CHAPTER-6 SEQUENCE AND SERIESARITHMETIC AND GEOMETRIC PROGRESSIONS

Sequence
An ordered collection of numbers $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4},, a_{\mathrm{n}}$, is a
sequenceifaccordingtosomedefiniteruleorlaw,thereisadefinit evalueofa ${ }_{n}$, called the term or element of the sequence, corresponding to any value of the natural number n
An expression of the form $\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+\ldots . .+$ $a_{n}+$ \qquad which is the sum of the elements of the sequence $\left\{a_{n}\right\}$ is called a series. If the series contains a finite number of elements, it is called a finite series, otherwise called an infinite series.

Arithmetic
 Progression

Geometric

Progression (G.P)

A sequence $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots, \mathrm{a}_{\mathrm{n}}$ is called an Arithmetic
Progression (A.P.) when $\mathbf{a}_{2}-\mathbf{a}_{1}=\mathbf{a}_{3}-\mathbf{a}_{2}=\ldots . . .=\mathbf{a}_{n}-\mathbf{a}_{n-1}$.
That means A. P. is a sequence in which each term is obtained by adding a constant d to the preceding term. This constant ' d ' is called the common difference of the A.P. If 3 numbers a, b, c are in A.P., we say $b-a=c-b$ or $a+c=2 b ; b$ is called the arithmetic mean between a and c.
$\mathbf{n t h}^{\text {therm }}\left(\mathrm{t}_{\mathrm{n}}\right)=\mathbf{a}+(\mathbf{n - 1})$
Where $\mathrm{a}=$ First Term
$\mathrm{D}=$ Common difference $=\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{n}-1}$
Sum of 1st n natural or counting numbers

Sum of \boldsymbol{n} terms of AP	$s=\frac{n}{2}[2 a+(n-1) d]$
Sum of the first n terms	Sum of 1 st n natural or counting numbers $\mathbf{S}=\mathbf{n}(\mathbf{n + 1}) / \mathbf{2}$
Sum of 1st n odd number	$\mathrm{S}=\mathrm{n}^{2}$
Sum of the Squares of the first, n natural numbers	$n(n+1)(2 n+1)$

If in a sequence of terms each term is constant multiple of theproceedingterm,thenthesequenceiscalledaGeometricProg ression(G.P).Theconstant multiplier is called the common ratio

$$
\begin{aligned}
& \frac{\text { Anyterm }}{\text { Precedingterm }}=\frac{t_{n}}{t_{n-1}} \\
& \quad=\operatorname{ar}^{\mathbf{n}-1} / \operatorname{ar}^{\mathbf{n}-2}=\mathbf{r}
\end{aligned}
$$

Sum of first n terms of a GP	$\mathbf{S}_{\mathbf{n}}=\mathbf{a}\left(\mathbf{1}-\mathbf{r}^{\mathbf{n}}\right) /(\mathbf{1}-\mathbf{r})$ when $\mathbf{r}<\mathbf{1}$ $\mathbf{S}_{\mathbf{n}}=\mathbf{a}\left(\mathbf{r}^{\mathbf{n}} \mathbf{- 1}\right) /(\mathbf{r}-\mathbf{1})$ when $\mathbf{r}>\mathbf{1}$
Sum of infinite geometric	$\mathbf{S} \infty=\mathbf{a} /(\mathbf{1}-\mathbf{r})$ where $\mathbf{0}<\mathbf{r}<\mathbf{1}$

For more Info Visit - www.KITest.in

Geometric mean

series

A.M. of a \&b is $=(a+b) / 2$

If a, b, c are in G.P we get $b / a=c / b=>b^{2}=a c, b$ is called the geometric mean between a and c is called geometric mean between a and c

Question: 1

Find the $7^{\text {th }}$ term of the A.P. 8, 5, 2, $-1,-4, \ldots$
(a) 10
(b) -10
(c) 8
(d) -8

Answer: b
Explanation:
Here $a=8, d=5-8=-3$
Now $\mathrm{t}_{7}=8+(7-1) \mathrm{d}$
$=8+(7-1)(-3)$
$=8+6(-3)$
$=8-18$
$=-10$

Question: 2

If $5^{\text {th }}$ and $12^{\text {th }}$ terms of an A.P. are 14 and 35 respectively, find the A.P.
(a) $2,5,8,11,14, \ldots \ldots . .$.
(b) $2,3,8,11,12, \ldots$.
(c) $2,3,4,11,14 \ldots$
(d) $2,5,8,1,4$, \qquad

Answer: a
Explanation:
Let a be the first term \& d be the common difference of A.P.
$t_{5}=a+4 d=14$
$t_{12}=a+11 d=35$
On solving the above two equations
$7 \mathrm{~d}=21$ =i.e. $\mathrm{d}=3$
And $\mathrm{a}=14-(4 \times 3)=14-12=2$
Hence, the required A.P. is $2,5,8,11,14, \ldots$.

Question: 3

Divide 69 into three parts are in A.P. and are such that the product of the first two parts is 483.
(a) $21,23,25$.
(b) 21, 22, 23,
(c) $22,23,25$.
(d) 21, 22, 25 .

Answer: a
Explanation:
Given that three parts are in A.P., let the three parts which are in A.P. be a d, a, a + d......
Thus $a-d+a+a+d=69$
Or $3 a=69$
Or $\quad a=23$
So the three parts are $23-\mathrm{d}, 23,23+\mathrm{d}$
Since the product of first two parts is 483, therefore, we have $23(23-d)=$ 483
Or $23-\mathrm{d}=\frac{483}{23}=21$
Or $d=23-21=2$
Hence, the three parts which are in A.P. are $23-2=21,23,23+2=25$
Hence the three parts are 21, 23, and 25

Question: 4

Find the arithmetic mean between 4 and 10.
(a) 5
(b) 7
(c) 10
(d) 3

Answer: b
Explanation:
We know that the A.M. of $\mathrm{a} \& \mathrm{~b}$ is $=(\mathrm{a}+\mathrm{b}) / 2$ Hence, The A.M. between 4 \& $10=(4+10) / 2=7$

Question: 5

Find the G.P. series where $4^{\text {th }}$ term is 8 and $8^{\text {th }}$ term is $128 / 625$
(a) $125,50,20,9$,
(b) $125,50,20,10, \ldots .$.
(c) $125,5,20,8 \ldots$
(d) $125,50,20,8 \ldots$

Answer: d
Explanation:
$\mathrm{t} 4=\mathrm{ar}^{3}=8$
$\mathrm{T} 8=128 / 625 \rightarrow \mathrm{ar}^{\wedge} 7=128 / 625$
$\mathrm{T} 8 / \mathrm{T} 4=128 / 625 \times 1 / 8$

$$
\begin{aligned}
& \Rightarrow \mathrm{ar}^{\wedge} 7 / \mathrm{ar}^{3}=16 / 625 \\
& \Rightarrow r^{\wedge} 4=2^{\wedge} 4 / 5^{\wedge} 4 \\
& \Rightarrow r=2 / 5
\end{aligned}
$$

$\operatorname{ar}^{3}=8$
$\Rightarrow \mathrm{a}(2 / 5)^{3}=8$
$\Rightarrow a \times 8 / 125=8$
$\rightarrow a=125$
Therefore, $\mathrm{a}=125$, $\mathrm{ar}=125 \times 2 / 5=50, \mathrm{ar}^{2}=125 \times 4 / 125=20 \ldots$.
Or $125,50,20,8 \ldots$ Forms a G.P.
Question: 6
Insert three geometric means between $\frac{1}{9}$ and 9
(a) $\frac{1}{9}, \frac{1}{3}, 1,3,9$
(b) $\frac{1}{8}, \frac{1}{5}, 1,3,9$
(c) $\frac{11}{9}, \frac{1}{3}, 1,3,9$
(d) $\frac{121}{9}, \frac{1}{3}, 1,3$

