the father of T
$T \mathrm{xP} \rightarrow \mathrm{T}$ is the sister of P

Therefore, K is the father of P and M is the uncle of P.
22. Pointing to Varman, Madhav said, "I am the only son of one of the sons of his father." How is Varman related to Madhav?
a. Nephew
b. Uncle
c. Father or Uncle
d. Father

Answer: Option C Explanation:
Madhav is the only son of one of the sons of Varman's father \rightarrow Either Varman is the father or uncle of Madhav.
23. Introducing a woman, Shashank said, "She is the mother of the only daughter of my son." How that woman is related to Shashank?
a. Daughter
b. Sister-in-law
c. Wife
d. Daughter-in-law

Answer: Option D Explanation:
The woman is the mother of Shashank's granddaughter. Hence, the woman is the daughter-in-law of Shashank.
24. If $A+B$ means B is the brother of $A ; A \times B$ means B is the husband of $A ; A$ - B means A is the mother of B and $A \% B$ means A is the father of B, which of the following relations shows that \mathbf{Q} is the grandmother of T ?
a. $\mathrm{Q}-\mathrm{P}+\mathrm{R} \% \mathrm{~T}$
b. $\mathrm{P} x \mathrm{Q} \% \mathrm{R}-\mathrm{T}$
c. $\mathrm{P} \times \mathrm{Q} \% \mathrm{R}+\mathrm{T}$
d. $\mathrm{P}+\mathrm{Q} \% \mathrm{R}-\mathrm{T}$

Answer: Option A Explanation:
$\mathrm{Q}-\mathrm{P} \rightarrow \mathrm{Q}$ is the mother of P
$\mathrm{P}+\mathrm{R} \rightarrow \mathrm{R}$ is the brother of P
Hence, $\rightarrow \mathrm{q}$ is the mother of R
$R \% T \rightarrow R$ is the father of T.
Hence, Q is the grandmother of T
25. A3P means A is the mother of P

A4P means A is the brother of P
A9P means A is the husband of P
A5P means A is the daughter of P
Which of the following means that K is the mother-in-law of M ?
a. M9N3K4J
b. M9N5K3J
c. K5J9M3N
d. K3J9N4M

Answer: Option B Explanation:
$\mathrm{M} 9 \mathrm{~N} \rightarrow \mathrm{M}$ is the husband of N
$\mathrm{N} 5 \mathrm{~K} \rightarrow \mathrm{~N}$ is the daughter of K
Hence, $\rightarrow \mathrm{M}$ is the son-in-law of K
K3J $\rightarrow \mathrm{K}$ is the mother of J
Hence, $\rightarrow \mathrm{K}$ is a lady
Hence, $\rightarrow \mathrm{K}$ is the mother-in-law of M
26. Introducing Neeta, Anil said, 'She is wife of my mother's only son. How is Neeta related to Anil?
a. Mother
b. Wife
c. Sister
d. Daughter-in-law

Answer: B

Explanation:

Neeta is the wife of Anil's mother's only son, who is Anil himself. Hence, answer is Neeta is Anil's wife. i.e. (B) Wife.
27. 'Ram' is the father of 'Kusha' but 'Kusha' is not his son. 'Mala' is the daughter of 'Kusha'.'Shalaka' is the spouse of 'Ram'. 'Gopal' is the brother of 'Kusha'. 'Hari' is the son of 'Gopal'. 'Meena' is the spouse of 'Gopal'. 'Ganpat' is the father of 'Meena'. Who is the grand daughter of 'Ram'?
a. Hari
b. Mala
c. Meena
d. Shalaka

Answer: B Explanation:

'Mala' is the daughter of 'Kusha' and 'Ram' is the father of 'Kusha'. So, 'Mala' is the granddaughter of 'Ram'. Hence, answer is (B) Mala.
28. Pointing to a gentleman, Dinesh said "His only brother is the father of my daughter's father." How is the gentleman related to Dinesh?
a. Uncle
b. Grandfather
c. Father
d. Brother- in-law

Answer: A

Explanation:

The gentleman's only brother is the father of Dinesh (Dinesh daughter's father is Dinesh himself.). Gentleman is brother of Dinesh's father. Gentleman is Dinesh's uncle.
Hence, answer is (1) Uncle.
29. Pointing to Ajay, Radha said, "His father is the only son of my grandfather". How is Radha Related to Ajay?
a. Brother
b. Sister
c. Mother
d. Daughter

Answer: B
Explanation:

Traditional Method

When Radha's Grandfather's only son is Ajay's father, then Ajay's father is also the father of Radha. So Radha is Ajay's sister. Hence, answer is (B) Sister.
We know, 'Only son of my grandfather' means 'my father'. "His father is the only son of my grandfather" thus becomes "His father is my father". So Radha is Ajay's sister. Hence, answer is (B) Sister.
30. Lalita said to Tina, "You are the daughter-in-law of the grandmother of my father's only son."
How is Lalita related to Tina?
a. Aunt
b. Sister
c. Mother
d. Indeterminable

Answer: D

Explanation:

'My father's only son' is my (Lalita's) brother. Tina is daughter-in-law of grandmother of (Lalita's) brother. Tina thus can be their mother (wife of grandmother's only son).
However as it is not mentioned that the grandmother has only one son, Tina can be wife of grandmother's other son i.e. Tina could also be their aunt. Hence, answer is (4) Indeterminable.
31. Pointing to a photograph, Amar said, "I have no brother or sister but that man's father is my father's son." Whose photograph was it?
His son's
His nephew's
Answer: A Explanation:
Since Amar has no brother or sister so his father's son is the man himself and so the
man who is talking is the father of the man in the photograph i.e. the man in the photograph is his son. Hence, answer is (A) His son's.
32. Looking at the portrait of a man, Ashok said, 'His mother is the wife of my father's son. Brothers and sisters I have none'. At whose portrait was Ashok looking?
His cousin
His uncle

His nephew
His son

Answer: D

Explanation:

My (Ashok's) father's son will be Ashok himself as he has no brother or sister. Ashok's wife is mother of the person in the portrait. The portrait is thus of Ashok's own son. Hence, answer is (D) His Son.
33. Pointing to a photograph of a boy Suresh said, "He is the son of the only son of my mother." How is Suresh related to that boy?

Brother
Cousin

Uncle
Father

Answer: D

Explanation:
The boy in the photograph is the only son of the son of Suresh's mother i.e., the son of Suresh. Hence, Suresh is the father of boy.
34. If A + B means A is the mother of $B ; A$ - B means A is the brother $B ; A \% B$ means A is the father of B and $A \times B$ means A is the sister of B, which of the following shows that P is the maternal uncle of Q ?
a. $\mathrm{Q}-\mathrm{N}+\mathrm{MxP}$
b. $P+S \times N-Q$
c. $\mathrm{P}-\mathrm{M}+\mathrm{Nx} \mathrm{Q}$
d. $\mathrm{Q}-\mathrm{S} \% \mathrm{P}$

Answer: C

Explanation:

$P-M \rightarrow P$ is the brother of M
$\mathrm{M}+\mathrm{N} \rightarrow \mathrm{M}$ is the mother of N
$N \mathrm{xQ} \rightarrow \mathrm{N}$ is the sister of Q
Therefore, P is the maternal uncle of Q .
35. A has 3 children. B is the brother of C and C is the sister of D, E who is the wife of A is the mother of D. There is only one daughter of the husband of E. What is the relation between D and B ?
a. A
b. B
c. C
d. D

Answer: D
Explanation:

$+\mathrm{A} \quad-\mathrm{E}$
\downarrow
$+\mathrm{B}+\mathrm{D}-\mathrm{C}$

With the chart Therefore, D is a boy because there is only one daughter of E .
Hence, B is the brother of D.
Note: While solving the question $(+)$ can be used for male and $(-)$ can be used for female.
36. If $A+B$ means A is the mother of $B ; A \times B$ means A is the father of $B ; A \$ B$ means A is the brother of B and A @ B means A is the sister of B, then which of the following means P is the son of Q ?
Q + R @ P @ N
Q + R \$ P @ N
QxR\$P@N
Q + R \$ P \$ N

Answer: D
Explanation:
$\mathrm{Q}+\mathrm{R}=\mathrm{Q}$ is the mother of R
$R \$ P=R$ is the brother of P
$\mathrm{P} \$ \mathrm{~N}=\mathrm{P}$ is the brother of N
Therefore P is the son of Q.
37. There are six persons playing cricket namely U, V, W, X, Y and Z. U and Y are brothers. Z is the sister of Y. W is the only son of U 's uncle. V and X are the daughters of the brother of W's father. How is W related to Z ?
a. Cousin
b. Father
c. Mother
d. wife

Answer: A

Explanation:

Z is Y's sister and hence U's sister, which means W is also the son of Z's uncle. So, W is

Z's cousin.
38. $X-Z$ means X is the mother of $Z ; X \times Z$ means X is the father of Z and $X+Z$ means X is the daughter of Z. Now, if $M-N \times T+Q$, then which of the following is not true?
a. T is N's daughter.
b. N is wife of Q
c. M is mother-in-law of Q
d. Q is wife of N .

Answer: B Explanation:
M - N × T + Q
M is the mother of N who is the father of T who is the daughter of Q . So, M is the grandmother of the daughter of Q , i.e., M is the mother-in-law of Q .
Hence (B) is not true.
39. If ' $A \times B$ ' means ' B is father of A ', ' $A+B$ ' means ' A is wife of B ' and ' $A \div B$ ' means ' A is brother of B ', then, what is the relation of J with L in ' $J+H \div R \times L$ '?
a. Daughter
b. Daughter-in-law
c. Sister-in-law
d. Cannot be determined

Answer: B

Explanation:

(+) (-)
J is R's brother's wife. L is the father of H and R.
Hence, J is daughter-in-law of L.
40. A is B's sister. C is B's mother. D is C's father. E is D's mother. Then, how is A related to D ?
Grandfather
Grandmother
Daughter
Granddaughter
Answer: D) Granddaughter
Explanation:
A is the sister of B and B is the daughter of C.
So, A is the daughter of C . Also, D is the father of C .
So, A is the granddaughter of D.
41. P is the brother of Q and R. S is R's mother. T is P's father. Which of the following statements cannot be definitely true?
T is Q 's father
S is P's mother
P is S 's son
Q is T's son
Answer: D) Q is T's son Explanation:

P, Q, R are children of same parents. So. S who is R's mother and T, who is R's father will be mother and father of all three.
However, it is not mentioned whether Q is male or female So, D cannot be definitely true.

CHEPTER 18

 SYLLOGISM

| CLASSIFICATIO
 N OF | | |
| :--- | :--- | :--- | :--- |
| PROPOSITION | CATEGORIAL
 PROPOSITION | In categorical proposition, there exists a relationship between the subject
 and the predicate without any condition. It means predicate is either
 affirmation or denial of the subject unconditionally |

Following are the main rules for solving syllogism problems:

1) $\mathrm{All}+\mathrm{All}=$ All
2) $\mathrm{All}+\mathrm{No}=\mathrm{No}$
3) All + Some $=$ No conclusion
4) Some + No = Some Not
5) Some + Some = No conclusion
6) $\mathbf{N o}+$ All $=$ Some not (Reversed)
7) No + All = Some Not (Reversed)
8) No + Some $=$ Some Not (Reserved)
9) $\mathrm{No}+\mathrm{No}=\mathrm{No}$ conclusion
10) Some Not/ Some not reserved + Anything = No conclusion
11) If all A are B then we can say - Some B are Not A is a possibility
12) If Some B are not A then we can say - All A are B is a possibility
13) If some A are B then we can say All A are B is a possibility. All B are A is a possibility.
14) No conclusion = Any possibility is true

1. Statements: Some actors are singers. All the singers are dancers. Conclusions:

Some actors are dancers.
No singer is actor.
a. Only (1) conclusion follows
b. Only (2) conclusion follows
c. Either (1) or (2) follows
d. Neither (1) nor (2) follows

Answer: Option A
Explanation:

Only (1) follows.
2. Statements: All the harmoniums are instruments. All the instruments are flutes.
Conclusions:
All the flutes are instruments.
All the harmoniums are flutes.
a. Only (1) conclusion follows
b. Only (2) conclusion follows
c. Either (1) or (2) follows
d. Neither (1) nor (2) follows

Answer: Option B Explanation:

Quly (2) follows.
3. Statements: Some mangoes are yellow. Some tixo are mangoes. Conclusions:
Some mangoes are green.
Tixo is a yellow.
a. Only (1) conclusion follows
b. Only (2) conclusion follows
c. Either (1) or (2) follows
d. Neither (1) nor (2) follows

Answer: Option D Explanation:

None of the two follows.
4. Statements: Some ants are parrots. All the parrots are apples.

Conclusions:
All the apples are parrots.
Some ants are apples.

Visit: Jatindembla.com / kitest.in
a. Only (1) conclusion follows
b. Only (2) conclusion follows
c. Either (1) or (2) follows
d. Neither (1) nor (2) follows

Answer: Option B Explanation:

Only (2) follow.

Statements: Some papers are pens. All the pencils are pens. Conclusions:

Some pens are pencils.
Some pens are papers.
Only (1) conclusion follows

Either (1) or (2) follows Both (1) and (2) follow
Answer: Option D Explanation:

6. Statements: All the actors are girls. All the girls are beautiful.

Visit: Jatindembla.com / kitest.in

Conclusions:
All the actors are beautiful.
Some girls are actors.
Only (1) conclusion follows

Either (1) or (2) follows Both (1) nor (2) follows
Answer: Option E Explanation:

7. Statements: All the windows are doors. No door is a wall. Conclusions:

Some windows are walls.
No wall is a door.
a. Only (1) conclusion follows
b. Only (2) conclusion follows
c. Either (1) or (2) follows
d. Neither (1) nor (2) follows

Answer: Option B
Explanation:

Visit: Jatindembla.com / kitest.in

8. Statements: All cups are books. All books are shirts. Conclusions:

Some cups are not shirts.
Some shirts are cups.
a. Only (1) conclusion follows
b. Only (2) conclusion follows
c. Either (1) or (2) follows
d. Neither (1) nor (2) follows

Answer: Option B Explanation:

Only (2) follows.
9. Statements: Some cows are crows. Some crows are elephants. Conclusions:

Some cows are elephants.

All crows are elephants.
a. Only (1) conclusion follows
b. Only (2) conclusion follows
c. Either (1) or (2) follows
d. Neither (1) nor (2) follows

Answer: Option D Explanation:

None of the two follows.
10. Statements: All the pencils are pens. All the pens are inks. Conclusions:

All the pencils are inks.
Some inks are pencils.
a. Only (1) conclusion follows
b. Only (2) conclusion follows
c. Either (1) or (2) follows
d. Both (1) and (2) follow

Answer: Option D Explanation:

11. Statements: Some dogs are bats. Some bats are cats.

Conclusions:

Visit: Jatindembla.com / kitest.in

Some dogs are cats.
Some cats are dogs.
a. Only (1) conclusion follows
b. Only (2) conclusion follows
c. Either (1) or (2) follows
d. Neither (1) nor (2) follows

Answer: Option D Explanation:

None of the two follows.
12. Statements: All the trucks are flies. Some scooters are flies. Conclusions:

All the trucks are scooters.
Some scooters are trucks.
a. Only (1) conclusion follows
b. Only (2) conclusion follows
c. Either (1) or (2) follows
d. Neither (1) nor (2) follows

Answer: Option D Explanation:

(or)

Neither (1) nor (2) follows.
13. Statements: All buildings are chalks. No chalk is toffee. Conclusions:

No building is toffee
All chalks are buildings.
A. Only (1) conclusion follows
D. Neither (1) nor (2) follows

Answer: Option A Explanation:

Chalks

Buildings
Only (1) follows.
14. Statements: All cars are cats. All fans are cats.

Conclusions:
All cars are fans.
Some fans are cars.
A. Only (1) conclusion Only (2) conclusion follows

Visit: Jatindembla.com / kitest.in
C. Either (1) or (2) follows Neither (1) nor (2) follows

Answer: Option D
Explanation:

(or)

None of these two follows.
15.. Directions: (15.1 to 15.5): Read the statements carefully and then decide which of the following conclusions does not logically follow.

15.1. Statements:

Some Short bones are flat
bones All
flat bones are long bones
No long bones is irregular bones

Conclusions:

i. All irregular bones being short bone is a possibility
ii. All short bones being long bones is a possibility
iii. All flat bones being short bones is a possibility
iv. Some irregular bones are being flat bone is a possibility
a. Conclusion I does not follow
b. Conclusion II does not follow
c. Conclusion III does not follow
d. Conclusions IV does not follow

Answer: Option D Explanation:

15.2. Statements:

All Brills are Barb All barbs are char No char is Dory No
dory is globy Conclusions:

Conclusions:

i. At least Some barbs are dory
ii. Some dory are definitely not char
iii. Some brill being not globy is a possibility
a. Conclusion I does not follow
b. Conclusion II does not follow
c. Conclusion III does not follow
d. Conclusions I and II does not follow

Answer: Option A Explanation:
15.3. Statements:

Som e Nokia are Redmi

Some Redmi are Samsung

No Samsung is apple

All apple are sony

Conclusions:
i. Some apple are not redmi
ii. Frequently Samsung are sony
iii. Some nokia are Samsung
iv. No redmi is sony
a. Conclusion I does not follow
b. Conclusion II does not follow
c. Conclusion III does not follow
d. All conclusions not follows
Answer: Option D Explanation:

15.4. Statements:

All orange are grapes
Some mango potato

No potato is grape

All apple are orange

Conclusions:

i. Some mango are not grape
ii. Some Apple are not mango
iii. No orange is potato
iv. No mango is orange
a. Conclusion I does not follow
b. Conclusion II does not follow
c. Conclusion III does not follow

Answer: Option D Explanation:

Visit: Jatindembla.com / kitest.in

15.5. Statements:

Some cat are rat
All rat are dog
No dog is bat

All bat are rabbit

Conclusions:

i. Some cat are dog
ii. Some rat are not rabbit
iii. No rat is bat
iv. All bat is cat is possibility
a. Conclusion I does not follow
b. Conclusion II does not follow
c. Conclusion III does not follow
d. Conclusions IV does not follow

Answer: Option B
Explanation:

16. From the series "Z 5P I J M Q 2 \% T @ © UK 5 V 1 W \$ Y 2 BE 6 \# 9 D H 8 G \& Z N ". Which of the following is the sixth to the left of the fifteenth from the left end of the given arrangement?
a. 2
b. \#
c. \%
d. \$

Answer: Option c
Visit: Jatindembla.com / kitest.in

Explanation:

6th to the left of 15 th from left=15-6=9th from left= $\%$
Z 5 PIJMQ 2 \%
17. From the series "Z 5P I J M Q 2 \% T @ © UK 5V1 W \$ Y 2 BE 6 \# 9 D H 8 G \& Z N" How many such numbers are there in the given arrangement, each of which is immediately preceded by a consonant and not immediately followed by a letter?
a. None
b. One
c. Two
d. Three

Answer: Option b
Explanation:
Q2\%
18. From the series "Z 5PIJMQ2 \% T @ © UK 5 V1W \$Y2BE 6 \# 9 D H 8 G \& Z N"How many such symbols are there in the given arrangement, each of which is immediately followed by a letter but not immediately preceded by a number?
a. None
b. One
c. Two
d. Three

Answer: Option d Explanation:
@ © U, G\&Z, W\$Y
Z 5 P I J M Q 2 \% T @ © UK 5 V1 W \$ Y2 B E 6 \# 9 D H 8 G \& Z N
19. From the series "Z 5P IJMQ 2 \% T @ © UK 5V1 W \$Y 2 BE 6 \# 9 D H 8 G \& Z N" How many such consonants are there in the given arrangement, each of which is immediately preceded by a consonant and immediately followed by a symbol?
a. None
b. One
c. Two
d. Three

Answer: Option a
20. From the series "Z 5P IJMQ 2 \% T @ © UK 5 V 1 W\$Y2BE6\#9DH8G\&Z N" What should come in the place of question mark (?) in the following series based on the above arrangement? PJQ T©K 1\$2?
a. E\#D
b. 69 D
c. 698
d. 69 H

Answer: Option d
21. Directions: In question below, there are three statements followed by four conclusions numbered I, II, III, and IV. You have to take the given statements to be true even if they seem to be at variance with commonly known facts and then decide which of the given conclusions logically follow(s) from the given statements.

Statements:

All table are laptop.
Some laptops are computer.
All computers are smart phones.

Conclusions:

Some table are computer.
Some table are not computer.
Some laptops are smart phone.
Some laptops are not smart phone.
a. Either I or II follow
b. Either III or IV follow
c. Either I or II and Either III or IV
d. Either I or II and III follow follow

Answer: Option d
Explanation:
Let us draw Venn diagram for all given statements.

Conclusions:

Some table are computer. \Rightarrow Not true because it is possible but not definite.
Some table are not computer. \Rightarrow Not true because it is possible but not definite.
Some laptops are smart phone. \Rightarrow It's, definitely true.
Some laptops are not smart phone. \Rightarrow Not true because it is possible but not definite.
Also according to Venn diagram conclusion (I) and (II) form pairs i.e. either of them must be true in any diagram we can draw.
Hence, either I or II and III follow.
22. Directions: In question below are two statements followed by two conclusions numbered I and II. You have to take the two given statements to be true even if they seem to be at variance from commonly known facts and then decide which of the given conclusions logically follows from the given statements disregarding commonly known facts.

Statements:

No picnic is blades.
Some blades are CD's.

Conclusions:

No CD is a picnic.
Some picnics are definitely not CD's.
a. Only conclusion I follows
b. Only conclusion II follows
c. Either conclusion I or II follows
d. Neither conclusion I nor II follows

Answer: Option d
Explanation:

Let's draw a least possible Venn diagram using given statements:

Conclusions:

NoCD is a picnic: It is possible butnot definite.
Some picnics are definitely not CD's: It is possible but not definite.
So, none of the conclusions follow.
23. Directions: In the question below there are three statements followed by three conclusions numbered I, II and III. Read all the conclusions and then decide which of the given conclusions logically follows from the given statements.

Statements:

All fruits are vegetables.
All pens are vegetables.
All vegetables are rains.

Conclusions:

All fruits are rains.
All pens are rains.
Some rains are vegetables.
a. None follows
b. Only I and II follow
c. Only II and III follow
d. All follow

Answer: Option d Explanation:
Note: Here, a conclusion is definite if it can be shown in a diagram drawn with least-
possibilities. If a conclusion can't be shown in least - possibilities diagram then the conclusion is possible butnotdefinite.
On drawing least - possibilities Venn - diagram:

Conclusions:

All fruits are rains. \Rightarrow It's, definitely, true.
Allpens are rains. \Rightarrow It's, definitely, true.
Some rains are vegetables. \Rightarrow It's, definitely, true.
Hence, all conclusions follow.
24. Directions: In the question below is given three statements followed by two conclusions numbered I and II. You have to take the given statements to be true even if they seem to be at variance from commonly known facts. Read both of the conclusions and then decide which of the given conclusions logically follows from the given statements disregarding commonly known facts.
Statements:
Some books are pens.
Some pens are pencils.
Some pencils are buttons.

Conclusions:

Some buttons are definitely pens.
Some pencils are books.
a. Only conclusions I follows
b. Only conclusions II follows
c. Neither conclusion I nor II follows
d. Either conclusion I or II follows

Answer: Option c Explanation:
The least nossihilitv diagram for the given statement is follows:

Conclusions:
Some buttons are definitely pens. \rightarrow Its possible but not definitely true, hence false.
Some pencils are books. \rightarrow Its possible but not definitely true, hence false.
Hence, neither of the conclusions I nor II follows.
25. Directions: In the question below are two statements followed by two conclusions numbered I and II. You have to take the two given statements to be true even if they seem to be at variance from commonly known facts and then decide which of the given conclusions logically follows from the two statements disregarding commonly known facts.

Statements:

Some students are classes.
Some classes are Schools.

Conclusions:

At least some schools are students
No school is student
a. Only conclusion I follows
b. Only Conclusion II follows
c. Either Conclusion I or II follows
d. Neither Conclusion I nor II follows

Answer: Option c

Explanation:

The Venn diagrams are as follows:

Conclusions:

I) At least some schools are students \rightarrow Its possible but not definitely true, hence false.
II) No school is student \rightarrow Its possible but not definitely true, hence false.

Conclusions I \& II are complementary to each other.
Hence, either of the conclusion I or II follows.
26. Directions: In the question below are three statements followed by three conclusions numbered I, II and III. You have to take the three given statement to be true even if they seem to be at variance from commonly known facts and then decide which of the given conclusion logically follows from the three given statements, disregarding commonly known facts.
Statements:
Some doors are windows.
Some windows are lamps.
All lamps are candles.

Conclusions:

Some candles being door is a possibility
Some candle are definitely windows
At least some lamps are doors
a. Only I follows
b. Only II follows
c. Only III follows
d. I and II follow

Answer: Option D

Explanation:

Conclusions:

Some candles being door is a possibility \rightarrow It's possible. Hence possibility is true. Some candles are definitely windows \rightarrow It's definitely possible. Hence, true. At least some lamps are doors \rightarrow Its possible but not definitely true hence false. Hence only conclusions I and II follows.
27. Directions: In the question below are three statements followed by three conclusions numbered I, II and III. You have to take the three given statement to be true even if they seem to be at variance from commonly known facts and then decide which of the given conclusion logically follows from the three given statements, disregarding commonly known facts.

Statements:

Some rivers are hills.
No hill is taxi.
All taxis are buses

Conclusions:

Some buses are rivers
Some rivers are definitely not taxis
No bus is river
a. None follows
b. I follows
c. III follows
d. II follows=

Answer: Option D

Explanation:

From the statements, the least possible Venn diagram can be drawn as below:

Visit: Jatindembla.com / kitest.in

Conclusions:

I) Some buses are rivers \rightarrow Its possible but not definitely true, hence false.
II) Some rivers are definitely not taxis \rightarrow Some rivers are hills and no hill is taxi, so that much portion of river which is hill will never be taxi. Hence true.
III) No bus is river \rightarrow Its possible butnot definitely true.

Hence, only conclusion II follows.
But, since I and III make complementary pair hence,
Either III or I also Follow.

So, Statement II and either III or I follows.
28. Directions: In question below are three statements followed by two conclusions numbered I and II. You have to take the three given statements to be true even if they seem to be at variance from commonly known facts and then decide which of the given conclusion logically follows from the three statements disregarding commonly known facts.

Statements:

All bulbs are tubes.

Some tubes are knives.
All knives are frames.

Conclusions:

Some frames are tubes.
Some knives are bulbs.
a. Only conclusion I follows.
b. Only conclusion II follows
c. Either conclusion I or II follows.
d. Both conclusions I and II follows

Answer: Option A

Explanation:

The least possibility Venn diagram for the given statements is as follows.

Conclusions:

Some frames are tubes \rightarrow clearly true.
Some knives are bulbs \rightarrow it's possible but not definite, hence false.
Hence only conclusion I follows.
29. Directions: In the question below is given three statements followed by two conclusions numbered I and II. You have to take the given statements to be true even if they seem to be at variance from commonly known facts. Read both of the

Visit: Jatindembla.com / kitest.in
conclusions and then decide which of the given conclusions logically follows from the given statements disregarding commonly known facts.

Statements:

No toffee is chocolate.
Some chocolates are ice-creams.
All ice-creams are candies.

Conclusions:

No candy is toffee.
Atleast some candies are chocolates.
a. Only conclusions I follows
b. Only conclusions II follows
c. Either conclusion I or II follows
d. Neither conclusion I nor II follows

Answer: Option B
Explanation:
From the given statements, the least possibility Venn diagram is as follows.

Conclusions:

No candy is toffee. \rightarrow Its possible but not definitely true, hence false.
Atleast some candies are chocolates. \rightarrow Its definitely possible. Hence, true.
Hence only conclusion II is follows.
30. Directions: In the question below is given three statements followed by two conclusions numbered I and II. You have to take the given statements to be true even if they seem to be at variance from commonly known facts. Read both of the conclusions and then decide which of the given conclusions logically follows from the given statements disregarding commonly known facts.

Statements:

All letters are black.
All black are blue.
No blue is green.

Conclusions:

No letter is green.
Some black are blue.
a. Only conclusions I follows
b. Only conclusions II follows
c. Either conclusion I or II follows
d. Both conclusions I and II follow

Answer: Option D
Explanation:
From the given statements, the least possibility Venn diagram is as follows.

Conclusions:

No letter is green. \rightarrow Its definitely possible. Hence, true.
Some black are blue. \rightarrow As all black are blue is true, so Some black are blue is also true. Hence,

Prof. Jatin Dembla

7415315942
both conclusions I and II follow

31. Statements:

Some Cats are Rats.
All bats are tables.
All Rats are Bats.

Conclusion:

I. Some Cats are bats
II. All bats are rats
III. All tables are cats

All bats are cats
Only I \& II follow
Only I \& IV follow
Answer: Option A
Explanation:

Clearly, from the diagram Conclusion I is true. So option D

32. Statements:

Some ships are boats.
All boats are submarines.
Some submarines are yatches.

Conclusion:

I. Some yatches are boats.
II. Some submarines are boats.
III. Some submarines are ships.
IV. Some yatches are ships

Visit: Jatindembla.com / kitest.in
a. All follow
b. Only II and III follow
c. Only III follows
d. Only IV follows
Answer: Option B

Explanation:

From the diagram we can infer that some submarines are boats and some submarines are ships. So $2^{\text {nd }}$ option.

33. Statements:

All Carrots are birds.
Some telephones are Carrots.
All bedsheets are telephone.

Conclusion:

I. All bedsheet are birds
II. Some bedsheet are birds
III. Some birds are telephone
IV. All telephone are birds
a. Only I follows
b. Only II follows
c. Only I and III follow
d. Only III follows

Answer: Option D Explanation:

The diagram gives all the possibilities. But only conclusion III is true.

34. Statements:

Most CPUs are keyboards.
No keyboard is a Mouse.
All Mouses are CPU.

Conclusion:

I. Some keyboards are CPU
II. All CPU's are Mouse
III. No Mouse is a keyboard

Some Mouse are keyboard
a. Only I follows
b. Only II and III follow
c. Only I and III follow
d. Only II follows
Answer: Option C

Explanation:

Clearly from the diagram, I and III are true.

