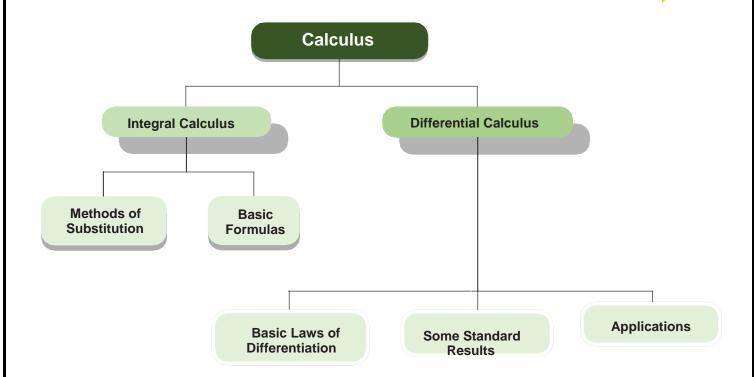


6262969699

CHAPTER - 8 BASIC CONCEPTS OF DIFFERENTAL AND INTEGRAL CALCULUS

(A) DIFFERENTIAL CALCULUS



INTRODUCTION

Differentiation is one of the most important fundamental operations in calculus. Its theory primarily depends on the idea of limit and continuity of function.

DERIVATIVE OR DIFFERENTIAL COEFFICIENT

Let y = f(x) be a function. If h be the small increment in x and the corresponding increment in y or f(x) be y = f(x+h) - f(x)

STANDARD FORMULAS

8	d d r 1 dw
$\frac{d}{dx}(a) = 0$	$\frac{d}{dx}[\ln w] = \frac{d}{dx}[\log_2 w] = \frac{1}{w}\frac{dw}{dx}$
$\frac{d}{dx}(x) = 1$	$\frac{d}{dx}[\log_x u] = \log_x e^{\frac{1}{u}} \frac{du}{dx}$
$\frac{d}{dx}(au) = a\frac{du}{dx}$	$\frac{d}{dx}e^x = e^x \frac{du}{dx}$
$\frac{d}{dx}(u+v-w) = \frac{du}{dx} + \frac{dv}{dx} - \frac{dw}{dx}$	$\frac{d}{dx}a^{\mu}=a^{\mu}\ln a\frac{du}{dx}$
$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$	$\frac{d}{dx}(x^{\nu}) = \nu x^{\nu-1} \frac{dx}{dx} + \ln x \ x^{\nu} \frac{dy}{dx}$
$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{1}{v}\frac{du}{dx} - \frac{u}{v^2}\frac{dv}{dx}$	$\frac{d}{dx}\sin u = \cos u \frac{du}{dx}$
$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$	$\frac{d}{dx}\cos u = -\sin u \frac{du}{dx}$
$\frac{d}{dx}(\sqrt{u}) = \frac{1}{2\sqrt{u}}\frac{du}{dx}$	$\frac{d}{dx}\tan x = \sec^2 x \frac{dx}{dx}$
$\frac{d}{dx}\left(\frac{1}{u}\right) = -\frac{1}{u^2}\frac{du}{dx}$	$\frac{d}{dx}\cot u = -\csc^2 u \frac{du}{dx}$
$\frac{d}{dx} \left(\frac{1}{x^n} \right) = -\frac{n}{x^{n+1}} \frac{dx}{dx}$	$\frac{d}{dx}\sec u = \sec u \tan u \frac{du}{dx}$
$\frac{d}{dx}[f(u)] = \frac{d}{du}[f(u)]\frac{du}{dx}$	$\frac{d}{dx}\cos x = -\csc x \cot x \frac{dx}{dx}$

IMPLICIT FUNCTIONS

A function in the form f(x, y) = 0. For example, $x^2y^2 + 3xy + y = 0$ where y cannot be directly defined as a function of x is called an implicit function of x.

PARAMETRIC EQUATION

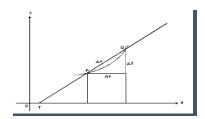
When both the variables x and y are expressed in terms of a parameter (a third variable), the involved equations are called parametric equations.

For the parametric equations x = f(t) and y = h(t) the differential coefficient $\frac{dy}{dx}$

LOGARITHMIC DIFFERENTIATION

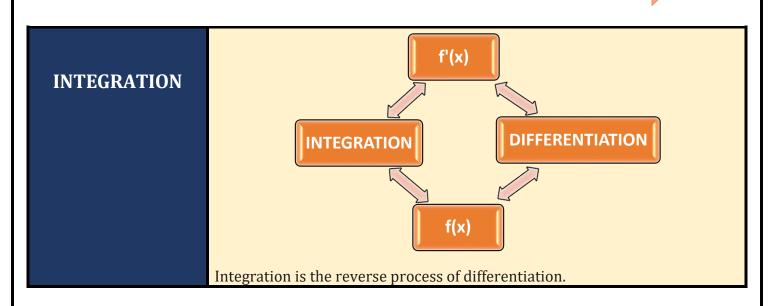
The process of finding out derivative by taking logarithm in the first instance is called logarithmic differentiation.

GEOMETRIC INTERPRETATION OF THE DERIVATIVE



COST FUNCTION	Total cost consists of two parts (i) Variable Cost (ii) Fixed Cost.	
	Average cost (AC or _C)	$\frac{Total\ Cost\ C(X)}{Output\ \overline{X}}$
	Average variable cost (AVC)	$\frac{Variable\ Cost\ V(X)}{Output\ \bar{X}}$
	Average Fixed Cost (AFC)	$\frac{Fixed\ Cost\ F(X)}{Output\ \bar{X}}$
MARGINAL COST	If $C(x)$ the total cost producing x units then the increase in cost in producing one more unit is called marginal cost at an output level of x units	
REVENUE FUNCTION	Revenue, $R(x)$, gives the total money obtained (Total turnover) by selling units of a product. If x units are sold at P per unit, then $R(x)=P.X$	
PROFIT FUNCTION	Profit P(x), the difference of between total revenue R(x) and total Cost C (x).	

(B) INTEGRAL CALCULUS



DEFINITE INTEGRATION

DEFINITION The collection of all antiderivatives of f is called the **indefinite** integral of f with respect to x, and is denoted by

$$\int f(x) \ dx.$$

The symbol f is an integral sign. The function f is the integrand of the integral, and x is the variable of integration.

Differentiation Formulas:

$$1. \ \frac{d}{dx}(x) = 1$$

$$2. \frac{d}{dx}(ax) = a$$

$$3. \frac{d}{dx}(x^n) = nx^{n-1}$$

$$4. \frac{d}{dx}(\cos x) = -\sin x$$

$$5. \frac{d}{dx}(\sin x) = \cos x$$

$$6. \ \frac{d}{dx}(\tan x) = \sec^2 x$$

$$7. \frac{d}{dx}(\cot x) = -\csc^2 x$$

8.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

9.
$$\frac{d}{dx}(\csc x) = -\csc x(\cot x)$$

$$10. \frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$11. \frac{d}{dx}(e^x) = e^x$$

12.
$$\frac{d}{dx}(a^x) = (\ln a)a^x$$

13.
$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}$$

14.
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

15.
$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2 - 1}}$$

Integration Formulas:

1.
$$\int 1 dx = x + C$$

$$2. \int a \, dx = ax + C$$

3.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1$$

$$4. \int \sin x \, dx = -\cos x + C$$

$$5. \int \cos x \, dx = \sin x + C$$

$$6. \int \sec^2 x \, dx = \tan x + C$$

$$7. \int \csc^2 x \, dx = -\cot x + C$$

8.
$$\int \sec x(\tan x) \, dx = \sec x + C$$

9.
$$\int \csc x(\cot x) \, dx = -\csc x + C$$

10.
$$\int \frac{1}{x} dx = \ln|x| + C$$

$$11. \int e^x dx = e^x + C$$

12.
$$\int a^x dx = \frac{a^x}{\ln a} + C \ a > 0, \ a \neq 1$$

13.
$$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1} x + C$$

14.
$$\int \frac{1}{1+x^2} dx = \tan^{-1} x + C$$

15.
$$\int \frac{1}{|x| \sqrt{x^2 - 1}} dx = \sec^{-1} x + C$$

Properties of Definite Integral

Assuming f and g are continuous functions

$$\int_{a}^{b} f(x)dx = \int_{b}^{a} f(x)dx$$

$$\int_{a}^{a} f(x)dx = 0$$

$$\int_{a}^{b} cdx = c(b-a), \text{ where c is any constant}$$

$$\int_{a}^{b} cf(x)dx = c\int_{a}^{b} f(x)dx, \text{ where c is any constant}$$

$$\int_{a}^{b} [f(x) + g(x)]dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$