Answer: a
Explanation:
G.P. Series $\frac{1}{9},--,----,--, 9$

Here $\mathrm{t} 1=\mathrm{a}=\frac{1}{9}$
$\mathrm{t} 5=\mathrm{a} . \mathrm{r}^{4}=9$
Now, $\mathrm{t} 5=\frac{1}{9} \cdot \mathrm{r}^{4}=9$
$=r^{4}=81$
$=r^{4}=3^{4}$
$=r=3$
$\mathrm{t} 2=\mathrm{ar}=\frac{1}{9} \times 3=\frac{1}{3}$
$\mathrm{t} 3=\mathrm{ar}^{2}=\frac{1}{9} \times 3^{2}=1$
$\mathrm{t} 4=\operatorname{ar} 3=\frac{1}{9} \times 3^{3}=3$
Thus the series $\frac{1}{9}, \frac{1}{3}, 1,3,9$

Question: 7

Find the sum of $1^{\text {st }}$ term of G.P. series $1+2+4+8+\ldots .$.
(a) 155
(b) 255
(c) 185
(d) -822

Answer: b
Explanation:
Here $\mathrm{a}=1, \mathrm{r}=2, \mathrm{n}=8$
$S_{\mathrm{n}}=\mathrm{a} \cdot \frac{\left(r^{n}-1\right)}{(r-1)}$ When $\mathrm{r}>1$
$S_{8}=1 \cdot \frac{\left(2^{8}-1\right)}{(2-1)}$
$=1(256-1)=255$
Thus $\mathrm{S}_{8}=255$
Question: 8
Find the sum of the series $-2,6,-18$..... 7 terms?
(a) 1554
(b) -1094
(c) 1094
(d) -8223

Answer: b
Explanation:
Here $a=-2, r=-3, n=7$
$S_{n}=a \cdot \frac{\left(1-r^{n}\right)}{(1-r)}$ When <1
$S_{7}=(-2) \frac{\left[1-(-3)^{7}\right]}{[1-(-3)]}$
$=(-2) \frac{(1+2187)}{4}$
$=(-2) \frac{(2188)}{4}$
$S_{7}=-1094$
Question: 9
In a G.P. the product of the $1^{\text {st }}$ three terms 27/8. The middle term is
(a) $\frac{27}{8}$
(b) $\frac{3}{2}$
(c) $\frac{2}{9}$
(d) $\frac{8}{27}$

Answer: b
Explanation:
Let the three terms Of GP are $\frac{\text { a }}{\frac{a}{r}}$ a, ar
Now product of terms
$\frac{\mathrm{a}}{\mathrm{r}} \times \mathrm{a} \times \mathrm{ar}=\frac{27}{8}$
$\mathrm{a}^{3}=\frac{27}{8}$
$\mathrm{a}^{3}=\left(\frac{3}{2}\right)^{3}$
$\mathrm{a}=\frac{3}{2}$
Thus the middle term, $\mathrm{a}=\frac{3}{2}$

Question: 10

If you save 1 paisa today, 2 paisa the next day and 4 paisa the succeeding day and so on, then your total savings in two weeks will be.
(a) Rs. 168.32
(b) Rs. 163.98
(c) Rs. 163.83
(d) None

Answer: c
Explanation:
Here the pattern of savings the G.P series $0.01,0.02,0.04 \ldots$
Here $\mathrm{a}=0.01, \mathrm{r}=2, \mathrm{n}=14$
$\mathrm{S}_{\mathrm{n}}=\mathrm{a} \cdot \frac{\left(r^{n}-1\right)}{(r-1)}$ When $\mathrm{r}>1$
$S_{14}=0.01 \frac{\left(2^{14}-1\right)}{(2-1)}$
$=0.01 \frac{(16384-1)}{1}$
$=0.01 \times 16383$
$\mathrm{S}_{14}=163.83$
Thus the total savings in 14 days would be Rs. 163.83.

Question: 11

The sum of the infinite G.P series $1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27} \ldots \ldots$.
(a) 0.75
(b) 75
(c) 0.57
(d) 57

Answer: a
Explanation:
Here $\mathrm{a}=1, \mathrm{r}=\left(\frac{-1}{3}\right)$
$\mathrm{S}_{\infty}=\frac{a}{(1-r)}=\frac{1}{\left[1-\left(\frac{-1}{3}\right)\right]}$
$=1 /[4 / 3]$
$=3 / 4$
$=0.75$

Question: 12

Find the $10^{\text {th }}$ term of the A.P.: $2,4,6, \ldots$.
(a) 20
(b) 40
(c) 2
(d) 0.20

Answer: a
Explanation:
Here the first term (a) = 2 and common different d=4-2=2
Using the formula $t_{n}=a+(n-1) d$, we have
$t_{10}=2+(10-1) 2=2+18=20$
Hence, the $10^{\text {th }}$ term of the given A.P. is 20
Question: 13
The $10^{\text {th }}$ term of an A.P. is $\mathbf{- 1 5}$ and $31^{\text {st }}$ term is -57 , find the $15^{\text {th }}$ term
(a) -20
(b) 20
(c) -25
(d) 25

Answer: c
Explanation:
Let a be the first term and d be the common d be the common difference of the A.P. Then from the formula:
$t_{n}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$, we have
$\mathrm{t}_{10}=\mathrm{a}+(10-1) \mathrm{d}=\mathrm{a}+9 \mathrm{~d}$
$\mathrm{t}_{31}=\mathrm{a}+(31-1) \mathrm{d}=\mathrm{a}+30 \mathrm{~d}$
We have,
$a+9 d=-15$
$a+30 d=-57$
Solve equations (1) and (2) to get the values of a and d. Subtracting (1) from (2) , we have
$21 \mathrm{~d}=-57+15=-42$
$-42 \div 21=2$
Again from (1), $a=-15-9 d=-15-9(-2)=-15+18=3$
Now $\mathrm{t}_{15}=\mathrm{a}+(15-1) \mathrm{d}$
$=3+14(-2)=-25$

Question: 14

Which term of the A.P.: $5,11,17$... is 119 ?
(a) $\mathrm{n}=20$
(b) $\mathrm{n}=2$
(c) $\mathrm{n}=30$
(d) $n=19$

Answer: a
Explanation:
Here a = 5, d = 11-5 = 6
$t_{n}=119$ we know that
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
? $119=5+(\mathrm{n}-1) \times 6$
$(\mathrm{n}-1)=\frac{119-5}{6}=19$
$n=20$, therefore, 119 is the $20^{\text {th }}$ term of the given A.P.

Question: 15

Is 600 a term of the A. P.: 2, 9, 16,?
(a) yes
(b) no
(c) Not sure
(d) none

Answer: b
Explanation:
Here, $\mathrm{a}=2$, and $\mathrm{d}=9-2=7$.
Let 600 be the $\mathrm{n}^{\text {th }}$ term of the A.P. We have $\mathrm{t}_{\mathrm{n}}=2+(\mathrm{n}-1) 7$
According to the question
$2+(n-1) 7=600$
$(\mathrm{n}-1) 7=598$
Or $n=\frac{598}{7}+1$

$$
\mathrm{n}=86 \frac{3}{7}
$$

Since n is a fraction, it cannot be a term of the given A.P. Hence, 600 is not a term of the given A.P.