35. Statements:

Samosas are Jalebi.
All Jalebis are Tikki.
All Tikkis are Barfi.

Conclusion:

I. All Jalebis are Barfi
II. All Tikkis are Samosas
III. All Samosas are Barfi
IV. All Barfi are Jalebi
a. Only I and II follow
b. Only I and III follow
c. Only II and III follow
d. All follow

Answer: Option B

Explanation:

Clearly from the diagram, I and III are true.
36. Statements:

Some eyes are ears. Some ears are lungs.
All lungs are hands

Conclusion:

I. Some hands are eyes.
II. Some hands are ears
III. Some lungs are eyes
IV. No hand is eye
a. None follow
b. Only IV follows
c. Only II follows

Answer: Option C

Explanation:

d. Only III follows
or

From the diagram II definitely follows
37. Statements:

All liquids are solids.
Some solids are gases.
All gases are clouds.

Conclusion:

I. Some clouds are solids
II. Some clouds are liquids
III. Some gases are liquids

Some solids are clouds
a. Only I follows
b. Only III follows
c. Only IV follows
d. Only II and IV follow

Answer: Option D
Explanation:.

Clearly from the diagram I and IV are true

38. Statements:

All Gold are Platinum.
No Platinum is silver.
Some Diamonds are silver.

Conclusion:

I. Some Diamonds are Gold
II. Some Diamonds are Platinum
III. Some Gold are Silver
IV. No Silver is Gold
e. Only I follows
f. Only III follows
g. Only IV follows

Answer: Option C

Explanation:

Diamonds

From the diagram we see all the possibilities. Clearly only IV is true for all possibilities

39. Statements:

Some messages are whatsapp.
All Hikes are whatsapp.
All whatsapp are facebook.

Conclusion:

I. Some Facebook are messages
II. All hikes are Facebook
III. Some messages are hikes
IV. Some message are Facebook
a. All follow
b. Only I, II and III follow
c. Only I, II and IV follow
d. Only III and IV follow

Answer: Option C

Explanation:

Visit: Jatindembla.com / kitest.in

Prof. Jatin Dembla

Clearly from the diagram I, II and IV are true.

40. Statements:

No watch is cycle.
No cycle is Motorbike.
Some auto are motorbike
Conclusion:
I. No Motorbike is watch
II. No motor bike is cycle
III. Some cycles are watches
IV. All Motorbikes are watches
a. None follows
b. Only I follows
c. Only I and III follow
d. None of these

Answer: Option D
Explanation:

Watch

Clearly from the diagram, No Motorbike is cycle. So II follows. Hence option 4.

Prof. Jatin Dembla

7415315942

CHAPTER 14

STATISTICAL DESCRIPTION OF DATA
COLLECTION OF DATA

Applications of Statistics

Primary

 method Mailed questionnaire
Observation

Questionnaries filled and sent by enumerators.

Secondary method

International sources

Unpublished sources of various research institutes, researchers

Government sources

Private and quasi-government sources

PRESENTATIO N OF DATA	Classificatio n or Organisatio n of Data	The process of arranging data on the basis of the characteristic under consideration into a number of groups or classes according to the similarities of the observations.
	Data may be classified as	(i) Chronological or Temporal or Time Series Data; (ii) Geographical or Spatial Series Data; (iii) Qualitative or Ordinal Data; (iv) Quantitative or Cardinal Data.
	Mode of Presentatio n of Data	(a) Textual presentation (b) Tabular presentation or Tabulation (c) Diagrammatic representation I. Line diagram or Historiagram II. Bar diagram III. Pie chart
FREQUENCY DISTRIBUTIO N	tabular representation of statistical data, usually in an ascending order, relating to a measurable characteristic according to individual value or a group of values of the characteristic under study	
Class Limit (CL)	Corresponding to a class interval, the class limits may be defined as the minimum value and the maximum value the class interval may contain.	
Class Boundary (CB)	Class boundaries may be defined as the actual class limit of a class interval$\operatorname{LCB}=\mathrm{LCL}-\frac{D}{2}$	
Mid-point or Mid-value or class mark	Corresponding to a class interval, this may be defined as the total of the two class limits or class boundaries to be divided by 2 . Thus, we have$\text { mid-point }=\frac{\text { LCL }+ \text { UCL }}{2}$	

Cumulative Frequency
Thecumulativefrequencycorrespondingtoavalueforadiscretevariablean dcorrespondingto a class boundary for a continuous variable may be defined as the number of observations less than the value or less than or equal to the class boundary.
GREPRESENTAT ION OF AFREQUENCY DISTRIBUTIO N
- Histogram or Are a diagram: A histogram is an accurate representation of the distribution of numerical data. It is an estimate of the probability distribution of a continuous variable (quantitative variable) and was first introduced by Karl Pearson. -Frequency Polygon: Frequency polygons are a graphical device for understanding the shapes of distributions. They serve the same purpose as histograms, but are especially helpful for comparing sets of data. Frequency polygons are also a good choice for displaying cumulative frequency distributions. -Ogives or Cumulative Frequency Graph: Cumulative histograms, also known as ogives, are graphs that can be used to determine how many data values lie above or below a particular value in a data set. The cumulative frequency is calculated from a frequency table, by adding each frequency to the total of the frequencies of all data values before it in the data set.
Frequency Curve
A frequency curve is a smooth curve for which the total area is taken to be unity. It is a limiting form of a histogram or frequency polygon. Types of frequency curves namely: (a) Bell-shaped curve
(b) U-shaped curve
(c) J-shaped curve
(d) Mixed curve.

data to be used by governmental and (often centralized) administrative bodies.

Questions?

1. What percentage of candidates passed the Exam from institute T out of the total number of candidates enrolled from the same institute?
a. 50%
b. 62.5%
c. 75%
d. 80%

Answer: Option C Explanation:
Required percentage $=\left(\frac{9 \% \text { of } 5700}{8 \% \text { of } 8550} \times 100\right) \%=\left(\frac{9 \times 5700}{8 \% \text { of } 8550} \times 100\right) \%=75 \%$.
2. Which institute has the highest percentage of candidates passed to the candidates enrolled?
a. Q
b. R
c. V
d. T

Answer: Option B Explanation:
The percentage of candidates passed to candidates enrolled can be determined for each institute as under:
(i) $P=\left[\left(\frac{18 \% \text { of } 5700}{22 \% \text { of } 8550}\right) \times 100\right] \%=\left[\frac{18 \times 5700}{22 \times 8550} \times 100\right] \%=54.55 \%$.
(ii) $\mathrm{Q}=\left[\left(\frac{17 \% \text { of } 5700}{15 \% \text { of } 8550}\right) \times 100\right] \%=75.56 \%$.
(iii) $R=13 \%$ of $5700 \times 100 \%=86.67 \%$.

$$
[(10 \% \text { of } 8550)]
$$

(iv) $S=\left[\left(\frac{16 \% \text { of } 5700}{17 \% \text { of } 8550}\right) \times 100\right] \%=62.75 \%$.
(v) $\mathrm{T}=\left[\left(\frac{9 \% \text { of } 5700}{8 \% \text { of } 8550}\right) \times 100\right] \%=75 \%$.
(vi) $V=\left[\left(\frac{15 \% \text { of } 5700}{12 \% \text { of } 8550}\right) \times 100\right] \%=83.33 \%$.
(vii) $X=\left[\left(\frac{12 \% \text { of } 5700}{16 \% \text { of } 8550}\right) \times 100\right] \%=50 \%$.

Highest of these is 86.67% corresponding to institute R.
3. The number of candidates passed from institutes S and P together exceeds the number of candidates enrolled from institutes T and R together by:
a. 288
b. 279
c. 399
d. 407

Answer: Option C
Explanation:
Required difference $=[(16 \%+18 \%)$ of 5700$]-[(8 \%+10 \%)$ of 8550$]$

$$
\begin{aligned}
& =[(34 \% \text { of } 5700)-(18 \% \text { of } 8550)] \\
& =(1938-1539) \\
& =399
\end{aligned}
$$

4 What is the percentage of candidates passed to the candidates enrolled for institutes Q and R together?

68\% 80\%
74\% 65\%

Answer: Option B

Explanation:

Candidates passed from institutes Q and R together
$=[(13 \%+17 \%)$ of 5700]
$=30 \%$ of 5700 .
Candidates enrolled from institutes Q ar= [$(15 \%+10 \%)$ of 8550$]$

$$
=25 \% \text { of } 8550 .
$$

\therefore Required
Percentage

$$
\begin{aligned}
& =\left(\frac{30 \% \text { of } 5700}{25 \% \text { of } 8550} \times 100\right) \% \\
& =\left(\frac{30 \times 5700}{25 \times 8550} \times 100\right) \% \\
& =80 \%
\end{aligned}
$$

5. What is the ratio of candidates passed to the candidates enrolled from institute P ?
9:11 14:17
6:11
Answer: Option C
Explanation:
Required ratio $=\left(\frac{18 \% \text { of } 5700}{22 \% \text { of } 8550}\right)=\left(\frac{18 \times 5700}{22 \times 8550}\right)=\frac{6}{11}$.
Direction (for Q.Nos'. 6-10):
Two different finance companies declare fixed annual rate of interest on the amounts invested with them by investors. The rate of interest offered by these companies may differ from year to year depending on the variation in the economy of the country and

Visit: Jatindembla.com / kitest.in
the banks rate of interest. The annual rate of interest offered by the two Companies P and Q over the years are shown by the line graph provided below.

Annual Rate of Interest Offered by Two Finance Companies Over the Years.

6. A sum of Rs. 4.75 lakhs was invested in Company Q in 1999 for one year. How much more interest would have been earned if the sum was invested in Company P?
a. Rs. 19,000
b. Rs. 14,250
c. Rs. 11,750
d. Rs. 9500

Answer: Option D Explanation:
Difference
= Rs. [(10\% of 4.75) - (8\% of 4.75)] lakhs
= Rs. (2% of 4.75) lakhs
= Rs. 0.095 lakhs
= Rs. 9500.
7 If two different amounts in the ratio 8:9 are invested in Companies \mathbf{P} and \mathbf{Q} . respectively in 2002, then the amounts received after one year as interests from Companies P and Q are respectively in the ratio?
a. $2: 3$
b. $3: 4$
c. 6:7
d. $4: 3$

Answer: Option D
Explanation:

Let the amounts invested in 2002 in Companies P and Q be Rs. $8 x$ and Rs. $9 x r e s p e c t i v e l y$.

$$
=\text { Rs. }(6 \% \text { of } 8 x)
$$

Then, interest received after one year from Company P

48

$$
=\text { Rs. } \quad X \text {. }
$$

$$
100
$$

and interest received after one year from

$$
=\text { Rs. }(4 \% \text { of } 9 x)
$$ Company Q

$$
=\text { Rs. } \frac{36}{100} x
$$

\therefore Required ratio $=$
$\overline{\left(\frac{36}{100} x\right)}$

$$
=4 \frac{}{=3}
$$

8. In 2000, a part of Rs. 30 lakhs was invested in Company P and the rest was invested in Company \mathbf{Q} for one year. The total interest received was Rs. 2.43 lakhs. What was the amount invested in Company P?
Rs. 9 lakhs
Rs. 11 lakhs
Rs. 12 lakhs
Rs. 18 lakhs
Answer: Option D

Explanation:

Let Rs. x lakhs be invested in Company P in 2000, the amount invested in Company Q in $2000=$ Rs. $(30-x)$ lakhs.
Total interest received from the two Companies after 1 year
$=$ Rs. $[(7.5 \%$ of $x)+\{9 \%$ of $(30-x)\}]$ lakhs
Visit: Jatindembla.com / kitest.in

$$
\begin{aligned}
& =\text { Rs. }\left[2.7-\left(\frac{1.5 x}{100}\right)\right] \text { lakhs. } \\
& \therefore\left[2.7-\left(\frac{1.5 x}{100}\right)\right]=2.43 \quad \Rightarrow \quad x=18 .
\end{aligned}
$$

9. An investor invested a sum of Rs. 12 lakhs in Company P in 1998. The total amount received after one year was re-invested in the same Company for one more year. The total appreciation received by the investor on his investment was?
a. Rs. 2,96,200
b. Rs. $2,42,200$
c. Rs. $2,25,600$
d. None

Answer: Option C

Explanation:
Amount received from Company P after one year (i.e., in 199) on investing Rs. 12
lakhs in it
= Rs. $[12+(8 \%$ of 12)] lakhs
= Rs. 12.96 lakhs.
Amount received from Company P after one year on investing Rs. 12.96 lakhs in the year 1999
= Rs. [12.96 + (10\% of 12.96)] lakhs
= Rs. 14.256 .
Appreciation received on investment during the period of two years
= Rs. (14.256-12) lakhs
= Rs. 2.256 lakhs
= Rs. 2,25,600.
10.An investor invested Rs. 5 lakhs in Company Q in 1996. After one year, the entire amount along with the interest was transferred as investment to Company P in 1997 for one year. What amount will be received from Company P, by the investor?
a. Rs. $5,94,550$
b. Rs. $5,80,425$
c. Rs. $5,77,800$

Answer: Option B Explanation:

Amount received from Company Q after one year on investment of Rs. 5 lakhs in the year 1996
$=$ Rs. [5 + (6.5\% of 5)] lakhs
= Rs. 5.325 lakhs.
Amount received from Company P after one year on investment of Rs. 5.325 lakhs in the year 1997
= Rs. [5.325 + (9\% of 5.325)] lakhs
= Rs. 5.80425 lakhs
= Rs. 5,80,425.
Direction (for Q.Nos. 11-15):
The following table gives the sales of batteries manufactured by a company over the years.

Number of Different Types of Batteries Sold by a Company Over the Years (Numbers in Thousands)

Year	Types of Batteries					
	$\mathbf{4 A H}$	$\mathbf{7 A H}$	$\mathbf{3 2 A H}$	$\mathbf{3 5 A H}$	$\mathbf{5 5 A H}$	Total
$\mathbf{1 9 9 2}$	75	144	114	102	108	543
$\mathbf{1 9 9 3}$	90	126	102	84	126	528
$\mathbf{1 9 9 4}$	96	114	75	105	135	525
$\mathbf{1 9 9 5}$	105	90	150	90	75	510
$\mathbf{1 9 9 6}$	90	75	135	75	90	465
$\mathbf{1 9 9 7}$	105	60	165	45	120	495
$\mathbf{1 9 9 8}$	115	85	160	100	145	605

11.What was the approximate percentage increase in the sales of 55 AH batteries in 1998 compared to that in 1992?

33\% 34\%
Answer: Option D
Visit: Jatindembla.com / kitest.in

Explanation:

Required percentage $=\left[\frac{(145-108)}{108} \times 100\right] \%$

$$
=34.26 \%
$$

$$
=34 \% .
$$

12.The total sales of all the seven years is the maximum for which battery?
a. 4 AH
b. 7 AH
c. 32 AH
d. 35 AH

Answer: Option C

Explanation:

The total sales (in thousands) of all the seven years for various batteries are:
For $4 \mathrm{AH}=75+90+96+105+90+105+115=676$
For 7 AH $=144+126+114+90+75+60+85=694$
For $32 \mathrm{AH}=114+102+75+150+135+165+160=901$
For $35 \mathrm{AH}=102+84+105+90+75+45+100=601$
For $55 \mathrm{AH}=108+126+135+75+90+120+145=799$.
Clearly, sales are maximum in case of 32 AH batteries.
13.What is the difference in the number of $35 A H$ batteries sold in 1993 and 1997 ?
a. 24000
b. 28000
c. 35000
d. 39000

Answer: Option D
Explanation:
Required difference $=[(84-45) \times 1000]=39000$.
14.The percentage of 4 AH batteries sold to the total number of batteries sold was maximum in the year?
a. 1994
b. 1995
c. 1996
d. 1997

Answer: Option D

Explanation:

The percentages of sales of 4AH batteries to the total sales in different years are:

Prof. Jatin Dembla

7415315942

For $1992=\left(\frac{75}{543} \times 100\right) \%=13.81 \%$.
For $1993=\left(\frac{90}{528} \times 100\right) \%=17.05 \%$.
For $1994=\left(\frac{96}{525} \times 100\right) \%=18.29 \%$.
For $1995=\left(\frac{105}{510} \times 100\right) \%=20.59 \%$.
For $1996=\left(\frac{96}{465} \times 100\right) \%=19.35 \%$.
For $1997=\left(\frac{105}{495} \times 100\right) \%=21.21 \%$.
For $1998=\left(\frac{115}{605} \times 100\right) \%=19.01 \%$.
Clearly, the percentage is maximum in 1997.
15.In case of which battery there was a continuous decrease in sales from 1992 to 1997?
a. 4 AH
b. 7AH
c. 32 AH
d. 35 AH

Answer: Option B

Explanation:

From the table it is clear that the sales of 7AH batteries have been decreasing continuously from 1992 to 1997.
Direction (for Q.Nos. 16-20):

The bar graph given below shows the percentage distribution of the total production of a car manufacturing company into various models over two years.

Percentage of Six different types of Cars manufactured by a Company over Two

 Years
16. What was the difference in the number of \mathbf{Q} type cars produced in 2000 and that produced in 2001?
a. 35,500
b. 27,000
c. 22,500
d. 17,500

Answer: Option A Explanation:

Total number of Q type cars produced in 2001

$$
=(60-40) \% \text { of } 4,40,000=88,000 .
$$

Total number of Q type cars produced in 2000

$$
=(45-30) \% \text { of } 3,50,000=52,500 .
$$

\therefore Required difference $=(88000-52500)=35,500$.
17.Total number of cars of models P, Q and T manufactured in 2000 is?
a. $2,45,000$
b. $2,27,500$
c. $2,10,000$
d. $1,92,500$

Answer: Option C Explanation:

Visit: Jatindembla.com / kitest.in

Analysis of the graph:

We shall first determine the number of cars of each model produced by the Company during the two years:
In 2000 : Total number of cars produced $=3,50,000$.
$\mathrm{P}=(30-0) \%$ of $3,50,000=30 \%$ of $3,50,000=1,05,000$.
$Q=(45-30) \%$ of $3,50,000=15 \%$ of $3,50,000=52,500$.
$R=(65-45) \%$ of $3,50,000=20 \%$ of $3,50,000=70,000$.
$S=(75-65) \%$ of $3,50,000=10 \%$ of $3,50,000=35,000$.
$\mathrm{T}=(90-75) \%$ of $3,50,000=15 \%$ of $3,50,000=52,500$.
$\mathrm{U}=(100-90) \%$ of $3,50,000=10 \%$ of $3,50,000=35,000$.
In 2001 : Total number of cars produced $=4,40,000$.
$P=(40-0) \%$ of $4,40,000=40 \%$ of $4,40,000=1,76,000$.
$\mathrm{Q}=(60-40) \%$ of $4,40,000=20 \%$ of $4,40,000=88,000$.
$R=(75-60) \%$ of $4,40,000=15 \%$ of $4,40,000=66,000$.
$S=(85-75) \%$ of $4,40,000=10 \%$ of $4,40,000=44,000$.
$\mathrm{T}=(95-85) \%$ of $4,40,000=10 \%$ of $4,40,000=44,000$.
$\mathrm{U}=(100-95) \%$ of $4,40,000=5 \%$ of $4,40,000=22,000$.

Total number of cars of models P, Q and T manufacture in 2000

$$
\begin{aligned}
& =(105000+52500+52500) \\
& =2,10,000 .
\end{aligned}
$$

18. If the percentage production of P type cars in 2001 was the same as that in 2000, then the number of P type cars produced in 2001 would have been?
a. 1,40,000
b. $1,32,000$
c. $1,17,000$
d. $1,05,000$

Answer: Option B
Explanation:
If the percentage production of P type cars in 2001

Prof. Jatin Dembla

7415315942
= Percentage production of P type cars in 2000
$=30 \%$.
then, number of P type cars produced in 2001
$=30 \%$ of $4,40,000$
$=1,32,000$.
19.If 85% of the S type cars produced in each year were sold by the company, how many S type cars remain unsold?
a. 7650
b. 9350
c. 11,850
d. 12,250

Answer: Option C

Explanation:

Number of S type cars which remained unsold in $2000=15 \%$ of 35,000 and number of S type cars which remained unsold in $2001=15 \%$ of 44,000 .
\therefore Total number of S type cars which remained unsold
$=15 \%$ of $(35,000+44,000)$
$=15 \%$ of 79,000
$=11,850$
20.For which model the percentage rise/fall in production from 2000 to 2001 was minimum?
a. Q
b. R
c. S
d. T

Answer: Option B

Explanation:
The percentage change (rise/fall) in production from 2000 to 2001 for various models is:
For $\mathrm{P}=\left[\frac{(176000-105000)}{105000} \times 100\right] \%=67.62 \%$, rise.
For $\mathrm{Q}=\left[\frac{(88000-52500)}{52500} \times 100\right] \%=67.62 \%$, rise.
For $R=(70000-66000) \times 100 \%=5.71 \%$, fall.

Prof. Jatin Dembla

7415315942

$$
\begin{aligned}
& {\left[\begin{array}{l}
70000
\end{array}\right]} \\
& \text { For } S=\left[\frac{(44000-35000)}{35000} \times 100\right] \%=25.71 \% \text {, rise. } \\
& \text { For } T=\left[\frac{(52500-44000)}{52500} \times 100\right] \%=16.19 \% \text {, fall. } \\
& \text { For } U=\left[\frac{(35000-22000)}{35000} \times 100\right] \%=37.14 \% \text {, fall. }
\end{aligned}
$$

$\therefore \quad$ Minimum percentage rise/fall is production is the case of model R.
Direction(for Q.Nos. 21-24):
Study the following graph and the table and answer the questions given below.
Data of different states regarding population of states in the year 1998

Total population of the given States $=3276000$.

States				
	Sex		Sex and Literacy wise Population Ratio	
	M	F	Literate	Literacy

Visit: Jatindembla.com / kitest.in

T.N. $3 \quad 4 \quad 94$

21.What will be the percentage of total number of males in U.P., M.P. and Goa together to the total population of all the given states?
a. 25%
b. 27.5%
c. 28.5%
d. 31.5%

Answer: Option C

Explanation:

Number of males in U.P $=\left[\frac{3}{5}\right.$ of $(15 \%$ of $\left.N)\right]=\frac{3}{5} \times \frac{15}{100} \times N=9 \times \frac{N}{100}$. where $\mathrm{N}=3276000$.
Number of males in M.P $=\left[\begin{array}{l}3 \\ -4\end{array}\right.$ of $(20 \%$ of $\left.N)\right]=\frac{3}{4} \times \frac{20}{100} \times N=15 \times \frac{N}{100}$.
Number of males in Goa $=\left[\begin{array}{l}3 \\ -8 \\ \text { of }(12 \% \text { of } N)\end{array}\right]=\frac{3}{8} \times \frac{12}{100} \times N=4.5 \times \frac{\mathrm{N}}{100}$.
\therefore Total number of males in these three states $=(9+15+4.5) \times \frac{\mathrm{N}}{100}$

$$
=\left(28.5 \times \frac{\mathrm{N}}{100}\right)
$$

\therefore Required Percentage $=\left[\frac{\left(28.5 \times \frac{\mathrm{N}}{100}\right)}{\mathrm{N}} \times 100\right] \%=28.5 \%$.
22.What was the total number of illiterate people in A.P. and M.P. in 1998?
a. 876040
b. 932170
c. 981550
d. 1161160

Answer: Option D

Visit: Jatindembla.com / kitest.in

Prof. Jatin Dembla

7415315942

Explanation:

No. of illiterate people in A.P. $=\left[\begin{array}{c}7 \\ -9\end{array}\right.$ of $(25 \%$ of 3276000$\left.)\right]=637000$.
No. of illiterate people in M.P. $=\left[\frac{4}{5}\right.$ of $(20 \%$ of 3276000) $]=524160$.
\therefore Total number $=(637000+524160)=1161160$.
.23. What was the number of males in U.P. in the year 1998? 254650

294840
321470

Answer: Option B

Explanation:

Number of males in U.P. $=\left[\begin{array}{c}3 \\ \frac{5}{5}\end{array}\right.$ of $(15 \%$ of 3276000$\left.)\right]$

$$
\begin{aligned}
& =\frac{3}{5} \times \frac{15}{100} \times 3726000 \\
& =294840
\end{aligned}
$$

24.If in the year 1998, there was an increase of 10% in the population of U.P. and 12% in the population of M.P. compared to the previous year, then what was the ratio of populations of U.P. and M.P. in 1997?

42:55
7:11

48:55
4:5

Answer: Option A

Explanation:

Let x be the population of U.P. in 1997. Then,
Population of U.P. in $1998=110 \%$ of $x=110 \mathrm{x} x$.

Visit: Jatindembla.com / kitest.in

Prof. Jatin Dembla

7415315942

Also, let y be the population of M.P. in 1997. Then,
Population of M.P. in $1998=112 \%$ of $y=\frac{112}{100} \times y$.

From the pie-chart, this ratio is $\frac{1}{20}$.

$$
\frac{110 x}{112 y}=\frac{15}{20} \Rightarrow \frac{x}{y}=\frac{15}{20} \times \frac{112}{110}=\frac{42}{55}
$$

Thus, ratio of populations of U.P. and M.P. in $1997=x: y=42: 55$

Direction (for Q.Nos. 25-30):

A cosmetic company provides five different products. The sales of these five products (in lakh number of packs) during 1995 and 2000 are shown in the following bar graph.
Sales (in lakh number of packs) of five different products of Cosmetic Company during 1995 and 2000

Prof. Jatin Dembla

7415315942

25. The sales of lipsticks in 2000 was by what percent more than the sales of nail enamels in 2000? (rounded off to nearest integer)
a. 33%
b. 31%
c. 28%
d. 22%

Answer: Option C Explanation:
Required percentage $=\left[\frac{(48.17-37.76)}{37.76} \times 100\right] \%$
$=27.57 \%$
$\approx 28 \%$.
26.During the period 1995-2000, the minimum rate of increase in sales is in the case of?
Shampoos
Talcum powders
Answer: Option A

Explanation:

The percentage increase from 1995 to 2000 for various products are:
Lipsticks $=\left[\frac{(48.17-20.15)}{20.15} \times 100\right] \%=139.06 \%$.
Nail enamels $=(37.76-5.93) \times 100 \%=536.76 \%$.

Visit: Jatindembla.com / kitest.in

$$
\left[\begin{array}{ll}
5.93
\end{array}\right]
$$

Talcum powders $=\left[\frac{(29.14-14.97)}{14.97} \times 100\right] \%=94.66 \%$.
Shampoos $=\left[\frac{(12.21-7.88)}{7.88} \times 100\right] \%=54.95 \% \approx 55 \%$.
Conditioners $=\left[\frac{(10.19-5.01)}{5.01} \times 100\right] \%=103.39 \%$.
\therefore The minimum rate of increase in sales from 1995 to 2000 is in the case of Shampoos.
27.What is the approximate ratio of the sales of nail enamels in 2000 to the sales of Talcum powders in 1995 ?

$7: 2$	$5: 2$
4:3	
Answer: Option B	
Explanation:	$2: 1$
Required ratio $=\frac{37.76}{14.97} \approx 2.5=\frac{5}{2}$	

28.The sales have increase by nearly 55\% from 1995 to 2000 in the case of?
a. Lipsticks
b. Nail enamels
c. Talcum powders
d. Shampoos

Answer: Option D

Explanation:

The percentage increase from 1995 to 2000 for various products are:
Lipsticks $=\left[\frac{(48.17-20.15)}{20.15} \times 100\right] \%=139.06 \%$.
Nail enamels $=(37.76-5.93) \times 100 \%=536.76 \%$.

Visit: Jatindembla.com / kitest.in

Prof. Jatin Dembla

7415315942

$$
\begin{gathered}
{\left[\begin{array}{c}
5.93
\end{array}\right]} \\
\text { Talcum powders }=\left[\frac{(29.14-14.97)}{14.97} \times 100\right] \%=94.66 \% .
\end{gathered}
$$

$$
\text { Shampoos }=\left[\frac{(12.21-7.88)}{7.88} \times 100\right] \%=54.95 \% \approx 55 \% .
$$

$$
\text { Conditioners }=\left[\frac{(10.19-5.01)}{5.01} \times 100\right] \%=103.39 \%
$$

29.The sales of conditioners in 1995 was by what percent less than the sales of shampoos in 1995? (rounded off to nearest integer)

Answer: Option B Explanation:
Required percentage $=\left[\frac{(7.88-5.01)}{7.88} \times 100\right] \%$

$$
=36.42 \%
$$

$$
=36 \%
$$

30. Following are the weights in kgs. of 36 BBA students of Khalsa College.

70	73	49	61	47	57	50	59
59	68	45	55	68	56	68	55
70	70	57	44	73	64	49	63
65	70	65	62	73	67	60	50

Visit: Jatindembla.com / kitest.in

Find Range from this series
a. 6
b. 5
c. 7
d. 9

ANSWER: a

EXPLAINATION:

We have, Range = Maximum weight - Minimum weight
$=73$ kgs. -44 kgs .
$=29 \mathrm{kgs}$.
No. of class interval \times class lengths 0 Range

$$
\begin{aligned}
& \text { No. of class interval } \times 5 \text { 29 } \\
& \text { No. of class interval }=\frac{29}{5} .
\end{aligned}
$$

(We always take the next integer as the number of class intervals so as to include both the minimum and maximum values).
31. Which of the following statements is false?
a. Statistics is derived from the Latin word 'Status'
c. Statistics is derived from the French word 'Statistik'
b. Statistics is derived from the Italian word 'Statista'
d. None of these.

ANSWER: C

EXPLAINATION:

The term statistics is ultimately derived from the New Latin statisticum collegium ("council of state") and the Italian word statista ("statesman" or "politician"). ... Thus, the original principal purpose of Statistik was data to be used by governmental and (often centralized) administrative bodies
32. The given histogram shows a frequency distribution of marks obtained by 56 students in a subject.