$$\int_{a}^{b} [f(x) - g(x)]dx = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx$$

$$\int_{a}^{b} [f(x) - g(x)]dx = \int_{a}^{b} f(x)dx - \int_{a}^{b} g(x)dx$$

$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

Question 1

Find an expression for y given $\frac{dy}{dx} = 7x^5$

(c)3

(d) 5

Answer: a

Explanation:

$$\frac{dy}{dx} = 7x^5 \rightarrow dy = 7x^5 dx$$

Integrating both sides, we have

$$\int dy = \int 7x^5 dx \rightarrow y = \frac{7x^6}{6} + c$$

Question 2

Find an expression for y given $\frac{dy}{dx} = x^{-\frac{3}{4}}$

(b)
$$\frac{1}{4}$$

(a)
$$\frac{2}{3}$$
 (c) $\frac{5}{4}$

(d) None

Answer: b

Explanation:

$$\frac{dy}{dx} = x^{-3/4}$$

$$Y = \frac{x^{-3/4+1}}{\frac{-3}{4}+1} = \frac{x^{1/4}}{\frac{1}{4}}$$

$$V = 4x^{1/4}$$

Question 3

 $dy = \int -12x^{-4} dx$ solve it;

(a) 6

(b) 2 (d) 4

(c) 3

Answer: d

Explanation:

$$dy = \int -12x^{-4} dx$$

$$= -12 \int x^{-4} dx$$
Use $\int ax^n dx = a \int x^n dx = \frac{ax^{n+1}}{n+1} + c$

$$= +\left(\frac{-12x^{-3}}{-3}\right) + c$$

$$Y = 4x^{-3} + c$$
Use $\int ax^n dx = a \int x^n dx = \frac{ax^{n+1}}{n+1} + c$

$$= -4, n + 1 = -4 + 1 = -3$$
Simplifying fraction, $\frac{-12}{3} = 4$

Ouestion 4

Given f'(x) = $\frac{1}{2}x^{\frac{1}{3}} - \frac{1}{4}x^{\frac{1}{4}} + \pi$, find f(x)

(a) 6

(b) 2

(c) 3

(d) None

Answer: d Explanation:

$$\frac{1}{2}x^{\frac{1}{3}} - \frac{1}{4}x^{\frac{1}{4}} + \pi$$

$$\int \frac{1}{2} x^{\frac{1}{3}} dx - \int \frac{1}{4} x^{\frac{1}{4}} dx + \int \pi dx$$

$$\frac{1}{2} \int x^{\frac{1}{3}} dx - \frac{1}{4} \int x^{\frac{1}{4}} dx + \pi \int dx$$

$$= \frac{\frac{1}{2}x^{\frac{4}{3}}}{\frac{4}{3}} - \frac{\frac{1}{4}x^{\frac{5}{4}}}{\frac{5}{5}} + \frac{\pi x}{2} + C$$

$$= \frac{3x^{\frac{4}{3}}}{8} - \frac{1}{4} \times \frac{4}{5}x^{\frac{5}{4}} + \pi x + c$$

Question 5

6262969699

Given f'(x) = $\int \left(\frac{2}{x} + \frac{3}{x^2} + \frac{1}{x^5}\right) dx$

(a) -6

(b) 2

(c) -4

(d) None

Answer: c

Explanation:

$$\begin{split} &\int \left\{ \frac{2}{x} + \frac{3}{x^2} + \frac{1}{x^5} \right\} dx \\ &= \int \left(\frac{2}{x} + 3x^{-2} + x^{-5} \right) dx \qquad \text{write as negative exponence} \\ &= \int \frac{2}{x} dx + \int 3x^{-2} dx + \int x^{-5} dx \qquad \text{Use } \int f(x) dx + g(x) dx = \int f(x) dx + \int g(x) dx \\ &= 2 \text{ In } |x| + \frac{3x^{-1}}{-1} + \frac{x^{-4}}{-4} + c \qquad \text{Use } \int ax^n dx = a \int x^n dx = \frac{ax^{n+1}}{n+1} + c \\ &= 2 \text{ In } |x| - \frac{3}{x} - \frac{1}{4x^4} + c \qquad \text{Simplify } \frac{3}{-1} \end{split}$$

Use
$$\int f(x)dx + g(x)dx = \int f(x)dx + \int g(x)dx$$

Use $\int ax^n dx = a \int x^n dx = \frac{ax^{n+1}}{n+1} + c$

Simplify $\frac{3}{-1}$

Question 6

Integrate $\int \frac{3}{1} dx$

(b) $\sqrt{x+c}$

(c) $8\sqrt{x+c}$

(d) $9\sqrt{x+c}$

Answer: a

Explanation:

$$\int \frac{3}{x^{\frac{1}{2}}} dx = \int 3x^{-1/2}$$

$$= \frac{3x^{-1/2+1}}{-\frac{1}{2}+1} + c$$

$$= \frac{3x^{\frac{1}{2}}}{\frac{1}{2}} + c$$

$$= 6x^{\frac{1}{2}} + c$$

$$= 6\sqrt{x} + c$$

Question 7

Find y as a function of x if $\frac{d^2y}{dx^2}$ = 2x when x = 2, y = 7

(a)
$$y = \frac{x^3}{3} + c$$

(b)
$$y = \frac{x^2}{3} + c$$

(c)
$$y = \frac{x}{3} + c$$

Answer: a

Explanation:

$$\int 2x dx = 2 \int x dx$$
$$= \left(\frac{2x^{1+1}}{1+1}\right) + c$$

Use
$$\int ax^n dx = a \int x^n dx = \frac{ax^{n+1}}{n+1} + c$$

$$\frac{dy}{dx} = x^2 + c$$

Multiply of fraction/simplify

Finding
$$y = \int \frac{dy}{dx} = \int x^2 dx$$

 $Y = \frac{x^3}{x^3} + c$

Use
$$\int x^n dx = \frac{1}{n+1} x^{n-2} + c$$

At (2, 7)
$$7 = \frac{2^3}{3} + c$$

Substituting x = 2 and y = 7 to find c

$$C = \frac{21}{8}$$

Thus, the function is $y = \frac{x^3}{3} + c$.

Ouestion 8

Integrate
$$\int \left(w + \frac{1}{w}\right) \left(w - \frac{1}{w}\right) dx$$

(a)
$$\frac{w^3}{3} + \frac{1}{w}$$

(b)
$$\frac{w^3}{3} + \frac{1}{w} + c$$

$$(c)\frac{w}{3} + \frac{1}{w} + c$$

(d) None

Answer: b

Explanation:

$$\int (w + \frac{1}{w})(w - \frac{1}{w}) dw$$

$$= \int (w^2 - \frac{1}{w^2}) dw$$

$$= \int w^2 dw - \int \frac{1}{w^2} dw$$

$$= \int w^2 dw - \int w^{-2} dw$$

$$= \frac{w^3}{3} + \frac{1}{w} + c$$

Express the product as a difference of two squares

Use
$$\int f(x)dx + g(x)dx = \int f(x)dx + \int g(x)dx$$

Express in negative exponential form

Use
$$\int x^n dx = \frac{1}{n+1}x^{n-1} + c$$
. Simplify

Ouestion 9

If
$$\frac{d^2y}{dx^2}$$
 = 10 - 3x, find $\frac{dy}{dx}$ + c

(a)
$$10x - \frac{3}{2}x^2 + c$$

(b)
$$10x - \frac{3}{2} + c$$

(c)
$$10 - \frac{3}{2}x^2 + c$$

(d) none

Answer: a

$$\frac{dy}{dx} = \int (10 - 3x) dx = \int 10 dx - \int 3x dx$$
$$= 10x - \left(\frac{3x^{1+1}}{1+1}\right) + c$$

$$\frac{dy}{dx} = \int (10 - 3x) \, dx = \int 10 dx - \int 3x dx \qquad \text{Use } \int f(x) dx + g(x) dx = \int f(x) dx + \int g(x) dx$$

$$= 10x - \left(\frac{3x^{1+1}}{1+1}\right) + c \qquad \text{Use } \int ax^n dx = a \int x^n dx = \frac{ax^{n+1}}{n+1} + c$$