Question: 16

The common difference of an A.P. is 3 and the $15^{\text {th }}$ term is 37 . Find the first term.
(a) -5
(b) 5
(c) 42
(d) -42

Answer: a
Explanation:
Here $d=3, t_{15}=37$, and $n=15$ Let the first term be a. we have
$\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$37=a+(15-1) 3$
Or, $\quad 37=a+42$

$$
a=-5
$$

Thus, first term of the given A.P. is -5

Question: 17

Geometric mean G between two numbers a and b id
(a) ab
(b) ab^{2}
(c) $a^{2} b$
(d) $\sqrt{a b}$

Answer: d
Explanation:
If a single geometric mean ' G ' is inserted between two given numbers ' a ' and ' b ', then G is known as the geometric mean between ' a ' and ' b '.
G.M. $=\mathrm{G}=\mathrm{G}^{2}=\sqrt{a b}$

Question18

If A and G are arithmetic and geometric mean respectively between two positive numbers a and b, then $A(A M)<G(G M)$ is correct?
(a) yes
(b) no
(c) not sure
(d) none

Answer: b
Explanation:
We have
A.M. $=\mathrm{A}=\frac{a+b}{2}$ and G.M. $=\mathrm{G}=\mathrm{G}^{2}=\sqrt{a b}$
$\mathrm{A}-\mathrm{G}=\frac{a+b}{2}-\sqrt{a b}$
$=\frac{a+b-2 \sqrt{a b}}{2}$
$=(\sqrt{a}-\sqrt{b})^{2}$
Root will be open automatically
A - G > 0
$\rightarrow \mathrm{A}>\mathrm{G}$

Question 19

Find the sum of the AP: 11, 17, 23, and 29... of first 10 terms.
(a) 380
(b) 568
(c) 960
(d) 593

Answer: a
Explanation:
$=>\mathrm{n}^{\text {th }}$ term for the given $\mathrm{AP}=5+6 \mathrm{n}$
\Rightarrow First term $=5+6=11$
=> Tenth term $=5+60=65$
=> Sum of 10 terms of the $\mathrm{AP}=0.5 \mathrm{n}($ first term + last term $)=0.5 \times 10(11+$ 65)
=> Sum of 10 terms of the AP $=5 \times 76=380$

Question20

Find the G. M. between $\frac{3}{2}$ and $\frac{27}{2}$
(a) $\frac{9}{2}$
(b) $\frac{2}{9}$
(c) $\frac{6}{3}$
(d) $\frac{3}{6}$

Answer: a
Explanation:
We know that if a is the G. M. between a and b, then
$G=\sqrt{a b}$
G. M. between $\frac{3}{2}$ and $\frac{27}{2}=\sqrt{\frac{3}{2} \times \frac{27}{2}}$
$=\frac{9}{2}$

Question21

Insert three geometric means between 1 and 256.
(a) $4,16,64$,
(b) $-4,16,-64$
(c) Both
(d) None

Answer: c

Explanation:

Let $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}$, be 3
GMS both 1, \& 256
Then,
$1, \mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, 256$ will be in GP
Let common ratio be r
$\therefore \mathrm{G}_{1}=\mathrm{r}$
So $r^{4}=256$
$\mathrm{r}= \pm 4$
$\mathrm{G}_{1}= \pm 4$
$\mathrm{G}_{2}= \pm 16$
$\mathrm{G}_{3}= \pm 64$

Question22

If 4, 36, 324 are in G.P. insert two more numbers in this progression so that it again forms a G.P.
(a) 12,108
(b) 14,180
(c) 16,120
(d) 12,10

Answer: a
Explanation:
G. M. between 4 and $36=\sqrt{4 \times 36}=\sqrt{144}=12$
G.M. between 36 and $324=\sqrt{36 \times 324}=6 \times 18=108$

If we introduce 12 between 4 and 36 and 108 between 36 and 324 , the numbers
$4,12,36,108,324$ form a G.P.
The two new numbers inserted are 12 and 108.

Question 23

The distance travelled (in cm) by a simple pendulum in consecutive seconds are 16, 12, 9,... How much distance will it travel before coming to rest?
(a) 64 cm
(b) 46 cm
(c) 1 am
(d) none

Answer: a
Explanation:
The distance travelled by the pendulum in consecutive seconds are, 16,12 , $9 \ldots$ is an infinite geometric progression with the first term $\mathrm{a}=16$ and $\mathrm{r}=$ $\frac{12}{16}=\frac{3}{4}<1$
Hence, using the formula $\mathrm{S}=\frac{a}{1-r}$ we have
$S=\frac{16}{1-\frac{3}{4}}=\frac{16}{\frac{1}{4}}=64$
Distance travelled by the pendulum is 64 cm .
Question24
Which term of the G.P.: $5,-10,20,-40, \ldots$ is 320 ?
(a) 7
(b) 6
(c) 3
(d) 12

Answer: a
Explanation:
In this case, $a=5 ; r=\frac{-10}{5}=-2$
Suppose that 320 is the $\mathrm{n}^{\text {th }}$ term of the G. P.
By the formulate $=\operatorname{ar}^{\mathrm{n}-1}$, we get
$\mathrm{t}=5$. $(-2)^{\mathrm{n}-1}$, we get
$320=5 .(-2)^{\mathrm{n}-1}=64=(2)^{6}=(-2)^{n-1}$
$\mathrm{n}-1=6$
n = 7
Hence 320 is the $7^{\text {th }}$ term of the G.P.
Question 25
If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is in G.P., then
(a) $a\left(b^{2}+a^{2}\right)=c\left(b^{2}+c^{2}\right)$
(b) $a\left(b^{2}+a^{2}\right)=c\left(a^{2}+b^{2}\right)$
(c) $b\left(b^{2}+a^{2}\right)=c\left(b^{2}+c^{2}\right)$
(d) None

Answer: b
Explanation:
If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is in to G.P. Then $\mathrm{b}^{2}=\mathrm{ac}$
$\mathrm{b}^{2}(\mathrm{a}-\mathrm{c})=\mathrm{ac}(\mathrm{a}-\mathrm{c})$
$b^{2} a-c^{2}=a^{2} c-b^{2} c$
$a\left(b^{2}+c^{2}\right)=c\left(a^{2}+b^{2}\right)$
Trick: Put $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=4$, and check the alternates.

Question 26

The sum of infinity of the progression $9-3+1-\frac{1}{3}+\ldots$ is
(a) 9
(b) $9 / 2$
(c) $27 / 4$
(d) $15 / 2$

Answer: c
Explanation:
Infinite series $9-3+1-\frac{1}{3} \ldots \ldots \propto$ is a G. P. with
$\mathrm{a}=9, \mathrm{r}=\frac{-1}{3} S_{\propto}=\frac{a}{1-r}=\frac{9}{1+\frac{1}{3}}=\frac{9 \times 3}{4}=\frac{27}{4}$

Question 27

The product (32) (32) $)^{1 / 6}(32)^{1 / 36} \ldots . .$. To ∞ is.
(a) 16
(b) 32
(c) 64
(d) 0

Answer: c
Explanation:
(32) $(32) 1 / 6(32) 1 / 36 \ldots \ldots \infty=(32)^{1+\frac{1}{6}+\frac{1}{36}+\cdots \infty}=(32)^{\left(1-\frac{1}{6}\right)}$
$(32)^{\frac{1}{5 / 6}}=(35)^{6 / 5}=2^{6}=64$
Question 28
Obtain the sum of all positive integers up to 1000, which are divisible by 5 and not divisible by 2 .
(a) 10050
(b) 5050
(c) 5000
(d) 50000

Answer: d
Explanation:
The positive integers, which are divisible by 5, are 5, 10, 15,..., 1000
Out of these $10,20,30, . .1000$ are divisible by 2
Thus, we have to find the sum of the positive integers $5,15,25, \ldots, 995$
If n is the number of terms in it the sequence then
$995=5+10(\mathrm{n}-1)$
=> $1000=10 \mathrm{n}$
Therefore, $\mathrm{n}=100$
Thus the sum of the series $=(100 / 2)(5+995)=(50)(1000)=50000$.