33. Number of students securing marks between 70 and 100 is
a. 2
b. 4
c. 6
d. 8

ANSWER: C
EXPLAINATION:
Frequency density
$=\frac{\text { Frequency in the class }}{\text { Length of the class interval }}$
$\therefore 0.2=\frac{\text { Frequency in the class }}{100-70}$
or Frequency in the class $=0.2 \times 30=6$
34. Which of the following is calculated using mid-values of classes?
a. Mean
b. Median
c. Mode
d. Range

Answer: A
Explanation:
Mean is calculated using the mid-values of classes.
35. What is the mode of $10,2,8,6,7,8,9,10,10,11$ and10?
a. 10
b. 12
c. 14
d. 8

Answer: A

Explanation:

Mode = Observation with the highest frequency $=10$
36. The mean of the marks in Statistics of 100 students in class X was 72. The mean of marks for boys was 75 , while their number was 70 . What is the mean of marks of girls in the class?
a. 35
b. 65
c. 68
d. 86

Answer: B
Explanation:
$\frac{\text { Total marks of boys }}{\text { Total number of girls }}=\frac{\mathbf{1 9 5 0}}{\mathbf{3 0}}=\mathbf{6 5}$
37. Which of the following is true about the mode of a given data?
a. It may or may not exist for a
b. It is always unique. given data.
c. It is very difficult to compute mode.
d. We cannot calculate mode without the empirical formula.

Answer: A

Explanation:

Mode of a given data may or may not exist sometimes.
Range $=22-6=16$
38. The A.M. of 12 observations is 15 . If an observation 20 is removed, what is the arithmetic mean of the remaining observations?
14.5
13
15
13.5

Answer: B
Explanation:
he A.M. of 12 observations is 15 .
\Rightarrow Sum of 12 observations $=12 \times 15=180$
An observation 20 is removed
\Rightarrow Mean of the remaining observations
$=\frac{180-20}{(12-1)}=\frac{160}{11}=14.5$
39. If for a given data median is $\mathbf{1 2 5 . 6}$ and mean is 128 , find mode.
120.8 108.2
128.0
180.2

Answer: A
Explanation:
Given median $=125.6$ and mean $=128$. Mode $=3$ Median -2 Mean
$=(3 \times 125.6)-(2 \times 128)$
= 376.8 - 256
$=120.8$
40. What is the arithmetic mean of $a+2$, a and $a-2$?
a+2
a-2
a
3a

Answer: B
Explanation:
Mean $=\frac{a+2+a+a-2}{3}=\frac{3 a}{3}=a$

Visit: Jatindembla.com / kitest.in
41. The mean of 10 numbers is 7 . If each number is multiplied by 12 , find the mean of new set of numbers.

82 48
78 84

Answer: D
Explanation:
Total of 10 numbers $=10 \times 7=70$
If each number is multiplied by 12 ,
New total $=70 \times 12$
\therefore New mean $=\frac{70 \times 12}{10}=84$
42. The mean of $9,11,13, p, 18$ and 19 is p. Find the value of ' p '.

12
13
14
15
Answer: C
Explanation:
Given mean $=\mathrm{p} \frac{9+11+16+P+18+19}{6}=p$
$P=14$
43. What is the value of ' n ' if the mean of first 9 natural numbers is $\frac{5 n}{9}$?

7
8
9

$$
11
$$

Answer: C
Explanation:
Mean of first 9 natural numbers $=\frac{1+2+\cdots+9}{9}$
$\frac{45}{9}=5$
Given mean of first 9 natural numbers is $\frac{5 n}{9}$
$\frac{5 n}{9}=5$
$n=\frac{9 \times 5}{5}=9$
44. In the set above, which is larger: the median, the mean, or the mode?
a. Mean
b. Median
c. All are equal
d. Mode
Answer: A

Explanation:

Begin by ordering the set from smallest to largest:
$6,7,8,8,9,10,11,12$
Already, we see that the mode is 8 . Find the median by taking the average of the two middle numbers:
$8+92=8.5$
Find the mean by adding all numbers and dividing by the total number of terms:
$6+7+8+8+9+10+11+128=8.875$
Of the three, the mean of the set is the largest.

CHEPTER 15

MEASURES OF CENTRAL TENDENCY AND DISPERSION

Visit: Jatindembla.com / kitest.in

UNIT I: MEASURES OF CENTRAL TENDENCY

Tendency of a given set of observations to cluster around a single central or middle value and the single value that represents the given set of observations is described as a measure of central tendency or, location, or average.
The AM may be defined as the sum of all the observations divided

by the number of observations. Thus, if a variable x assumes n values $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots \ldots \ldots . \mathrm{x}_{n}$, then the AM of x , to be denoted by X , is given by:

MEDIAN -
PARTITIONVALUE S

TYPES OF
MEDIAN

MODE

Median $=l+\frac{h}{f}\left(\frac{N}{2}-c\right)$
Where:
$1=10 w e r$ class boundary of the median class
$h=$ Size of the median class interval
$f=$ Frequency corresponding to the median class
$N=$ Total number of observationsi.e. sum of the frequencies $c=$ Cumulative frequency preceding median class.

Calculation of Quartiles, Deciles and Percentiles

- For Continuous Series

1. $Q_{1}=$ Size of $N / 4^{\text {th }}$ item
2. $Q_{3}=$ Size of $3 N / 4^{\text {th }}$ item
3. $D_{1}=$ Size of $N / 10^{\text {th }}$ item
4. $D 9=$ Size of $9 N / 10$ item
5. $P_{1}=$ size of $N / 100^{\text {th }}$ item
6. $P_{99}=$ Size of $99 \mathrm{~N} / 100^{\text {th }}$ item

- Formula to be used in continuous series:

1. $Q_{1}=L_{1}+N / 4-c . f * i / f$
2. $Q_{3}=L_{1}+3 N / 4-c . f *_{i / f}$
3. $\mathrm{D}_{1}=\mathrm{L}_{1}+\mathrm{N} / 1 \mathrm{O}-\mathrm{c} . \mathrm{f}^{*} \mathrm{i} / \mathrm{f}$
4. $\mathrm{D}_{9}=\mathrm{L}_{1}+9 \mathrm{~N} / 10-\mathrm{c} . \mathrm{f} * \mathrm{i} / \mathrm{f}$
5. $P_{1}=L_{1}+N / 100-c . f^{*} i / f$
6. $P_{99}=L_{1}+99 N / 100-c . f * i / f$

Formula of Mode :
$Z=l_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i$
where,
$Z=$ value of Mode
$l_{1}=$ lower limit of modal class
$f_{0}=$ Frequency of the preceding modal class
$f_{2}=$ Frequency of the subsequent modal class or post modal class
$i=$ Class interval of the modal class

GEOMETRIC

MEAN \&
HARMONIC MEAN\& WEIGHTED MEAN RELATIONSHIP BETWEEN MEAN, MEDIAN AND MODE RELATION BETWEEN AM, GM, AND HM

$$
\begin{array}{ll}
\text { Geometric Mean: } & G M=\sqrt[n]{\prod_{i=1}^{n} x_{i}}=\sqrt[n]{x_{1} x_{2} x_{3} \ldots x_{n}} \\
\text { Harmonic Mean: } & H M=\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}=\frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\cdots+\frac{1}{x_{n}}} \\
\text { Weighted Mean: } & W M=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}}=\frac{w_{1} x_{2}+w_{2} x_{2}+w_{3} x_{3}+\ldots+w_{n} x_{n}}{w_{1}+w_{2}+w_{3}+\ldots+w_{n}}
\end{array}
$$

Mean - Mode $=3$ (Mean- Median)
Mode = 3 Median - 2 Mean

1. Relationship between Mean, Median and Mode
a. Mean - Mode $=3$ (Mean - Median)
b. Mode $=3$ Median -2 Mean
c. Both
d. None of these
ANSWER : c

EXPLAINATION:

If a frequency distribution is positively skewed, the mean is greater than median and median is greater than mode.
2. If median - 20 , and mean- 22.5 in a moderately skewed distribution then compute approximate value of mode
a. 15
b. 20
c. 25
d. 30

ANSWER: a EXPLAINATION:
Mean - Mode =3(Mean-Median)

Visit: Jatindembla.com / kitest.in
$22.5-$ Mode $=3(22.5-20)$
22.5 - Mode $=7.5$

Mode $=22.5-7.5$
Mode $=15$
3. A numerical value used as a summary measure for a sample, such as sample mean, is known as a
population parameter sample statistic sample parameter
population mean
ANSWER: c
EXPLAINATION:
If it pertains to sample it is called a statistic, if it pertains to population it is called a parameter.
4. Since the population size is always larger than the sample size, then the sample statistic
a. can never be equal to the population
b. can never be zero parameter
c. can never be smaller than the
d. None of the above answers is correct population parameter

ANSWER: d
 EXPLAINATION:

Sample statistic will depend upon the sample chosen. It can be less than, greater than, equal to population parameter. It can assume the value of zero.
5. \&\#61549; is an example of a
a. population parameter
b. sample statistic
c. population variance
d. mode

ANSWER: a

EXPLAINATION:

M is a standard representation for population parameter.
6. The mean of a sample is
a. always equal to the mean of the population
b. always smaller than the mean of the population
c. computed by summing the data values and dividing the sum by (n 1)

ANSWER: d
EXPLAINATION:
Mean= Total of sample values/ sample size
7. The sum of the percent frequencies for all classes will always equal
a. one
b. the number of classes
c. the number of items in the study
d. 100

ANSWER: d

EXPLAINATION:
If we count the total frequency it is equal to the sample size $n . n / n * 100=100$
8. In a five number summary, which of the following is not used for data summarization?
a. the smallest value
c. the median
b. the largest value
d. the 25 th percentile

ANSWER: d
EXPLAINATION:
the 25th percentile
9. Since the mode is the most frequently occurring data value, it
a. can never be larger than the mean
b. is always larger than the median
c. is always larger than the mean
d. None of the above answers is correct.

ANSWER: d

EXPLAINATION:
The mean, median and mode values will be distributed according to the skewness of the distribution. Accordingly mode can be greater than or less than mean or mode.
11. The following table gives the distribution of 100 accidents during seven days of the week in a given month. During a particular month there were 5 Fridays and Saturdays and only four each of other days. Calculate the average number of accidents per day.

Days:	Sun	Mon	Tue	Wed	Thru	Fri	Sat.	Total
Number	20	22	10	9	11	8	20	100

Visit: Jatindembla.com / kitest.in

of

 accidents:a. 14
b. 12
c. 17
d. 19

ANSWER: a EXPLAINATION:

Calculation of Number of Accidents per Day

Day	No. of Accidents (\mathbf{X})	No. of Days in Month (\mathbf{f})	Total $\mathbf{f X}$
Sunday	20	4	80
Monday	22	4	88
Tuesday	10	4	40
Wednesday	9	4	36
Thursday	11	4	44
Friday	8	5	40
Saturday	20	5	100
Total	100	$\mathrm{~N}=30$	$\mathbf{\Sigma f X}=\mathbf{4 2 8}$

= 14.27 = 14 accidents per day
11. Following are the daily wages in Rupees of a sample of 9 workers: 58, 62, 48,
$53,70,52,60,84,75$. Compute the mean wage.
a. 62.44
b. 62.04
c. 60.44
d. 31.22

ANSWER:

EXPLAINATION:

Let x denote the daily wage in rupees.
Then as given, $\mathrm{x}_{1}=58, \mathrm{x}_{2}=62, \mathrm{x}_{3}=48, \mathrm{x}_{4}=53, \mathrm{x}_{5}=70, \mathrm{x}_{6}=52$,
$x_{7}=60, x_{8}=84$ and $x 9=75$. Applying (15.1.1) the mean wage is
given by,
$=\frac{\sum X i}{n}$
$\frac{58+62+48+53+70+52+60+84+75}{9}$
$\frac{562}{9}=62.44$
12. Find the AM for the following distribution:

| Class Interval | $350-369$ | $370-389$ | $390-$ | 410 | $430-$ | $450-$ | $470-$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frequency | 23 | 38 | 409 | 429 | 449 | 469 | 489 |

a. 416
b. 416.17
c. 416.71
d. 41.71

ANSWER:
EXPLAINATION:
Computation of AM

Class Interval	Frequency(f$)$		Mid-Value(x$)$		$\mathrm{d}=\mathrm{xi}-\mathrm{A}$ $\mathrm{xi}=-419.50$
$\mathbf{(1)}$	(2)	(3)	(4)	$\mathbf{f d}$	
$\mathbf{3 5 0 - 3 6 9}$	23	359.50	-3	$\mathbf{(5) = (2) \mathbf { X (4) }}$	
$\mathbf{3 7 0 - 3 8 9}$	38	379.50	-2	$\mathbf{- 6 9}$	
$\mathbf{3 9 0 - 4 0 9}$	58	399.50	-1	$\mathbf{- 7 6}$	
$\mathbf{4 1 0 - 4 2 9}$	82	$419.50(\mathrm{~A})$	0	$\mathbf{- 5 8}$	
$\mathbf{4 3 0 - 4 4 9}$	65	439.50	1	$\mathbf{0}$	
$\mathbf{4 5 0 - 4 6 9}$	31	459.50	2	$\mathbf{6 5}$	
$\mathbf{4 7 0 - 4 8 9}$	11	479.50	3	$\mathbf{6 2}$	
Total	$\mathbf{3 0 8}$	-	$\mathbf{-}$	$\mathbf{3 3}$	

The required $A M$ is given by
$\mathrm{X}=\mathrm{A}+\frac{\sum \mathrm{fidi}}{N} \times c$
$=419.50+\frac{(-43)}{308} \times 20$
$=419.50-2.79$
$=416.71$
13. The mean salary for a group of 40 female workers is Rs. 5200 per month and that for a group of $\mathbf{6 0}$ male workers is Rs. 6800 per month. What is the combined mean salary?
a. 6160
b. 616
c. 6.16
d. 61.6

ANSWER: a
EXPLAINATION:
As given $n_{1}=40, n_{2}=60, x_{1}=R s .5200$ and
$\mathrm{x}_{2}=$ Rs. 6800
hence, the combined mean salary per month is
$\bar{X}=\frac{n_{1} x_{1}+n_{2} x_{2}}{n_{1}+n_{2}}$
$40 \times$ Rs. $5200+60 \times$ Rs. 6800
$40+60$
$=6160$
14. The sum of the deviation of a given set of individual observations from the arithmetic mean is always Infinte. The Statement is True or not?
a. Correct
b. Incorrect
c. Error
d. none

ANSWER: b
EXPLAINATION:
According to Mathematical Properties of the Arithmetic Mean: The sum of the deviation of a given set of individual observations from the arithmetic mean is always zero. Symbolically. $=0$. It is due to this property that the arithmetic mean is characterised as the center of gravity i.e., the sum of positive deviations from the mean is equal to the sum of negative deviations.
15. The mean age of a combined group of men and women is 30 years. If the mean age of the group of men is 32 and that of women group is 27 . find out the percentage of men and women in the group.
a. $30 \%, 70 \%$
b. $20 \%, 80 \%$
c. $60 \%, 40 \%$
d. $40 \%, 60 \%$

ANSWER: c

EXPLAINATION:

Let us take group of men as first group and women as second group. Therefore. = 32 years. $=27$ years, and $=30$ years. In the problem, we are not given the number of men and women. We can assume
$\mathrm{N} 1+\mathrm{N} 2=100$ and therefore. $\mathrm{N} 1=100-\mathrm{N} 2$
Apply =
$30=\left(\right.$ Substitute $\left.\mathrm{N}_{1}=100-\mathrm{N}_{2}\right)$
$30 \times 100=32\left(100-\mathrm{N}_{2}\right)+27 \mathrm{~N}_{2}$ or $5 \mathrm{~N}_{2}=200$
$\mathrm{N}_{2}=200 / 5-40 \%$
$\mathrm{N}_{1}=\left(100-\mathrm{N}_{2}\right)=(100-40)=60 \%$
Therefore, the percentage of men in the group is 60 and that of women is 40 .
16. Median and mode of the wage distribution are known to be Rs. 33.5 and 34 respectively. Find the third missing values.

Wages (Rs.)	No. of Workers
$\mathbf{0 - 1 0}$	4
$\mathbf{1 0 - 2 0}$	16
$\mathbf{2 0 - 3 0}$	$?$
$\mathbf{3 0 - 4 0}$	$?$
$\mathbf{4 0 - \mathbf { 5 0 }}$	$?$
$\mathbf{5 0 - 6 0}$	6
$\mathbf{6 0 - 7 0}$	4
Total	230

a. 6
b. 10
c. 9
d. 60

ANSWER: d
EXPLAINATION:

We assume the missing frequencies as $20-30$ as $x, 30-40$ as y, and $40-50$ as $230-(4$

$$
+16+x+y+6+4)=200-x-y
$$

We now proceed further to compute missing frequencies:
$\left.\begin{array}{|lll|}\hline \text { Wages (Rs.) } & \begin{array}{l}\text { No. of workers } \\ \mathbf{X}\end{array} & 4\end{array} \begin{array}{l}\text { Cumulative frequencies } \\ \text { Cf }\end{array}\right]$

Apply, Median =
$33.5=$
$y(33.5-30)=(115-20-x) 10$
$3.5 \mathrm{y}=1150-200-10 \mathrm{x}$
$10 x+3.5 y=950$...(i)
Apply, Mode =
$34=$
$4(3 y-200)=10(y-x)$
$10 x+2 y=800$
Subtract equation (ii) from equation (i),
$1.5 \mathrm{y}=150, \mathrm{y}=$
Substitute the value of $\mathrm{y}=100$ in equation (i), we get
$10 \mathrm{x}+3.5(100)=950$
$10 \mathrm{x}=950-350$
$x=600 / 10=60$
Third missing frequency $=200-x-y=200-60-100=40$.
17. Calculate mode from the following data:

Marks	No. of Students
Below 10	$\mathbf{4}$
$" 20$	6
$\boldsymbol{" 3 0}$	$\mathbf{2 4}$

$" 40$	46
$" 50$	$\mathbf{6 7}$
$" 60$	$\mathbf{8 6}$
$" 70$	96
$" 80$	$\mathbf{9 9}$
$" 90$	$\mathbf{1 0 0}$

a. 41.3
b. 40
c. 40.13
d. 89

ANSWER: a

EXPLAINATION:

Since we are given the cumulative frequency distribution of marks, first we shall convert it into the normal frequency distribution:

Marks	Frequencies	
$0-10$	4	
$10-20$	$6-4=2$	
$20-30$	$24-6=18$	
$30-40$	$46-24=22$	
$40-50$	$67-46=21$	
$50-60$	$86-67=19$	
$60-70$	$96-86=10$	
$70-80$	$99-96=3$	
$80-90$	$100-99=1$	

It is evident from the table that the distribution is irregular and maximum chances are that the distribution would be having more than one mode. You can verify by applying the grouping and analysing table.
The formula to calculate the value of mode in cases of bio-modal distributions is:
Mode $=3$ median - 2 mean.
Computation of Mean and Median:

Visit: Jatindembla.com / kitest.in

Marks	Mid-Value \mathbf{X}	Frequency \mathbf{f}	Cumulative frequencies Cf	(dx)	fdx
$0-10$	5	4	4	-4	-16
$10-20$	15	2	6	-3	-6
$20-30$	25	18	24	-2	-36
$30-40$	35	22	46	-1	-22
$40-50$	45	21	67	0	0
$50-60$	55	19	86	1	19
$60-70$	65	10	96	2	20
$70-80$	75	3	99	3	9
$80-90$	85	1	100	4	4
		$\sum \mathrm{f}=100$			$\sum \mathrm{fdx}=-28$

Mean =
Median $=$ size of item $==50$ th item
Because 50 is smaller to 67 in C.f. column. Median class is $40-50$
Median =
Median =
Apply, Mode $=3$ median -2 mean
Mode $=3 \times 41.9-2 \times 42.2=125.7-84.6=41.3$
18. Find the arithmetic mean of the first 7 natural numbers.
a. 5
b. 6
c. 7
d. 4

5
a. 6
b. 7
c. 4

ANSWER: d

EXPLAINATION:

The first 7 natural numbers are $1,2,3,4,5,6$ and 7 .
Let x denote their arithmetic mean.
Then mean $=$ Sum of the first 7 natural numbers/number of natural numbers $x=(1+2+3+4+5+6+7) / 7$
$=28 / 7$
$=4$
Hence, their mean is 4 .
19. The heights of five runners are $160 \mathrm{~cm}, 137 \mathrm{~cm}, 149 \mathrm{~cm}, 153 \mathrm{~cm}$ and 161 cm respectively. Find the mean height per runner.
a. 152
b. 150
c. 148
d. 120

ANSWER: a
EXPLAINATION:
Mean height = Sum of the heights of the runners/number of runners
$=(160+137+149+153+161) / 5 \mathrm{~cm}$
$=760 / 5 \mathrm{~cm}$
$=152 \mathrm{~cm}$.
Hence, the mean height is 152 cm .
20. Find the mean of the first five prime numbers.
a. 4.6
b. 6.5
c. 7.8
d. 5.6

ANSWER: d
 EXPLAINATION:

The first five prime numbers are $2,3,5,7$ and 11 .
Mean $=$ Sum of the first five prime numbers/number of prime numbers
$=(2+3+5+7+11) / 5$
$=28 / 5$
$=5.6$
Hence, their mean is 5.6
21. Find the mean of the first six multiples of 4.
a. 12
b. 13
c. 14
d. 15

ANSWER: c

EXPLAINATION:

The first six multiples of 4 are $4,8,12,16,20$ and 24 .
Mean $=$ Sum of the first six multiples of $4 /$ number of multiples
Visit: Jatindembla.com / kitest.in
$=(4+8+12+16+20+24) / 6$
$=84 / 6$
$=14$.
Hence, their mean is 14.
22. If the mean of $9,8,10, x, 12$ is 15 , find the value of x.

30
36 63
ANSWER: c
EXPLAINATION:
Mean of the given numbers $=(9+8+10+x+12) / 5=(39+x) / 5$
According to the problem, mean $=15$ (given).
Therefore, $(39+x) / 5=15$
$\Rightarrow 39+\mathrm{x}=15 \times 5$
$\Rightarrow 39+\mathrm{x}=75$
$\Rightarrow 39-39+x=75-39$
$\Rightarrow \mathrm{x}=36$
Hence, $x=36$.
23. If the mean of five observations $x, x+4, x+6, x+8$ and $x+12$ is 16 , find the value of x.
a. 154
b. 54
c. 451
d. 541

ANSWER: c
EXPLAINATION:
Mean of the given observations
$=x+(x+4)+(x+6)+(x+8)+(x+12) / 5$
$=(5 x+30) / 5$
According to the problem, mean $=16$ (given).
Therefore, $(5 x+30) / 5=16$
$\Rightarrow 5 \mathrm{x}+30=16 \times 5$
$\Rightarrow 5 \mathrm{x}+30=80$
$\Rightarrow 5 \mathrm{x}+30-30=80-30$
$\Rightarrow 5 \mathrm{x}=50$
$\Rightarrow x=50 / 5$
$\Rightarrow \mathrm{x}=10$

Hence, $\mathrm{x}=10$.
$148+153+146+147+154$
24. The mean of 40 numbers was found to be 38 . Later on, it was detected that a number 56 was misread as 36 . Find the correct mean of given numbers.
a. 38
b. 26
c. 38.5
d. 89

ANSWER: c
EXPLAINATION:
Calculated mean of 40 numbers $=38$.
Therefore, calculated sum of these numbers $=(38 \times 40)=1520$.
Correct sum of these numbers
$=[1520-($ wrong item $)+($ correct item $)]$
$=(1520-36+56)$
$=1540$.
Therefore, the correct mean $=1540 / 40=38.5$.
25. The mean of the heights of 6 boys is 152 cm . If the individual heights of five of them are $151 \mathrm{~cm}, 153 \mathrm{~cm}, 155 \mathrm{~cm}, 149 \mathrm{~cm}$ and 154 cm , find the height of the sixth boy.
a. 157
b. 159
c. 150
d. 89

ANSWER: c
 EXPLAINATION:

Mean height of 6 boys $=152 \mathrm{~cm}$.
Sum of the heights of 6 boys $=(152 \times 6)=912 \mathrm{~cm}$
Sum of the heights of 5 boys $=(151+153+155+149+154) \mathrm{cm}=762 \mathrm{~cm}$.
Height of the sixth boy
= (sum of the heights of 6 boys) - (sum of the heights of 5 boys)
$=(912-762) \mathrm{cm}=150 \mathrm{~cm}$.
Hence, the height of the sixth girl is 150 cm .
26. Find the mode of the following set of marks.

Marks	1	2	3	4
Frequency	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{5}$

a. 2 and 4
b. 4and 3
c. 2 and 3
d. 2 and 5

ANSWER: c
EXPLAINATION:
The marks 2 and 3 have the highest frequency. So, the modes are 2 and 3.
Note: The above example shows that a set of observations may have more than one mode.
27. There are 8 number cards with values 0 - 7 . Each time a card is drawn at random and the card value is recorded. The frequency refers to the number of times a value is shown.

| Card values | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 8 | 12 | 7 | 10 | 12 | 13 | 12 | 10 |

a. 75,5
b. 5,79
c. 80,89
d. None

ANSWER: a
EXPLAINATION:
a) Mode: 75 kg (highest frequency of 12)
b) Mode: 5 (highest frequency of 13)
28. The following frequency table shows the marks obtained by students in a quiz. Given that 4 is the mode, what is the least value for x ?

| Marks | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Number of students(Frequency) | 7 | 9 | 10 | x | 9 | 11 |
| \quad a. 12 | b. 10 | | | | | |
| \quad c. 3 | d. 6 | | | | | |
| ANSWER: a | | | | | | |
| EXPLAINATION: | | | | | | |

x is as least 12 (if x is less than 12 then 4 will not be the mode)
29.The mean of the following frequency distribution is
Class Interval

Frequency

0-10
4
Visit: Jatindembla.com / kitest.in

$\mathbf{1 0}-\mathbf{- 2 0}$	6
$\mathbf{2 0}-\mathbf{3 0}$	10
$\mathbf{3 0}-\mathbf{4 0}$	16
$\mathbf{4 0}-\mathbf{5 0}$	14

a. 25
b. 35
c. 30
d. 31

ANSWER:D
EXPLAINATION:

Class Interval	Mid Point	Freq.	Diff, From $(\mathbf{A}=\mathbf{2 5})$
$\mathbf{0 - 1 0}$	5	4	-20
$\mathbf{1 0 - 2 0}$	15	6	-10
$\mathbf{2 0 - 3 0}$	25	10	0
$\mathbf{3 0 - 4 0}$	35	16	10
$\mathbf{4 0 - 5 0}$	45	14	20
Total	$\Sigma \mathrm{f}=50$		

$(\bar{X})=A+\frac{\Sigma f d}{\Sigma f}=25+\frac{300}{50}=31$
30. Mean of twenty observations is 15 . If two observations 3 and 14 replaced by 8 and 9 respectively, then the new mean will be
a. 14
b. 15
c. 16
d. 17

ANSWER: D
EXPLAINATION:
Mean of 20 observations $=15$
\therefore Sum of 20 observations $=15 \times 20=300$
Replacing 3 and 14 by 8 and 9 will mean that $3+14=17$ is replaced by $8+9=17$
Hence there will be no effect on the sum. It will still remain 300 , so the mean will not change and will remain 15.
31.

Factory A

Factory B

No. of wage earners 250 200
Average daily wage Rs. 2.00 Rs.2.50

The average of daily wages for the earners of the two factories combined is
a. Rs. 2.12
b. Rs. 2.06
c. Rs. 2.20
d. Rs. 2.22

ANSWER: C
EXPLAINATION:
Required average $=\frac{250 \times 2.00+\times 2.50}{250+200}$
$=\frac{1000}{450}$
$=\frac{20}{9}$
Rs. 2.22
32. The height of 30 boys of a class are given in the following table :

Height in cm	Frequency
$\mathbf{1 2 0 - 1 2 9}$	2
$\mathbf{1 3 0 - 1 3 9}$	8
$\mathbf{1 4 0 - 1 4 9}$	10
$\mathbf{1 5 0 - 1 5 9}$	7
$\mathbf{1 6 0 - 1 6 9}$	3

If by joining of a boy of height 140 cm , the median of the heights is changed from M_{1} to M_{2} then $M_{1}-M_{2}$ in cm is
a. 0.1
b. -0.1
c. 0
d. 0.2

ANSWER: C
EXPLAINATION:

Height In cms	Frequency	Cumulative Frequency	Actual Class limit
$\mathbf{1 2 0} \mathbf{- 1 2 9}$	2	2	$119.5-129.5$
$\mathbf{1 3 0} \mathbf{- 1 3 9}$	8	10	$129.5-139.5$

$\mathbf{1 4 0 - 1 4 9}$	10	20	$139.5-149.5$
$\mathbf{1 5 0 - 1 5 9}$	7	27	$149.5-159.5$
$\mathbf{1 6 0 - 1 6 9}$	3	30	$159.5-169.5$
$\mathbf{n}=\mathbf{3 0}$			

Here $\mathrm{n}=30$
$\therefore \frac{n}{2}+1=15+1=16$
$\therefore 16$ is under cumulative frequency 20 . So median class be 140-149
$L_{1}=139.5, L_{2}=149.5, f=10, n=30, c=10$.
Median $M_{1}=L_{1}+\frac{L_{2}-L_{1}}{f}\left(\frac{n}{2}-c\right)$
$=139.5+\frac{10}{10}(15-10)$
$=139.5+\frac{10}{10} \times 5=144.5$
If by joining f a boy of height 140 cms , the $\mathrm{n}=31, \mathrm{f}=11$
\therefore Median $M_{2}=139.5+\frac{149.5-139.5}{11}(15.5-10)$
$=139.5+\frac{10}{11} \times 5.5=144.5 \mathrm{cms}$
Then $\boldsymbol{M}_{\mathbf{1}}-\boldsymbol{M}_{\mathbf{2}}=\mathbf{1 4 4} .5-\mathbf{1 4 4} .5=\mathbf{0}$
33. The marks awarded to seven students in a school admission test were:

Mathematics		English	
A	55		35
B	45		32
C	75	44	
D	15	50	
E	10	45	
F	40	60	
G	06	40	

Which subject has the better median value?

Mathematics
Both [a] and [b] above

English
None of the above

ANSWER: B

EXPLAINATION:
The awarded makes in Mathematics and English were arranged in ascending in ascending order separately.

Maths	English	
$\mathbf{0 6}$		32
$\mathbf{1 0}$	35	
15		40
$\mathbf{4 0}$		44
45		45
55		50
75		

Hence, English has the better median value.
34. Identify the mode of the given distribution.