6262969699

$$= 10x - \left(\frac{3x^2}{2}\right) + c$$
$$= 10x - \frac{3}{2}x^2 + c$$

Simplify

Question 10

Calculate $\int x^7 dx$

(a)
$$\frac{1}{8}x^7 + c$$

(b)
$$\frac{1}{7}x^7 + c$$

(c)
$$\frac{1}{8}x^8 + c$$

(d) None

Answer: c

Explanation:

$$\int x^7 dx = \frac{1}{7+1} x^{7+1} + c$$

Use $\int x^n dx = \frac{1}{n+1}x^{n+1} + c$ and substitute n = 7

$$=\frac{1}{8}x^8+c$$

Question 11

If
$$\int f(x)dx = xe^{-\log|x|} + f(x)$$
, then $f(x)$ is

(b) 0

(d) logx

Answer: c

Explanation:

$$\int f(x)dx = xe^{\log\left|\frac{1}{x}\right|} + f(x) \rightarrow \int f(x)dx = \frac{x}{|x|} + f(x)$$

On differentiating both sides, we get

$$F(x) = 0 + f'(x)$$

we know

$$\frac{d}{dx}(e^x) = e^x$$
, $\therefore f(x) = ce^x$

Question 12

If f (t) = $\int_{-t}^{t} \frac{dx}{1+x^2}$, then f (1) is

(b) $\frac{2}{3}$

$$(c) -1$$

(d) 1

Answer: d

Given
$$f(t) - \int_{-t}^{t} \frac{dx}{1+x^2} = [tan^{-1}x]_{-t}^{t} = 2 tan^{-1}t$$

Differentiating with respect to
$$f'(t) = \frac{2}{1+t^2}$$

6262969699

$$f'(1) = \frac{2}{2} = 1$$

Ouestion 13

The existence of first order partial derivatives implies continuity

(a) True

(b) False

(c) Not sure

(d) Invalid Question

Answer: b

Explanation:

The mere existence cannot be declared as a condition for continuity because the second order derivates should also be continuous.

Ouestion 14

Eight guests have to be seated 4 on each side of a long rectangular table. 2 particular guests desire to sit on one side of the table and 3 on the other side. The number of ways in which the sitting arrangements can be made is:

(a) 1732

(b) 1728

(c) 1730

(d) 1278

Answer: b Explanation:

Let the two particular guests sit on right side.

So the three particular guests will sit on left side.

So remaining will be 3 people which need to be selected.

From these 3 people 2 will sit on right side and the one will sit on left side.

Total ways of arranging the people will be =

$$3_{C_2} \times 1_{C_1} = 3$$

Total ways of arranging the people will be =

Selection of remaining \times 4! (For arranging people on left side) \times 4! (Arranging people on

right side) = $3 \times 24 \times 24 = 3 \times 756 = 1728$

So in 1728 ways we can arrange them

Question 15

If $f(x) = x^k$ and f'(1) = 10, then the value of k is

(a) 10

(b) -10

 $(c)\frac{1}{10}$

(d) None

Answer: a

Explanation:

$$F(x) = x^k$$

 $F(1) = f(1) = k \times 1$
 $10 = k \times 1$
 $K = 10$

Question 16

The points of discontinuity of the function, $f(x) = \frac{x^2 + 2x + 5}{x^2 - 3x + 2}$ are

(a) x=0, x=1

(b) x=1, x=2

(c) x=0, x=2

(d) None

Answer: b

Explanation:

$$f(x) = \frac{x^2 + 2x + 5}{x^2 - 3x + 2}$$

Denominator = 0

$$X^2 - 3x + 2 = 0$$

$$(x-1)(x-2) = 0$$

$$X = 1, x = 2$$

Question 17

The gradient of a function is parallel to the velocity vector of the level curve

(a) True

(b) False

(c) Not sure

(d) Invalid questions

Answer: b Explanation:

The gradient is perpendicular and not parallel to the velocity vector of the level curve.

Question 18

$$y = (8 + x^3)(x^3 - 8)$$

(a) $6x^5$

(b) x^5

(c) 6x

(d) None

Answer: a

Explanation:

This problem is solvable as a product but if you realize that you are looking at a difference of two squares, it because very simple.

$$Y = (8 + x^3)(x^3 - 8) = x^6 - 64$$

6262969699

$$\frac{dy}{dx} = 6x^5$$

Question 19

If
$$(x, y, z, t) = xy + zt + x^2 y z t$$
; $x = k^3$; $y = k^2$; $z = k$; $t = \sqrt{k}$

Find $\frac{df}{dt}$ at k = 1

(a) 34

(b) 16

(c)32

(d) 61

Answer: b

Explanation:

Using chain rule we have

$$\frac{df}{dt} = f_{x} \frac{dx}{dk} f_{y} \frac{dy}{dk} + f_{z} \frac{dz}{dk} + f_{t} \frac{dt}{dk}$$

=
$$(y + 2xy zt).(3k^2) + (x + x^2zt).(2k) + (t + x^2yt).(1) + (z + x^2yz).(\frac{1}{2\sqrt{k}})$$

Put k = 1; we have x=y=z=t=1

9 + 4 + 2 + 1 = 16.

Question 20

If
$$(x, y) = x^2 + y^3$$
; $x = t^2 + t^3$; $y = t^3 + t^9$ find $\frac{df}{dt}$ at t=1.

(a) 0

(b) 1

(c) -1

(d) 164

Answer: d

Explanation:

Using chain rule we have

$$\frac{df}{dt} = f_x \frac{dx}{dt} + f_y \frac{dy}{dt}$$

$$x = (2x). (2t + 3t^2) + (3y^2).(3t^2 + 9t^8)$$

Put t = 1; we have x = 2; y = 2

= 4.(5) + 12.(12) = 164.

Ouestion 21

$$f(x, y) = x^2 + xyz + z$$
 find f_x at (1, 1, 1)

(b) 1

(c) 3

(d) -1

Answer: c

$$F_x = 2x + yz$$

Put
$$(x, y,z) = (1, 1, 1)$$

$$F_x = 2 + 1 = 3$$
.

Question 22

Necessary condition of Euler's theorem is

- (a) z should be homogenous and of order
 - (b) x should not homogeneous but for order n
- (d) should be the function of x and y only (c) Should be implicit

Answer: a **Explanation:**

Of x and y of order 'n' then $x \frac{dz}{dx} + y \frac{dz}{dy} = nz''$

Answer 'b' is incorrect as z should be homogeneous.

Answer 'c' is incorrect as z should not be implicit.

Answer 'd' is incorrect as z should be the homogeneous function of x and y not nonhomogeneous functions.

Question 23

If
$$f(x, y) = \frac{x+y}{y}$$
, $x \frac{dx}{dz} + y \frac{dz}{dy} = ?$

(a) 0

(b) 1

(c) 2

(d) 3

Answer: a

Explanation:

Given function f (x, y) = $\frac{x+y}{y}$ can be written as f(x, y) = $\frac{\left|1+\frac{y}{x}\right|}{\underline{y}}$ = x $_{0}$ f($\frac{y}{x}$),

Hence by Euler's theorem.

$$x\frac{dz}{dx} + y\frac{dz}{dy} = 0$$

Question 24

Find the approximate value of $[0.982 + 2.012 + 1.942]^{1/2}$ (b) 2.96 (a) 1.96

(c) 0.04(d) -0.04

Answer: b

Explanation:

Let
$$f(x, y, z) = (x^2 + y^2 + z^2) \left(\frac{1}{2}\right)$$
(1)

Hence, x = 1, y = 2, z = 2, so that dx = -0.02, dy = 0.01, dz = -0.06

From (1)

$$\frac{\mathrm{df}}{\mathrm{dx}} = \frac{x}{f}$$

$$\frac{\mathrm{dx}}{\mathrm{d}f} = \frac{y}{y}$$

$$\frac{dy}{df} = \frac{z}{z}$$

6262969699

$$df = \frac{df}{dx}dx + \frac{df}{dy}dy + \frac{df}{dx}dz = \frac{(xdx + ydy + zdz)}{f} = \frac{-0.02 + 0.01 - 0.12}{3} = -0.04$$

$$[0.98^2 + 2.01^2 + 1.94^2]^{1/2} = f(1, 2, 2) + df = 3 - 0.04 = 2.96$$

Question 25

$$f(x,y) = \frac{x^3 + y^3}{x^{99} + y^{98}x + y^{99}}$$
 find the value of f_y at $(x, y) = (0, 1)$

(a) 101

(b) -96

(c) 210

(d) 0

Answer: b

Explanation:

Using Euler theorem

 $Xf_x + yf_y = n f(x, y)$

Substituting x = 0; n = -96 and y = 1 we have

 $F_y = -96. F(0, 1) = -96.(1 / 1)$

= - 96

Ouestion 26

$f(x, y) = x^3 + xy^2 + 901$ satisfies the Eulers theorem

(a) True

(b) False

(c) Not sure

(d) Invalid questions

Answer: b

Explanation:

The function is not homogenous and hence does not satisfy the condition posed by Euler's theorem.