Question 29

If s is the sum of an infinite G.P., the first term a then the common ratio r given by
(a) $\frac{a-s}{s}$
(b) $\frac{s-a}{s}$
(c) $\frac{\stackrel{s}{a}}{1-s}$
(d) none

Answer: b
Explanation:
$\mathrm{S}=\frac{a}{1-r}$
s-sr = a
$-\mathrm{sr}=\mathrm{a}-\mathrm{s}$
$\mathrm{r}=\frac{s-a}{s}$

Question30

If in an infinite G.P. first term is equal to the twice of the sum of the remaining terms, then its common ratio is
(a) 1
(b) 2
(c) $1 / 3$
(d) $-1 / 3$

Answer: c
Explanation:
Given, $a=2\left(\frac{a r}{1-r}\right)$
1 - $\mathrm{r}=2 \mathrm{r}$
$r=\frac{1}{3}$

Question 31

If \mathbf{n} geometric means between a and b be $G_{1}, G_{2}, \ldots . G_{n}$ and a geometric mean be G, then the true relation is
(a) $\mathrm{G}_{1}, \mathrm{G}_{2}$,
$\mathrm{G}_{\mathrm{n}}=\mathrm{G}$
(b) $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots \ldots . \mathrm{G}_{\mathrm{n}}=\mathrm{G}^{1 / n}$
(c) $\mathrm{G}_{1}, \mathrm{G}_{2}$, $\mathrm{G}_{\mathrm{n}}=\mathrm{G}^{\mathrm{n}}$
(d) none

Answer: c
Explanation:
Here $G=(a b))^{1 / 2}$ and
$\mathrm{G}_{1}=\mathrm{ar}^{1}, \mathrm{G}_{2}=\mathrm{ar}^{2}, \ldots \mathrm{G}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}}$. therefore
$\mathrm{G}_{1} \cdot \mathrm{G}_{2} \cdot \mathrm{G}_{3} \ldots . \mathrm{G}_{\mathrm{n}}=\mathrm{a}^{\mathrm{n}} \mathrm{r}^{1+2+\cdots+\mathrm{n}}=\mathrm{a}^{\mathrm{n}} \mathrm{r}^{\mathrm{n}(\mathrm{n}+1) / 2}$ But
$a r^{n+1}=b$
$r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$

Therefore, the required product is $\mathrm{a}^{\mathrm{n}}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{\frac{1}{(n+1)}} \cdot \mathrm{n}(\mathrm{n}+1) / 2$
$=(\mathrm{ab})^{\mathrm{n} / 2}$
$=\left\{(\mathrm{ab})^{1 / 2}\right\}^{\mathrm{n}}$
$=\mathrm{G}^{\mathrm{n}}$
Note: It is a well-known fact.

Question 32

$7^{\text {th }}$ term of the sequence $\sqrt{2}, \sqrt{10}, 5 \sqrt{2}$ is
(a) $125 \sqrt{10}$
(b) $25 \sqrt{2}$
(c) 125
(d) $125 \sqrt{2}$

Answer: D
Explanation:
Given sequence is $\sqrt{2}, \sqrt{10}, 5 \sqrt{2}$.....Common ratio
$\mathrm{r}=\sqrt{5}$, first term $\mathrm{a}=\sqrt{2}$, then 7 th term
$t_{7}=\sqrt{2}(\sqrt{5})^{7-1}=\sqrt{2}(\sqrt{5})^{6}=\sqrt{2}(5)^{3}$
$125 \sqrt{2}$
Question 33
If the first term of a G.P. be 5 and common ratio be -5 , then which term is 3125?
(a) $6^{\text {th }}$
(b) $5^{\text {th }}$
(c) $7^{\text {th }}$
(d) $8^{\text {th }}$

Answer: b
Explanation:
Given that first term $\mathrm{a}=5$ and common ratio $\mathrm{r}=-5$. Suppose that $\mathrm{n}^{\text {th }}$ term is 3125
Then ar $^{n-1}=3125$
$5(-5)^{\mathrm{n}-1}=\frac{5^{5}}{5} 5^{4}$
$\mathrm{n}-1=4=(\mathrm{n} \rightarrow 5)$

Question 34

The sums of \mathbf{n} terms of three A.P.'s whose first term is 1 and common differences are $1,2,3$ are S_{1}, S_{2}, S_{3} respectively. The true relation is
(a) $S_{1}+S_{2}=S_{3}$
(b) $S_{1}+S_{3}=2 S_{2}$
(c) $\mathrm{S}_{1}+\mathrm{S}_{2}=2 \mathrm{~S}_{3}$
(d) none

Answer: b

Explanation:

We have $a_{1}=a_{2}=a_{3}=1$
$\mathrm{d}_{1}=1, \mathrm{~d}_{2}=2, \mathrm{~d}_{3}=3$
Therefore, $\mathrm{S}_{1}=\frac{\mathrm{n}}{2}(\mathrm{n}+1) \ldots$...(i)
$S_{2}=\frac{n}{2}(2 n+1)$
$\mathrm{S}_{3}=\frac{\mathrm{n}}{2}(3 \mathrm{n}+1)$
... (iii) Adding (i) and (iii),
$\mathrm{S}_{1}+\mathrm{S}_{3}=\frac{\mathrm{n}}{2}[(\mathrm{n}+1)+(3 \mathrm{n}+1)] \rightarrow \frac{\mathrm{n}}{2}[4 \mathrm{n}+2]$
$=2\left[\frac{\mathrm{n}}{2}(2 \mathrm{n}+1)\right]=2 \mathrm{~S}_{2}$
Hence correct relation $S_{1}+S_{3}=2 S_{2}$

Question 35

What is the sum of all 3 digit numbers that leave a remainder of ' 2 ' when divided by 3 ?
(a) 897
(b) 164,850
(c) 164,749
(d) 149,700

Answer: b

Explanation:

The smallest 3 digit number that will leave a remainder of 2 when divided by 3 is 101 .
The next number that will leave a remainder of 2 when divided by 3 is 104, 107,
The largest 3 digit number that will leave a remainder of 2 when divided by 3 is 998.
So, it is an AP with the first term being 101 and the last term being 998 and common difference being 3 .
Sum of an AP $=\frac{\text { First term }+ \text { Last term }}{2} \times$ Number of term
We know that in an A.P., the nth term $a_{n}=a_{1}+(n-1) * d$
In this case, therefore, $998=101+(n-1)^{*} 3$
i.e. $897=(n-1) * 3$

Therefore $\mathrm{n}-1=299$
Or $\mathrm{n}=300$
Sum of the AP will therefore be $\frac{101+998}{2} \times 300=164,850$
Question 36
What is the sum of the following series? -64, $-66,-68, \ldots . .,-100$
(a) -1458
(b) -1558
(c) -1568
(d) -1664

Answer: b
Explanation:
The sequence is $-64,-66,-68, \ldots .-100$.
The given set of numbers are in an arithmetic progression
Key data: First term is -64. The common difference is -2 . The last term is 100
Sum of the first n term is an $\mathrm{AP}=\frac{n}{2}\left[2 \mathrm{a}_{1}+(\mathrm{n}-1) \mathrm{d}\right]$
To compute the sum, we know the first term $a_{1}=-64$ and the common difference $\mathrm{d}=-2$
We do not know the number of terms n. Let us first compute the number of terms and then find the sum of the terms.
Step to compute number of terms of the sequence
$a_{n}=a_{1}+(n-1) d$
$-100=-64+(n-1)(-2)$
Therefore, $\mathrm{n}=19$.
Sum $\mathrm{S}_{\mathrm{n}}=\frac{19}{2}[2(-64)+(919-1)(-2)]$
$\mathrm{S}_{\mathrm{n}}=\frac{19}{2}[-128-36]$
$\mathrm{S}_{\mathrm{n}}=19 \times(-82)=-1558$
Question 37
The sum of third and ninth term of an A.P. is 8. Find the sum of the first 11 terms of the progression.
(a) 44
(b) 22
(c) 19
(d) None of these