Marks	4	5	6	7	8
Number of Students	3	5	10	6	1
a. 7		b. 1			
c. 8		d. 6			
Answer: d					
Explanation:					

Mode is 6 as it has the highest frequency
35. The given data are the times (in minutes), it takes seven students to go to school from their homes.

11	6	22	7	10	6	15

Which statement about the data is false?
a. Their median is 11 .
b. Their mean is 11 .
c. Their range is 16 .
d. Their mode is 6 .

Answer: A
Explanation:
Arranging the given data in ascending order, we get, 6, 6, 7, 10, 11, 15, 22
mean $=\frac{6+6+7+10+11+15+22}{7}$
77
$\frac{7}{11}=11$
Mode $=6$ Median $=4$ th value $=10$
36. The medians of the following two sets of numbers are equal, and the sets are arranged in ascending order $\{1,4, x, 8\}$ and $\{2,5, y, 9\}$. What is $y-x$?
a. -1
b. 0
c. -2
d. 3

Answer: A
Explanation:
Recall that the median of an even-numbered set of numbers is the arithmetic mean of the pair of middle terms. Thus $(4+x) / 2=$ median of the first set and $(5+y) / 2=$ median of the second set. Since both medians are equal, we can set the equations equal to each other. $(4+x) / 2=(5+y) / 2$. Multiply both sides by 2 and we get $4+x=5+y$. We also know that $4<x<8$ and $5<y<9$, since the sets are arranged in ascending order. This narrows our options for x and y down significantly. Plugging in various values will eventually get you to $x=7$ and $y=6$, since $7+4=11$ and $5+6=11$, and thus the median in both cases would be 5.5. Thus, $\mathrm{y}-\mathrm{x}=-1$.
37. What is the median in the following set of numbers? $16,19,16,7,2,20,9,5$
a. 2
b. 16
c. 4.5
d. 12.5

Answer: D

Explanation:
16, 19, 16, 7, 2, 20, 9, 5
Order the numbers from smallest to largest.
2, 5,7,9,16,16,19,20
The median is the number in the middle.
In this case, there is a 9 and 16 in the middle.
When that happens, take the average of the two numbers.
38. Find the median:

$$
4,6,12,9,12,90,12,18,12,12,12,4,4,4,9,7,76
$$

a. 11.9
b. 9
c. 76
d. 12

Answer:

Explanation:

To find the median, arrange the numbers from smallest to largest:
$4,4,4,4,6,7,9,9,12,12,12,12,12,12,18,76,90$
There are 17 numbers in total. Since 17 is an odd number, the median will be the middle number of the set. In this case, it is the 9th number, which is 12.
39. There are 3,500 people in group A and 5,000 people in group B :

Car Type	\% in Group A Who Own	\% in Group B Who Own	
Motorbike	4	9	
Sedan	35	25	
Minivan	22	15	
Van	9	12	
Coupe	3	6	

What is the median of the number of people in group B who own either a minivan, van, or coupe?
a. 600
b. 300
c. 1500
d. 750

Answer: D Explanation:
Treat the percentages as a list, as we are including every demographic from the 3 vehicle types mentioned. If we do each $0.06(5000), 0.12(5000)$, and $0.15(5000)$ we note from observation that the median, or middle value, would have to be the 12% row since the sample size does not change. The question asks for EITHER of the 3 categories, so we can ignore the other two.
$0.12(5000)=600(\mathrm{van})$ is the median of the 3 categories.
8, 12, 9, 8,7,11,10,6
40. The grades on a test taken by 1515 students are $50,70,87,95,100,34,56,76$, $43,88,92,76,82,45$, and 65 respectively. What was the median score for this test?
a. 73
b. 76
c. 70
d. 89

Answer: B

Explanation:

To solve this problem, we must be aware of the definition of a median for a set of numbers. The median is defined as the number that is in middle of a set of numbers sorted from smallest to largest. Therefore we must first sort the numbers from largest to smallest.

```
34,43,45,50,56,65,70,76,76,82,87,88,92,95,100
43,45,50,56,65,70,76,76,81,87,88,82,95
45,50,56,65,70,76,76,81,87,88,82
50,56, 65, 70, 76, 76, 81, 87, 88
56,65,70,76,76,81,87
65, 70, 76, 76, 81
70,76,76
76
```

Then by slowly eliminating the smallest and the largest numbers we find that the median score for this test is 76 .

41. $\operatorname{Set} A=[-10,4,2,-14,-2]$

Quantity A: The mean of SetA
Quantity B: The median of SetA
a. Quantity B is greater.
b. Quantity A is greater.
c. The relationship cannot be
d. The two quantities are equal. determined

Answer: a

Explanation:

Begin by reordering the set in numerical order:
SetA=[-10,4,2,-14,-2]
Then becomes
SetA=[-14,-10,-2,2,4]
Since there is an odd number of values, the median is the middle value.
Quantity B: -2
Now, to find the arithmetic mean, take the sum of values divided by the total number of values.
$-14-10-2+2+45$

Quantity A: -4
42. The arithmetic mean of $2-x, 3 x 2,7-15 x, x 2-8 x+23$ is -1

Quantity A: 3
Quantity B: The median of $2, x, 1,4,10,8,2, x, 1,4,10,8$
a. Quantity B is greater.
b. Quantity A is greater
c. The relationship cannot be
d. The two quantities are equal. determined.

Answer: A

Explanation:

x is an unknown value, but it can be found given what we know about the mean of the set $2-x, 3 x 2,7-15 x, x 2-8 x+23$:
$(2-x)+(3 x 2)+(7-15 x)+(x 2-8 x+23) 4=-1$
$4 \times 2-24 x+324=-1$
$x 2-6 x+8=-1$
$\mathrm{x} 2-6 \mathrm{x}+9=0$
$(x-3)(x-3)=0$
$\mathrm{x}=3$
Now, Quantity B: is out of order; arrange in numerically:
$1,2, \mathrm{x}=3,4,8,10$
Since there are even number of values, the median is the mean of the two middle most values:
Quantity B: $\frac{3+4}{2}=3.5$
$3+42=3.5$
43. Bill runs for 30 minutes at 8 mph and then runs for 15 minutes at 13 mph . What was his average speed during his entire run?
a. 10 mph
b. $92 / 3 \mathrm{mph}$
c. 11 mph
d. $10^{1} / 2 \mathrm{mph}$

Answer: B
Explanation:
Rate = distance/time.
Find the distance for each individual segment of the run (4 miles and 3.25 miles). Then add total distance and divide by total time to get the average rate, while making sure the
units are compatible (miles per hour not miles per minute), which means the total 45 minute run time needs to be converted to 0.75 of an hour; therefore (4 miles +3.25 miles/ 0.75 hour) is the final answer.
44. Find the mode for the following data.

Age	$\mathbf{0 - 6}$	$\mathbf{6 - 1 2}$	$12-18$	$\mathbf{1 8 - 2 4}$	$24-30$	$30-36$	$36-42$
Frequency	6	11	25	35	18	12	6

a. 20.22
b. 19.47
c. 21.12
d. 20.14

Answer: B
Explanation:
Since, maximum class frequency is 35 , so the mode class is $18-24$.
Now, Mode $=L+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h$
$18+\left(\frac{35-25}{2 \times 35-25-18}\right) \times 6$
$=18+2.22=20.22$
45. Find the median for the following distribution of workers.

Daily wages	No. of workers	Daily wages	No. of workers
$\mathbf{1 - 3}$	6	$9-11$	21
$\mathbf{3 - 5}$	53	$11-13$	16
$\mathbf{5 - 7}$	85	$13-15$	4
$\mathbf{7 - 9}$	86	$15-17$	4

a. 7.14
c. 5.92

Answer: B
Explanation:

Daily wages	No of workers	Cumulative Frequency (cf)
$\mathbf{1 - 3}$	6	6
$\mathbf{3 - 5}$	53	59
$\mathbf{5 - 7}$	85	144
$\mathbf{7 - 9}$	86	230
$\mathbf{9 - 1 1}$	21	251

Visit: Jatindembla.com / kitest.in

Prof. Jatin Dembla

7415315942

$\mathbf{1 1 - 1 3}$	16	267
$\mathbf{1 3 - 1 5}$	4	271
$\mathbf{1 5 - 1 7}$	4	275

Here, $\mathrm{n}=275$
$\frac{n}{2}=137.5$
Median class 5-7
Median $=l+\left(\frac{\frac{n}{2}-c . f .}{f}\right) \times h$
$=5+\left(\frac{137.5-59}{85}\right) \times 2=5+\frac{78.5}{85} \times 2$
$=5+1.84$
$=6.84$

UNIT II: DISPERSION

Overview of

Dispersion

Relative Measure of Dispersion

DISPERSION

CLASSIFICATION OF DISPERSION

ALGEBRIC
MEASURES

RELATIVE
MEASURES

The amount of deviation of the observations, usually, from an appropriate measure of central tendency. Two distributions may be identical in respect of its first important characteristic i.e. central tendency and yet they may differ on account of scatterness.

Range $=L-S$
Mean(foopulation) $=\mu=\frac{\sum_{i=1}^{k} f_{i} w_{n}}{n}$
StandiardDeviction(popouldation $)=\sigma=\sqrt{\sum_{i=1}^{k} \frac{f\left(x_{i}-\mu\right)^{2}}{n}}$
$\operatorname{Variance}($ population $)=\sigma^{2}=\sum_{k=1}^{k} \frac{f_{k}\left(x_{i}-\mu\right)^{2}}{n}$
(i) Coefficient of Range

$$
=\frac{\text { Range }}{\text { Highest value }+ \text { Lowest value }} \times 100
$$

(ii) Coefficient of Variation
$=\frac{\text { Standard Deviation }}{\text { Mean }} \times 100$
(iii) Coefficient of Quartile Deviation
$=\frac{\text { Quartile Deviation }}{\text { Median }} \times 100$
(iv) Coefficient of Mean Deviation
$=\frac{\text { Mean Deviation }}{\text { Mean or Median }} \times 100$

1. Following are the wages of 8 workers expressed in rupees: $82,96,52,75,70$, $65,50,70$. Find the range and also it's coefficient.
a. $46,31.51$
b. 64,32
c. 56,76
d. 90,33

ANSWER: a EXPLAINATION:
The largest and the smallest wages are $\mathrm{L}=\mathrm{Rs} .96$ and $\mathrm{S}=\mathrm{Rs} .50$ Thus range $=$ Rs. $96-$ Rs. $50=$ Rs. 46
coefficient of Range $=\frac{96-50}{96+50} \times 100$
$=31.51$
2. What is the coefficient of Range for the following distribution of weights?

Weights in kgs:	$50-54$	$55-59$	$60-64$	$65-69$	$70-74$
No. of Students:	12	18	23	10	3

a. 20
b. 21
c. 20.16
d. 40.34

ANSWER: c
EXPLAINATION:
The lowest class boundary is 49.50 kgs . and the highest class boundary is 74.50 kgs .
Thus we have
Range $=74.50$ kgs. -49.50 kgs .
$=25 \mathrm{kgs}$.
coefficient of Range $=\frac{74.50-49.50}{74.50+49.50} \times 100$
$=\frac{25}{124} \times 100$
$=20.16$
3. Anubhav scored $\mathbf{8 5}, \mathbf{9 1}, 88,78,85$ for a series of exams. Calculate the mean deviation for his test scores?
a. 3.28
b. 5.78
c. 6.89
d. None

ANSWER:
EXPLAINATION:
Given test score; $85,91,88,78,85$
Mean, $=(85+91+88+78+85) / 5=85.4$
Subtracting mean from each score:

\mathbf{X}	$X_{i}-\bar{X}$	$\left\|X_{i}-\bar{X}\right\|$
$\mathbf{8 5}$	-0.4	0.4
$\mathbf{9 1}$	5.6	5.6
$\mathbf{8 8}$	2.6	2.6
$\mathbf{7 8}$	-7.4	7.4
$\mathbf{8 5}$	-0.4	0.4

Mean deviation $=16.4 / 5=3.28$
4. The wheat production (in Kg) of 20 acres is given as: $1120,1240,1320,1040$, $1080,1200,1440,1360,1680,1730,1785,1342,1960,1880,1755,1720,1600$, 1470,1750 , and 1885 . Find the quartile deviation
a. 246.875
b. 246
c. 246.89
d. 175

ANSWER: a

EXPLAINATION:
After arranging the observations in ascending order, we get
$1040,1080,1120,1200,1240,1320,1342,1360,1440,1470,1600,1680,1720,1730$,
1750, 1755, 1785, 1880, 1885, 1960.
Q1=Value of $\left(\frac{n+1}{4}\right)$ th item
$=$ Value of $\left(\frac{20+1}{4}\right)$ th
$=$ Value of (5.25)th item
$=5$ th item +0.25 (6 th item -5 th item) $=1240+0.25(1320-1240)$
Q1 $=1240+20=1260$
Q3=Value of $3\left(\frac{n+1}{4}\right)$ th item
$=$ Value of $3\left(\frac{20+1}{4}\right)$ th item
$=$ Value of (15.75)th item $=15$ th item +0.75 (16th item -15 th item) $=1750$
$\mathrm{Q} 3=1750+3.75=1753.75$
Q.D. $=\frac{Q_{3}-Q_{1}}{2}=\frac{1753.75-1260}{2}=\frac{492.75}{2}$
$=246.875$
5. Compute coefficient of variation from the following data:

Age:	under	under	under	under	under	under
No. of persons	10	10	18	30	30	45
Dying:					60	60

a. 48.83
b. 89.88
c. 756.34
d. NONE

ANSWER: a
EXPLAINATION:

Age in years class Interval	No. of persons dying (fi)	Midvalue $\left(x_{i}\right)$	$\begin{array}{r} \mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-25 \\ 10 \end{array}$	$\mathrm{fid}_{\mathrm{i}}$	$\mathrm{ff}_{\mathrm{j}} \mathrm{j}^{2}$
0-10	10	5	-2	-20	40
10-20	$18-10=8$	15	-1	-8	8
20-30	$30-18=12$	25	D) 0	0	0
30-40	$45-30=15$	35	1	15	15
40-50	$60-45=15$	45	2	30	60
50-60	$80-60=20$	55	3	60	180
Total	80	-	-	77	303

The AM is given by:

Prof. Jatin Dembla

$$
\begin{aligned}
& \bar{X}=A+\frac{\sum f_{i} d_{i}}{N} \times C \\
= & \left(\frac{25+77 \times 10}{80}\right) \text { years } \\
= & 34.63 \text { years }
\end{aligned}
$$

The standard deviation is
$\sqrt{\frac{\sum f_{i} d^{2}}{N}-\left[\frac{\sum f_{i} d}{N}\right]^{2}} \times C$
$\sqrt{\frac{303}{80}-\left[\frac{77}{80}\right]^{2} \times 10 \text { years }}$
$\sqrt{3.79-0.93} \times 10$ year
$=16.91$ years
Thus the coefficient of variation is given by
$C V=\frac{S}{X} \times 100$
$=\frac{16.91}{34.63} \times 100$
$=48.83$
6. What is the mean deviation about mean for the following numbers? $5,8,10,10$, 12, 9.
a. 1.74
b. 1.67
c. 1.87
d. 1.47

ANSWER: b EXPLAINATION:
The mean is given by

$$
\begin{aligned}
\bar{X} & =\frac{5+8+10+10+12+9}{6} \\
& =9
\end{aligned}
$$

Computation of MD about AM

	X_{i}		$X_{i}-X$
	5		
	8		1
	10		1
	10		1
	12		3
	9		0

Thus mean deviation about mean is given by
$\boldsymbol{X}_{\boldsymbol{i}}-\boldsymbol{X}=\frac{\sum 10}{6}=1.67$
7. From the above data calculate coefficient of mean deviation
a. 12.45
b. 123
c. 989
d. None

ANSWER: a

EXPLAINATION:

coefficient of mean deviation $=\frac{\text { MD about Median }}{\text { Median }} \times 100$
$\frac{8714.28}{70000} \times 100$
$=12.45$
8. For a group of 60 boy students, the mean and SD of stats. marks are 45 and 2 respectively. The same figures for a group of 40 girl students are 55 and 3 respectively. What is the SD of marks if the two groups are pooled together?
a. 5.44
b. 5.48
c. 49
d. 3

Answer: c
Explanation:
$X=\frac{n_{1} x_{1}+n_{2} x_{2}}{n_{1}+n_{2}}$
$\frac{60 \times 45+40 \times 55}{60+40}$
$=49$
9. From the above question and expression find standard deviation of marks
a. 5.44
b. 5.48
c. 30
d. 3

Answer: b

Explanation:

$$
d_{1}=X_{1}-X=45-49=-4
$$

$$
\begin{aligned}
& d_{2}=X_{2}-X=55-49=6 \\
& \frac{\sqrt{60 \times 2^{2}+40 \times 3^{2}+60 \times(-4)^{2}+40+6^{2}}}{60+40}
\end{aligned}
$$

$$
\sqrt{30}=5.48
$$

10. Calculate the mean deviation about median for the following data

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	6	7	15	1	4	2
				6		

a. 10.16
b. 30.69
c. 28
d. 30

Answer: a

Explanation:

Class	Frequency	Cumulative frequency	Mid-point x_{1}
$0-10$	6	6	5
$10-20$	7	$7+6=13$	15
$20-30$	15	$13+15=28$	25
$30-40$	16	$28+16=44$	35
$40-50$	4	$44+4=48$	45
$50-60$	2	$48+2=50$	55
	50		

$\mathrm{N} \sum f_{i}=50$
Median Class $\left(\frac{N}{2}\right)^{\text {th }}$ term
$\left(\frac{50}{2}\right)^{\text {th }}$ term
$25^{\text {th }}$
In above data, cumulative frequency of class 20-30 is 28 which is slightly greater than 25.
\therefore Median class $=20-30$
Median $=l+\frac{\frac{N}{2}-C}{f} \times h$
Where,
$l=$ Lower limits of median class
$\mathrm{N}=$ sum of frequencies
$\mathrm{f}=$ frequency of median class
$\mathrm{C}=$ Cumulative frequency of class before median class
Here, $l=20, N=50, C=13, h=10, f=15$
Median $=l+\frac{\frac{N}{2}-C}{f} \times h$
$20+\frac{\frac{50}{2}-13}{15} \times 10$
$20+\frac{25-13}{15} \times 10$
$20+\frac{12}{15} \times 10$
$20+8=28$
Finding mean deviation about Median $=\frac{\sum f_{i}\left|x_{i}-M\right|}{\sum f_{i}}$

Class	Frequency	Cumulative frequency	Mid- point x_{i}	$\left\|x_{i}-\mathbf{M}\right\|$	$\mathbf{f}_{\mathbf{i}}\left\|x_{i}-\mathbf{M}\right\|$
$0-10$	6	6	5	$\|5-28\|=23$	$6 \times 23=138$
$10-20$	7	$7+6=13$	15	$\|15-28\|=13$	$7 \times 13=91$
$20-30$	15	$13+15=28$	25	$\|25-28\|=3$	$15 \times 3=45$
$30-40$	16	$28+16=44$	35	$\|35-28\|=7$	$16 \times 7=112$
$40-50$	4	$44+4=48$	45	$\|45-28\|=17$	$4 \times 17=68$
$50-60$	2	$48+2=50$	55	$\|55-28\|=27$	$2 \times 27=54$
	$\sum f_{i}=50$			$\sum f_{i}\left\|x_{i}-M\right\|=508$	

$\sum f_{i}=50 \&\left|x_{i}-M\right|=508$
\therefore Mean Deviation (M) $=\frac{\sum f_{i}\left|x_{i}-M\right|}{\sum f_{i}}$
$\frac{508}{50}=10.16$
11. 5 students obtained following marks in statistics: $20,35,25,30,15$ Find out range and coefficient of range.
a. $20,0.4$
b. $20,0.5$
c. 30,10
d. 30,5

Answer: a

Explanation:

Here,
Highest value $(H)=35$
Lowest value (L) = 15
Range $=$ Highest value - Lowest value
i.e. $R=H-L$

Substituting the given values in the formula
$R=35-15=20$
Coefficient of Range is as follows:
$\mathrm{CR}=\frac{H-L}{H+L}$
or, $C R=\frac{35-15}{35+15}$
$=\frac{20}{50}$
CR $=0.4$
Hence, the range (R) of the above data is 20 and coefficient of Range (CR) is 0.4
12. Prices of shares of a company were note as under from Monday through Saturday. Find out range and the coefficient of range

Day	Mon.	Tues.	Wed.	Thu.	Fri.	Sat.
Price	200	210	208	$\mathbf{1 6 0}$	$\mathbf{2 2 0}$	$\mathbf{2 5 0}$

a. $20,0.4$
b. $90,0.22$
c. $30,0.65$
d. $30,5.69$

Answer: B

Explanation:

Here,
Highest value among the prices of shares=
250 Lowest Value among the prices of
shares $=160$
Range (R) = Highest value (H)- Lowest Value (L) or, $R=250-160$
$R=90$
Coefficient of Range (CR) $=\frac{H-L}{H+L}$
or, $\mathrm{CR}=\frac{250-160}{250+160}$
$=\frac{90}{410}$
CR $=0.219$ or 0.22 (Approx).
Hence, the Range (R) of the above data is 90 and Coefficient of Range (CR) is 0.22
13. You know share market is going bullish during the last several months. Collect weekly data on the share price of any two important industries during the past six months. Calculate the range of share prices. Comment on how volatile are the share prices.
a. Tata Motors shares are more volatile as compared to the prices of Reliance shares.
c. Tata Motors shares are equal as to the prices of Reliance shares.

Answer: B

Explanation:

Month	Price of shares Tata Motors	Price of shares Reliance
Oct.	325	$\mathbf{9 1 3 . 3 5}$
Nov.	397	$\mathbf{9 0 0 . 2 5}$
Dec.	405	$\mathbf{7 5 0 . 9 0}$
Jan.	415	$\mathbf{7 8 0 . 7 0}$
Feb.	420	$\mathbf{7 9 9 . 2 5}$
Mar.	$\mathbf{3 8 8}$	$\mathbf{8 5 0 . 3 5}$

For Tata Motors Highest Value=420 Lowest Value=325
Range (R) = Highest Value (H)- Lowest Value (L) or, $R_{1}=420-325$
$R_{1}=95$
Coefficient of Range (CR) $=\frac{H-L}{H+L}$
or, $\mathrm{CR}=\frac{420-325}{420+325}$
$=\frac{95}{745}=0.127$
For Reliance
Highest Value= 913.35
Lowest Value= 750.90
Range $(R)=$ Highest value (H)-Lowest value (L) or, $R_{2}=913.35-750.90$
$R_{2}=162.45$
Coefficient of Range (CR) $=\frac{H-L}{H+L}$
$C R=\frac{913.35-750.90}{913.35+750.90}$
$=\frac{162.45}{1664.25}=0.097$
From the above results we can observe that the price of the Tata Motors shares are less volatile as compared to the prices of Reliance shares.
14. Calculate range and the coefficient of range of the following series:

Marks	10	20	30	40	50	60	70
No. of Students	15	18	25	30	16	10	9

a. $20,0.4$
b. $20,0.5$
c. $60,0.75$
d. 30,5

Answer: C

Explanation:

Here,
Highest value=70
Lowest value=10
Range $(R)=$ Highest value (H) - Lowest Value (L)

$$
\begin{aligned}
& =70-10 \\
& =60
\end{aligned}
$$

Coefficient of Range (CR) $=\frac{H-L}{H+L}$
$C R=\frac{70-10}{70+10}=\frac{60}{80}=0.75$

Hence, the Range (R) of the above series is 60 and Coefficient of Range (CR) is 0.75

15. Find the variance of the following data:

$6,8,10,12,14,16,18,20,22,24$.

a. 33
b. 15
c. 10
d. 14

Answer: A

Explanation:

x_{1}	$\mathrm{d}_{\mathrm{i}}=\frac{x_{2}}{} \leq 14$	$x_{1}+\frac{x}{4}$	$\left(x_{1}-\bar{x}\right)^{2}$
6	$\frac{6-14}{2}=-4$	$6-15=-9$	$(-9)^{2}=81$
8	$\frac{3-14}{2}=-3$	8-15 $=-7$	$(-7)^{2}=49$
10	$\frac{10-14}{2}=-2$	$10-15=-5$	$(-5)^{2}=25$
12	$\frac{12-14}{2}=-1$	$12-15=-3$	$(-3)^{2}=9$
14	$\frac{14-14}{2}=0$	$14-15=-1$	$(-1)^{2}=1$
16	$\frac{16-14}{2}=1$	$16-15=1$	$(1)^{2}=1$
18	$\frac{13-14}{2}=2$	$18-15=3$	$(3)^{2}=9$
20	$\frac{20-14}{2}=3$	$20-15=5$	$(5)^{2}=25$
22	$\frac{22-14}{2}=4$	$22-15=7$	$(7)^{2}=49$
24	$\frac{24-14}{2}=5$	$24-15=9$	$(9)^{2}=81$
	$\geq 1_{1}^{0} d_{i}=5$		$\sum_{11}{ }^{\circ}\left(x_{i}-\bar{x}\right)^{2}=330$

Mean $\bar{X}=$ assumed mean $\frac{\sum_{1}^{10} d_{i}}{n} \times h$
Where $\mathrm{a}=$ assumed mean $=14$
$d_{i}=\frac{x_{i}-a}{h}$
$\mathrm{h}=$ Class width $=8-6=2$
$\mathrm{n}=$ number of observations $=10$
Mean $\bar{X}=14+\frac{5}{10} \times 2=15$
Variance $\left(\sigma^{2}\right)=\frac{1}{n} \sum\left(x_{i}-\bar{X}\right)^{2}$
$\frac{1}{10} \times 330$
33
16. Find the standard deviation of the following data:

| Class | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frequency | $\mathbf{3}$ | $\mathbf{7}$ | $\mathbf{1 2}$ | $\mathbf{1 5}$ | $\mathbf{8}$ | $\mathbf{3}$ | $\mathbf{2}$ |

a. 14
b. 50
c. 62
d. 14.17

Answer: D
Explanation:

Class	Freguency (fi)	Mid - point $\left(x_{2}\right)$	$\mathrm{f}_{\mathrm{p}} \mathrm{x}_{\mathbf{i}}$
$30-40$	3	35	$35 \times 3=105$
40-50	7	45	$45 \times 7=315$
$50-60$	12	55	$55 \times 12=660$
60-70	15 (0)	1.65	$65 \times 15=975$
$70-80$	8	75	$75 \times 8=600$
80-90	3	85	$85 \times 3=255$
90-100	2	95	$95 \times 2=190$
	$\sum f_{i}=50$		$\sum f_{i} x_{i}=3100$

$\sum f_{i} x_{i}=3100$
$\sum f_{i}=50$
Mean $\bar{X}=\frac{\sum f_{i} x_{i}}{\sum f_{i}}$
$\frac{3100}{50}=62$
Variance $\left(\sigma^{2}\right)=\frac{1}{n} \sum\left(x_{i}-\bar{X}\right)^{2}$
$\frac{1}{50} \times 10050=201$
Standard deviation $(\sigma)=\sqrt{201}$
$(\sigma)=14.17$
17. Estimate coefficient of quartile deviation of the following data:

Sr. No.	1	2	3	4	5	6	7	8	9	10
11										
Data	8	9	11	12	13	17	20	21	23	25

a. 3.53
b. 0.353
c. 0.689
d. 0.591

Answer: B

Explanation:

In order to find the quartile deviation in case of individual series, we need to find out the values of third quartile and first quartile using the following equations:
$Q_{1}=$ Size of $\left(\frac{N+1}{4}\right)^{\text {th }}$ item
$Q_{1}=$ Size of $\left(\frac{11+1}{4}\right)^{\text {th }}$ item
$Q_{1}=$ Size of $3^{\text {th }}$ item
$Q_{1}=11$
$Q_{1}=$ Size of $3\left(\frac{N+1}{4}\right)^{\text {th }}$ item
$Q_{1}=$ Size of $3\left(\frac{11+1}{4}\right)^{\text {th }}$ item
or, $Q_{3}=$ Size of 9 th item
or, $Q_{3}=23$
Calculating Quartile Deviation and Coefficient of Quartile Deviation:
Quartile Deviation(Q.D.) $\frac{Q_{3}-Q_{1}}{2}$
Q.D. $\frac{23-11}{2}$
Q.D. $\frac{12}{2}$
Q.D. $=6$

Coefficient of Quartile Deviation(Q.D.) $\frac{Q_{3}-Q_{1}}{Q_{3}+Q_{1}}=\frac{23-11}{23+11}=\frac{12}{34}=0.353$
18. A measure of relative dispersion is given by the:
a. Co-efficient of variance
b. Standard deviation
c. Quartile deviation
d. Variance

Answer: A

Symbol	Symbol Name	Meaning / definition
$\boldsymbol{\operatorname { v a r } (\mathbf { X })}$	variance	variance of random variable X
$\boldsymbol{\sigma}^{\mathbf{2}}$	variance	variance of population values
$\boldsymbol{\operatorname { s t d } (\mathbf { X })}$	standard deviation	standard deviation of random variable X
$\boldsymbol{\sigma}_{\mathbf{X}}$	standard deviation	standard deviation value of random variable X

Explanation:

Co-efficient of variance: This term is used commonly to mean scatter, Deviation, Fluctuation, Spread or variability of data. ... Relative Measures of Dispersion: Relative measures of dispersion, are also known as coefficients of dispersion, are obtained as ratios or percentages.
19. The \qquad is the easiest measure of dispersion to calculate.
a. Standard Deviation
b. Range
c. Mean absolute deviation
d. Variance

Answer: B

Explanation:

Range is basically the difference between the lowest and highest values.
20. Which of the following symbols represents the standard deviation of the population?
a. σ^{2}
b. μ
c. σ
d. \bar{X}

Answer: C

Explanation:

σ
21. The variance can never be
a. larger than the standard deviation
b. Negative
c. Smaller than the standard deviation
d. Zero

Answer: b

Explanation:

Something (negative or positive number) squared is always a positive number, except
zero squared which is still zero. ... Because the squared deviations are all positive numbers or zeroes, their smallest possible mean is zero. It can't be negative. This average of the squared deviations is in fact variance. Hence, the variance can never be negative.
22. The numerical value of the standard deviation can never be
a. Negative
b. Larger than the variance
c. Zero
d. None

Answer: A

Explanation:

Standard Deviation formula is computed using squares of the numbers. Square of a number cannot be negative. Hence Standard deviation cannot be negative. Here (xmean) is squared, so, this cannot be negative, N , number of terms cannot be negative, hence SD cannot be negative.
23. The descriptive measure of dispersion that is based on the concept of a deviation about the mean is
a. The absolute value of the range
b. Range
c. Standard Deviation
d. Inter quartile range

Answer: C
 Explanation:

A measure of dispersion is a numerical value describing the amount of variability present in a data set. The standard deviation (SD) is the most commonly used measure of dispersion. With the SD you can measure dispersion relative to the scatter of the values about their mean.