Ouestion 27

For a homogenous function if critical points exist the value at critical points is

(a) 1

(b) equal to its degree

(c) 0

(d) -1

Answer: c

For a homogeneous function if critical points exist the value at critical points is? $f(a, b) = 0(a, b) \rightarrow \text{critical points}$. Explanation: Euler's theorem is nothing but the linear combination asked here, The degree of the homogeneous function can be a real number.

Question 28

$$\lim_{n \to \infty} \left[\frac{n}{1+n^2} + \frac{n}{4+n^2} + \frac{n}{9+n^2} + \dots + \frac{1}{2n} \right]$$
 is equal to

(a)
$$\frac{\pi}{2}$$

(b) $\frac{\pi}{4}$

(c) 1

(d) None of these

Answer: d Explanation:

6262969699

We have
$$\lim_{n \to \infty} \left[\frac{n}{1+n^2} + \frac{n}{4+n^2} + \frac{1}{2n} \right]$$

$$= \lim_{n \, \to \, \infty} \int_{r=1}^n \, \frac{_n}{^{r^2+n^2}} = \lim_{n \, \to \, \infty} \sum_{r=1}^n \frac{_n}{^{n^2\left(1+\frac{r^2}{n^2}\right)}}$$

$$= \lim_{n \, \rightarrow \, \infty} \sum_{r=1}^n \frac{1}{n\left(1 + \frac{r^2}{n^2}\right)} - \int_0^1 \frac{dx}{1 + x^2}$$

$$\left\{ \text{Applying formula, } \lim_{n \to \infty} \sum_{r=0}^{n-1} \left\{ f\left(\frac{r}{n}\right) \right\} \cdot \frac{1}{n} = \int_{0}^{1} f(x) dx \right\} \\
= \left[\tan^{-1} x \right]_{0}^{1} = \tan^{-1} 1 - \tan^{-1} 0 = \frac{\pi}{4}.$$

Question 29

For homogenous function with no saddle points we must have the minimum value as (a) 90 (b) 1

(c) Equal to degree

(d) 0

Answer: d

Explanation:

Substituting $f_x = f_y = 0$ At critical in euler's theorem we have $nf(a, b) = 0 \Rightarrow f(a, b) = 0(a, b) \Rightarrow$ critical points.

Question 30

The derivates of $f(x) = \int_{x^2}^{x^3} \frac{1}{\log t} dt$, (x>0) is

$$(a)\frac{1}{3\log x} - \frac{1}{2\log x}$$

(b)
$$\frac{1}{3 \log x}$$

$$(c) \frac{3x^2}{3\log x}$$

(d)
$$(log x)^{-1}$$
.x (x -1)

Answer: d

Explanation:

We know that

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_a^b f(t) \mathrm{d}t \right) = \frac{\mathrm{d}b}{\mathrm{d}x} f(b) - \frac{\mathrm{d}a}{\mathrm{d}x} f(a)$$

a and b are functions of x

$$\therefore f(x) = \int_{x^2}^{x^2} \frac{1}{\log t} dt$$

$$F'(x) = \frac{d}{dx}(x^3) \frac{1}{\log x^3} - \frac{d}{dx}(x^2) \frac{1}{\log x^2}$$
$$= \frac{3x^2}{3\log x} - \frac{2x}{2\log x} = x(x-1)(\log x)^{-1}$$

Question 31

The greatest value of the function $f(x) = \int_1^x |t| dt$ on the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$ is given by?

(a) $\frac{3}{8}$

(b) $-\frac{1}{2}$

(c) $-\frac{3}{8}$

(d) $\frac{2}{5}$

Answer: c

Explanation:

$$f^{d}(\mathbf{x}) = |\mathbf{x}| > 0 \forall \mathbf{x} \in \left[-\frac{1}{2}, \frac{1}{2}\right]$$
 hence the

Function is increasing on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ and therefore f(x) has

Maximum at the right point of $\left[-\frac{1}{2}, \frac{1}{2}\right]$

$$_{\varrho}$$
 Max f(x) = f $\left(\frac{1}{2}\right) = \int_{1}^{\frac{1}{2}} |t| dt - \frac{3}{8}$.

Question 32

For homogenous function the linear combination of rates of independent change along ${\bf x}$ and ${\bf y}$ axis is

- (a) Integral multiple function value
- (b) no relation to function value
- (c) real multiple of function value
- (d) depends if the function is a polynomial

Answer: c

Explanation:

Euler's theorem is nothing but the linear combination asked here, The degree of the homogeneous function can be a real number. Hence, the value is integral multiple of real number.

Question 33

$$\int_0^{b-c} f^n(x+a) dx =$$

(a) f'(a)-f'(b)

(b) f'(b-c+a)-f'(a)

(c) f'(b+c-a) + f'(a)

(d) None of these

Answer: b

Explanation:

$$\int_0^{b-c} f^n (x+a) dx$$

=
$$[f'(x + a)]_0^{b-c}$$
 = $f'(b-c+a) - f'(a)$.

Question 34

$$\int_0^x \frac{x^3 dx}{(x^2 + 4)^2} =$$

(a) 0

(b) ∞

(c) 1/2

(d) None of these

6262969699

Answer: b

Explanation:

$$\int_{0}^{\infty} \frac{x^{3} dx}{(x^{2}+4)^{2}} = \frac{1}{2} \int_{0}^{\infty} \frac{2x^{2} dx}{(x^{2}+4)^{2}} dx$$

$$= 2 \int_{0}^{\infty} \frac{t}{(t+4)^{2}} dt, \qquad [Putting x^{2}=t]$$

$$= 2 \int_{0}^{\infty} \left[\frac{1}{t+4} - \frac{4}{(t+4)^{2}} \right] dt = \frac{1}{2} \left[\log(t+4) + \frac{4}{t+4} \right]_{0}^{\infty}$$

$$= \frac{1}{2} [\log \infty + 0 - (\log 4 + 1)] = \infty$$

Ouestion 35

The points of intersection of F1(x) = $\int_2^x (2t - 5) dt$ and $f_2(x) = \int_0^x 2t dt$, are

(a)
$$\left(\frac{6}{5}, \frac{36}{25}\right)$$

(b)
$$\left(\frac{2}{3}, \frac{4}{5}\right)$$

(c)
$$\left(\frac{1}{3}, \frac{3}{6}\right)$$

(d)
$$\left(\frac{5}{4}, \frac{5}{7}\right)$$

Answer: a

Explanation:

Let
$$f_1(x) = y_1 = \int_2^x (2t - 5) dt$$
 and

 $F_2(X) = y_2 = \int_0^x 2t dt$ now point of intersection means whose those point at which

$$x^2 = x^2 - 5x + 6 => x = \frac{6}{5}$$
 and $y = x^2 = \frac{36}{25}$ thus point of

Intersection is
$$\left(\frac{6}{5}, \frac{36}{25}\right)$$

Question 36

The solution of the equation $\frac{x^2d^2y}{dx^2}$ = In x, when x=1, y=0 and $\frac{dy}{dx}$ = -1

(a)
$$\frac{1}{2}$$
(Int)² + Inx

(b)
$$\frac{1}{2}(\ln x)^2 - \ln x$$

$$(c) - \frac{1}{2}(\ln x)^2 + \ln x$$

$$(d) - \frac{1}{2}(\log x)^2 - \log x$$

Answer: d

Explanation:

$$\frac{d^2y}{dx^2} = \frac{\log x}{x^2} \rightarrow \frac{-(\log x + 1)}{x} + c$$
At $\frac{dy}{dx} = -\int \frac{\log x + 1}{x} dx = -\frac{1}{2} (\log x)^2 - \log x$

Ouestion 37

The rate of increase of bacteria in a certain culture is proportional to the number present. If it double 5 hours then in 25 hours its number would be

(a) 8 times the original

(b) 16 times the original

(c) 32 times the original

(d) 64 times the original

Answer: c

6262969699

Explanation:

Let P₀ be the initial population and let the

Population after t years be P. then $\frac{dp}{dt} = KP \rightarrow \frac{dP}{P} = kdt$

On integrating, we have $\log P = kt + c$ At t = 0,

$$P = P_0$$
 : $\log P_0 = 0 + C$, : $\log P = KT + \log P_{0^0}$

Log
$$\frac{p}{p_0}$$
 = kt when t = 5 hrs, P = 2P₀:

$$\log \frac{2P}{P_0} = 5K \cdot K = \frac{\log^2}{5} : : \log \frac{p}{p_0} = \frac{\log^2}{5} t$$
 when

T = 25 hours, we have

$$Log \frac{p}{p_0} = \frac{log^2}{5} \times 25 = 5 log 2 = log 32; \therefore P = 32P_0.$$

Question 38

The degree of the $3\frac{d^2y}{dx^2} = \left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^{\frac{3}{2}}$ is differential equation

(a) 1

(b) 2

(c) 3

(d) 6

Answer: b

Explanation:

$$3\frac{d^2y}{dx^2} = \left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^{\frac{3}{2}}$$
 on squaring, we

Get
$$9\left(\frac{d^2y}{dx^2}\right)^2 = \left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^3$$
 obviously the

Highest derivates $\frac{d^2y}{dx^2}$ contains a degree 2.