Answer: a
Explanation:
The third term $\mathrm{t}_{3}=\mathrm{a}+2 \mathrm{~d}$
The ninth term $\mathrm{t}_{9}=\mathrm{a}+8 \mathrm{~d}$
$t_{3}+t_{9}=2 \mathrm{a}+10 \mathrm{~d}=8$
Sum of first 11 terms of an AP is given by
$S_{11}=\frac{11}{2}[2 a+10 d]$
$S_{11}=\frac{11}{2}[8]=44$

Question38

The sum of the three numbers in A.P is 21 and the product of the first and third number of the sequence is 45 . What are the three numbers?
(a) 9, 7 and 5
(b) 3, 7, and 11
(c) Both A \& B
(d) None of these

Answer: a
Explanation:
Let the number are be $a-d, a, a+d$
Then $\mathrm{a}-\mathrm{d}+\mathrm{a}+\mathrm{a}+\mathrm{d}=21$
$3 \mathrm{a}=21$
a=7
and $(a-d)(a+d)=45$
$\mathrm{a}^{2}-\mathrm{d}^{2}=45$
$\mathrm{d}^{2}=4$
$\mathrm{d}= \pm 2$
Hence, the number are 5,7 and 9 when $d=2$ and 9,7 and 5 when $d=-2$. In both the cases numbers are the same.

Question 39

If the first term of G.P. is 7, Its $\mathbf{n}^{\text {th }}$ term is 448 and sum of first \mathbf{n} terms is 889 , then find the fifth term of G. P.
(a) 112
(b) 110
(c) 62
(d) 39

Answer: a

Explanation:

Given $\mathrm{a}=7$ the first term $\mathrm{t}_{\mathrm{n}}=\operatorname{ar}^{\mathrm{n}-1}=7(\mathrm{r})^{\mathrm{n}-1}=448$.
$7 r^{n}=448 \mathrm{r}---$ - (1)
Also $\mathrm{S}_{\mathrm{n}}=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{7\left(r^{n}-1\right)}{r-1}$
$889=\frac{448 r-7}{r-1}$ \{value of r^{n} from (1)\}
R = 2
Hence $\mathrm{T}_{\mathrm{s}}=\mathrm{ar}^{4}=7(2)^{4}=112$

Question 40

If the third and fourth terms of arithmetic sequence are increased by 3 and 8 respectively. Then the first four terms form a geometric sequence. Find
(i) the sum of the first four terms of A.P.
(a) 54
(b) 27
(c) 23
(d) 79

Answer: a
Explanation:
Sol. $a,(a+d),(a+2 d),(a+3 d)$ in A.P.
$a, a+d,(a+2 d+3),(a+3 d+8)$ are in G.P.
Hence $\mathrm{a}+\mathrm{d}=\mathrm{ar}$
also $\mathrm{r}=\frac{a+d}{a}=\frac{a+2 d+3}{a+d}=\frac{a+3 d+8}{a+2 d+3}$
$\frac{d+3}{d}=\frac{d+5}{d+3}$
$\rightarrow \mathrm{d}^{2}+6 \mathrm{~d}+9=\mathrm{d}^{2}+5 \mathrm{~d} \rightarrow \quad \mathrm{~d}=-9$
$\frac{a-9}{a}=\frac{a-15}{a-9}$
$\rightarrow \mathrm{a}^{2}-18 \mathrm{a}+81=\mathrm{a}^{2}-15 \mathrm{a} \rightarrow 3 \mathrm{a}=8{ }_{1} \rightarrow \mathrm{a}=27$
Hence A.P. is $27,18,9,0$,
Sum of the first four terms of AP $=54$

Question 41

Three positive numbers form a G.P. If the second term is increased by 8, the resulting sequence is an A.P. In turn, if we increase the last term of this A.P. by 6_{4}, we get a G.P. Find the three numbers.
(a) $4,12,36$
(b) $4,8,16$
(c) $5,15,20$
(d) none

Answer: a

Question42

The sum of the first five terms of a geometric series is 189. The sum of the first six terms is 3^{81}, and the sum of the first seven terms is 765 .
What is the common ratio in the series?
(a) 3
(b) 2
(c) 6
(d) 56

Answer: b
Explanation:
Let the numbers be a, a r, a r ${ }^{2}$ when $r>0$
Hence $a,(a r+8), \mathrm{ar}^{2}$ in A.P. - (1)
Also a, (ar + 8), a r ${ }^{2}+64$ in G.P. - (2)
$\rightarrow(\mathrm{ar}+8)^{2}=\mathrm{a}\left(\mathrm{ar}^{2}+64\right) \mathrm{a}=4 / 4-\mathrm{r}-(3)$
Also (1) $\rightarrow 2(\mathrm{ar}+8)=\left(\mathrm{a}+\mathrm{ar}^{2}\right) \rightarrow(1-\mathrm{r})^{2}=16 / \mathrm{a}-(4)$
From (3) and (4) r $=3$ or -5 (rejected)
Hence a = 4 numbers are: 4,12 , and 36
Explanation:
$S_{5}=189 ; S_{6}=3^{81} ; S_{7}=765 ; t_{6}=S_{6}-S_{5}=3^{81}-189=19^{2}$
$\mathrm{t}_{7}=\mathrm{S}_{7}-\mathrm{S}_{6}=765-3^{81}=3^{84}$
Now common ratio $=\frac{t_{7}}{t_{6}}=\frac{384}{192}=2$

Question43

Find the $3^{\text {rd }} \boldsymbol{n}$ th term for the AP: 11, 17, 23, 29,.....
(a) 23
(b) 17
(c) 11
(d) 6

Answer: a

Explanation:

Here, $\mathrm{a}=11, \mathrm{~d}=17-11=23-17=29-23=6$
We know that nth term of an AP is a $+(n-1) d$
$\Rightarrow \mathrm{n}^{\text {th }}$ term for the given $\mathrm{AP}=11+(\mathrm{n}-1) 6$
$=>\mathrm{n}^{\text {th }}$ term for the given $\mathrm{AP}=11+(\mathrm{n}-1) 6$
$=>n^{\text {th }}$ term for the given $A P=5+6 n$
We can verify the answer by putting values of ' n '
$\Rightarrow \mathrm{n}=\mathrm{a}->$ First term $=5+6=11$
=> n = 2 -> Second term $=5+12=17$
=> n = 3 -> Third term $=5+18=23$

Question 44

The sum of three numbers in a GP is 26 and their product is 216 . and the numbers.
(a) 2,6 and 18
(b) 3, 7 and 11
(c) Both
(d) None of these

Answer: a
Explanation:
Let the numbers be $\frac{a}{r}$, a, ar.
$\Rightarrow\left(\frac{a}{r}\right)+a+a r=26$
$\Rightarrow>\mathrm{a} \frac{\left(1+r+r^{2}\right)}{r}=26$
Also, it is given that product $=216$
$=>\left(\frac{a}{r}\right) \mathrm{x}(\mathrm{a}) \mathrm{x}(\mathrm{ar})=216$
$\Rightarrow a^{3}=216$
$\Rightarrow \mathrm{a}=6$
$=>6 \frac{\left(1+r+r^{2}\right)}{r}=26$
$=>\frac{\left(1+r+r^{2}\right)}{r}==\frac{26}{6}=\frac{13}{3}$
$=>3+3 r+3 r^{2}=13 r$
$=>3 r^{2}-10 r+3=0$
$=>(r-3)\left(r-\left(\frac{1}{3}\right)\right)=0$
$\Rightarrow>=3$ or $r=\frac{1}{3}$
Thus, the required numbers are 2, 6 and 18.