24. When should measures of location and dispersion be computed from grouped data rather than from individual data values?

a. Whenever computer packages for descriptive statistics are unavailable
c. Only when the data are from a population
b. As much as possible since computations are easier
d. Only when individual data values are unavailable

Answer: D

Explanation:

Only when individual data values are unavailable should measures of location and dispersion be computed from grouped data rather than from individual data values.

25. Which information is false regarding Lorenz curve

a. The Lorenz curve devised by Dr. Max 0. Lorenz is a graphic method of studying dispersion.
c. The Lorenz curve always lies below the line of equal distribution, unless the distribution is uniform
b. Used this technique to show employment of a group of people
d. The Area between the line of equal distribution and the plotted curve gives the extent of inequality in the items. The larger the area, more is the inequality

Answer: B

Explanation:

A graph on which the cumulative percentage of total national income (or some other variable) is plotted against the cumulative percentage of the corresponding population (ranked in increasing size of share). The extent to which the curve sags below a straight diagonal line indicates the degree of inequality of distribution.

CHEPTER 16

PROBABILITY

PROBABILITY	The terms 'Probably' 'in all likelihood', 'chance', 'odds in favour', 'odds against' are too familiar nowadays and they have their origin in a branch of Mathematics
RANDOM EXPERIMENT	An experiment is defined to be random if the results of the experiment depend on chance only
EXPERIMENT	An experiment may be described as a performance that produces certain results.
EVENTS	Theresultsoroutcomesofarandomexperimentareknownaseve nts.Sometimes events may be combination of outcomes. The events are of two types: (i) Simple or Elementary, (ii) Composite or Compound
MUTUALLY EXCLUSIVE EVENTS OR INCOMPATIBLE EVENTS:	A set of events $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, \qquad is known to be mutually exclusive if not more than one of them can occur simultaneously
EXHAUSTIVE EVENTS	The events $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, are known to form an exhaustive set if one of these events must necessarily occur.
EQUALLY LIKELY EVENTS OR MUTUALLY SYMMETRIC EVENTS OR EQUI-PROBABLE EVENTS	The events of a random experiment are known to be equally likely when all necessary evidence are taken into account, no event is expected to occur more frequently as compared to the other events of the set of events.
CLASSICAL DEFINITION OF	The probability of occurrence of the event A is defined as the ratio of the number of events Favourable to A to the total number of events. Denoting this by $P(A)$, we have.

PROBABILITY OR A PRIORDEFINITION

REMEBERANCE POINT \& FORMULA
$P(A)=$ No. of equally likely events Favourable to A Total no. of equally likely events
(a) Theprobabilityofaneventliesbetween0and1, both inclusive.
When $\mathrm{P}(\mathrm{A})=0, \mathrm{~A}$ is known to be an impossible event and when $P(A)=1, A$ is known to be a sure event.
(b) Non-occurrence of event A is denoted by A^{\prime} or A^{C} The event A along with its complimentary A^{\prime} forms a set of mutually exclusive and exhaustive events i.e.,

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A})+\mathrm{P}\left(\mathrm{~A}^{\prime}\right)=1 \\
& \mathrm{P}\left(\mathrm{~A}^{\prime}\right)=1-\mathrm{P}(\mathrm{~A})
\end{aligned}
$$

(c) The ratio of no. of favourable events to the no. of unfavorable events is known as odds in favour of the event A and its inverse ratio is known as odds against the event A i.e.,
odds in favour of $A=m_{A}:\left(m-m_{A}\right)$
and odds against $\mathrm{A}=\left(\mathrm{m}-\mathrm{m}_{\mathrm{A}}\right): \mathrm{m}_{\mathrm{A}}$
(d) For any two mutually exclusive events A and B , the probability that either A or B occurs is given by the sum of individual probabilities of A and B i.e.,

$$
\begin{gathered}
P(A+B) \\
P(A+B)=P(A)+P(B)
\end{gathered}
$$

(e) For any $K(+2)$ mutually exclusive events A_{1}, A_{2}, A_{3} ..., A_{K} the probability that at least one of them occurs is given by the sum of the individual probabilities of the events i.e.,

$$
P\left(A_{1}+A_{2}+\ldots+A_{K}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots P\left(A_{K}\right)
$$

(f) For any two events A and B , the probability that either A or B occurs is given by the sum of individual probabilities of A and B less the probability of simultaneous occurrence of the events A and B i.e.,

$$
P(A+B)=P(A)+P(B)-P(A+B)
$$

(g) For any three events A, B and C , the probability that at least one of the events occurs is given by

$$
\mathrm{P}(\mathrm{~A}+\mathrm{B}+\mathrm{C})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{~A}
$$

1. What is the chance of picking a spade or an ace not of spade from a pack of 52 cards?
a. $4 / 13$
b. $4 / 14$
c. $15 / 13$
d. $6 / 13$

ANSWER: a

EXPLAINATION:

A pack of 52 cards contain 13 Spades, 13 Hearts, 13 Clubs and 13 Diamonds. Each of these groups of 13 cards has an ace. Hence the total number of elementary events is 52 out of which $13+3$ or 16 are favourable to the event A representing picking a Spade or an ace not of Spade. Thus we have
$P(A)=\frac{16}{52}=\frac{4}{13}$
2. A committee of 7 members is to be formed from a group comprising 8 gentlemen and 5 ladies. What is the probability that the committee would comprise: 2 ladies.
a. $\frac{140}{429}$
b. $\frac{14}{429}$
a. $\frac{10}{49}$
c. None

ANSWER: a

EXPLAINATION:

Since there are altogether $8+5$ or 13 persons, a committee comprising 7 members can be formed in

$$
13_{C_{7}} \text { or } \frac{13!}{7!6!} \text { or } \frac{13 \times 12 \times 11 \times 10 \times 9 \times 8!}{7!\times 6 \times 5 \times 4 \times 3 \times 2 \times 1} \text { or } 11 \times 12 \times 13 \text { ways. }
$$

When the committee is formed taking 2 ladies out of 5 ladies, the remaining (7-2) or 5 committee members are to be selected from 8 gentlemen. Now 2 out of 5 ladies can be selected in ${ }^{5} C_{2}$ ways and 5 out of 8 gentlemen can be selected in ${ }^{8} C_{5}$ ways. Thus if A denotes the event of having the committee with 2 ladies, then A can occur in ${ }^{5} C_{2} \times$ ${ }^{8} C_{5}$ or 10×56 ways thus,
$P(A) \frac{10 \times 56}{11 \times 12 \times 13}=\frac{140}{429}$
3. What if in above question 2 . 2 ladies be replace by at least 2 ladies?
a. $\frac{92}{429}$
b. $\frac{32}{29}$
c. $\frac{392}{429}$
d. None

ANSWERS: c

EXPLAINATION:

Since the minimum number of ladies is 2 , we can have the following combinations:

Population:	8 G	+	5 L
Sample:	2 L	+	5 G
or	3 L	+	4 G
or	4 L	+	3 G
or	5 L	+	$2 G$

Thus if B denotes the event of having at least two ladies in the committee, then B can occur in

$$
{ }^{5} C_{2} \times{ }^{8} C_{5}+{ }^{5} C_{3} \times{ }^{8} C_{4}+{ }^{5} C_{4} \times{ }^{8} C_{3}+{ }^{5} C_{5} \times{ }^{8} C_{2}
$$

i.e. 1568 ways.

Hence, $P(A)=\frac{1568}{11 \times 12 \times 13}=\frac{392}{429}$
4. Tickets numbered 1 to 20 are mixed up and then a ticket is drawn at random. What is the probability that the ticket drawn has a number which is a multiple of 3 or 5?
a. $\frac{1}{2}$
b. $\frac{2}{5}$
c. $\frac{8}{15}$
d. $\frac{9}{20}$

Answer: Option D

Explanation:
Here, $S=\{1,2,3,4, \ldots ., 19,20\}$.
Let $E=$ event of getting a multiple of 3 or $5=\{3,6,9,12,15,18,5,10,20\}$.
$\therefore \mathrm{P}(\mathrm{E})=\frac{n(\mathrm{E})}{n(\mathrm{~S})}=\frac{9}{20}$.
5. A bag contains 2 red, 3 green and 2 blue balls. Two balls are drawn at random. What is the probability that none of the balls drawn is blue?
a. $\frac{10}{21}$
b. $\frac{11}{21}$
c. $\frac{2}{7}$
d. $\frac{5}{7}$

Answer: Option A Explanation:

Total number of balls $=(2+3+2)=7$.
Let S be the sample space.

Then, $n(S)=$ Number of ways of drawing 2 balls out of 7

$$
\begin{aligned}
& ={ }^{7} \mathrm{C}_{2} \\
& =\frac{(7 \times 6)}{(2 \times 1)} \\
& =21 .
\end{aligned}
$$

Let $\mathrm{E}=$ Event of drawing 2 balls, none of which is blue.
$\therefore n(E)=$ Number of ways of drawing 2 balls out of $(2+3)$ balls.

$$
\begin{aligned}
& ={ }^{5} \mathrm{C}_{2} \\
& =\frac{(5 \times 4)}{(2 \times 1)} \\
& =10 .
\end{aligned}
$$

$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{10}{21}$.
6. In a box, there are 8 red, 7 blue and 6 green balls. One ball is picked up randomly. What is the probability that it is neither red nor green?
a. $\frac{1}{3}$
c. $\frac{7}{19}$
b. $\frac{3}{4}$
d. $\frac{8}{21}$

Answer: Option A Explanation:

Total number of balls $=(8+7+6)=21$.
event that the ball drawn is neither red nor green
event that the ball drawn is blue.
$\therefore n(\mathrm{E})=7$.
$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{7}{21}=\frac{1}{3}$.
7. What is the probability of getting a sum 9 from two throws of a dice?
a. $\frac{1}{6}$
b. $\frac{1}{8}$
c. $\frac{1}{9}$
d. $\frac{1}{12}$

Answer: Option C
Explanation:
In two throws of a dice, $n(S)=(6 \times 6)=36$.
Let $E=$ event of getting a sum $=\{(3,6),(4,5),(5,4),(6,3)\}$.
$\therefore \mathrm{P}(\mathrm{E})=\frac{n(\mathrm{E})}{n(\mathrm{~S})}=\frac{4}{36}=\frac{1}{9}$.
8. Three unbiased coins are tossed. What is the probability of getting at most two heads?
a. $\frac{3}{4}$
b. $\frac{1}{4}$
c. $\frac{3}{8}$
d. $\frac{7}{8}$

Answer: Option D Explanation:

Here $S=\{T T T$, TTH, THT, HTT, THH, HTH, HHT, HHH $\}$
Let $\mathrm{E}=$ event of getting at most two heads.
Then E = \{TTT, TTH, THT, HTT, THH, HTH, HHT\}.
$\therefore \mathrm{P}(\mathrm{E})=\frac{n(\mathrm{E})}{n(\mathrm{~S})}=\frac{7}{8}$.
9. Two dice are thrown simultaneously. What is the probability of getting two numbers whose product is even?
a. $\frac{1}{2}$
b. $\frac{3}{4}$
c. $\frac{3}{8}$
d. $\frac{5}{16}$

Answer: Option B

Explanation:

In a simultaneous throw of two dice, we have $n(S)=(6 \times 6)=36$.
Then, $E=\{(1,2),(1,4),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,2),(3,4)$, $(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,2),(5,4),(5,6),(6,1)$, $(6,2),(6,3),(6,4),(6,5),(6,6)\}$
$\therefore n(E)=27$.
$\therefore \mathrm{P}(\mathrm{E})=\frac{n(\mathrm{E})}{n(\mathrm{~S})}=\frac{27}{36}=\frac{3}{4}$.
10. In a class, there are 15 boys and 10 girls. Three students are selected at random. The probability that 1 girl and 2 boys are selected, is:
a. $\frac{21}{46}$
b. $\frac{25}{117}$
c. $\frac{1}{50}$
d. $\frac{3}{25}$

Answer: Option A

Explanation:

Let S be the sample space and E be the event of selecting 1 girl and 2 boys.
Then, $n(S)=$ Number ways of selecting 3 students out of 25

$$
\begin{aligned}
& ={ }^{25} \mathrm{C}_{3} ` \\
& =\frac{(25 \times 24 \times 23)}{(3 \times 2 \times 1)} \\
& =2300 .
\end{aligned}
$$

$$
n €=\left({ }^{10} \mathrm{C}_{1} \mathrm{X}{ }^{15} \mathrm{C}_{2}\right)
$$

$$
=\left[10 \times \frac{(15 \times 14)}{(2 \times 1)}\right]
$$

$$
=1050 .
$$

$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{1050}{2300}=\frac{21}{46}$.
11. In a lottery, there are 10 prizes and 25 blanks. A lottery is drawn at random. What is the probability of getting a prize?
a. $\frac{1}{10}$
b. $\frac{2}{5}$
c. $\frac{2}{7}$
d. $\frac{5}{7}$

Answer: Option C Explanation:
$P($ getting a prize $)=\frac{10}{(10+25)}=\frac{10}{35}=\frac{2}{7}$.
12. From a pack of 52 cards, two cards are drawn together at random. What is the probability of both the cards being kings?
a. $\frac{1}{15}$
b. $\frac{25}{57}$
c. $\frac{1}{221}$
d. $\frac{35}{256}$

Answer: Option c

Explanation:

Let S be the sample space.
Then, $n(\mathrm{~S})={ }^{52} \mathrm{C}_{2}=\frac{(52 \times 51)}{(2 \times 1)}=1326$.
Let $\mathrm{E}=$ event of getting 2 kings out of 4 .
$\therefore n(E)={ }^{4} C_{2}=\frac{(4 \times 3)}{(2 \times 1)}=6$.
$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{6}{1326}=\frac{1}{221}$.
13. Two dice are tossed. The probability that the total score is a prime number is:
a. $\frac{1}{6}$
b. $\frac{5}{12}$
c. $\frac{1}{2}$
d. $\frac{7}{9}$

Answer: Option B
Explanation:
Clearly, $n(S)=(6 \times 6)=36$.
Let $\mathrm{E}=$ Event that the sum is a prime number.
Then $E=\{(1,1),(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(4,1),(4,3)$, $(5,2),(5,6),(6,1),(6,5)\}$
$\therefore n(E)=15$.
$\therefore \mathrm{P}(\mathrm{E})=\frac{n(\mathrm{E})}{n(\mathrm{~S})}=\frac{15}{36}=\frac{5}{12}$.
14. A card is drawn from a pack of 52 cards. The probability of getting a queen of club or a king of heart is:
a. $\frac{1}{13}$
b. $\frac{2}{13}$
c. $\frac{1}{26}$
d. $\frac{1}{52}$

Answer: Option C

Explanation:

Here, $n(S)=52$.
Let $E=$ event of getting a queen of club or a king of heart.
Then, $n(E)=2$.
$\therefore P(E)=\frac{n(E)}{n(S)}=\frac{2}{52}=\frac{1}{26}$.
15. A bag contains 4 white, 5 red and 6 blue balls. Three balls are drawn at random from the bag. The probability that all of them are red, is:
a. $\frac{1}{22}$
b. $\frac{3}{22}$
c. $\frac{2}{91}$
d. $\frac{2}{77}$

Answer: Option C Explanation:

Let S be the sample space.

Then, $n(S)=$ number of ways of drawing 3 balls out of 15

$$
\begin{aligned}
& ={ }^{15} \mathrm{C}_{3} \\
& =\frac{(15 \times 14 \times 13)}{(3 \times 2 \times 1)} \\
& =455 .
\end{aligned}
$$

Let $\mathrm{E}=$ event of getting all the 3 red balls.

$$
\begin{aligned}
& \therefore n(E)={ }^{5} C_{3}={ }^{5} C_{2}=\frac{(5 \times 4)}{(2 \times 1)}=10 . \\
& \therefore P(E)=\frac{n(E)}{n(S)}=\frac{10}{455}=\frac{2}{91}
\end{aligned}
$$

16. Two cards are drawn together from a pack of 52 cards. The probability that one is a spade and one is a heart, is:
a. $\frac{3}{20}$
b. $\frac{29}{34}$
c. $\frac{47}{100}$
d. $\frac{13}{102}$

Answer: Option D

Explanation:

Let S be the sample space.
Then, $n(\mathrm{~S})={ }^{52} \mathrm{C}_{2}=\frac{(52 \times 51)}{(2 \times 1)}=1326$.
Let $\mathrm{E}=$ event of getting 1 spade and 1 heart.
$\therefore n(E)=$ number of ways of choosing 1 spade out of 13 and 1 heart out of 13

$$
\begin{aligned}
& =\left({ }^{13} \mathrm{C}_{1} \times{ }^{13} \mathrm{C}_{1}\right) \\
& =(13 \times 13)
\end{aligned}
$$

$$
\begin{aligned}
& =169 . \\
\therefore P(E)= & \frac{n(\mathrm{E})}{n(\mathrm{~S})}=\frac{169}{1326}=\frac{13}{102} .
\end{aligned}
$$

17. One card is drawn at random from a pack of 52 cards. What is the probability that the card drawn is a face card (Jack, Queen and King only)?
a. $\frac{1}{13}$
b. $\frac{3}{13}$
c. $\frac{1}{4}$
d. $\frac{9}{52}$

Answer: Option B

Explanation:

Clearly, there are 52 cards, out of which there are 12 face cards.
$\therefore \mathrm{P}($ getting a face card $)=\frac{12}{52}=\frac{3}{13}$.
18. A bag contains 6 black and 8 white balls. One ball is drawn at random. What is the probability that the ball drawn is white?
a. $\frac{3}{4}$
b. $\frac{4}{7}$
c. $\frac{4}{8}$
d. $\frac{3}{7}$

Answer: Option B Explanation:

Let number of balls $=(6+8)=14$.
Number of white balls $=8$.
$P($ drawing a white ball $)=\frac{8}{14}=\frac{4}{7}$.
19. A bag contains 6 white and 4 black balls . 2 balls are drawn at random. Find the probability that they are of same colour.
a. $1 / 2$
b. $7 / 15$
c. $8 / 15$
d. $1 / 9$

Answer: b
Explanation:
Let S be the sample space
Then $n(S)=$ no of ways of drawing 2 balls out of $(6+4)$
$=10 \mathrm{C} 210 \mathrm{C} 210=10 * 92 * 110 * 92 * 1=45$
Let $E=$ event of getting both balls of same colour
Then, $n(E)=$ no of ways (2 balls out of six) or (2 balls out of 4)
$=6 \mathrm{C} 2+4 \mathrm{C} 26 \mathrm{C} 2+4 \mathrm{C} 2=6 * 52 * 1+4^{*} 32^{*} 16^{*} 52^{*} 1+4^{*} 32^{*} 1=15+6=21$
Therefore, $\mathrm{P}(\mathrm{E})=\mathrm{n}(\mathrm{E}) / \mathrm{n}(\mathrm{S})=21 / 45=7 / 15$
20.A problem is given to three students whose chances of solving it are 1/2, 1/3 and $1 / 4$ respectively. What is the probability that the problem will be solved?
a. $1 / 4$
b. $1 / 2$
c. $3 / 4$
d. $7 / 12$

Answer: c
Explanation:
Let A, B, C be the respective events of solving the problem and $A, B, C A, B, C$ be the respective events of not solving the problem. Then A, B, C are independent event $\therefore \mathrm{A}, \mathrm{B}, \mathrm{C} \therefore \mathrm{A}, \mathrm{B}, \mathrm{C}$ are independent events
Now, $P(A)=1 / 2, P(B)=1 / 3$ and $P(C)=1 / 4$
$P(A)=12, P(B)=23, P(C)=34 P A=12, P B=23, P C=34$
$\therefore \mathrm{P}($ none solves the problem $)=\mathrm{P}(\operatorname{not} \mathrm{A})$ and $($ not $B)$ and $(\operatorname{not} C)$

$$
\begin{aligned}
& =P(A \cap B \cap C) P A \cap B \cap C \\
& =P(A) P(B) P(C) P A P B P C
\end{aligned}
$$

$\because A, B, C$ are Independent $] \because A, B, C$ are Independent

$$
\begin{aligned}
& =12 \times 23 \times 3412 \times 23 \times 34 \\
& =1414
\end{aligned}
$$

Hence, $\mathrm{P}($ the problem will be solved $)=1-\mathrm{P}($ none solves the problem $)$

$$
=1-141-14=3 / 4
$$

20. Two cards are drawn at random from a pack of 52 cards.what is the probability that either both are black or both are queen?
a. $52 / 221$
b. $55 / 190$
c. $55 / 221$
d. $19 / 221$

Answer: c
Explanation:
We have $\mathrm{n}(\mathrm{s})=52 \mathrm{C} 252 \mathrm{C} 252=52 * 51 / 2^{*} 1=1326$.
Let $A=$ event of getting both black cards
$B=$ event of getting both queens
$A \cap B=$ event of getting queen of black cards
$\mathrm{n}(\mathrm{A})=52^{*} 512 * 152^{*} 512 * 1=26 \mathrm{C} 226 \mathrm{C} 2=325$,
$n(B)=26 * 252^{*} 126^{*} 252^{*} 1=4 * 3 / 2 * 1=6$ and
$n(A \cap B)=4 C 24 C 2=1$
$\mathrm{P}(\mathrm{A})=\mathrm{n}(\mathrm{A}) / \mathrm{n}(\mathrm{S})=325 / 1326$;
$\mathrm{P}(\mathrm{B})=\mathrm{n}(\mathrm{B}) / \mathrm{n}(\mathrm{S})=6 / 1326$ and
$P(A \cap B)=n(A \cap B) / n(S)=1 / 1326$
$P(A \cup B)=P(A)+P(B)-P(A \cap B)=(325+6-1) / 1326=330 / 1326=55 / 221$
21.Tickets numbered 1 to 20 are mixed up and then a ticket is drawn at random. What is the probability that the ticket drawn has a number which is a multiple of 3 or 5?
$1 / 2$
9/20
Answer: c
Explanation:
Here, $S=\{1,2,3,4, \ldots . ., 19,20\}$.
Let $E=$ event of getting a multiple of 3 or $5=\{3,6,9,12,15,18,5,10,20\}$.
$P(E)=n(E) / n(S)=9 / 20$.
22.Two dice are tossed. The probability that the total score is a prime number is:
a. $5 / 12$
b. $1 / 6$
c. $1 / 2$
d. $7 / 9$

Answer: \mathbf{a}
Explanation:
Clearly, $n(S)=(6 \times 6)=36$.
Let $\mathrm{E}=$ Event that the sum is a prime number.
Then $E=\{(1,1),(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(4,1),(4,3),(5,2)$,
$(5,6),(6,1),(6,5)\}$
$\underline{n}(E)=15$.
$P(E)=n(E) / n(S)=15 / 36=5 / 12$.
23. A man and his wife appear in an interview for two vacancies in the same post. The probability of husband's selection is $(1 / 7)$ and the probability of wife's selection is $(1 / 5)$. What is the probability that only one of them is selected?
a. $2 / 7$
b. $1 / 7$
c. $3 / 4$
d. $4 / 5$

Answer: a

Explanation:

Let $\quad \mathbf{A}=$ Event that the husband is selected
and $\quad \mathbf{B}=$ Event that the wife is selected.
Then, $P(A)=\frac{1}{7}$ and $P(B)=\frac{1}{5}$.
$\therefore \quad P(\bar{A})=\left(1-\frac{1}{7}\right)=\frac{6}{7}$ and $P(\bar{B})=\left(1-\frac{1}{5}\right)=\frac{4}{5}$.
$\therefore \quad$ Required probability $=P[(A$ and not $B)$ or $(B$ and not $A)]$
$=P[(A$ and $\bar{B})$ or $(B$ and $\bar{A})]$
$=P(A$ and $\bar{B})+P(B$ and $\bar{A})$
$=P(A) \cdot P(\bar{B})+P(B) \cdot P(\bar{A})=\left(\frac{1}{7} \times \frac{4}{5}\right)+\left(\frac{1}{5} \times \frac{6}{7}\right)=\frac{10}{35}=\frac{2}{7}$.
24. A bag contains 4 white, 5 red and 6 blue balls. Three balls are drawn at random from the bag. The probability that all of them are red, is:
a. $2 / 91$
b. $1 / 22$
c. $3 / 22$
d. $2 / 77$

Answer: a
Explanation:
Let S be the sample space.
Then, $\mathrm{n}(\mathrm{S})=$ number of ways of drawing 3 balls out of 15
$=15 \mathrm{C} 315 \mathrm{C} 3=15^{*} 14^{*} 133^{*} 2^{*} 115^{*} 14^{*} 133^{*} 2^{*} 1=455$.
Let $\mathrm{E}=$ event of getting all the 3 red balls.
$n(E)=5 C 35 C 3=5 * 42 * 15 * 42 * 1=10$.
$\Rightarrow P(E)=n(E) / n(S)=10 / 455=2 / 91$.
25. In a lottery, there are 10 prizes and 25 blanks. A lottery is drawn at random. What is the probability of getting a prize?
a. $2 / 7$
b. $5 / 7$
c. $1 / 5$
d. $1 / 2$

Answer: a
Explanation:
Total number of outcomes possible, $\mathrm{n}(\mathrm{S})=10+25=35$
Total number of prizes, $\mathrm{n}(\mathrm{E})=10$
$P(E)=n(E) n(S)=1035=27 P(E)=n(E) n(S)=1035=27$
26.In a class, there are 15 boys and 10 girls. Three students are selected at random. The probability that 1 girl and 2 boys are selected, is:
a. $21 / 46$
b. $1 / 5$
c. $3 / 25$
d. $1 / 50$
A) $21 / 46$
B) $1 / 5$
C) $3 / 25$
D) $1 / 50$

Answer: A)

Explanation:

Let, S - sample space E - event of selecting 1 girl and 2 boys.

Then, $n(S)=$ Number ways of selecting 3 students out of 25

$$
=25 \mathrm{C} 325 \mathrm{C} 3=2300 .
$$

$n(E)=10 C 1 \times 15 C 210 C 1 \times 15 C 2=1050$.
$\therefore \mathrm{P}(\mathrm{E})=\mathrm{n}(\mathrm{E}) / \mathrm{n}(\mathrm{s})=1050 / 2300=21 / 46$
27. What is the probability of getting 53 Mondays in a leap year?
a. $1 / 7$
b. $3 / 7$
c. $2 / 7$
d. $2 / 7$

Answer: C
Explanation:
1 year = 365 days . A leap year has 366 days
A year has 52 weeks. Hence there will be 52 Sundays for sure.
52 weeks $=52 \times 7=364$ days
366-364 = 2 days
In a leap year there will be 52 Sundays and 2 days will be left.
These 2 days can be:

1. Sunday, Monday
2. Monday, Tuesday
3. Tuesday, Wednesday
4. Wednesday, Thursday
5. Thursday, Friday
6. Friday, Saturday
7. Saturday, Sunday

Of these total 7 outcomes, the favourable outcomes are 2.
Hence the probability of getting 53 days $=2 / 7$
28.Two dice are thrown together. What is the probability that the sum of the number on the two faces is divided by 4 or 6 .
a. $7 / 18$
b. $14 / 35$
c. $8 / 18$
d. $7 / 35$

Answer: a

Explanation:

Clearly, $\mathrm{n}(\mathrm{S})=6 \times 6=36$
Let E be the event that the sum of the numbers on the two faces is divided by 4 or 6 .
Then, $E=\{(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(6,2),(6,6)\}$ $\mathrm{n}(\mathrm{E})=14$.
Hence, $\mathrm{P}(\mathrm{E})=\mathrm{n}(\mathrm{E}) / \mathrm{n}(\mathrm{S})=14 / 36=7 / 18$
29. One card is drawn at random from a pack of 52 cards. What is the probability that the card drawn is a face card (Jack, Queen and King only)?
a. $3 / 13$
b. $1 / 13$
c. $3 / 52$
d. $9 / 52$

Answer: a

 Explanation:Clearly, there are 52 cards, out of which there are 12 face cards.
$P($ getting a face card $)=12 / 52=3 / 13$.
30.Two cards are drawn together from a pack of 52 cards. The probability that one is a spade and one is a heart, is:
a. $3 / 20$
b. $29 / 34$
c. $47 / 100$
d. $13 / 102$

Answer: d
Explanation:
Let S be the sample space.
Then, $n(S)=52 C 252 C 2=(52 \times 51) /(2 \times 1)=1326$
Let $\mathrm{E}=$ event of getting 1 spade and 1 heart.
$\underline{n}(E)=$ number of ways of choosing 1 spade out of 13 and 1 heart out of 13
$=13 \mathrm{C} 1 * 13 \mathrm{C} 113 \mathrm{C} 1 * 13 \mathrm{C} 1=169$.
$P(E)=n(E) / n(S)=169 / 1326=13 / 102$.
31. A bag contains 6 black and 8 white balls. One ball is drawn at random. What is the probability that the ball drawn is white?
a. $3 / 7$
b. $4 / 7$
c. $1 / 8$
d. $3 / 4$

Answer: B)
Explanation:
Let number of balls $=(6+8)=14$.
Number of white balls $=8$.
$\underline{P}($ drawing a white ball $)=8 / 14=4 / 7$.
32. In a class, 30\% of the students offered English, 20\% offered Hindi and 10\% offered both. If a student is selected at random, what is the probability that he. has offered English or Hindi?

$$
\begin{aligned}
& 1 / 2 \\
& 4 / 5
\end{aligned}
$$

3/4
$2 / 5$
Answer: d
Explanation:

$$
\begin{aligned}
P(E)=\frac{30}{100} & =\frac{3}{10}, P(H)=\frac{20}{100}=\frac{1}{5} \text { and } P(E \cap H)=\frac{10}{100}=\frac{1}{10} . \\
P(E \text { or } H) & =P(E \cup H) \\
& =P(E)+P(H)-P(E \cap H) \\
& =\left(\frac{3}{10}+\frac{1}{5}-\frac{1}{10}\right)=\frac{4}{10}=\frac{2}{5} .
\end{aligned}
$$

33. If two letters are taken at random from the word HOME, what is the probability that none of the letters would be vowels?
a. $1 / 6$
b. $1 / 2$
c. $1 / 3$
d. $1 / 4$

Answer: A)
Explanation:
$\underline{P(f i r s t ~ l e t t e r ~ i s ~ n o t ~ v o w e l) ~}=2424$
$P($ second letter is not vowel $)=1313$
So, probability that none of letters would be vowels is $=24 \times 13=16$
34. Two cards are drawn at random from a pack of 52 cards. The probability that both are the cards of spade is
a. $1 / 26$
b. $1 / 4$
c. $1 / 17$
d. None of these

Answer: C

Explanation:
Required probability $=\frac{13 c_{2}}{52 c_{2}}=\frac{13.12}{52.51}=\frac{1}{17}$
35. 5 boys and 5 girls are sitting in a row randomly. The probability that boys and girls sit alternatively is
a. $5 / 126$
b. $1 / 126$
c. $4 / 126$
d. $6 / 125$

Answer: B

Explanation:
Let $\mathrm{n}=$ total no. of ways $=10$!
$\mathrm{m}=$ favorable no. of ways $=2 \times 5$!. 5 !
Since the boys and girls can sit alternately in 5 !. 5 ! ways if we begin with a boy and similarly they can sit alternately in 5 !. 5 ! ways if we begin with a girl
Hence, required probability $=\frac{m}{n}=\frac{2 \times 5!5!}{10!}=\frac{2 \times 5!}{10 \times 9 \times 8 \times 7 \times 6}=\frac{1}{126}$
36. Fifteen persons among whom are A and B, sit down at random at a round table. The probability that there are 4 persons between A and B, is
a. $1 / 3$
b. $2 / 3$
c. $2 / 7$
d. $1 / 7$

Answer: D

Explanation:
Let A occupy any seat at the round table. Then there are 14 seats available for B. If there are to be four persons between A and B

Then B has only two ways to sit, as show in the fig. Hence required probability $\frac{2}{14}=$ $\frac{1}{7}$
37. From eighty cards numbered 1 to 80 , two cards are selected randomly.