Question 39

The differential equation representing the family of curves $y^2 = 2c(x+\sqrt{c})$, where c is a positive perimeter, is of

(a) Order 1

(b) Order 2

(c) Degree 3

(d) Degree 4

Answer: a

Explanation:

Given family of curves

$$y^2 = 2c(x + \sqrt{c}),$$
 (i)

On differentiating both sides, we get

$$2y\frac{dy}{dx} = 2c(1+0) \Rightarrow c = y\frac{dy}{dx}$$

From equation (i), we have

$$y^2 = 2y \frac{dy}{dx} \left\{ x + \left(y \frac{dy}{dx} \right)^{1/2} \right\}$$

$$\Rightarrow \left(y^2 - 2xy \, \frac{dy}{dx} \right) = 2 \left(y \, \frac{dy}{dx} \right)^{3/2}$$

On squaring both sides, we get

6262969699

$$\left(y^2 - 2xy \, \frac{dy}{dx}\right)^2 = 4\left(y \frac{dy}{dx}\right)^3$$

So,

Order = 1 (order of a differential equation is the order of the highest derivative (also known as differential coefficient) present in the equation)

Degree = 3 (The degree of differential equation is represented by the power of the highest order derivative in the given differential equation)

Ouestion 41

The order and degree of the differentiate equations $\left(1+3\frac{dy}{dx}\right)^{\frac{2}{3}}-4\left(\frac{d^3y}{dx^3}\right)$ are

(a) $1, \frac{2}{3}$

(b) 3, 1

(c) 3, 3

(d) 1, 2

Answer: c

Explanation:

To check, order and degree, the given differential equation should be fees from radicals, hence taking cube on both sides,

$$\left(1+3.\frac{dy}{dx}\right)^2 = \left(4.\frac{d^3y}{dx^3}\right)^3$$

Order = 3, degree = 3.

Question 42

The solution of the differential equation $y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx} \right)$ is

(a)
$$y=c(x+a)(1+ay)$$

(b)
$$y=c(x+a) (1-ay)$$

(c)
$$y=c(x-a) (1+ay)$$

(d) None of these

Answer: b

Explanation:

$$Y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx} \right)$$

$$Y - ay^2 = (x + a) \frac{dy}{dx}$$

$$\frac{dy}{y(1-ay)} = \frac{dx}{x+a}$$

On integrating both sides, we get $\boldsymbol{\rho}$

Logy - log (1 - ay) = log(x + a) + log c

$$\frac{y}{(1-ay)}$$
 = c(x + a) or c(x + a)(1 - ay) = y.

Ouestion 43

Compute the sum of 4 digit numbers which can be formed with four digit 1, 3, 5, 7 if each digit is used once in each engagement:

6262969699

(c) 106666

(d) None of these

Answer: d

Explanation:

The number of arrangements of 4 different digits taken 4 at a time is given by 4_{p_4} = 4! = 24. Al the four digit will occur equal number of times at each of the position, namely ones, tens, hundreds, thousands.

Thus, each digit will occur $\frac{24}{4}$ = 6 times in each of the position. The sum of digits in one's position will be 6 × (1+3+5+7) = 96. Similar is the case in ten's hundred's and thousand's places.

Therefore, the sum will be $96 + 96 \times 10 + 96 \times 100 = 106656$

PAST EXAMINATION QUESTIONS:

MAY 2018

Question 1

The value of $\int_1^2 \frac{1-x}{1+x} dx$ is equal to:

(a)
$$\log_{\frac{3}{2}}^{\frac{3}{2}}$$
 - 1

(b)
$$2\log_{\frac{3}{2}}^{3} - 1$$

$$(c) \frac{1}{2} \log \frac{3}{2}$$

(d) $\frac{1}{2} \log_{\frac{3}{2}}^{\frac{2}{3}} - 1$

Answer: b

Explanation:

Explanation:

$$\int_{1}^{2} \left(\frac{1-x}{1+x}\right) dx = \int_{1}^{2} \left(\frac{1}{1+x} - \frac{x}{1+x}\right) dx$$

$$\int_{1}^{-2} \frac{1}{1+x} dx - \int_{1}^{-2} \frac{x}{x+1} dx$$

$$\int_{1}^{2} \frac{1}{1+x} dx - \int_{1}^{-2} \left(\frac{1+x-1}{1-x}\right) dx$$

$$\int_{1}^{2} \frac{1}{(1+x)} dx - \int_{1}^{2} \left(\frac{1}{1+x}\right) dx$$

$$\int_{1}^{2} \frac{1}{1+x} dx - \int_{1}^{2} 1 \times dx + \int_{1}^{2} \frac{1}{1+x} dx$$

$$2 \int_{1}^{2} \frac{1}{1+x} - \int_{1}^{2} 1 dx$$

$$2 [log(1+x)_{1}^{2} - [x]_{1}^{2}$$

$$2 [log(2+1) - log(1+1) - [2-1]$$

$$2 [log3 - log2] - 1$$

$$2 log \frac{3}{2} - 1$$

Question 2

 $\int_0^2 \frac{3\sqrt{x}}{\sqrt{x}}$ is equal to

6262969699

(a)
$$\frac{\sqrt[2]{2}}{loge^3}$$

$$(c) \frac{2(3\sqrt{2-1})}{\log_e 3}$$

(d)
$$\frac{3\sqrt{2}}{\sqrt{2}}$$

Answer: c

Explanation:

$$\int_0^2 \frac{3\sqrt{x}}{\sqrt{x}} \, \mathrm{d}x$$

Let
$$\sqrt{x} = t$$

Let
$$\sqrt{x} = t$$

$$\int_0^2 3^{\sqrt{x}} \cdot \frac{1}{\sqrt{x}} dx \frac{1}{2\sqrt{x}} dx = dt$$

$$\frac{1}{\sqrt{x}} dx = 2dt$$

$$\frac{1}{\sqrt{x}}$$
 dx = 2dt

X	0	2
t	0	$\sqrt{2}$

$$\int_0^{\sqrt{2}} 3^t \cdot 2dt$$

$$\int_0^{\sqrt{2}} 3^t dt$$

$$2\left[\frac{3^t}{\log 3}\right]_0^{\sqrt{2}}$$

$$2\left[\frac{3^{\sqrt{2}}}{\log 3} - \frac{3^{0}}{\log 3}\right]$$

$$\frac{2(3^{\sqrt{2}} - 3^{0})}{\log_{e} 3}$$

$$\frac{2(3^{\sqrt{2}}-3^0)}{\log 3}$$

Question 3

The value of $\int_0^2 \frac{\sqrt{x}}{\sqrt{x}+\sqrt{2-x}} dx$ is:

(b) 3

(d) 1

Answer: d

Explanation:

$$\int_0^2 \frac{\sqrt{x}}{\sqrt{x} + \sqrt{2 - x}} \, dx \, \dots (1)$$

$$I = \int_0^2 \frac{\sqrt{0 + 2 - x}}{\sqrt{0 + 2 - x} + \sqrt{2 - (0 + 2 - x)}} dx$$