Question 45

A Sequence in which the ratio of two consecutive terms is always constant $(1,0)$ is called
(a) AP
(b) GP
(c) HP
(d) NP

Answer: b
Explanation:
A Sequence in which the ratio of two consecutive terms is always constant $(1,0)$ is called a Geometric progression (G.P.)

Question46

For the elements 4 and 6, verify
(a) $A \geq G \geq H$
(b) A $<\mathrm{G} \geq \mathrm{H}$
(c) $\mathrm{A}>\mathrm{G} \geq \mathrm{H}$
(d)None

Answer: a
Explanation:

A sequence of numbers is called an arithmetic progression if the difference between any two consecutive terms is always same.
Geometric Progression (GP)
A sequence of numbers is called a geometric progression if the ratio of any two consecutive terms is always same.

Question 48

An AP has 13 terms whose sum is 143 . The third term is 5 , then first term is:
(a) 4
(b) 7
(c) 9
(d) None of these

Answer: d
Explanation:
$S(13)=143$
$S(13)=(n / 2)(2 a+(n-1) d)$
$=(13 / 2) \times(2 a-12 d)$
$=13 \times(\mathrm{a}+6 \mathrm{~d})$
$=13 a+78 d=143$
Divide both sides by 13
a+6d=11
$T(3)=a+2 d=5$
Subtract (2) from (1)
$4 \mathrm{~d}=6$
$\mathrm{d}=3 / 2$
Substituted in any of the equations(am using 2)
$a+2(3 / 2)=5$
a+3=5
$\mathrm{a}=2$

Question 49

The series $1^{3}+2^{3}+3^{3}+\ldots . .20^{3}$ is equal to
(a) 4410
(b) 4410000
(c) 44100
(d) None of these

Answer: c
Explanation
($\mathrm{n}(\mathrm{n}+1) / 2)^{2}$
$(20(20+1) / 2)^{2}$
44100.

PREPARE FOR WORST

Question 1

What is the sum of all 3 digit numbers that leave a remainder of ' 2 ' when divided by 3 ?
(a) 897
(b) 164,850
(c) 164,749
(d) 149,700

Question 2

A piece of equipment cost a certain factory Rs. 6, 00,000. If it depreciates in value, 15% the first year, 13.5% the next year. 12% the third year , and so on , what will be its value at the end of 10 years , all percentages applying to the original cost
(a) $2,00,000$
(b) 1,05,000
(c) $4,05,000$
(d) $6,50,000$

Question 3

If a rubber ball consistently bounces back $2 / 3$ of the height from which it is dropped, what Fraction of its original height wills the ball bounce after being dropped and bounced four times without being stopped?
(a) $16 / 81$
(b) $16 / 27$
(c) $4 / 9$
(d) $37 / 81$

Question 4

Find the sum of first 30 positive integer multiple of 6

Question 5

How many numbers are there between 200 and 800 which are divisible by both?
5 and 7?
Question 6
If $(p+q)$ th term of an A.P is m and ($p-q)$ tn term is n, then p th
(a) $m n$
(b) $\sqrt{m n}$
(c) $\frac{1}{2}(m-n)$
(d) $\frac{1}{2}(m+n)$

Question 7

If 7 times the 7th term of an A.P is equal to 11 times of its 11 th term , then 18th term is
(a) 18
(b) 9
(c) 77
(d) 0

Question 8

There is a set of four numbers p, q, r and s respectively in such a manner that first three are in G.P. and the last three are in A.P with a difference of 6. If the first and the fourth numbers are the same find the value of P.
(a) 8
(b) 2
(c) -4
(d) -24

Question 9

An arithematic progression has 23 terms, the sum of the middle three terms of the arithematic progression is 270, and the sum of the last three terms of the Arithmetic progress is $\mathbf{1 3 2 0}$. What is the $18^{\text {th }}$ term of this arithematic progression?
(a) 240
(b) 360
(c) 340
(d) 440

Question 10

Find the value of 'a' given that the geometric mean between x and y is
(a) $-2 / 3$
(b) $-1 / 4$
(c) $-3 / 2$
(d) $-7 / 6$

Question 11

Sum of three numbers in GP with common ratio greater than $\mathbf{1}$ is $\mathbf{1 0 5}$ If the first two numbers are multiplied by 4 and the $3^{\text {rd }}$ number is multiplied by 3, then the resulting
Terms are in AP. What is the highest of the three numbers given?
(a) 60
(b) 50
(c) 30
(d) 45

Question 12

There are three terms x.y.z between $4 \& 40$ such that (i) their sum is 37 (ii) $4, x, y$ are consecutive terms of an A, P and (iii) $y, z, 40$ are the consecutive terms of a G.P, Find the value of Z
(a) 20
(b) 10
(c) 12
(d) 15

Question 13

A tortoise walks 500 m in one day, the next day it walks $\mathbf{2 5 0} \mathrm{m}$, the next day $125, \mathrm{~m}$ and so on , what is the limiting distance which it could walk?

Question 14

In a geometric progression the sum of first $3 X$ term of the series is S and the sum of first 2 X terms of the series is $12 \mathrm{~s} / 133$. If the sum of first X terms of the series is s / k, find the value of ' k ' it is given that the common difference of the gp is positive.
(a) 120
(b) 133
(c) 155
(d) 160

Question 15

In a infinite geometric progression with common ratios less than 1 the sum of any two consecutive terms is 8 times the sum of all the terms that follow. What is the ratio of any term and the sum of all the terms that follow it?
(a) 2
(b) -2
(c) -4
(d) Cannot be determined

Question 16

In an arithematic progression, the sum of the first 10 terms is half the sum of first 15 terms. Find the ratio of the sum of first 16 terms and first 21 terms of some AP.
(a) $7: 11$
(b) 6:10
(c) $12: 17$
(d) $8: 13$

ANSWERS AVAILABLE ON:

- TELEGRAM CHANNEL: t.me/KINSHUKInstitute
- WEBSITE :WWW.KITest.IN
- KITest APP

Dast Examiniatiom Duestioms

MAY-2018

Question 1

The sum to m terms of the series $1+11+11+1111+\ldots .$. Upto m terms is equal to:
(a) $\frac{1}{81}\left(10^{m+1}-9 m-10\right)$
(b)) $\frac{1}{27}\left(10^{m+1}-9 m-10\right)$
(c) $\left(10^{m+1}-9 m-10\right)$
(d) None

Answer: a
Explanation:
Given series:
$1+11+111+\ldots . . .$. m term
$\frac{1}{9}[9+99+999+\ldots .$. .m term $]$
$\frac{1}{9}(10-1)+(100-1)+(1000-1)+1 \ldots \ldots+m$ term $]$
$\frac{1}{9}\left[\frac{10 .\left(10^{\mathrm{m}-1}\right)}{10-1}-m\right]$
$\frac{1}{9}\left[\frac{10^{m-1}-10}{9}-m\right]$
$\frac{1}{9}\left[\frac{10.10^{m-1}-10-9 \mathrm{~m}}{9}-\mathrm{m}\right]$
$\frac{1}{81}\left(10.10^{m-1}-9 m-10\right)$

Question 2

A person pays Rs. 975 in monthly installments; each installment is less than former by Rs.5. The amount
(a) 26 months
(b) 15 months
(c) both (a) \& (b)
(d) 18 months

Answer: c

Explanation:

$s_{n}=975, \mathrm{a}=100, \mathrm{~d}=-5, \mathrm{n}=$?
$s_{n}=\frac{n}{2}(2 a+(n-1) d)$
$975=\frac{n}{2}[2 \times 100+(\mathrm{n}-1)(-5)]$
$1950=\mathrm{n}[200-5 \mathrm{n}+5]$

```
1950=n[205-5n]
1950=205n-5n2
5n2-205n+1950=0
5(n2-41n+390) = 0
n
n}\mp@subsup{n}{}{2}-26n-15n+390=
n(n-26)-15(n-26)=0
(n-26) (n-15)=0
If n-15=0 if n-26=0
N=15 n=26
```

The entire amount will be paid in 15 months

Question 3

If the sum of n terms of an AP is $3 n^{2}-n$ and its common different is 6 , then its term is:
(a) 3
(b) 2
(c) 4
(d) 1

Answer: b
Explanation:
Let s_{n} be the sum of n terms of an AP with first term a and common difference d . Since $s_{n}=3 n^{2}-\mathrm{n}$ and $\mathrm{d}=6$

$$
\begin{aligned}
\Rightarrow & S_{n}=\frac{n}{2}(2 a+(n-1) d)=3 n^{2}-n \\
& =\frac{n}{2}(2 a+(n-1) 6)=3 n^{2}-n \\
= & n(a+(n-1) 3)=3 n^{2}-n \\
& =(a+3 n-3)=3 n-1 \\
& a=2
\end{aligned}
$$

Question 4

Insert two arithmetic means between 68 and 260.
(a) 132,196
(b) 130,194
(c) 70,258
(d) none

Answer: a

Explanation:

Let two A.M.'S between 68 and 260 are A_{1}, A_{2}
68, $A_{1}, A_{2}: 260$
$\mathrm{d}=\frac{b-a}{n+1}$
$\mathrm{d}=\frac{260-68}{2+1}=\frac{192}{3}=64$
$A_{1}=a+d=68+64=132$
$\mathrm{A}_{1}=\mathrm{a}+2 \mathrm{~d}=68+2 \times 64=196$

NOV-2018

Question:1

If the $p^{\text {th }}$ term of an A.P. is ' q ' and the $q^{\text {th }}$ term is ' p ', and then its $r^{\text {th }}$ term is
(a) $p+q-r$
(b) $p+q+r$
(c) $p-q-r$
(d) $p-q$

Answer: a
Explanation:
Let 1 st term of AP is 'a'
And common different is'd'
Given $\mathrm{T}_{\mathrm{p}}=\mathrm{q}$
$a+(p-1) d=q$ \qquad
and $\mathrm{T}_{\mathrm{p}}=\mathrm{p}$
$a+(q-1) d=p$
$a+q d-d=p$ \qquad
Equation (i) and equation (ii)
$\mathrm{a}+\mathrm{pd}-\mathrm{d}=\mathrm{q}$
$\mathrm{a}+\mathrm{qd}-\mathrm{d}=\mathrm{p}$
$P d-q d=q-p$
$d(p-q)=-(p-q)$
$d=-1$
Putting $d=-1$ in equation (i)
$a+p(-1)-(-1)=q$
$\mathrm{a}=(\mathrm{p}+\mathrm{q}-1)$
Then, $\mathrm{T}_{\mathrm{r}}=\mathrm{a}+(\mathrm{r}-1) \mathrm{d}$

$$
\begin{aligned}
& =p+q-1+(r-1)(-1) \\
& =p+q-1-r+1 \\
& =p+q-r
\end{aligned}
$$

Question 2

The $3^{\text {rd }}$ term G.P. is $\frac{2}{3}$ and the $6^{\text {th }}$ term is $\frac{2}{81}$, term the $1^{\text {st }}$ term is
(a) 6
(b) $\frac{1}{3}$
(c) 9
(d) 2

Answer: a

Explanation:

Let $1^{\text {st }}$ term of G.P. is ' a ' and common ratio is ' r ' then
Given $\mathrm{T}_{3}=\frac{2}{3}$ and $\mathrm{T}_{6}=\frac{2}{81}$
$\mathrm{ar}^{2}=\frac{2}{3}$ \qquad
$\operatorname{ar}^{5}=\frac{2}{81}$
Eq (2) / eq (1)
$\frac{a r^{5}}{a r^{2}}=\frac{\frac{2}{81}}{\frac{2}{3}}$
$\mathrm{r}^{3}=\frac{2}{81} \times \frac{3}{2} \rightarrow \mathrm{r}^{3}=\frac{1}{27} \rightarrow \mathrm{r}=\frac{1}{3}$
Putting $r=\frac{1}{3}$ in equation (i)
$\mathrm{ar}^{2}=\frac{2}{3}$
$\mathrm{a}=\left[\frac{1}{3}\right]^{2}=\frac{2}{3} \rightarrow \mathrm{a} \times \frac{1}{9}=\frac{2}{3}$
a $=\frac{2}{3} \times \frac{9}{1}$
$\mathrm{a}=6$

Question 3

The sum of the series -8,--6-4 ...n terms is 52 . The number of terms \mathbf{n} is:
(a) 11
(b) 12
(c) 13
(d) 10

Answer: c

Explanation:

Given series
$-8,-6,-4$, n term
Let term (a) = -8
Common difference $(\mathrm{d})=(-6)-(-8)$

$$
=-6+8
$$

$$
=2
$$

Sum of ' n 'term $\left(\mathrm{S}_{\mathrm{n}}\right)=52, \mathrm{n}=$?
We know that
$S_{n}=\frac{n}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$
$52=\frac{n}{2}[2 \times(-8)+(n-1)(2)]$
$104=n[2 n-18]$
$104=2 n^{2}-18 n$
$2 n^{2}-18 n-104=0$
$n^{2}-9 n-52=0$
$(\mathrm{n}-13)(\mathrm{n}+4)=0$
If $\mathrm{n}-13 \rightarrow \mathrm{n}=13$ and $\mathrm{n}+4=0 \rightarrow \mathrm{n}=-4$

Question 4

The value of K, for which the mean the term $7 \mathrm{~K}+3,4 \mathrm{~K}-5,2 \mathrm{~K}+10$ are in A.P., is
(a) 13
(b) -13
(c) 23
(d) -23

Answer: d
Explanation:
If $7 \mathrm{~K}+3,4 \mathrm{~K}-5,2 \mathrm{~K}+10$ are in A.P
Then,
$(4 \mathrm{~K}-5)-(7 \mathrm{~K}+3)=(2 \mathrm{~K}+10)-(4 \mathrm{~K}-5)$
$4 \mathrm{~K}-5-7 \mathrm{~K}-3=2 \mathrm{~K}+10-4 \mathrm{~K}+5$
$-3 \mathrm{~K}-8=-2 \mathrm{~K}+15$
$-8-15=-2 K+3 K$
$-23=K$

MAY-2019

Question1

If $y=1+x+x^{2}+$ \qquad .∞ then $x=$
(a) $\frac{y-1}{y}$
(b) $\frac{y+1}{y}$
(c) $\frac{y}{y+1}$
(d) $\frac{y}{y-3}$

Answer: a
Explanation:
$y=1+x+x^{2}+$. ∞
is equivalent to $\mathrm{GP}=\frac{a}{1-r}$
$Y=\frac{1}{1-x}$
$1-\mathrm{x}=\frac{1}{y}$
$1 \frac{1}{y}=\mathrm{x}$
$\frac{y-1}{y}=\mathrm{X}$

Question2

If $2+6+10+14+18+$ \qquad $+x=882$ then the value of x
(a) 78 (b) 80
(c) 82
(d) 86