The probability that both the cards have the numbers divisible by 4 is given by
a. $21 / 316$
b. $19 / 316$
c. $1 / 4$
d. none

Answer: B
 Explanation:

Total number of ways $=8 C_{C_{2}}$ and favorable ways $=20 C_{2}$
Required probability $\mathrm{P}=\frac{80 C_{2}}{20 C_{2}}=\frac{19}{316}$
38. A bag contains 8 red and 7 black balls. Two balls are drawn at random. The probability that both the balls are of the same colour is
a. $14 / 15$
b. $11 / 15$
c. $7 / 15$
d. $4 / 15$

Answer: C
 Explanation:

Required probability $=$ Either the balls are red or the balls are black
$\frac{8_{C_{2}}}{15_{C_{2}}}+\frac{7_{C_{2}}}{15_{C_{2}}}=\frac{28+21}{105}$
$\frac{49}{105}=\frac{7}{15}$
39. 5 persons A, B, C, D and E are in queue of a shop. The probability that A and E always together, is
a. $1 / 4$
b. $2 / 3$
c. $2 / 5$
d. $3 / 5$

Answer: C
 Explanation:

Total number of ways $=5$!
Favourable number of ways 2.4!
Hence required probability
$\frac{2.4!}{5!}=\frac{2}{5}$
40. A drawer contains 5 brown socks and 4 blue socks well mixed. A man reaches the drawer and pulls out 2 socks at random. What is the probability that they match
a. $4 / 9$
b. $5 / 8$
c. $5 / 9$
d. $7 / 12$

Answer: A

Explanation:
Out of 9 socks, 2 can be drawn in $9_{C_{2}}$ ways.
Two socks drawn from the drawer will match if either both are brown of both are blue. Therefore Favourable number of cases is
$5_{C_{2}}+4_{C_{2}}$
Hence the required probability $=\frac{{ }^{5} C_{2}+4 C_{2}}{{ }^{9} C_{2}}=\frac{4}{9}$
41. Ten students are seated at random in a row. The probability that two particular students are not seated side by side is
a. $4 / 5$
b. $3 / 5$
c. $2 / 5$
d. $1 / 5$

Answer: A
Explanation:
Total ways $=10$!
Two boys can sit side by side in 2×9 ! ways.
So probability $=\frac{2 \times 9!}{10!}=\frac{1}{5}$
Thus the probability that they are not seated together is $1-\frac{1}{5}=\frac{4}{5}$
42. A fair coin is tossed 100 times. The probability of getting tails an odd number of times is
a. $1 / 2$
b. $1 / 8$
c. $3 / 8$
d. None

Answer: A
Explanation:

The total number of cases are 2^{100}
The number of favorable ways $100_{C_{1}+100} C_{3}+\ldots . .+100 C_{99}=2^{100-1}==2^{99}$
$\frac{=2^{99}}{=2^{100}}=\frac{1}{2}$
43. Three cards are drawn at random from a pack of 52 cards. What is the chance of drawing three aces.
a. $3 / 5525$
b. $2 / 5525$
c. $1 / 5525$
d. None

Answer: C

Explanation:

Required probability is $\frac{{ }^{4} C_{1}}{52 C_{3}}=\frac{1}{5525}$
44. A bag contains 4 white, 5 red and 6 green balls. Three balls are picked up randomly. The probability that a white, a red and a green ball is drawn is
A. $15 / 91$
B. $30 / 31$
C. $20 / 91$
D. $24 / 91$

Answer: D
Explanation:
Required probability $=\frac{4.5 .6}{15 C_{3}}=\frac{24}{91}$
45. Two numbers are selected randomly from the set $S=\{1,2,3,4,5,6\}$ without replacement one by one. The probability that minimum of the two numbers is less than 4 is
a. $1 / 15$
b. $14 / 15$
c. $1 / 5$
d. $4 / 5$

Answer: D

Explanation:
Total ways $=2!6_{C_{3}}=30$
Favourable cases $=30-6=24$
Required probability $=\frac{24}{30}=\frac{4}{5}$
46. A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected random wise, the probability that it is a black or red ball is
a. $1 / 3$
b. $1 / 4$
c. $5 / 12$
d. $2 / 3$

Answer: D

Explanation:
$\mathrm{P}($ Black or Red $)=\frac{{ }^{5} C_{1}+3 c_{1}}{{ }^{12} c_{1}}=\frac{2}{3}$
47. In a lottery there were 90 tickets numbered 1 to 90 . Five tickets were drawn at random. The probability that two of the tickets drawn numbers 15 and 89 is
a. $2 / 801$
b. $2 / 623$
c. $1 / 267$
d. $1 / 623$

Answer: A
 Explanation:

Required probability $==\frac{88 C_{3}}{90 C_{5}}=\frac{2}{801}$
48. A bag contains 3 red, 4 white and 5 black balls. Three balls are drawn at random. The probability of being their different colours is
a. $3 / 11$
b. $2 / 11$
c. $8 / 11$
d. None

Answer: A

Explanation:
Probability $=\frac{{ }^{3} C_{1} \times{ }^{4} C_{1} \times{ }^{5} C_{1}}{12 C_{1}}=\frac{3}{11}$
49. Dialing a telephone number an old man forgets the last two digits remembering only that these are different dialed at random. The probability that the number is dialed correctly, is
a. $1 / 45$
b. $1 / 90$
c. $1 / 100$
d. $1 / 80$

Answer: B

Explanation:

There are 10 digits $0,1,2,3,4,5,6,7,8,9$.
The last two digits can be dialed in $10_{P_{2}}=90 \mathrm{~W}$ ays ,
out of which only one way is Favourable, thus the required probability $=1 / 90$

CHEPTER 17 THEORETICAL DISTRIBUTIONS

Theoretical Probability Distributions

THEORITICAL PROBABILITY	The total probability (i.e. one) is distributed to different mass points in case of a discrete random variable or to different class intervals in case of a continuous random variable
BINOMIAL DISTRIBUTION	One of the most important and frequently used discrete binomial distribution. The binomial distribution is a common discrete distribution used in statistics, as opposed to a continuous distribution such as the normal distribution. This is because the binomial distribution only counts two states, typically represented as 1 (for a success) or 0 (for a failure) given a number of trials in the data
Poisson Distribution	A random variable X is defined to follow Poisson distribution with parameter, to be denoted by $X \sim P(m)$ if the probability mass function of x

	Poisson Distribution Formula $P(\mathrm{X}=x)=\frac{\lambda^{x} e^{-\lambda}}{x!}$ where $x=0,1,2,3, \ldots$ $\lambda=$ mean number of occurrences in the interval $e=$ Euler's constant ≈ 2.71828
NORMAL DISTRIBUTIONS	NORMAL DISTRIBUTIONS If a continuous random variable has a distribution with a graph that is symmetric and bell-shaped and can be described by the equation $y=\frac{e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}}{\sigma \sqrt{2 \pi}}$ Curve is bell-shaped and symmetric we say that it has a normal distribution. Properties of the Normal Distribution The normal distribution curve is bell-shaped. The mean, median, and mode are equal and located at the center of the distribution. The normal distribution curve is unimodal (single mode). The curve is symmetrical about the mean. The curve is continuous. The curve never touches the x-axis. The total area under the normal distribution curve is equal to 1 or 100%.

STANDARD NORMAL DISTRIBUTION

The Standard Normal Distribution

- If each data value of a normally distributed random variable x is transformed into a z-score, the result will be the standard normal distribution.

- Use the Standard Normal Table to find the cumulative area under the standard normal curve.

POISSON DISTRIBUTION:

1. In a Poisson Distribution, if ' n ' is the number of trials and ' p ' is the probability of success, then the mean value is given by
a. $\mathrm{m}=\mathrm{np}$
b. $\mathrm{m}=(\mathrm{np})^{2}$
c. $m=n p(1-p)$
d. $\mathrm{m}=\mathrm{p}$

Answer: a

 Explanation:For a discrete probability function, the mean value or the expected value is given by Mean $(\mu)=\sum_{x=0}^{n} x p(x)$
For Poisson Distribution $P(x)=\frac{e^{-m} m^{x}}{x!}$, substitute in above equation and solve to get $\mu=$ $\mathrm{m}=\mathrm{np}$.
2. If ' m ' is the mean of a Poisson Distribution, then variance is given by
a. m^{2}
b. $\mathrm{m}^{1 / 2}$
c. m
d. $\mathrm{m} / 2$

Answer: c

Explanation:

For a discrete probability function, the variance is given by
Variance (V) $=\sum_{x=0}^{n} x^{2} p(x)-\mu^{2}$
Where μ is the mean, substitute $P(x)=\frac{e^{-m} m^{x}}{x!}$, in the above equation and put $\mu=\mathrm{m}$ to obtain
$\mathrm{V}=\mathrm{m}$.
3. The p.d.f of Poisson Distribution is given by
a. $\frac{e^{-m} m^{x}}{x!}$
b. $\frac{e^{-m} x!}{m^{x}}$
c. $\frac{x!}{m^{x} e^{-m}}$
d. $\frac{e^{m} m^{x}}{x!}$

Answer: a

 Explanation:This is a standard formula for Poisson Distribution, it needs no explanation.
Even though if you are interested to know the derivation in detail, you can refer to any of the books or source on internet that speaks of this matter.
4. If ' m ' is the mean of a Poisson Distribution, the standard deviation is given by
a. $\mathrm{m}^{1 / 2}$
b. m^{2}
c. m
d. $\mathrm{m} / 2$

Answer: a Explanation:

The variance of a Poisson distribution with mean ' m ' is given by $V=m$, hence Standard Deviation $=(\text { variance })^{1} / 2=\mathrm{m}^{1} / 2$.
5. In a Poisson Distribution, the mean and variance are equal
a. True
b. False
c. Can't say
d. not justifiable

Answer: a
Explanation:

Mean $=m$
Variance $=\mathrm{m}$
\therefore Mean = Variance.
6. In a Poisson Distribution, if mean $(\mathrm{m})=\mathrm{e}$, then $\mathrm{P}(\mathrm{x})$ is given by
a. $\frac{e^{-m} m^{x}}{x!}$
b. $\frac{e^{-m} x}{m^{x}}$
c. $\frac{x!}{m^{x} e^{-m}}$
d. $\frac{e^{m} m^{x}}{x!}$

Answer: a

 Explanation:Put m = e,
$\mathrm{P}(\mathrm{x})=\frac{e^{-m} m^{x}}{x!}$.
7. Poisson distribution is applied for
a. Continuous Random Variable
b. Discrete Random Variable
c. Irregular Random Variable
d. Uncertain Random Variable

Answer: b

Explanation:

Poisson distribution along with Binomial Distribution is applied for Discrete Random variable. Speaking more precisely, Poisson Distribution is an extension of Binomial Distribution for larger values ' n '. Since Binomial Distribution is of discrete nature, so is its extension Poisson Distribution.
8. If ' m ' is the mean of Poisons Distribution, the $P(0)$ is given by
a. e^{-m}
b. e^{m}
c. e
d. $\mathrm{m}^{-\mathrm{e}}$

Answer: a Explanation:
$\mathrm{P}(\mathrm{x})=\frac{e^{-m} m^{x}}{x!}$.
Put $\mathrm{x}=0$, to obtain $\mathrm{e}^{-\mathrm{m}}$.
9. In a Poisson distribution, the mean and standard deviation are equal
a. True
b. False
c. Can't say
d. not justifiable

Answer: b

Explanation:

In a Poisson Distribution,
Mean = m
Standard Deivation = m¹/2
\therefore Mean and Standard deviation are not equal.
10. For a Poisson Distribution, if mean $(\mathrm{m})=1$, then $P(1)$ is
a. $1 / \mathrm{e}$
b. e
c. e/2
d. Indeterminate

Answer: a

Explanation:

$\mathrm{P}(\mathrm{x})=\frac{e^{-m} m^{x}}{x!}$
Put m = x = 1, (given) to obtain 1/e.
11. The recurrence relation between $P(x)$ and $P(x+1)$ in a Poisson distribution is given by
a. $P(x+1)-m P(x)=0$
b. $m P(x+1)-P(x)=0$
c. $(x+1) P(x+1)-m P(x)=0$
d. $(x+1) P(x)-x P(x+1)=0$

Answer: c

Explanation:

$P(x)=\frac{e^{-m} m^{x}}{x!}$.
$\mathrm{p}(\mathrm{x}+1)=\mathrm{e}^{-1} \mathrm{~m}^{\mathrm{x}+1} /(\mathrm{x}+1)$!
Divide $\mathrm{P}(\mathrm{x}+1)$ by $\mathrm{P}(\mathrm{x})$ and rearrange to obtain $(\mathrm{x}+1) \mathrm{P}(\mathrm{x}+1)-\mathrm{mP}(\mathrm{x})=0$.
12. The mean value for an event X to occur is 2 in a day. Find the probability of event X to occur thrice in a day.
a. 0.1804
b. 0.1804465
c. 0.18
d. None

ANSWER: b EXPLAINATION:

Mean, m=2m=2
Probability of the event to occur thrice, $\mathrm{P}(3 ; 2)=e^{-2} \frac{2^{3}}{3!}=0.1804465$
13. A man was able to complete 3 files a day on an average. Find the probability
that he can complete 5 files the next day.
a. 0.108
b. 0.1008
c. 0.008
d. None

ANSWER: B
EXPLAINATION:
Here we know this is a Poisson experiment with following values given:
$\mu=3$, average number of files completed a day
$x=5$, the number of files required to be completed next day
And e $=2.71828$ being a constant
On substituting the values in the Poisson distribution formula mentioned above we get the Poisson probability in this case.

We get,
$\mathrm{P}(\mathrm{x}, \mu)=\frac{\left(e^{-}\right)\left(\mu^{2}\right)}{a n}$
$\rightarrow P(5,3)=\frac{(271828)^{-1}\left(33^{5}\right)}{51}$
$=0.1008$ approximately.
Hence the probability for the person to complete 5 files the next day is 0.1008 approximately.
14. The number of calls coming per minute into a hotels reservation center is Poisson random variable with mean 3 . Find the probability that no calls come in a given 1 minute period
a. e^{-3}
b. e^{3}
c. e
d. $\mathrm{m}^{-\mathrm{e}}$

Answer: a

Explanation:
Let X denote the number of calls coming in that given 1 minute period. $\mathrm{X} \sim$ Poisson(3)

$$
\begin{aligned}
& P(X=0)=\frac{e^{-33}}{0!} \\
& =\mathrm{e}^{-3}
\end{aligned}
$$

15. If the random variable X follows a poisson distribution with mean 3.4 , find $P(X=6)$
a. 0.071604409
b. 0.00125948
c. 0.0023698
d. 0.015792

Answer: a

Explanation:

This can be written more quickly as : if $\mathrm{X}=\mathrm{Po}(3.4)$
Find ($\mathrm{X}=6$)
Now

$$
\begin{aligned}
P(X=6) & =\frac{e^{-\lambda} \lambda^{6}}{6!} \\
& =\frac{e^{-3.4}(3.4)^{6}}{6!} \quad(\text { mean, } \lambda=3.4)
\end{aligned}
$$

$=0.071604409$ or 0.072 (to 3 d.p.)

BINOMIAL DISTRIBUTION:

1. In a Binomial Distribution, if ' n ' is the number of trials and ' p ' is the probability of success, then the mean value is given by
a. np
b. n
c. p
d. $\mathrm{np}(1-\mathrm{p})$

Answer: a

Explanation:

For a discrete probability function, the mean value or the expected value is given by

$$
\operatorname{Mean}(\mu) \sum_{x=0}^{n} x p(x)
$$

For Binomial Distribution $P(x)={ }^{n} C_{x} p^{x} q^{(n-x)}$, substitute in above equation and solve to get
$\mu=n$.
2. In a Binomial Distribution, if p, q and n are probability of success, failure and number of trials respectively then variance is given by
a. np
b. npq
c. $\mathrm{np}^{2} \mathrm{q}$
d. $n p q^{2}$
Answer: b Explanation:

For a discrete probability function, the variance is given by
$\operatorname{Variance}(V)=\sum_{x=0}^{n} x^{2} p(x)-\mu^{2}$
Where μ is the mean, substitute $P(x)={ }^{n} C_{x} p^{x} q^{(n-x)}$ in the above equation and put $\mu=n p$ to obtain
$\mathrm{V}=\mathrm{npq}$.
3. If ' X ' is a random variable, taking values ' x ', probability of success and failure being ' p ' and ' q ' respectively and ' n ' trials being conducted, then what is the probability that ' X ' takes values ' x '? Use Binomial Distribution
a. $P(X=x)={ }^{n} C_{x} p^{x} q^{x}$
b. $P(X=x)={ }^{n} C_{x} p^{x} q^{(n-x)}$
c. $P(X=x)={ }^{x} C_{n} q^{x} p^{(n-x)}$
d. $P(x=x)=x_{n} p^{n} q^{x}$

Answer: b Explanation:
It is the formula for Binomial Distribution that is asked here which is given by $\mathrm{P}(\mathrm{X}=\mathrm{x})$ $={ }^{n} C_{x} p^{x} q^{(n-x)}$.
4. If ' p ', ' q ' and ' n ' are probability of success, failure and number of trials respectively in a Binomial Distribution, what is its Standard Deviation?
a. $(n p)^{1 / 2}$
b. $(p q)^{1 / 2}$
c. $(\mathrm{np})^{2}$
d. $(n p q)^{1 / 2}$

Answer: d Explanation:
The variance (V) for a Binomial Distribution is given by $\mathrm{V}=\mathrm{npq}$ Standard Deviation $=(\text { variance })^{1} / 2=(n p q)^{1} / 2$.
5. In a Binomial Distribution, the mean and variance are equal
a. True
b. False
c. Can't say
d. not justifiable

Answer: b
Explanation:
Mean = np
Variance $=n p q$
\therefore Mean and Variance are not equal.
6. It is suitable to use Binomial Distribution only for
a. Large values of ' n '
b. Fractional values of ' n '
c. Small values of ' n '
d. Any value of ' n '

Answer: c

Explanation:

As the value of ' n ' increases, it becomes difficult and tedious to calculate the value of ${ }^{n} C_{x}$.
7. For larger values of ' n ', Binomial Distribution
a. loses its discreteness
b. tends to Poisson Distribution
c. stays as it is
d. gives oscillatory values

Answer: b

Explanation:

Where $\mathrm{m}=\mathrm{np}$ is the mean of Poisson Distribution.
8. In a Binomial Distribution, if $p=q$, then $P(X=x)$ is given by
a. ${ }^{n} C_{x}(0.5)^{n}$
b. ${ }^{n} C_{n}(0.5)^{n}$
c. ${ }^{n} C_{x} p^{(n-x)}$
d. ${ }^{n} C_{n} p^{(n-x)}$

Answer: a
Explanation:
If $p=q$, then $p=0.5$
Substituting in $P(x)={ }^{n} C_{x} p^{x} q^{(n-x)}$ we get ${ }^{n} C_{n}(0.5)^{n}$.

9. Binomial Distribution is a

a. Continuous distribution
b. Discrete distribution
c. Irregular distribution
d. Not a Probability distribution

Answer: b

Explanation:

It is applied to a discrete Random variable, hence it is a discrete distribution
10. 15 dates are selected at random, what is the probability of getting two Sundays?
a. 0.29
b. 34
c. 56
d. 78

ANSWER: a EXPLAINATION:
If X denotes the number at Sundays, then it is obvious that X follows binomial distribution with parameter $\mathrm{n}=15$ and $\mathrm{p}=$ probability of a Sunday in a
week $=1 / 7$ and $\quad q=1-p=6 / 7$.
Then $f(x)=15_{C_{X}}(1 / 7)^{x} .(6 / 7)^{15-x}$.
for $x=0,1,2$........... 15.
Hence the probability of getting two Sundays
$=\mathrm{f}(2)$
$=1_{\mathrm{C} 2}(1 / 7)^{2} \cdot(6 / 7)^{15-2}$
$\frac{10^{5} 6^{13}}{7^{15}}$
$=0.29$
11. The incidence of occupational disease in an industry is such that the workmen have a $\mathbf{1 0 \%}$ chance of suffering from it. What is the probability that out of 5 workmen, 3 or more will contract the disease?
a. 890
b. . 0086
c. . 00086
d. NONE

ANSWER: c

EXPLAINATION:

Let X denote the number of workmen in the sample. X follows binomial with parameters $\mathrm{n}=5$ and $\mathrm{p}=$ probability that a workman suffers from the occupational disease $=0.1$

Hence $q=1-0.1=0.9$
Thus $f(x)=5_{C_{X}} \cdot(0.1)^{x} \cdot(0.9)^{5-x}$
For $\mathrm{x}=0,1,2, \ldots . . ., 5$.
The probability that 3 or more workmen will contract the disease

$$
\begin{aligned}
& =P(x \geq 3) \\
& =f(3)+f(4)+f(5) \\
& =5_{\mathrm{C} 3}(0.1)^{3}(0.9)^{5-3}+5_{\mathrm{C} 4}(0.1)^{4} \cdot(0.9)^{5-4}+5_{\mathrm{C} 5}(0.1)^{5} \\
& =10 \times 0.001 \times 0.81+5 \times 0.0001 \times 0.9+1 \times 0.00001 \\
& =0.0081+0.00045+0.00001 \\
& =0.0086 .
\end{aligned}
$$

16. Find the probability of a success for the binomial distribution satisfying the following relation $4 P(x=4)=P(x=2)$ and having the parameter n as six.
a. $\mathbf{P} \neq 1$
b. $P \neq-1$
c. $\mathrm{P}=1$
d. $P=0$

ANSWER: b

EXPLAINATION:

We are given that $\mathrm{n}=6$. The probability mass function of x is given by
$\mathrm{f}(\mathrm{x})=\mathrm{n}_{\mathrm{c}_{\mathrm{X}}} \mathrm{p}^{\mathrm{x}} \mathrm{q}^{\mathrm{n}-\mathrm{x}}=6_{\mathrm{C}_{\mathrm{X}}} \mathrm{p}^{\mathrm{x}} \mathrm{q}^{\mathrm{n}-\mathrm{x}}$
for $\mathrm{x}=0,1$, \qquad ,6.

Thus $P(x=4)=f(4):$
$=6{ }^{6} 4 p^{4} q^{6-4}=15 \mathrm{p}^{4} \mathrm{q}^{2}$
and $P(x=2)=f(2)$
$=6_{c 2} p^{2} q^{6-2}=15 p^{2} q^{4}$
Hence $4 P(x=4)=P(x=2)$
$=60 p^{4} q^{2}=15 p^{2} q^{4}$
$=15 p^{2} q^{2}\left(4 p^{2}-q^{2}\right)=0$
$=4 p^{2}-q^{2}=0(a s p 0, q$ 回 0$)$
$=4 p^{2}-(1-p)^{2}=0($ as $q=1-p)$
$=(2 p+1-p)=0$ or $(2 p-1+p)=0$
$=p=-1$ or $p=1 / 3$ Thus $p=1 / 3($ as $p \neq-1)$

NORMAL DISTRIBUTION:

1. Normal Distribution is applied for

a. Continuous Random Distribution
b. Discrete Random Variable
c. Irregular Random Variable
d. Uncertain Random Variable

Answer: a

Explanation:

Normal Distribution is applied for Continuous Random Distribution. A discrete probability distribution is a probability distribution characterized by a probability
mass function. Thus, the distribution of a random variable X is discrete, and X is called a discrete random variable, if. as u runs through the set of all possible values of X.
2. The shape of the Normal Curve is
a. Bell Shaped
b. Flat
c. Circular
d. Spiked
Answer: a

Explanation:

Due to the nature of the Probability Mass function, a bell shaped curve is obtained.
3. Normal Distribution is symmetric is about
a. Variance
b. Mean
c. Standard deviation
d. Covariance

Answer: b Explanation:
Due to the very nature of p.m.f of Normal Distribution, the graph appears such that it is symmetric about its mean.
4. For a standard normal variate, the value of mean is
a. ∞
b. 1
c. 0
d. not defined

Answer: c

Explanation:

For a normal variate, if its mean $=0$ and standard deviation $=1$, then its called as
Standard Normal Variate. Here, the converse is asked.
5 . The area under a standard normal curve is
a. 0
b. 1
c. ∞
d. not defined

Answer: b

Explanation:

For any probability distribution, the sum of all probabilities is 1. Area under normal curve refers to sum of all probabilities.
6. The standard normal curve is symmetric about the value
a. ∞
b. 0
c. 0.5
d. 1

Answer: b

Explanation:

Normal curve is always symmetric about mean, for standard normal curve or variate mean $=0$.
7. For a standard normal variate, the value of Standard Deviation is
a. 3
b. 1
c. ∞
d. not defined

Answer: b
Explanation:
If the mean and standard deviation of a normal variate are 0 and 1 respectively, it is called as standard normal variate.
8. Normal Distribution is also known as
a. Cauchy's Distribution
b. Laplacian Distribution
c. Gaussian Distribution
d. Lagrangian Distribution
Answer: c

Explanation:

Named after the one who proposed it. For further details, refer to books or internet.
9. Skewers of Normal distribution is
a. Negative
b. Positive
c. 0
d. Undefined

Answer: c

Explanation:

Since the normal curve is symmetric about its mean, its skewness is zero. This is a theoretical explanation for mathematical proofs, you can refer to books or websites that speak on the same in detail.
10. For a normal distribution its mean, median, mode are equal
a. True
b. False
c. Not Defined
d. can't say

Answer: a

Explanation:

It has a theoretical evidence that requires some serious background on several topics
For more details you can refer to any book or website that speaks on the same.
11. In Normal distribution, the highest value of ordinate occurs at
a. Mean
b. Variance
c. Extremes
d. Same value occurs at all points

Answer: a

Explanation:
This is due the behavior of the pdf of Normal distribution.