Explanation:
$$\int_{0}^{2} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{2 - x}} dx \dots (1)$$

$$I = \int_{0}^{2} \frac{\sqrt{0 + 2 - x}}{\sqrt{0 + 2 - x} + \sqrt{2 - (0 + 2 - x)}} dx$$

$$\left[\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx \right]$$

$$I = \int_0^2 \frac{\sqrt{2-X}}{\sqrt{2-X} + \sqrt{X}} dx \dots (2)$$

Apply (1) and (2) we get

$$2 I = \int_0^2 \left[\frac{\sqrt{x}}{\sqrt{x + \sqrt{2 - x}}} + \frac{\sqrt{2 - x}}{\sqrt{2 - x + \sqrt{x}}} \right] dx$$

$$2 I = \int_0^2 \frac{(\sqrt{x} + \sqrt{2} - x)}{(\sqrt{x} + \sqrt{2} - x)} dx$$

$$2I = \int_{0}^{2} 1 dx$$

$$2 I = [X]_0^2$$

```
2 I = [2 - 0]

2 I = 2

I = \frac{2}{2}

I = 1
```

Ouestion 4

$$\lim_{X \to 1} \frac{x + x^2 + x^3 \dots + x^n - n}{x - 1}$$

(a) n

(b)
$$\frac{n(n+1)}{2}$$

(c)
$$(n + 1)$$

(d)
$$n(n + 1)$$

Answer: b

Explanation:

lim
$$x + x^2 + x^3 + x^{n-n} = 0$$
 (:) By L.H. Rule

$$= \lim_{x \to 1} \frac{d/dx(x+x^2+x^3\pm - - - - + x^n - n)}{d/dx(x-1)}$$

$$= \lim_{x \to 1} \frac{1+2x+3x^2+ - - - - + nx^{n-1}) - 0}{1-0}$$

$$= \frac{1+2x+3(i)^2 + - - - - + n(1)^{n-1}}{1}$$

$$= 1+2+3+ - - - - n$$

$$= 1 + 2 + 3 + 4$$

$$= \sum_{n=1}^{\infty} \frac{n(n+1)}{2}$$

Ouestion 5

The cost function for the production of x unit of a commodity is given by $C(x) = 2x^3 +: 15x^2 + 36x + 15$

(a) 3 (c) 1 (b) 2 (d) 4

Answer: a

Explanation:

The cost function given by $C(x) = 2x^3 + 15x^2 + 36x + 15$

$$\frac{d}{dx}c(x) = 6x^2 - 30x + 36 \dots (1)$$

$$C(x) = 0$$

$$6x^2 - 30x + 36 = 00$$

$$6(x^2 - 5x + 6) = 0$$
$$= x^2 - 5x + 6 = 0$$

$$= x^2 - 3x - 0 = 0$$

= $x^2 - 3x - 2x + 6 = 0$

$$= x(x-3) - 2(x-3) = 0$$

$$(x-3)(x-2) = 0$$

X=3, 2

Differentiating equations (2) again w.r.f. 'x'

6262969699

C(x) = 12x-30

Putting (x = 2) in

 $C(x) = 12 \times 2 - 30 = -6$

Putting (x=3) in

 $C(x) = 12 \times 3 - 30 = 6(+ve)$ so function is minimum at x=3

Eq(3)

Question 6

$$\lim_{x\to 0} \frac{2e^{\frac{1}{x}-3x}}{1}$$

$$x \rightarrow 0$$
 $e^{\frac{1}{x}+}$ (a) -3

(c) 2

(b) 0 (d) 9

Answer: C

Let
$$\frac{1}{x} = y$$
 if $x \rightarrow 0$, $y \rightarrow \infty$

$$\lim_{x \to \infty} \frac{2e^{y} - 3\frac{1}{y}}{e^{y} + \frac{1}{y}}$$

$$=\lim_{\substack{x\to\infty\\2-3}}$$

$$=\frac{2-3\frac{1}{\infty.e^{\infty}}}{1+\frac{1}{\infty.e^{\infty}}}$$

$$=\frac{2-0}{1+0}=2$$

NOV 2018

Question 1

Let x = at³, y= $\frac{a}{t^2}$. Then $\frac{dy}{dx}$ =

(a)
$$\frac{-1}{t^6}$$

(b)
$$\frac{-3a}{t^6}$$

$$(c)\frac{1}{3at^6}$$

(d) None

Answer: d

Explanation:

If
$$x = at^3$$
, $y = \frac{a}{t^2} = at^{-2}$

Given $x = at^3$

Different w.r.t. (t)

$$\frac{dy}{dx} = \frac{d}{dt} at^3 = a.3t^2 = 3at^2$$

and y=at⁻²

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-2at^{-3}}{3at^2} = \frac{-2}{3t^5}$$

Ouestion 2

$$\int x(x^2+4)^5$$
 dx is equal to

(a)
$$(x^2 + 4)^6 + c$$

(b)
$$\frac{1}{12}$$
(x² + 4)⁶ + c

$$(c)\frac{1}{6}(x^2+4)^6+c$$

(d) None

Answer: b

Explanation:

$$\int x(x^2 + 4)^5 = x$$

Let
$$x^2 + 4 = t$$

$$2xdx = dt$$

$$Xdx = \frac{dt}{2}$$

$$\int (x^2 + 4)^5 .x dx$$

$$\int t^5 . \frac{dt}{2}$$

$$\int t^5 \cdot \frac{dt}{dt}$$

$$=\frac{1}{2}\int t^{5}dt$$

$$=\frac{1}{2}\frac{t^{6}}{t^{6}}$$

$$= \frac{1}{12}(x^2 + 4)^6 + c$$

Ouestion 3

xy = 1 then $y^2 + \frac{dy}{dx} = ?$

- (a) 1
- (c) 2

- (b) 0
- (d) None

Answer: b

Explanation:

Given: xy = 1

To find:
$$y^2 + \frac{dy}{dx} = ?$$

$$Xy = 1$$

$$X = \frac{1}{v}$$

Differentiate w.r.t x

$$1 = -\frac{1}{y^2} \cdot \frac{dy}{dx}$$
$$y^2 = -\frac{dy}{dx}$$
$$y^2 + \frac{dy}{dx} = 0$$

(chain rule)

$$y^2 = -\frac{dy}{dx}$$

$$y^2 + \frac{dy}{dx} = 0$$

Hence, the value of given differential equation is 0

Question 4

$$\int_{-1}^{3} (1+3x+x^3) dx$$
 is equal to

$$(a) -4$$

(b) 4

(d) -3

Answer: a

$$\int_{-1}^{3} (1 + 3x + x^3) dx$$

$$\int_{-1}^{3} 1 dx + \int_{-1}^{3} 3x dx - \int_{-1}^{3} x^{3} dx$$

$$[x]_{-1}^3 + 63\left[\frac{x^2}{2}\right]_{-1}^3 - \left[\frac{x^4}{4}\right]_{-1}^3$$

$$[3-(-1)]+\frac{3}{2}[(3)^2-(-1)^2-\frac{1}{4}[(3)^4-(-1)^4]$$

$$(3+1)+\frac{3}{2}[9-1]-\frac{1}{4}[81-1]$$

$$4 + \frac{3}{2} \times 8 - \frac{1}{4} \times 80$$

MAY 2019

Question 1

If $2^{x} - 2^{y} = 2^{x-y}$ then $\frac{dy}{dx}$ at x = y = 2

(b) 2

(d)5

Answer: a

$$2x - 2y = 2x-y$$

$$x = y = 2 \frac{dy}{dx}$$

$$Z_{11} = Z_2 = Z_{11}$$

$$[\log^2 \left[1 - \frac{dy}{dy}\right]$$

$$2^{x} - 2^{y} = 2^{x-y} \qquad x = y = 2 \frac{dy}{dx}$$

$$2^{x} . \text{Log}^{2} - 2^{y} . \log^{2} . \frac{dy}{dx} = 2^{x-y} . \log^{2} \left[1 - \frac{dy}{dx} \right]$$

$$1 = 2^{2} [2^{x} - 2^{y}]^{\frac{dy}{dx}} - 1 = 2^{2} [2^{x+y}]^{\frac{dy}{dx}}$$

$$\operatorname{Log^{2}[2^{x} - 2^{y} \cdot \frac{dy}{dx}] = \operatorname{Log^{2}[2^{x-y} \left(1 - \frac{dy}{dx}\right)]}^{x}$$

$$2^2 - 2^2 \cdot \frac{dy}{dx} = 2^0 \left[1 - \frac{dy}{dx} \right]$$

$$4-4.\frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$4-1 = 4\frac{dy}{dx} - \frac{dy}{dx}$$

$$3 = 3 \frac{dy}{dx}$$

$$\frac{dy}{dx} = 1$$

Question 2

If the cost of function of a commodity is given by $C = 150x-5x^2 + \frac{x^3}{6}$, where C stands for cost and x stands for output. If the average cost is equal to the marginal cost then the output x =_