12. The shape of the normal curve depends on its

a. Mean deviation
b. Standard deviation
c. Quartile deviation
d. Quartile deviation

Answer: b
Explanation:
This can be seen in the pdf of normal distribution where standard deviation is a variable.
13.The value of constant ' e ' appearing in normal distribution is
a. 2.5185
b. 2.7836
c. 2.1783
d. 2.7183

Answer: d Explanation:
This is a standard constant.
14. In Standard normal distribution, the value of mode is
a. 2
b. 1
c. 0
d. Not fixed

Answer: c
Explanation:
In a standard normal distribution, the value of mean is 0 and in normal distribution mean and mode coincide.
15. In Standard normal distribution, the value of median is
a. 1
b. 0
c. 2
d. Not fixed
Answer: b

Explanation:

In a standard normal distribution the value of mean is 0 and in normal distribution mean, median and mode coincide
16. In a certain book, the frequency distribution of the number of words per page may be taken as approximately normal with mean 800 and standard deviation
50. If three pages are chosen at random, what is the probability that none of them has between 830 and 845 words each?
a. 0.7536
b. .7654
c. 9084
d. .8733

ANSWER: a

EXPLAINATION:
Let X be a normal variate which denotes the number of words per page. It is given that X $\sim N(800,50)$.
The probability that a page, select at random, does not have number of words between 830 and 845 , is given by

$$
\begin{aligned}
1-P(830<X<845) & =1-P\left(\frac{830-800}{50}<z<\frac{845-800}{50}\right) \\
& =1-P(0.6<z<0.9)=1-P(0<z<0.9)+P(0<z<0.6) \\
& =1-0.3159+0.2257=0.9098 \approx 0.91
\end{aligned}
$$

Thus, the probability that none of the three pages, selected at random, have number of words lying between 830 and $845=(0.91) 3=0.7536$.
17. The distribution of 1,000 examinees according to marks percentage is given below:

\% Marks	less than 40	$40-75$	75 or more	Total
No. of examinees	430	420	150	1000

Assuming the marks percentage to follow a normal distribution, calculate the mean and standard deviation of marks. If not more than $\mathbf{3 0 0}$ examinees are to fail, what should be the passing marks?
a. 30%
b. 40%
c. 40%
d. 40%

ANSWER: a

 EXPLAINATION:Let X denote the percentage of marks and its mean and S.D. be mand s respectively. From the given table, we can write
$P(X<40)=0.43$ and $P(X \geq 75)=0.15$, which can also be written as

$$
P\left(=<\frac{40 / \mu}{\sigma}\right)=0.43 \text { and } P\left(=\geq \frac{75-\mu}{\sigma}\right)=0.15
$$

The above equations respectively imply that

$$
\begin{align*}
& \qquad \frac{40-\mu}{\sigma}=-0.175 \text { or } 40-\mu=-0.175 \sigma \\
& \text { and } \quad \frac{75-\mu}{\sigma}=1.04 \text { or } 75-\mu=1.04 \sigma \tag{2}\\
& \text { Solving the above equations simultaneously, we get } \mu=45.04 \text { and } \sigma=28.81 \text {. } \\
& \text { Let } X_{1} \text { be the percentage of marks required to pass the examination. } \\
& \text { Then we have } P\left(X<X_{1}\right)=0.3 \text { or } P\left(=<\frac{X_{1}-45.04}{28.81}\right)=0.3 \\
& \therefore \frac{X_{1}-45.04}{28.81}=-0.525 \Longrightarrow X_{1}=29.91 \text { or } 30 \% \text { (approx.) }
\end{align*}
$$

18. At a petrol station, the mean quantity of petrol sold to a vehicle is 20 litres per day with a standard deviation of 10 litres. If on a particular day, $\mathbf{1 0 0}$ vehicles took 25 or more litres of petrol, estimate the total number of vehicles who took petrol from the station on that day. Assume that the quantity of petrol taken from the station by a vehicle is a normal variate.
a. 333
b. 343
c. 343
d. 567

ANSWER: c EXPLAINATION:
Let X denote the quantity of petrol taken by a vehicle. It is given that $X \sim N(20,10)$.

$$
\begin{aligned}
\therefore P(X \geq 25) & =P\left(z \geq \frac{25-20}{10}\right)=P(z \geq 0.5) \\
& =0.5000-P(0 \leq z \leq 0.5)=0.5000-0.1915=0.3085
\end{aligned}
$$

Let N be the total number of vehicles taking petrol on that day.
$\therefore 0.3085 \times \times \mathrm{N}=100$ or $\mathrm{N}=100 / 0.3085=324$ (approx.)
19. Using the table of areas under the standard normal curve, find the following probabilities:
(i) $\mathrm{P}(0 \leq \mathrm{z} \leq 1.3)$
(ii) $\mathrm{P}(-1 \leq \mathrm{z} \leq 0)$
(iii) $\mathrm{P}(-1 \leq \mathrm{z} \leq 12)$
a. $0.4032,0.3413,0.8185$
b. $0.4072,0.4413,0.8185$
c. $0.40456,0.3456,0.8155$
d. NONE

ANSWER: a EXPLAINATION:

The required probability, in each question, is indicated by the shaded are of the corresponding figure.
a. From the table,
b. (i)we can write $\mathrm{P}(0 \leq \mathrm{z} \leq 1.3)=0.4032$.
c. (ii)We can write $P(-1 \leq z \leq 0)=P(0 \leq z \leq 1)$, because the distribution is symmetrical.

20. Determine the value or values of z in each of the following situations:
(i) Area between 0 and z is 0.4495 .
(ii) Area between $-\infty$ to z is $\mathbf{0 . 1 4 0 1}$.
a. $-1.64,-1.08$
b. $-1.08,-1.64$
c. $1.64,1.08$
d. $-1.64,1.08$

ANSWER: a EXPLAINATION:
(i)On locating the value of z corresponding to an entry of area 0.4495 in the table of areas under the normal curve, we have $\mathrm{z}=1.64$. We note that the same situation may correspond to a negative value of z . Thus, z can be 1.64 or -1.64 .
(ii) Since the area between $-\infty$ to $\mathrm{z}<0.5$, z will be negative. Further, the area between z and $0=0.5000-0.1401=0.3599$. On locating the value of z corresponding to this entry in the table, we get $\mathrm{z}=-1.08$

CHAPTER 18

CORRELATION AND REGRESSION

The change in one variable is reciprocated by a corresponding change in the other variable either directly or inversely, then the two variables are known to be associated or correlated
TYPES OF
CORRELATION

MEASURES OR

CORREDCTION

The points lie close to a straight line, which has a negative gradient.

This shows that as one variable increases, the other flecreases.

There is no pattern to the points.

This shows that there is no connection between the two variables.

Scatter Plots of Data with Various Correlation Coefficients

Ramk Correlation

The formula of Spearman's Rank correlation coefficient, is given as:

$$
r=1-1-\frac{6 \sum a_{1}^{2}}{n_{2}\left(n^{2}-1\right)}
$$

$r_{s}=$ is the coefficient of rank convelation.
$\alpha_{2}=$ is the difference in rank between paired values of X and Y, it can be calculated as (rank of X_{i} rank of Y_{1}).
$n=$ is a sample size or the number of pairs values X and Yin the selected sample.

Correlation Coefficient

Correlation coefficient

- A measure of the strength and the direction of a linear relationship between two variables.
- The symbol r represents the sample correlation coefficient.
- A formula for r is
n is the number of data pairs
- The population correlation coefficient is represented by ρ (rho).

Pearson's Correlation Coeff.

Pearson's correlation coefficient between two variables is defined as the covariance of the two variables divided by the product of their standard deviations:

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}},
$$

The above formula defines the population correlation coefficient, commonly represented by the Greek letter ρ (rho). Substituting estimates of the covariances and variances based on a sample gives the sample correlation coefficient, commonly denoted r :

$$
\begin{aligned}
r & =\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}} . \\
r_{x y} & =\frac{\sum x_{i} y_{i}-n \bar{x} \bar{y}}{n s_{x} s_{y}}=\frac{n \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{\sqrt{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}} \sqrt{n \sum y_{i}^{2}-\left(\sum y_{i}\right)^{2}}} .
\end{aligned}
$$

The 'coefficient of non-determination' is given by $\left(1-r^{2}\right)$ and can be interpreted as the ratio of unexplained variance to the total variance.

The two lines of regression coincide i.e. become identical when r $=-1$ or 1 or in other words, there is a perfect negative or positive correlation between the two variables under discussion. If $r=0$ Regression lines are perpendicular to each other The two lines of regression intersect at the point, where x and y are the variables under consideration

The regression coefficients remain unchanged due to a shift of origin but change due to a shift of scale.

1. The table below shows the height, x, in inches and the pulse rate, y, per minute, for 9 people. Find the correlation coefficient and interpret your result

\boldsymbol{x}	68	72	65	70	62	75	78	64	68
\boldsymbol{y}	$\mathbf{9 0}$	$\mathbf{8 5}$	$\mathbf{8 8}$	$\mathbf{1 0 0}$	$\mathbf{1 0 5}$	$\mathbf{9 8}$	$\mathbf{7 0}$	$\mathbf{6 5}$	$\mathbf{7 2}$

a. 0.15
b. 0.56
c. -0.15
d. 0.69

ANSWER: C EXPLAINATION:
You may use the facts that (double check this for practice)
$\sum x=622, \quad \sum y=773, \quad \sum x^{2}=43,206, \quad \sum y^{2}=68,007, \quad \sum x y=53,336$.
Calculate the numerator:
$n \sum(x y)-\left(\sum x\right)\left(\sum y\right)=9-53336-622 \cdot 773=-782$
$\sqrt{n \sum x^{2}-\left(\sum x\right)^{2}} \sqrt{n \sum y^{2}-\left(\sum y\right)^{2}}$
$=\sqrt{9.43206-(622)^{2}} \cdot \sqrt{9.68007-(773)^{2}}$
$=\sqrt{1970} \cdot \sqrt{14534}=5350.89$
Now, divide to get $r=\frac{-782}{5350.89}=-0.15$
2. In the previous problem the researcher decides to use data only for adults ages 21 to 60 to compute a correlation coefficient. What value of r should he expect?
a. $\mathrm{r}=0$
b. $\mathrm{r} \neq \mathrm{o}$
c. $\mathrm{r}<0$
d. $\mathrm{r}>0$

ANSWER: a

EXPLAINATION:

$\mathbf{r} \approx \mathbf{0}$. It is unexpected that mathematical ability and shoe size varies together
3. The following data relate to the test scores obtained by eight
salesmen in an aptitude test and their daily sales in thousands of rupees:

	1	2	3	4	5	6	7
Scores:	60	55	62	56	62	64	70
(31	28	26	24	30	35	28
Sales:	31	24					

a. 48
b. 56
c. 4.5
d. 0.48

ANSWER: D
EXPLAINATION:
As
$\mathrm{b}=\frac{24+35}{2}=30$

Scores (xi) (1)	$\begin{gathered} \text { Sales } \\ \text { in } \\ 1000 \\ \text { (yi) } \\ (2) \end{gathered}$	$\begin{aligned} & u_{j}=x_{i}- \\ & 62 \\ & \quad(3) \end{aligned}$	$\begin{gathered} v_{j}=y_{i}- \\ -30 \end{gathered}$ (4)	$u_{i} \mathbf{v}_{\mathbf{i}}$ $(5)=(3) x$ (4)	$(6)=$ $(3)^{2}$	$v_{i}{ }^{2}$ (7)= (4)
60	31	-2	1	-2	4	1
55	28	-7	-2	14	49	4
62	26	0	-4	0	0	$\begin{aligned} & 1 \\ & 6 \end{aligned}$
56	24	-6	-6	36	36	$\begin{aligned} & 3 \\ & 6 \end{aligned}$
62	30	0	0	0	0	0
64	35	2	5	10	4	$\begin{aligned} & 2 \\ & 5 \end{aligned}$
70	28	8	-2	-16	64	4
54	24	-8	-6	48	64	$\begin{aligned} & 3 \\ & 6 \end{aligned}$
Total	-	-13	-14	90	221	122

Since correlation coefficient remains unchanged due to change of origin, we have
$=\frac{8 \times 90-(-13) \times(-14)}{\sqrt{8 \times 221-(-13)^{2}} \times \sqrt{8 \times 122-(-14)^{2}}}$
$=\frac{538}{\sqrt{1768-169} \times \sqrt{976-196}}$
$=0.48$
4. If $r=0.7$; and $n=64$ find out the probable error of the coefficient of correlation
a. 0.043
b. 0.43
c. $0.747,0.657$
d. 0.7

ANSWER: a EXPLAINATION:
$\mathrm{r}=0.7$; $\mathrm{n}=64$
Probable Error (P.E.) $=0.6745 \times \frac{1-(0.7)^{2}}{\sqrt{64}}$
$=(0.6745) \times(0.06375)$
$=0.043$
5. Compute the Probable Error assuming the correlation coefficient of 0.8 from a sample of 25 pairs of items
a. 0.0486
b. 0.0456
c. 0.0567
d. 0.0789

ANSWER: a
EXPLAINATION:
$\mathrm{r}=0.8, \mathrm{n}=25$
P.E. $=0.6745$
$=0.6745 \times 0.07=0.0486$

7. Difference between Correlation and Causation

a. The variable mutually influence each other so that neither can be called the cause of other.
b. The correlated variables are influenced by one or more variables.
c. Pure change correlation
d. All

ANSWER: d
EXPLAINATION:
The term correlation should not be misunderstood as causation. If correlation exists between two variables, it must not be assumed that a change in one variable is the
cause of a change in other variable.
8. For some bivariate data, the following results were obtained for the two variables x and $y: x=53.2, y=27.9, b v x=-1.5, b x y=-0.2$
The most probable value of y when $x=60$ is
a. 15.6
b. 13.4
c. 19.7
d. 17.7

ANSWER: d EXPLAINATION:
The regression equation of y of x is:
$\mathbf{y}-\mathrm{y}=\operatorname{byy}_{\mathrm{x}}(\mathrm{x}-\mathrm{x})$
$=y-27.9=(-1.5)(x-53.2)$
or $\mathrm{y}=107.7$ - 1.5x
when $x=60$ then
$\mathrm{Y}=107.7-1.5 \times 60=17.7$
9. If the sum of squares of the rank difference in mathematics and physics marks of $\mathbf{1 0}$ students is 22, then the coefficient of rank correlation is:
a. 0.267
b. 0.867
c. 0.92
d. none

ANSWER: b
EXPLAINATION:
Co. efficient of rank correlation

$$
\begin{aligned}
& 1-\frac{6 \mathrm{E} \mathrm{~d}^{2}}{\mathrm{n}(\mathrm{n} 2-1)} \\
& 1-\frac{6 \times 22}{10\left(10^{2}-1\right)}
\end{aligned}
$$

$$
1-\frac{6 \times 2}{10 \times 9}
$$

$$
\frac{13}{15}=0.867(\text { Approx })
$$

10. The coefficient of correlation r between x and Y when : $\operatorname{Cov}(x, y)=-16.5$, $\operatorname{Var}(\mathrm{x})=2.89, \operatorname{Var}(\mathrm{y})=100$ Is:
a. -0.97
b. 0.97
c. 0.89
d. -0.89

ANSWER: a
EXPLAINATION:
$r=\frac{\operatorname{cov}(x, y)}{\sigma_{x} . \sigma_{y}}$
Or $r=\frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{vary}(x)-\operatorname{vary}(y)}}$

$$
-16.5
$$

$\sqrt{2.89 \times 100}$
$=-0.97$
11. Two random variables have the regression lines $3 x+2 y=26$ and $6 x+y$
$=31$. The coefficient of correlation between x and y is :
a. -0.25
b. 0.5
c. 0.5
d. 0.25

Answer: (c)

Explanation:

The regression lines $3 x+2 y=26$ and $6 x+y=31$ are given
Let first equation be y on x and second be x on y respectively Therefore, $3 \mathrm{x}+2 \mathrm{y}=$ $26=y=\left(\frac{-3}{2}\right) x+\left(\frac{26}{2}\right)$
\therefore byx $=-3 / 2$
and $6 x+y=31$
$=x=\left(\frac{-1}{6}\right) x+\left(\frac{31}{6}\right)$
by $=1 / 6$ Now
r^{2} byx.bxy
$=\left(\frac{-3}{2}\right) x+\left(\frac{-1}{6}\right)$
$=0.25$
$r=-0.5$

Hence, our assumption holds true and $r=-0.5$ ($:$: - 1 r 1)
Note : r is negative because byx and bxy < 0
12. The coefficient of correlation between X and Y is 0.6 . U and V are two variables defined as $U=\frac{X-3}{2}, V=\frac{Y-2}{3}$, then the coefficient of correlation between U and V is :
a. 0.6
b. 0.8
c. 0.4
d. 1

Answer: (a)

Explanation:

Since correlation coefficient (Karl Pearson's\} is independent of both scale and origin, therefore,
$p(u, v)=p(x, y)=0.6$
It may be noted that if
$\mu,=a x,+b$ and V; = CY; + d then
$r(u, v)=P(x, y)$ if a and care of same signs
$p(x, y)$ if a and c are of opposite signs
13. For the following data, the coefficient of rank correlation is:

Rank in Botany:	1	2	3	4
Rank in Chemistry	2	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{5}$

a. 0.93
b. 0.4
c. 0.6
d. None

Answer: (c)
Explanation:

$\mathbf{4}$	4	5	-1	1
$\mathbf{5}$	5	4	1	1
Total			0	8

Hence, coefficient of rank correlation
$1-\frac{6 \times 8}{5\left(5^{2}-1\right)}$
$S=1-\frac{2}{5}=0.6$
14. The following data is given, based on 450 students for marks in Statistics and Economics at a certain examination:
Mean marks in Statistics
$=40$
Mean marks in Economics = 48
S.D. of marks (Statistics) = 12

Variance of marks (Economics) $=256$
Sum of the products of deviations of marks from their respective mean = 42075
The average marks in Economics of candidates who obtained 50 marks in Statistics is:
a. 45
b. 54
c. 54.5
d. 47.5

Answer: (c)
Explanation:
Let $\mathrm{x}=$ Marks in statistics
and $y=$ Marks in Economics
We know that
$r_{x y}=\sum \frac{\left(\sum d x \times d y\right)}{n \times \sigma_{x} \times \sigma_{y}}$
Where, $\mathrm{dx}=\boldsymbol{x}_{1}-\bar{x}$ and dy $=\boldsymbol{y}_{1}-\bar{y}$
$r_{x y}=\frac{(42075)}{450 \times 12 \times 16}=0.49$
Now regression equation of Y on X
$y-\bar{y}=\frac{r \sigma_{y}(x-\bar{x})}{\sigma_{x}}$
$=y-48=\times \frac{0.49 \times 16}{12}(x-40)$
$=y=0.65 x+22$
When $x=50$, then
$\mathrm{Y}=0.65 \mathrm{X} 50+22=54.5$
15. For 10 pairs of observations, number of concurrent deviations was found to be 4 . What is the value of the coefficient of concurrent deviation?
a. $\sqrt{0.2}$
b. $-\sqrt{0.2}$
c. $1 / 3$
d. $-1 / 3$

Answer: d
Explanation:
Here $C=4, N=10$, So
$\mathrm{n}=\mathrm{N}-1=10-1=9$
$r c \pm \sqrt{\frac{ \pm(2 c-n)}{n}}$
$r c \pm \sqrt{\frac{ \pm(2 \times 4-9)}{9}}$
Here $(2 \mathrm{c}-\mathrm{n})$ is negative, so negative sign is taken at both the places so, rc=(-1)/3
16. Karl Pearson's formula :
a. $\frac{\left[\mathrm{N} \sum \mathrm{xy}-\left(\sum \mathrm{x}\right)\left[\left(\sum \mathrm{y}\right)\right]\right.}{\sqrt{\left[\mathrm{N} \sum \mathrm{x}^{2}-\left(\sum \mathrm{x}^{2}\right)\right]}}$

b.
c. Either a or b
d. none

Answer: b Explanation:

swineré :

17. If the coefficient of correlation between X and y variable is +0.90 then what will be the coefficient of determination?
a. 0.30
b. 0.81
c. 0.94
d. None of these

Answer: (b)

Explanation:

If Coeff. of Correlation (r) $=0.90$
Coeff. of Determination $=r 2$
$=(0.90)^{2}$
$=0.81$
18. The two lines of regression become identical when
a. 0.4
b. 0.6
c. 0.36
d. 0.64

Answer: c

Explanation:

If $r=0.6$
Then Coeff. of determination $=r^{2}$
$=(0.6)^{2}$
$=0.36$
19. The two regression lines passing through
a. Represent means
b. Represent S.Ds
c. (a) and (b)
d. None of these.

Answer: a

Explanation:

The two Regression lines passing through or (Intersect) at their means
20. The regression equation x and y is $3 x+2 y=100$, the value of $b_{x y}$
a. $-\frac{2}{3}$
b. $-\frac{3}{2}$
c. $\frac{2}{3}$
d. $\frac{100}{2}$

Answer: a

Explanation:

The regression equation of $x \& y$ is

$$
\begin{aligned}
& 3 x+2 y=100 \\
& 3 x+2 y-\quad 100=0 \\
& b_{x y}=-\frac{\text { coefficient of } y}{\text { coefficient of } x}=-\frac{2}{3}
\end{aligned}
$$

21. In a beauty contest there were 10 competitors. Rank of these candidates are assigned by two judges A and B. The sum of squares of differences of ranks is 44 . The value of rank correlation is
a. 0.70
b. 0.73
c. 0.80
d. 0.60

Answer: b
Explanation:
Sum of squares of differences of ranks $\left(\sum d^{2}\right)=44$
$r_{R}=$?
$r_{R}=1-6 \frac{\sum d^{2}}{n\left(n^{2}-1\right)}$
$1-\frac{6 \times 4}{10\left(10^{2}-1\right)}$
$1-\frac{6 \times 44}{10 \times 99}$
$=1-0.267$
$=0.733$
So, answer be 0.73
22. If two regression lines are $x+y=1$ and $x-y=1$ then mean values of x and y will be:
a. 0 and 1
b. 1 and 1
c. 1 and 0
d. none

Answer: c
Explanation:
Given Regression line
$=>x=\frac{2}{2}=1$
$x=1$ in equation (1) we get
$1+y=1$
$\mathrm{Y}=0$
Mean of $x=\mathbf{x}=1$
Mean of $y=y=0$
Hence, 1 and 0
23. The coefficient of correlation between x and y is 0.6 . If x and y values are multiplied by -1 , then the coefficient of correlation will b
a. 0.6
b. 1-0.6
c. $1 / 0.6$
d. -0.6

Answer: a

Explanation:

The coefficient of correlation between X and Y is 0.6 . If X and Y values are multiplied by -1 then coefficient of correlation remains unchanged Then are coefficient of correlation will be 0.6.
24. The coefficient of correlation between the temperature of environment and power consumption is always
a. +Ve
b. -ve
c. 0
d. $=1$

Answer: a
Explanation:
The coefficient of correlation between the temperature of environment and power consumption is always positive.
25. Out of the following the one which effects the regression coefficient is
a. Change of origin only
b. Change of scale only
c. Change of scale and origin both
d. Neither a nor b

Answer: b
Explanation:
By shifting the scale, coefficient of regression is changed.
26. When the correlation coefficient r is equal to +1 , all the points in a scatter diagram would be
a. On a straight line directed from upper left to lower right
b. On a straight line directed from lower left to upper right
c. On a straight line
d. Both (a) and (b)

Answer: b

Explanation:

When the correlation coefficient r is equal to ' +1 ', all the points in a scatter diagram on a straight line directed from lower left to upper Right.
27. In case of "Insurance Companies" profits and the number of claims they have to pay there is \qquad correlation.
a. +ve
b. -ve
c. No relation
d. none

Answer: b
Explanation:
In case of Insurance Companies Profits and the Number of claims they have to pay there is Negative Correlation.
28. If the correlation coefficient between two variables is zero,, then the lines of regression are:
a. parallel
b. perpendicular
c. coincide
d. none

Answer: b

Explanation:

If the correlation coefficient b/w two variables is zero, then the lines of regression are perpendicular.
29. Three competitors in a contest are ranked by two judges in the order 1,2,3 and 2,3,1 respectively. Calculate the Spearman's rank correlation coefficient.
a. -0.5
b. -0.8
c. 0.8
d. 0.5

Answer: a Explanation:

Here $\mathrm{n}=3$

Spearman's Rank Correlation coefficient $=1-6 \frac{\sum d^{2}}{n\left(n^{2}-1\right)}$
$=1-\frac{6 \times 6}{3\left(3^{2}-1\right)}$
$=-0.5$
30. The strength (degree) of the correlation between a set of independent variables X and a dependent variable Y is measured by
a. Coefficient of Correlation
b. Standard error of estimate
c. Coefficient of Determination
d. All of the above

Answer: D

Explanation:

The strength (degree) of the correlation between a set of independent variables X and a dependent variable Y is measured through:
$>$ Coefficient of Correlation
\Rightarrow Standard error of estimate
$>$ Coefficient of Determination
31. The percent of total variation of the dependent variable Y explained by the set of independent variables X is measured by
a. Coefficient of Correlation
b. Standard error of estimate
c. Coefficient of Determination
d. Coefficient of Skewness

Answer: C

Explanation:

The coefficient of determination (denoted by R^{2}) is a key output of regression analysis. . An R^{2} of 0 means that the dependent variable cannot be predicted from the independent variable. An R^{2} of 1 means the dependent variable can be predicted without error from the independent variable.
31. A coefficient of correlation is computed to be $\mathbf{- 0 . 9 5}$ means that
a. The relationship between two variables is weak.
c. The relationship between two variables is strong and but
b. The relationship between two variables is strong and positive
d. Correlation coefficient cannot have this value negative

Answer: C

Explanation:

A coefficient of correlation is computed to be -0.95 means that relationship between two variables is strong and but negative.
32. Let the coefficient of determination computed to be 0.39 in a problem involving one independent variable and one dependent variable. This result means that
a. The relationship between two variables is negative
b. The correlation coefficient is 0.39 also
c. 39% of the total variation is explained by the independent variable
d. 39% of the total variation is explained by the dependent variable

Answer: C

Explanation:
The coefficient of determination computed to be 0.39 in a problem involving one independent variable and one dependent variable. 39\% of the total variation is explained by the independent variable
33. Relationship between correlation coefficient and coefficient of determination is that
a. The coefficient of determination is the coefficient of correlation squared
b. The coefficient of determination is the square root of the coefficient of correlation
c. both are unrelated
d. both are equal

Answer: B

Explanation:

Coefficient of correlation is " R " value which is given in the summary table in the Regression output. \mathbf{R} square is also called coefficient of determination. Multiply R times R to get the R square value. In other words Coefficient of Determination is the square of Coefficeint of Correlation.R square or coeff. of determination shows percentage variation in y which is explained by all the x variables together. Higher the better. It is always between 0 and 1 . It can never be negative - since it is a squared value.

It is easy to explain the \mathbf{R} square in terms of regression. It is not so easy to explain the R in terms of regression.
35. For a bivariate data, two times of re ressio are 40x-1By = 214 and $B x-10 y+66 .=0$, then find the values of x and y
a. 17 and 13
b. 13 and 17
c. 13 and -17
d. -13 and 17

Answer: b
Explanation:
Given: 40x-18y =214
$8 x:--10 y=-66$
On solving (1) and (2) we get
$\mathbf{x}=13$ and $\mathrm{y}=17$
$\therefore x=13$ and $y=17$
36. In multiple regression, when the global test of significance is rejected, we can conclude that:
a. All of the net sample regression coefficients are equal to zero
b. All of the sample regression coefficients are not equal to zero
c. At least one sample regression coefficient is not equal to zero
d. The regression equation intersects the Y -axis at zero.

Answer: C
Explanation:
In multiple regression, when the global test of significance is rejected, we can conclude that at least one sample regression coefficient is not equal to zero
37. Correlation Coefficient values lies between
a. -1 and +1
b. 0 and 1
c. -1 and 0
d. None
Answer: A

Explanation:

The strength of the linear association between two variables is quantified by the correlation coefficient. The correlation coefficient always takes a value between -1
and 1, with 1 or -1 indicating perfect correlation (all points would lie along a straight line in this case).
38. In correlation both variables are always
a. Random
b. Non Random.
c. Same
d. None
Answer: A

Explanation:

Complete correlation between two variables is expressed by either +1 or -1 . When one variable increases as the other increases the correlation is positive; when one decreases as the other increases it is negative. Complete absence of correlation is represented by 0 .
39. The table below shows the number of absences, x, in a Calculus course and the final exam grade, y, for 7 students. Find the correlation coefficient

\boldsymbol{x}	1	0	2	6	4	3	3
\boldsymbol{y}	$\mathbf{9 5}$	$\mathbf{9 0}$	$\mathbf{9 0}$	$\mathbf{5 5}$	$\mathbf{7 0}$	$\mathbf{8 0}$	$\mathbf{8 5}$

a. 0.38
b. -0.38
c. 0.62
d. -0.93

Answer: D
Explanation:
You may use the facts that (double check this for practice)
$\sum x=19, \quad \sum y=565, \quad \sum x^{2}=75, \quad \sum y^{2}=46,775, \quad \sum x y=1,380$.
Calculate the numerator:
$n \sum(x y)-\left(\sum x\right)\left(\sum y\right)=7 \cdot 1380-19 \cdot 565=-1075$
Then calculate the denominator:

$$
\begin{aligned}
& \sqrt{\mathrm{n} \sum \mathrm{x}^{2}-\left(\sum \mathrm{x}\right)^{2}} \sqrt{\mathrm{n} \sum \mathrm{y}^{2}-\left(\sum \mathrm{y}\right)^{2}} \\
& =\sqrt{7.75-(19)^{2}} \cdot \sqrt{7.46775-(565)^{2}} \\
& =\sqrt{164} \cdot \sqrt{8200}=1159.66
\end{aligned}
$$

Now, divide to get $r=\frac{-1075}{1159.66}=-0.93$
40. Two regression lines are parallel to each other if their slope is
a. Random
b. Non Random.
c. Same
d. None

Answer: C

Explanation:

When there is a reasonable amount of scatter, we can draw two different regression lines depending upon which variable we consider to be the most accurate. The first is a line of regression of y on x, which can be used to estimate y given x. The other is a line of regression of x on y, used to estimate x given y. Hence Two regression lines are parallel to each other if their slope is same

CHEPTER 19

INDEX NUMBER AND TIME SERIES

UNIT - I INDEX NUMBER

Laspyre's Price index number Paasche's Price index number

Where
, $\mathrm{P}_{1}=$ Price of the current year

$$
P_{01}=\frac{\sum p_{1} q_{1}}{\sum p_{0} q_{1}} \times 100
$$

, $P_{0}=$ Price of the base year
, $q_{0}=$ Quantity of the base year

, Where

, $\mathrm{P} 1=$ Price of the current year

- P0=Price of the base year
- $q 1=$ Quantity of the current year

3

Marshall-Edgewoths's Price index number
$\frac{\sum\left(q_{0}+q_{1}\right) \times p_{1}}{\sum\left(q_{0}+q_{1}\right) \times p_{0}} \times 100$
, Where
, P1=Price of the current year
, P0=Price of the base year

- qo=Quantity of the current year
- $\mathrm{q} 1=$ Quantity of the current year

5

Weighted Price index number

, If Arithmetic Mean is used

$$
P_{01}=\frac{\sum P V}{\sum V} \times 100 \quad P=\frac{p_{1}}{p_{0}} \times 100
$$

, Where

$$
\mathrm{V}=\mathrm{P} 0 \mathrm{q} 0
$$

, P1=Price of Current Year

- P0=Price of base year

4

Fisher's Price index number

$$
\begin{aligned}
& \mathrm{P}_{01}=\sqrt{\mathrm{L} \times P} \mathrm{P}^{2} \\
& \mathrm{p}_{01}=\sqrt{\frac{\sum \mathrm{p}_{1} \mathrm{q}_{0}}{\sum \mathrm{p}_{0} q_{0}} \times \frac{\sum \mathrm{p}_{1} \mathrm{q}_{1}}{\sum \mathrm{p}_{0} \mathrm{q}_{1}}} \times 100
\end{aligned}
$$

- Where
, L= Laspyre's Price Index number
- $\mathrm{P}=$ Paachee's Price Index number

6
 Weighted Price index number

, If Geometric Mean is used

$$
\mathrm{P}_{\mathrm{ot}}=\text { Anti } \log \left[\frac{\sum \mathrm{V} \log \mathrm{P}}{\sum \mathrm{~V}}\right] \times 100
$$

, Where
, P1=Price of Current Year
, P0=Price of base year
, $V=P 0 q 0$

492 | Page
Visit: Jatindembla.com / kitest.in

Unit test

The unit test requires that the formula for constructing an index should be independent of the units in which, or for which, prices and quantities are quoted. All formulae except the simple (un weighted) aggregate index formula satisfy this test.