(a) 5

(b) 10

(c) 15

(d) 20

Answer: c

Explanation:

Average cost = $\frac{Totalcost}{output}$

$$C = 150x - 5x^2 + \frac{x^3}{6}$$

$$\frac{c}{output} = \frac{150x}{x} - \frac{5x^2}{x} - \frac{\frac{x^3}{6}}{x}$$

$$C = 150 - 5x + \frac{x^2}{6}$$

$$C = 150-5x + \frac{x^2}{6}$$

$$\frac{dc}{dx} = -5 + \frac{2x}{6}$$

$$\frac{dx}{-5} + \frac{x}{-} = 0$$

$$75+x=0$$

$$X = 15$$

Ouestion 3

$$\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5-x} + \sqrt{x}} dx =$$
(a) 1

(c) 2

(b)
$$\frac{1}{2}$$
 (d) $\frac{3}{2}$

Answer: b

Explanation:
Let
$$I = \int_2^3 \frac{\sqrt{x}}{\sqrt{5-x} + \sqrt{x}} dx$$
 ---- (1)
Using $\int_a^b f(x) dx = \int_a^b f(a+b-x) dx$

$$\therefore I = \int_2^3 \frac{\sqrt{5-x}}{\sqrt{5-(5-x)} + \sqrt{5-x}} dx$$
 ----- (2)

$$\therefore I = \int_{2}^{3} \frac{\sqrt{5-x}}{\sqrt{5-(5-x)} + \sqrt{5-x}} dx \qquad ----- (2)$$

$$I = \int_2^3 \frac{\sqrt{5-x}}{\sqrt{x} + \sqrt{5-x}} dx$$

Adding (1) and (2)

$$2I = \int_{2}^{3} \frac{\sqrt{x} + \sqrt{5-x}}{\sqrt{x} + \sqrt{5-x}} dx$$

$$= \int_{2}^{1} 1. u$$

$$= [x]_2^3$$

$$2I = 3 - 2$$

6262969699

Question 4

$$\int \log_e(a^x)dx =$$

(a)
$$\log_e a \left[\frac{x^2}{2} \right] + c$$

(c)
$$x \log_e a^x - x + c$$

(b)
$$\log_e a^{\left[\frac{x}{2}\right]+c}$$

Answer: a

Explanation:

 $\int \log_e (a^x) dx$

By option method: Base method

Differentiate option a

$$log_e a^{\left[\frac{x^2}{2}\right]}$$

$$\frac{1}{a\left|\frac{x^2}{2}\right|} \times a^{\left[\frac{x^2}{2}\right]} \cdot \log^a \cdot \times \frac{2x}{2}$$

$$=\log\frac{a^x}{e}$$

NOV 2019

Question 1

 $\int a^x dx$.

(a)
$$x^{x}(1 + \log x)$$

(b) $1 + \log x$

(d)
$$\frac{a^x}{\log a}$$
 + c

Answer: d

Explanation:

(d) Since, we know that

$$\frac{d}{dx}\frac{a^x}{\log a} = a^x$$

$$\int a^x dx = \frac{a^x}{\log a} + c$$

Question 2

$$\int x. e^x dx.$$

(a)
$$e^{x} (1 + \log x)$$

(c)
$$\log x + e^x + c$$

(b)
$$xe^{x}-e^{x}+C$$

$$(d)\frac{x^2}{e^x} + c$$

Answer: b

 ${\bf Explanation:}$

Consider the given integral

 $I = \int xe^x dx$

6262969699

We know that

$$\int uvdx = u \int vdx - \int \left(\frac{d}{dx} u \int vdx\right) dx$$

Therefore,

$$I = xe^x - \int 1.e^x dx$$

$$I = xe^x - \int e^x dx$$

$$I = xe^x - e^x + C$$

Hence, this is the answer

Question 3

 $\int (4x+3)^6 \, dx$.

(a)
$$\frac{1}{28}(4x+3)^7 + c$$

(b)
$$\frac{1}{7}(4x+3)^7+c$$

$$(c)^{\frac{1}{6}}(4x+3)^6+c$$

(d)
$$\frac{4x}{5} + \frac{3}{5} + c$$

Answer: a

Explanation:

(a)
$$\int (4x + 3)^6 dx$$

Since,
$$\int x^n dx = \frac{x}{n+1} + c$$

$$\int (ax+b)^n dx = \frac{(ax+b)}{(n+1)} \times \frac{1}{a} + c$$

$$\int (4x+3)^6 \, \mathrm{d}x$$

$$\int (4x + 3)^6 dx$$

$$= \frac{(4x+3)}{(6+1)} \times \frac{1}{4} + c$$

$$=\frac{1}{28}(4x+3)^7+c$$

Question 4

$$\int_{-1}^{1} (2x^2 - x^3)_{dx}$$

(a)
$$\frac{4}{3}$$
 (c) 2

$$(c)^{\frac{2}{2}}$$

(d)
$$\frac{2}{3}$$

Answer: a

(a)
$$\int_{-1}^{1} (2x^2 - x^3) \, dx$$

$$= \left[2 \times \frac{x^3}{3} \frac{-x^4}{4}\right]^1$$

$$= \left[\left(\frac{2}{3} \times 1^3 - \frac{1^4}{4} \right) - \left\{ \frac{2}{3} \times (-1)^3 - \frac{(-1)^4}{4} \right\} \right]$$
$$= \left[\left(\frac{2}{3} - \frac{1}{4} \right) - \left(\frac{-2}{3} - \frac{1}{4} \right) \right]$$

$$\begin{bmatrix} 3 & 4 \\ = \frac{2}{3} - \frac{1}{4} + \frac{2}{3} + \frac{1}{4} \\ = \frac{4}{3} \end{bmatrix}$$

$$=\frac{4}{3}$$

Ouestion 5

$\frac{d}{dx}$ (x. logx)

(a)
$$x (1 + \log x)$$

(b) $1 + \log x$ (d) $x^2 (\log x)$

Answer: b

Explanation:

(b)
$$\frac{d}{dx}(x. \log x)$$

Since
$$\frac{d}{dx}(u, v) = u \frac{d}{dx}(v) + v \frac{d}{dx}(u)$$

So here u => x

 $V => \log x$

$$\therefore \frac{\mathrm{d}}{\mathrm{d}x} (x. \log x)$$

$$= x \cdot \frac{d}{dx} (\log x) + \log x \cdot \frac{d}{dx}(x)$$

$$= x\frac{1}{x} + \log x \times 1$$

 $= 1 + \log x$

Question 6

Differentiate xx w.r.t x.

(a)
$$x^{x} (1 + \log x)$$

(b)
$$\frac{y}{x}$$

(c)
$$\frac{-y}{x}$$

(d) $y + x^x \log x$

Answer: a

Explanation:

(a)
$$\frac{d}{dx}(x^x) = ?$$

Net $y = X^x$

Using log both sides

Log y = x log x

On differentiating both sides w.r.t. x

$$\frac{1}{y} \cdot \frac{dy}{dx} = x \times \frac{d}{dx} (\log x) + \log x \times \frac{d}{dx} (x)$$

$$\frac{dy}{dx} = y \left[x \times \frac{1}{x} + \log x \times 1 \right]$$

Ouestion 7

$$\int x^2. e^x dx.$$

(c)
$$x^2 \cdot e^x \cdot (2x) + 2$$

(b)
$$e^{x} (x^{2} - 2x)$$

(d) $e^{x} (x - 1)$

Answer: b

6262969699

```
\int x^2 e^x dx
Using I late
a^2 => 1^{st} function (u)
e^x => 2^{nd} function (v)
\int u. \, v dx = u. \int \left[ \frac{d}{dx}(u). \int v dx \right] dx
So \int x^2 exdx
x^2 \int e^x dx - \int \left[ \frac{d}{dx} (x^2) \int v dx \right] dx
x^2e^x dx - \int [2^x e^x] dx
                                 ------Equation (1)
x^2 \cdot e^x - 2x \int x \cdot e^x dx
= x . \int e^x - \int \frac{d}{dx}(x) . \int e^x dx dx
= x. e^x - e^x
= e^{x} (x - 1)
                                                    -----Equation (2)
Put Equation (2) in Equation (1)
x^2 \cdot e^x - 2 e^x (x-1)
x^2 \cdot e^x - 2 e^x \cdot x + 2
= e^{x} (x^{2} - 2x) + 2
```

<u>IULY 2021</u>

Question 1

The value of $\int_{-2}^{2} f(x) dx$, where f(x) = 1+1, $x \le 0$; f(x) = 1-2x, $x \ge 0$ is

(a) 20

(b) -2

(c)-4

(d) 0

Answer: Options (b)

DEC 2021

Ouestion 1

The cost of producing x units is $500-20x^2 + x^3 / 3$. The marginal cost is minimum at x =____.