Time Reversal Test

Factor Reversal Test

A method satisfies factor reversal test if it gives

where P_{01} is the price index for the current year
q_{01} is the quantity index for the current year
Fishers index number only satisfies the factor reversal test

Circular test

Circular test is an extension of the time reversal test.

Symbolically, the circular test may be written as

$$
P_{01}, P_{12}, P_{23} \ldots P_{n-1 n} \cdot P_{n 0}=1
$$

Circular test satisfies the simple geometric mean of price relatives and weighted aggregate of fixed weights.

CHAIN INDEX

LINK
RELATIVE

Chain base index numbers is one in which the figures for each are first expressed as percentage of the preceding year. The percentage are chained together by successive multiplication to form a series of chain index, in chain base year index method the base year changes from year to year

Link relativeof current year \times Chain Index Previous Year
100
Current year Price Index
Immediate previous year price relative $\times 100$

Splicing and Shifting the Base of Index Numbers

When two or more overlapping series of index numbers are combined into one series, then this process is known as splicing

Splicing

Technique of linking two or more index number series with the same items and a common overlapping year but with different base period in order to form a continuous series

Splicing may be forward or backward

Forward Splicing

Splicing	Index no. of old series	Index no. of New series
Forward	$=\{100 / O$ verlapping index	No change
Splicing	number of old series $\}^{*}$ Given	

Backward spiicing

Splicing	Index no. of old series	Index no. of New series
Backward Splicing	No change	series/100\}*Givenimdex No. Nof new
series		

Index Number using new base

Index Number using new base
Old Index number using old base

X 100

Index number Corresponding new base year

Uses of Index Numbers

1. As the indices are constructed mostly from deliberate samples, chances of errors creeping in cannot be always avoided.
2. Since index numbers are based on some selected items, they simply depict the broad trend and not the real picture.
3. Since many methods are employed for constructing index numbers, the resuit gives different values and this at times create confusion.

Deflated Time series Using Index Numbers

Current Value

Price Index of the current year Base Price (Po)
$=$ Cuurent Value $\times \frac{\text { Base Price }(\mathrm{Po})}{\text { Current Price }(\mathrm{Pn})}$

Limitations of Index Numbers

Aggregate expenditure method is a weighted aggregated price index where weights are the base period quantities. (Laspyre's Index number)

Family Buaget Methoc

Weighted Aggregated of price relatives

Index is obtained by taking the average of weighted price relatives and the value weights are $\left(P_{0} q_{0}\right)$ are used

$V=P_{0} \cdot Q_{0}$

1. Construct the following indices by taking 1997 as the base:
(i) simpleAggregativeprice Index

Items	A	B	C	D	E
Prices Rs. (1997)	6	2	4	10	8
Prices Rs. (1998)	10	2	6	12	12
Prices Rs. (1999)	15	3	8	14	16

a. $140,186.67$
b. $120.90,140.6$
c. $140,120.90$
d. 56,420

ANSWER: A
EXPLAINATION:

| Items | P_{0} | P_{1} | P_{2} | $P_{1}=\frac{P_{1}}{P_{0}} \times 100$ | $P_{2}=\frac{P_{2}}{P_{0}} \times 100$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | 6 | 10 | 15 | 166.67 | 250 |
| B | 2 | 2 | 3 | 100.00 | 150 |
| C | 4 | 6 | 8 | 150.00 | 200 |
| D | 10 | 12 | 14 | 120.00 | 140 |
| | $\sum P_{0}=30$ | $\sum P_{1}=42$ | $\sum P_{2}=56$ | $\sum\left(\frac{P_{1}}{P_{0} \times 100}\right)=686.67$ | $\sum\left(\frac{P_{2}}{P_{0} \times 100}\right)=940$ |

Simple Aggregative Price Index:

$$
\begin{array}{ll}
P_{01}=\sum P_{1} & \sum P_{0} \\
P_{02}=\sum P_{2} & (\text { For 1998) } \\
P_{0}
\end{array} \times 100=\frac{42}{30} \times 100=140 \quad \times 100=186.67 \quad(\text { For 1999) })
$$

2. A composite price index where the prices of the items in the composite
are weighted by their relative importance is known as the
a. price relative
b. CPI
c. weighted aggregate price index
d. none of the above

ANSWER: c

EXPLAINATION:

Weighted aggregate price index. The ratio of the sum of weighted prices of current and base time periods multiplied by 100 is called weighted aggregate price index. This index is calculated after allocating weights to each commodity on the basis of their relative importance.
3. A weighted aggregate price index where the weight for each item is its current-period quantity is called the
a. Aggregate index
b. Consumer Price Index
c. Laspeyres Index
d. Paasche Index
ANSWER: D

EXPLAINATION:

Paasche index, index developed by German economist Hermann Paasche for measuring current price or quantity levels relative to those of a selected base period. It differs from the Laspeyres index in that it uses current-period weighting.
4. An index that is designed to measure changes in quantities over time is known as the
a. Quantity index
b. Time index
c. None of the above
d. Paasche index

ANSWER: A

EXPLAINATION:
Index numbers. An index number is an economic data figure reflecting price or quantity compared with a standard or base value. The base usually equals 100 and the index number is usually expressed as 100 times the ratio to the base value.

5. Index numbers are expressed in:

a. Ratios
b. Squares
c. Percentages
d. Combinations

ANSWER: c

EXPLAINATION:

Index numbers are values expressed as a percentage of a single base figure. For example, if annual production of a particular chemical rose by 35%, output in the second year was 135% of that in the first year. In index terms, output in the two years was 100 and 135 respectively. Index numbers have no units.
6. Indices calculated by the chain base method are free from:
a. Seasonal variations
b. Errors
c. Percentages
d. Ratios

ANSWER: a

EXPLAINATION:

A value in any specific time period is based on the value of the same entity in the preceding period. Changes in values can be compared between sequential time periods. This differs from a fixed base index in which values in any period are based on the initial value.
7. Consumer price index numbers are obtained by:
a. Laspeyre's formula
b. Fisher ideal formula
c. Marshall Edgeworth formula
d. Paasche's formula

ANSWER: a

EXPLAINATION:

Laspeyres formula. Laspeyres suggested this index formula in 1871. In case of calculating the price index, assuming that for individual item i, price at the base period to be $p_{i 0}$, at the observation period to be $p_{i t}$, and quantity at the base period to be $q_{i} 0$, the following equation is called "Laspeyres formula".
8. The most appropriate average in averaging the price relatives is:
a. Median
b. Harmonic mean
c. Arithmetic mean
d. Geometric mean

ANSWER: d

EXPLAINATION:

Geometric mean index numbers are a multiplicative aggregation of (price or quantity) ratios with their importance exponents/weights derived from one or more observed budget shares. ... This approach is directly inspired by the literature on index number theory.
19. The test which is lot obeyed by any of the weighted index numbers unless the weights are constant:
a. Circular test
b. Time reversal test
c. Factor reversal test
d. None of them

ANSWER: a
EXPLAINATION:
According to this test the product of price index and quantity index must be equal to the value index. Note: 1 . Since Fisher's index number satisfies both time reversal and factor reversal test, it is called an ideal index number. Circular test. It is a generalization of the time reversal test.
20. Index number having upward bias is:
a. Laspeyre's index
b. Paasche's index
c. Fisher's ideal index
d. Marshal Edgworth index

ANSWER: b
EXPLAINATION:
Paasche index, index developed by German economist Hermann Paasche for measuring current price or quantity levels relative to those of a selected base period. It differs from the Laspeyres index in that it uses current-period weighting.
21. Marshall Edgeworth price index was proposed by:
a. One English economist
b. Two English economist
c. Three English economist
d. Many English economist

ANSWER: b
EXPLAINATION:

The Marshall-Edge worth index, credited to Marshall (1887) and Edge worth (1925), is a weighted relative of current period to base period sets of prices. This index uses the arithmetic average of the current and based period quantities for weighting. It is considered a pseudo-superlative formula and is symmetric.
22. Panache's price index number is also called:
a. Base year weighted
b. Current year weighted
c. Simple aggregative index
d. Consumer price index

ANSWER: b EXPLAINATION:

Paasche index, index developed by German economist Hermann Paasche for measuring current price or quantity levels relative to those of a selected base period. It differs from the Laspeyres index in that it uses current-period weighting.
23. Themajorgroupsfor whom theconsumerpriceindexnumbersare constructed in India.
a. The industrial workers,
b. Theurbannon-manualworkers and
c. Theurbannon-manualworkersand
d. All of the above

ANSWER: D EXPLAINATION:

Consumer price index numbers are having three types:
(i) The industrial workers,
(ii) The urbannon-manualworkersand
(iii) Theagricultural laborers.
24. From the following data construct price index of 1995 taking 1990 as base by using simple Average of price Relative Method:

a. 120.90
b. 12.60
c. 809.56
d. 12.888

Answer: A
Explanation:

Commodity	P_{0}	P_{1}	$\frac{P_{1}}{P_{0}} \times 100$
A	60	75	$\mathbf{1 2 5}$
B	45	50	$\mathbf{1 1 1 . 1 1}$
C	80	70	$\mathbf{8 7 . 5 0}$
TOTAL		$\sum\left(\frac{P_{1}}{P_{0}} \times 100\right)=483.61$	

$\mathrm{P}_{01}=\frac{\sum\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{0}} \times 100\right)}{\mathrm{N}}=\frac{483.61}{4}=120.90$.
25. Calculate weighted aggregative price index from the following data using Laspeyre's method

Base Period
 Current Period

Price	Quantity	Price	Quantity	
A	$\mathbf{2}$	$\mathbf{1 0}$	$\mathbf{4}$	5
B	$\mathbf{5}$	$\mathbf{1 2}$	$\mathbf{6}$	10
C	$\mathbf{4}$	$\mathbf{2 0}$	$\mathbf{5}$	15
D	2	15	3	10

a. 155.09
b. 12.60
c. 135.26
d. 12.888

Answer: C

Explanation:

Commodity			$\mathbf{1 0}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{2 0}$	$\mathbf{4 0}$	$\mathbf{1 0}$
A	$\mathbf{2}$	$\mathbf{1 0}$	20					
B	$\mathbf{5}$	$\mathbf{1 2}$	$\mathbf{6}$	$\mathbf{1 0}$	$\mathbf{6 0}$	$\mathbf{7 2}$	$\mathbf{5 0}$	60
C	$\mathbf{4}$	$\mathbf{2 0}$	$\mathbf{5}$	$\mathbf{1 5}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{6 0}$	75
					$\sum P_{0} q_{0}=190$	$\sum P_{1 q_{0}}=257$	$\sum P_{0} q_{1}=140$	$\sum P_{1 q_{1}}=185$

$$
P_{101}^{L}=\frac{\sum P_{1} q_{0}}{\sum P_{0} q_{0}} \times 100=\frac{257}{190} \times 100=135.26
$$

26. Calculate weighted aggregative price index number from the following data by using Passche's method:

Commodity	Base Year		Current	
	Price	Quantity	Price	Quantity
A	$\mathbf{1 0}$	$\mathbf{3 0}$	$\mathbf{1 2}$	50
B	$\mathbf{8}$	$\mathbf{1 5}$	$\mathbf{1 0}$	25
C	$\mathbf{6}$	$\mathbf{2 0}$	$\mathbf{6}$	30
D	4	10	6	20

a. 199.79
b. 119.79
c. 135.26
d. 12.888

Answer: b
Explanation:
Commodity
P_{0}

A	10	30	12	50	500	$\mathbf{6 0 0}$
B	8	15	10	25	200	$\mathbf{2 5 0}$
C	6	20	6	30	180	$\mathbf{1 8 0}$
\mathbf{n}	4	10	6	20	80	$\mathbf{1 2 0}$
					$\sum P_{0} q_{1}=960$	$\sum P_{1 q_{1}}=1150$

$P_{01}^{p}=\frac{\sum P_{1} q_{1}}{\sum P_{0} q_{1}} \times 100=\frac{1150}{960} \times 100=119.79$
28. Calculate Laspeyre's and passche's index for the following data:

Commodity	1970		1990	
	Price	Expenditure	Price	Expenditure
A	$\mathbf{8}$	$\mathbf{1 0 0}$	$\mathbf{1 0}$	90
B	$\mathbf{1 0}$	$\mathbf{6 0}$	$\mathbf{1 1}$	66
C	$\mathbf{5}$	$\mathbf{1 0 0}$	$\mathbf{5}$	100
D	$\mathbf{3}$	$\mathbf{3 0}$	$\mathbf{2}$	24
E	2	8	4	20

a. $109.73,107.91$
b. $119.79,169.56$
c. $135.26,0.465$
d. $135.26,0.465$

Answer: a Explanation:
Since we are given the expenditure and price, we can obtain the quantity by dividing expenditure by the price for each commodity

Commodity			10				
A	8	12.50	10	9	100	125	72
B	10	6.0	11	6	60	66	60
C	5	20.0	5	20	100	100	100
C	3	10.0	2	12	30	20	36
\mathbf{n}							

Visit: Jatindembla.com / kitest.in

$$
\begin{aligned}
& P_{01}^{I}=\frac{\sum P_{1} q_{0}}{\sum P_{0} q_{0}} \times 100=\frac{327}{298} \times 100=109.73 \\
& P_{01}^{P}=\frac{\sum P_{1} q_{1}}{\sum P_{0} q_{1}} \times 100=\frac{300}{278} \times 100=107.91
\end{aligned}
$$

29 Calculateweightedaverageofpricerelativeindexfromthefollowingdata:

Items			Base Year Price(Rs.)		Current Year Price(Rs.)
A	40			4	
B	30			6	
C	20			5	
D	10			3	
a. 215			b. 156		
c. 965			d. 325		

Answer: B
Explanation:

Items	W	P_{0}	P_{1}	$R=\frac{P_{1}}{P_{0}} \times 100$	RW
A	40	2	4	$\frac{4}{2} \times 100=200$	$\mathbf{8 0 0 0}$
B	30	5	6	$\frac{6}{5} \times 100=120$	$\mathbf{3 6 0 0}$
C	20	4	5	$\frac{5}{4} \times 100=125$	
TOTAI.			$\frac{3}{2} \times 100=150$	$\mathbf{2 5 0 0}$	

Prof. Jatin Dembla

$\mathrm{P}_{\mathrm{ol}}=\frac{\sum \mathrm{RWW}}{\sum \mathrm{W}}=\frac{156010}{1000}=156$
30. Themonthlypercapita expenditureincurredbyworkersofanindustrial center during 1980 and 2005 on the following items are given below. The weights of these items are $75,10,5,6$ and 4 respectively. Prepare a weighted index number for cost ofliving for 2005 with 1980 as base.

Items	Price in 1980	Price in 2005
Food	$\mathbf{1 0 0}$	200
Clothing	$\mathbf{2 0}$	25
Fuel and Lighting	$\mathbf{1 5}$	20
Misc.	$\mathbf{3 5}$	65
House Rent	30	40

a. 185
b. 156
c. 165
d. 325

Answer: a
Explanation:

$C P I=\frac{\sum \mathbb{R W W}}{\sum W W}=\frac{18459.47}{100}=184.59=185$ (Appros.).
31. An enquiry into the budgets of the middle class families in a certain city gave the following information:

Expenses on Items	Food	Fuel	Clothing	Rent	Misc
Prices in 2004 (Rs.)	$\mathbf{1 5 0 0}$	$\mathbf{2 5 0}$	$\mathbf{7 5 0}$	$\mathbf{3 0 0}$	400
Prices in 1995 (Rs.)	1400	200	500	200	250

a. 165.62
b. 134.5
c. 165.60
d. 325.8

Answer: b
Explanation:

Items	W in \%	P_{0} (1995)	P_{1} (2004)	$R=\frac{P_{1}}{P_{0}} \times 100$	$R W$
Food	35	1400	1500	107.14	$\mathbf{3 7 5 0}$
Fuel	10	200	250	125.00	$\mathbf{1 2 5 0}$
Clothing	20	500	750	150.00	$\mathbf{3 0 0 0}$
Rent	15	200	300	150.00	$\mathbf{2 2 5 0}$
Misc :	$\mathbf{2 0}$	$\mathbf{2 5 0}$	$\mathbf{4 0 0}$	$\mathbf{1 6 0 . 0 0}$	$\mathbf{3 2 0 0}$

$\mathrm{CPI}=\frac{\sum \mathrm{RW}}{\sum \mathrm{W}}=\frac{13450}{100}=134.5$
32. Calculate the 'Cost of Living Index Number' using family budget method

| Commodities | Wheat | Rice | Pulses | Ghee | Sugar | Oil | Fuel |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Clothes | Units
 roncımed in |
| :--- |
| $\mathbf{2 0 0}$ | $\mathbf{5 0}$

Price Rs. (In homonomn	$\mathbf{1 . 0}$	$\mathbf{3 . 0}$	$\mathbf{4 . 0}$	$\mathbf{2 0 . 0}$	$\mathbf{2 . 5}$	$\mathbf{1 0 . 0}$
$\mathbf{2 . 0}$	15.0					
Price Rs. (In	1.2	3.5	5.0	30.0	5.0	15.5

a. 166.62
b. 136.88
c. 165.870
d. 325.8

Answer: b
Explanation:

Commod	q_{0}	P_{0}	P_{1}	$R=\frac{P_{1}}{P_{0}} \times 100$	$\mathrm{W}=\mathrm{P}_{0} q_{0}$	RW
Wheat	200	1.0	1.2	120.00	200	24000
Rice	50	3.0	3.5	116.67	150	17500.5
Pulses	56	4.0	5.0	125.00	224	28000
Ghee	20	20.0	30.0	150.00	400	60000
Sugar	40	2.5	5.0	200.00	100	20000
Oil	50	10.0	15.5	155.00	500	77500
Fuel	60	2.0	2.5	125.00	120	15000
Clothes	40	15.0	18.0	120.00	600	72000
					$\Sigma \mathrm{W}=2294$	$\Sigma^{R W=314000.5}$

33 If the salary of a person in the base year is Rs. 4,000 per annum and the current year salary is Rs. 6,000 by how much should his salary rise to maintain the same standard of living if the CPI of the current year is 400?
a. 10000
b. 13688
c. 165870
d. 16000

Answer: d

Explanation:

Salary required in the current year to maintain the same standard of living ofbase year
$=$ Base year Sal ary $\times \frac{\text { CPI of Current Year }}{\text { CPI of Base Year }}=4000 \times \frac{400}{100}$ Rs. 16,000
Current year salary = Rs. 16,000
Theincreaseincurrentsalaryrequired $=16000-6000=$ Rs. $10,000$.
34. Given the following data:

Year	$1995-1996-$	$1997-$	$1998-$	$1999-$	$2000-$	$2001-$	$2002-$	
WPI (1993-	121.6	127.2	132.8	140.7	145.7	155.7	161.3	166.8

a. 5.94%
b. 59.89%
c. 4.4%
d. None

Answer: A

Explanation:

Inflation rate for different years are calculated as:

Year 1996-97

$$
=\frac{X_{t}-X_{t-i}}{X_{t-i}} \times 100=\frac{127.2-121.6}{121.6} \times 100=4.6 \%
$$

Year 1997-98

$$
=\frac{X_{t}-X_{t-1}}{X_{t-1}} \times 100=\frac{132.8-127.2}{127.2} \times 100=4.40 \%
$$

Year 1998-99

$$
=\frac{X_{t}-X_{t-1}}{Y} \times 100=\frac{140.7-132.8}{122 \Omega} \times 100=5.94 \% \text {. }
$$

35. What will be the real wage of the consumer if his money wage is Rs. 10,000 and the cost of living index is 526 ?
a. 1900
b. 1901
c. 2186
d. 4664

Answer: B

Explanation:

Real wages $=\frac{\text { Money Wages }}{\text { Cost of Living Index }} \times 100=\frac{10,000}{526} \times 100=$ Rs. 1,901
36. Index for base period is always taken as:
a. 100
b. 0
c. 200
d. 1

Answer: A

Explanation:

The index at the base period is usually scaled to $\mathbf{1 0 0}$ or 1000. For example, let's say that the index at the chosen base period is set to 1000. If at another period the index is 2000, then the value indicated by the index (e.g. prices) would be estimated to be double what it was during the base period.
37. When the prices of rice are to be compared, we compute:
a. Volume index
b. Value index
c. Price index
d. Aggregative index

Answer: C

Explanation:

Price index, measure of relative price changes, consisting of a series of numbers arranged so that a comparison between the values for any two periods or places will show the average change in prices between periods or the average difference in prices between places
38. Which formula is used in chain indices?
(a) $\frac{\sum \mathrm{p}_{\mathrm{n}}}{\sum \mathrm{p}_{\mathrm{o}}} \times 100$
(b) $\frac{\mathbf{p}_{\mathrm{n}}}{\mathbf{p}_{\mathrm{n}-1}} \times 100$
(c) $\frac{\mathrm{p}_{\mathrm{n}}}{\mathrm{p}_{\mathrm{o}}} \times 100$
(d) None

Answer: B

Explanation:

In the chain index the comparison takes place always between successive calculation periods. In the chain index the change in two calculation periods is used to take forward the index point figure of the desired base period. In the chain index the weights are changed in principle in each calculation period.
39. An index number that can serve many purposes is called:
a. General purpose index
b. Special purpose index
c. Cost of living index
d. None of them

Answer: a

Explanation:

- It is used to measure the changes in the wholesale price level of a country over a period of time.
- It is used to measure the changes in the cost of living of a certain section of the people living in a certain locality.
- It is very much used by the government agencies to formulate policies on different matters viz.
40 Laspeyre's index $=110$, Paasche's index $=108$, then Fisher's Ideal index is equal to:
a. 110
b. 108
c. 100
d. 109

Answer: d

Explanation:
$F=\sqrt{L \times P}$

So $\sqrt{110 \times 108}=109$
41. Consumer price index are obtained by:
a. Paasche's formula
b. Fisher's ideal formula
c. Marshall Edgeworth formula
d. Family budget method formula

Answer: d

Explanation:

A consumer price index (CPI) measures changes in the price level of market basket of consumer goods and services purchased by households. The CPI is a statistical estimate constructed using the prices of a sample of representative items whose prices are collected periodically.
42. Which of the following formula satisfy the time reversal test?
(a) $p_{01}=\frac{\sum p_{1} q_{0}}{\sum p_{0} q_{0}}$
(b) $p_{01}=\frac{\sum p_{1} q_{1}}{\sum p_{0} q_{1}}$
(c) $p_{01}=\sqrt{\frac{\sum p_{1} q_{0}}{\sum p_{0} q_{0}} \times \frac{\sum p_{1} q_{1}}{\sum p_{0} q_{1}}}$
(d) None

Answer: c

Explanation:

Factor reversal test. Time reversal test. This test is proposed by Irving Fisher. According to him, an index number (formula) should be such that when the base year and current year are interchanged (reversed) the resulting index number should be the reciprocal of the earlier.
43. Simple average of relatives is equal to
(a) $\frac{p_{n}}{p_{0}} \times 100$
(b) $\frac{\sum p_{n}}{\sum p_{0}} \times 100$
(c) $\sum\left(\frac{p_{n}}{p_{0}}\right) \times 100$
(d) $\frac{1}{N} \sum\left(\frac{p_{n}}{p_{0}}\right) \times 100$

Answer: d

Explanation:

In case of un weighted average of relatives, price relative of each commodity is first calculated and then average (mean, median or geometric mean) of these price relatives for all the commodities is taken average of relatives can be calculated by taking arithmetic mean, geometric mean or median as average.
44. Link relative of current year is equal to:
(a) $\frac{\text { Price of the current year }}{\text { Price of the base year }} \times 100$
(b) $\frac{\text { Price of the base year }}{\text { Price in the preceding year }} \times 100$
(c) $\frac{\text { Price in the current year }}{\text { Price in the preceding year }} \times 100$
(d) $\frac{\text { Price in the preceding year }}{\text { Price in the current year }} \times 100$

Answer: c

Explanation:

This method of finding the seasonal indices in the form of the chain relatives was

(c) $\frac{\text { Price in the current year }}{\text { Price in the preceding year }} \times 100$

developed by Prof. Karl Pearson, and hence, this method is also known as the Pearson method of seasonal variation. Hence is correct answer
45. Marshall Edge worth price index was proposed by:
a. One English economist
b. Two English economist
c. Three English economist
d. Many English economist

Answer: b

Explanation:

The Marshall-Edgeworth index, credited to Marshall (1887) and Edgeworth (1925), is a weighted relative of current period to base period sets of prices. This index uses the arithmetic average of the current and based period quantities for weighting. It is considered a pseudo-superlative formula and is symmetric.

UNIT - II: TIME SERIES

TIME SERIES
A time series may be determined by eliminating the computed trend values from the given data set. It may done using additive model or multiplicative model. A time series is set of measurements on a variable taken over some period of time, it has four components.

	(a) Trend (b) Seasonal variations (c) Cyclical variations (d) Irregular variations
MODEL	There are two models of time series (a) Additive Model (b) Multiplicative Model
METHODS	Trends can be measured in the following measures (a) Free hand curve method (b) (b) Semi-averages method (c) Moving averages method (d) Least squares method
SEASONAL VARIATIONS	Measured in any of the following methods: (a)simple averages (b) Ratio to trend method (c) Ratio to Moving averages (d) Link relative method
SIGNIFICANCE	1) Time Series is useful in forecasting future values. 2) Time series data can be deseaonalised by eliminating the effect of seasonal variations from it. 3) Irregular component in a time series is measured as a residue after eliminating all other Fluctuations from data.

1. The tendency of trend to increase or decrease or stagnate over a long period of time is called
a. Periodic Variation
b. Cyclic Variation
c. Secular Trend
d. Random Variation

ANSWER: c

EXPLAINATION:

The tendency of trend to increase or decrease or stagnate over a Iong period of time is called Secular Trend.
2. The equation $Y=a+b x$ is used to get the value of
a. Parabolic Trend
b. Exponential Trend
c. Linear Trend
d. None of the above
ANSWER: c

EXPLAINATION:

The equation $Y=a+b x$ is used to get the value of Linear Trends
3. The trend equation for annual sale of product is $Y=120+36 x$ with

Year 1990 as origin. The annual sales for y are 1992 will be-
a. 156
b. 192
c. 120
d. None of the above

ANSWER: b
EXPLAINATION:
Given $=\mathbf{Y}=120+36 \mathbf{x}$ (Annual Sales Equation)
ORIGIN 1990
Annual sale for 1992=?
Put we get $\mathrm{x}=2$ in equations for 1992 sales
$Y=120+36 \times 2$
$Y=192$
4. The technique of estimating the probable value of phenomenon a future date is called:
a. Interpolation
b. Interpolation
c. Forecasting
d. Probability

ANSWER: c

EXPLAINATION:

Forecasting is to predict or estimate the probable value of phenomenon at a future date.
5. Which of the following is forcasting on the basic of past data?
a. Trend projection
b. Index number
c. Both
d. Correlation

ANSWER: b

EXPLAINATION:

Forecasting on past data basis INDEX NO.
6. "Occurrence of floods" falls under which type of variations?
a. Seasonal variation
b. Simple variation
c. Cyclic variation
d. Random variation

ANSWER: d

EXPLAINATION:

Random variation do not reveal any regular pattern of movement. These variations are caused by random factors such as strikes, floods, fire, famines, etc.
7. Which of the following is a general form of exponential trend?
a. $y=a+b t$
b. $\mathrm{y}=\mathrm{a}-\mathrm{b}$
c. $y_{t}=a \times b^{t}$
d. $y_{t}=a+b t+\mathrm{ct}^{2}$

ANSWER: c

EXPLAINATION:

The equation of exponential trend $y_{t}=a \times b^{t}$
8. How the data is arranged in a Time Series Analysis?
a. In descending order of their
b. Arranged chronologically magnitude
c. In ascending order of their
d. Arranged abruptly magnitude.

Answer: b

Explationation:

Data in a time series analysis is arranged chronologically.
9. For a time series, interval can be:
a. Year
b. Month
c. Week
d. Any of these
ANSWER: d

EXPLAINATION:

For a time series, interval can be created year or monthly or weekly too.
10. Seasonal and cyclic variations are the types of:
a. Secular Trend
b. Random Variations
c. Irregular Variations
d. Oscillatory Variations

ANSWER: d

EXPLAINATION:

These oscillations are mostly observed in economics data and the periods of such oscillations are generally extended from five to twelve years or more. These oscillations are associated with the well-known business cycles.
11. Which of these is not a method of measurement of trend?
a. Graphic method
b. Calculative method
c. Method of moving averages
d. Method of least squares ANSWER: b

EXPLAINATION:

If a straight line is fitted to the data it will serve as a satisfactory trend, perhaps the most accurate method of fitting is that of least squares.

The formula for a straight-line trend can most simply be expressed as $\mathbf{Y}_{\mathbf{c}}=\mathbf{a}+\mathbf{b} \mathbf{X}$
12. Methods of Measuring Trend?
a. Free hand curve method
b. Average method
c. Geographical method
d. None

ANSWER: a
EXPLAINATION:
Trend can be determined: (i) free hand curve method; (ii) moving averages method; (iii) semi averages method; and (iv) least-squares method.
13. A time series consists of the following \qquad components or elements?
a. 5
b. 4
c. 7
d. 8

ANSWER: b

EXPLAINATION:

A time series consists of the following four components or elements:

1. Basic or Secular or Long-time trend;
2. Seasonal variations;
3. Business cycles or cyclical movement
4. Erratic or Irregular fluctuations.

14. Which of these is a method of least square?

a. Linear Trend
b. Exponential Trend
c. Parabolic Trend
d. All of the above.

ANSWER: d

EXPLAINATION:

There will be many straight lines which can meet the first condition. Among all different lines, only one line will satisfy the second condition. It is because of this second condition that this method is known as the method of least squares.
15. Additive model of time series is
a. $=T+S+C+I$
b. = TSCI
c. $0=a+b x$
d. none

ANSWER: a
EXPLAINATION:
$0=T \times S \times C \times I$
where 0 refers to original data,
T refers to trend.
S refers to seasonal variations,
C refers to cyclical variations and
I refers lo irregular variations.
This is the most commonly used model in the decomposition of time series. This model is called Additive model.