(a) 5

(b) 10

(c) 40

(d) 50

Answer: c

Explanation:

Here, cost function is given by

$$c(x) = 500 - 20x^2 + \frac{x^3}{5}$$

Diff. w.r.t. 'x'

$$\frac{d}{dx}c(x) = \frac{d}{dx} \left[500 + 20x^2 + \frac{x^3}{3} \right]$$

$$\frac{dc(x)}{dx} = 0 - 40x + \frac{3x^2}{3}$$

6262969699

$$\frac{dc}{dx} = (x^2 - 40x)$$
Marginal cost = $\frac{dc}{dx}$
= $(x^2 - 40x)$
 $x(x-40) = 0$
If $x=0$, if $x-40 = 0$
 $x=40$

Question 2

If $y - \frac{x^4}{e^x}$ then $\frac{dy}{dx}$ is equal to:

(a)
$$x^3(4-x)/(e^x)^2$$

(c) $x^2(4-x)/e^x$

(b)
$$x^3(4-x)/e^x$$

(d) $x^3(4x-1)/e^x$

Answer: b

Explanation:

If
$$y = \frac{x^4}{e^x}$$

Diff. w.r.t. 'x'

$$\frac{dy}{dx} = \frac{e \times \frac{d}{dx}(x^4) - x^4 \cdot e^x}{(e^x)^2}$$

$$= \left(\frac{e^x \cdot 4x^3 - x^4 \cdot e^x}{e^{2x}}\right)$$

$$= \frac{x^3(4-x)}{e^x}$$

Question 3

The speed of a train at a distance x (from the starting point) is given by $3x^2-5x+4$. What is the rate of change (of distance) at x=1?

(b) 0

(c) 1

(d) 2

Answer: c

Explanation:

The speed of a train at a distance x is given by

 $V = 3x^2 - 5x + 4$

Diff. w.r.t. 'x' dv

$$\frac{dy}{dx} = 6x - 5$$

$$\left[\frac{dy}{dx}\right]_{x-1} = 6 \times 1 - 5 = 6 - 5 = 1$$

Rate of charge (of distance) at x = 1 is 1.

JUNE 2022

Question 1

$\int_0^1 \int xe^x dx$ is equal to:

(a) 0

(b) 2

(c) 1

(d) 3

Answer: Options (c)

Explanation:

$$\int_0^1 x e^x dx$$

$$\left[x\int e^x dx - \int \left(\frac{d}{x}x\int e^x dx\right)dx\right]_0^1$$

$$= [xe^x - \int 1.e^x dx]_0^1$$

$$= [xe^x - e^x]_0^1$$

$$= (1.e^1 - e^1) - (0.e^0 - e^0)$$

$$= (e - e) - (0 - 1) = 0 + 1 = 1$$

Question 2

What will be f(x) if $f'(x) = 10x^2 + 4x$ and f(-3) = 17

(a)
$$f(x) = \frac{10x^3}{3} + 2x^2 + 89$$

(b)
$$f(x) = \frac{10x^3}{3} + 2x^2 + 72$$

(c)
$$f(x) = \frac{10x^3}{3} + 2x^2 - 89$$

(d) None

Answer: Options (a)

Explanation:

Here $f'(x) = 10x^2 + 4x$

on integration both side

$$\int f'1(x)dx = \int (10x^2 + 4x)dx$$

$$f(x) = 10\frac{x^3}{2} + 4\frac{x^3}{2} + C_{(1)}$$

putting x = -3, f(-3) = $\frac{10(-3)^3}{3} + \frac{4(-3)^2}{2} + C$

$$17 = \frac{10(-27)}{3} + \frac{4 \times 9}{2} + c$$

c = 89

putting C = 89 in eq (1)

$$f(x) = 10\frac{10x^3}{3} + \frac{4x^3}{2} + 89$$

$$f(x) = 10\frac{3}{3} + 2x^2 + 89$$

Question 3

$\int (\log x)^2 dx$ is equal to:

(a) $x(\log x)^2 - 2x \log x + 2x + C$

(b) $x(\log x)^2 + 2x \log x - 2x + C$

(c) $x(\log x)^2 - 2x \log x - x + C$

(d) None

Answer: Options (a)

6262969699

Explanation:

$$I = \int (\log x)^2 dx$$

$$=\int (\log x)^2 \cdot 1 dx$$

=
$$(\log x)^2 \cdot \int 1 dx - \int (\frac{d}{dx} (\log x)^2 \cdot \int 1 dx) dx$$

$$= (\log)^2 \cdot x - \frac{2\log x}{x} \cdot x \, dx$$

=
$$x(\log x)^2 - 2[\log x \int 1 dx - \int (\frac{d}{dx} \log x) \int 1 dx dx]$$

$$= x(\log)^2 - 2[\log x.(x) - \int \frac{1}{x}.x \, dx]$$

$$= x(\log x)^2 - 2[\log x.(X) - \int \frac{1}{x}.x \, dx$$

$$= x(\log)^2 - 2[x\log x - x] + C$$

$$= x(\log)^2 - 2x\log x + 2x + C$$

Question 4

The derivative of the function $\sqrt{x+\sqrt{x}}$ is

(a)
$$\frac{1}{2\sqrt{x+\sqrt{x}}}$$

(a)
$$\frac{1}{2\sqrt{x+\sqrt{x}}}$$

(c) $\frac{1}{2\sqrt{x+\sqrt{x}}}\left(1+\frac{1}{2\sqrt{x}}\right)$

(b)
$$1 + \frac{1}{2\sqrt{x}}$$

(d) None of these

Answer: Options (c)

Explanation:

$$y = \sqrt{x + \sqrt{x}},$$

$$\frac{dy}{dx} = \frac{d}{dx} \left(\sqrt{x + \sqrt{x}} \right)$$
$$= \frac{1}{2\sqrt{x + \sqrt{x}}} \left(1 + \frac{1}{2\sqrt{x}} \right)$$

DEC 2022

Question 1

If $y = x^2$ then dy/dx at x = 1 is equal to

- a) 0
- c) -1

- b) 1
- d) 2

Answer: Options (b)

Question 2

$$\int (2x-3)^5 dx$$
 is

- a) $\frac{(2x-3)^6}{6}$
- c) $\frac{(2x-3)^6}{12}$

- b) $\frac{(2x-3)^6}{2}$
- d) $\frac{(2x-3)^6}{2}$

Question 3

If
$$x^5 + y^5 = 0$$
 then $\frac{dy}{dx}$ is

6262969699

a)
$$\frac{y+x^4}{x+y^4}$$

c) $\frac{x-y^4}{x^4-y}$

b)
$$\frac{y-x^4}{y^4-x}$$

d) $\frac{x+y^4}{x^4+y}$

c)
$$\frac{x-y^4}{x^4-y^4}$$

d)
$$\frac{x+y^4}{x^4+y}$$

Answer: Options (b)

Question 4

$$\int_{x}^{4} \frac{x dx}{x^2 + 1} is$$

- a) $\frac{1}{2}\log\left(\frac{17}{5}\right)$ c) $\frac{1}{2}\log\left(\frac{5}{17}\right)$

- b) $2 \log \left(\frac{17}{5}\right)$ d) $2 \log \left(\frac{5}{17}\right)$

Answer: Options (a)

Ouestion 5

Find the area under the curve $f(x) = x^2 + 5x + 2$ with the limits 0 to 1

a) 3.833

b) 4.388

c) 4.833

d) 3.338

Answer: Options (c)

Question 6

The maxima and minima of the function $y = 2x^3 - 15x^2 + 36x + 10$ occurs respectively at

a) x=2 and x=3

b) x=1 and x=3

c) x=3 and x=2

d) x=3 and x=1

Answer: Options (C)

Explanation:

 $f(x)=2x^3-15x^2+36x+10\rightarrow (i)$

Differentiate w. r to x

 \Rightarrow f'(x)=6x²-30x+36

 $\Rightarrow f'(x)=0$

 $\Rightarrow 6x^2 - 30x + 36 = 0 \Rightarrow x^2 - 5x + 6 = 0$

 \Rightarrow x²-3x-2x+6=0

 \Rightarrow x(x-3)-2(x-3)=0

 \Rightarrow x=3, x=2