Answer: c
Explanation:
$2+6+10+14+18+$ \qquad $+x=882$
Sum of AP
$\mathrm{S}_{\mathrm{m}}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{S}_{\mathrm{m}}=\frac{n}{2}[\mathrm{a}+1]$
$882=\frac{n}{2}[2+\mathrm{x}]$
$882=\frac{n}{2} \times 2[2+(n-1) 2]$
$882=n[2+2 n+2]$
$882=2 n^{2}$
$\mathrm{N}^{2}=441$
$\mathrm{n}=\sqrt{441}$
$\mathrm{n}=21$
Put n in eq 1
$882=\frac{21}{2}[2+x]$
$84=2+x$
$\mathrm{X}=84-2=82$

Question 3

In a G.P, if the fourth term is ' 3 ' then the product of first seven terms is
(a) 3^{5}
(b) 3^{7}
(c) 3^{6}
(d) 3^{8}

Answer: b
Explanation:
Let first term be a and common ratio be r.
Then according to question
$\operatorname{ar}^{3}=3$
Product of $1^{\text {st }} 7$ terms $(a)^{7}(r)^{21}=\left(a r^{3}\right)^{7}=(3)^{7}$

Question 4

The ratio of sum of n terms of the two AP's is $(n+1)$: $(n-1)$ then the ratio of their $\mathbf{m}^{\text {th }}$ terms is
(a) $(\mathrm{m}+1): 2 \mathrm{~m}$
(b) $(m+1):(m-1)$
(c) $(2 m-1:(m+1)$
(d) $\mathrm{m}:(\mathrm{m}-1)$

Answer: d

Explanation:

$$
\begin{aligned}
& \frac{\frac{n}{2}[2 a+(n-1) d]}{\frac{n}{2}\left[2 a^{\prime}+(n-1) d^{\prime}\right]}=\frac{n+1}{n-1} \\
& \frac{a+\frac{n+1) d}{a^{\prime}+(n-1) d \prime}}{2} \\
& =\frac{n+1}{n-1} \\
& \mathrm{~T}_{\mathrm{n}}^{\mathrm{th}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
& \frac{n-1}{1}=\mathrm{n}-1 \\
& \mathrm{n}-1=2 \mathrm{n}-2 \\
& \mathrm{n}=2 \mathrm{~m}-2+1 \\
& \mathrm{n}=2 \mathrm{~m} \\
& \mathrm{n}=2 \mathrm{~m}-1 \\
& \frac{2 \mathrm{~m}}{2 \mathrm{~m}-2}=\frac{2 \mathrm{~m}}{2(\mathrm{~m}-1)}=\frac{\mathrm{m}}{\mathrm{~m}-1}
\end{aligned}
$$

Question 5

The sum of the series
0.5+0.55+0.555+ to n terms is:
(a) $5 n / 9+5 / 9\left[1-\left({ }^{*} 0.1\right)^{n}\right]$
(b) $5 \mathrm{n} / 9-5 / 81\left[1-(0.1)^{\mathrm{n}}\right]$
(c) $5 \mathrm{n} / 81+5 / 81\left[1-(0.1)^{\mathrm{n}}\right]$
(d) $5 \mathrm{n} / 9+5 / 81\left[1-(0.1)^{\mathrm{n}}\right]$

Answer: b
Explanation:
Given series $0.5+0.55+0.555$ \qquad n terms
we know that,
$0.1+0.1^{2}+0.1^{3}+\ldots \ldots \ldots . .=\frac{0.1\left(1-0.1^{n}\right)}{0.9}=\frac{\left(1-0.1^{n}\right)}{9}$
$\rightarrow 5(0.1+0.11+0.111+\ldots . . .$.
$\rightarrow 5\left(\frac{1}{10}+\frac{11}{100}+\frac{111}{1000}+\ldots \ldots\right)$
$\rightarrow \frac{5}{9}\left(\frac{9}{10}+\frac{99}{100}+\frac{999}{1000}+\ldots.\right)$
$\Rightarrow \frac{5}{9}\left(\left(1-\frac{1}{10}\right)+\left(1-\frac{1}{100}\right)+\left(1-\frac{1}{1000}\right)+\ldots ..\right)$
$\rightarrow \frac{5}{9}(1+1+\cdots n$ terms $)-\left(\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\ldots.\right)$
$\Rightarrow \frac{5}{9}\left(n-\frac{\left(1-0.1^{n}\right)}{9}\right)$

NOV-2019

Question 1

If $\frac{(b+c-a)}{a}, \frac{(c+a-b)}{b}, \frac{(a+b-c)}{c}$ are in AP then a, b, c are in
(a) AP
(b) GP
(c) HP
(d) None

Answer: (c)
Explanation:
Given :
$\frac{(\mathbf{b}+\mathbf{c}-\mathbf{a})}{\mathbf{a}}, \frac{(\mathbf{c}+\mathbf{a}-\mathbf{b})}{\mathbf{b}}, \frac{(\mathbf{a}+\mathbf{b}-\mathbf{c})}{\mathbf{c}}$ are in A.P.
Add 2 to each
$\frac{(b+c-a)}{a}+2, \frac{(c+a-b)}{b}+2, \frac{(a+b-c)}{c}+2$
$=\frac{b+c-a+2 a}{a}, \frac{c+a-b+2 b}{b}, \frac{a+b-c+2 c}{c}$
$=\frac{a+b+c}{a}, \frac{a+b+c}{b}, \frac{a+b+c}{c}$
Now, divide by a+b + c
$=\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in A.P.
We know, $\mathrm{HP}=\frac{1}{\text { A.P. }}$
= a, b, c are in H.P.
\therefore Option ci.e. H.P is the correct option,

Question 2

Sum upto infinity of series

$\frac{1}{2}+\frac{1}{3^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{4}}+\frac{1}{25^{2}}+$
(a) $19 / 24$
(b) $24 / 19$
(c) $5 / 24$
d) none

Answer: (a)
Explanation:
We know
$\mathrm{S} \infty=\frac{a}{1-r}, \mathrm{r}<1$
Here, $\frac{1}{2}+\frac{1}{3^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{4}}+\frac{1}{25^{2}}+\ldots$.
$\left(\frac{1}{2}+\frac{1}{3^{3}}+\frac{1}{2^{5}}+\ldots \ldots \infty\right)+\frac{1}{2}+\frac{1}{3^{3}}+\frac{1}{2^{5}}+$ \qquad $\infty)$
$\left\{a=\frac{1}{2}, r=\frac{1}{4}<1\right\} ;\left\{a=\frac{1}{2}, r=\frac{1}{4}, 1\right\}$
$\left(\frac{\frac{1}{2}}{1-\frac{1}{4}}\right)+\left(\frac{\frac{1}{9}}{1-\frac{1}{9}}\right)$
$\frac{\frac{1}{2}}{\frac{3}{4}}+\frac{\frac{1}{9}}{\frac{8}{9}}$
$\frac{1}{2} \times \frac{4}{3}+\frac{1}{9} \times \frac{9}{8}$
$\frac{2}{3}+\frac{1}{8}$
$\frac{19}{24}$

Question 3

Sum the series $\frac{1}{5}, \frac{1}{5^{2}}, \frac{1}{5^{3}}, \ldots \ldots . \frac{1}{5^{n}}$
(a) $\frac{1}{4}\left[1-\left(\frac{1}{5}\right)^{n}\right]$
(b) $\frac{1}{5}\left[1-\left(\frac{1}{4}\right)^{n}\right]$
(c) both
(d) none

Answer: (a)

Explanation:

Series $\frac{1}{5^{2}}, \frac{1}{5^{2}}, \frac{1}{5^{3}}, \ldots \ldots . . \frac{1}{5^{n}}$
So, here $\mathrm{a}=\frac{1}{5}, \mathrm{r}=\frac{1}{5}, \frac{1}{5}<1$
$\mathrm{Sn}=\mathrm{a} \frac{\left(1-r^{n}\right)}{(1-r)}, \mathrm{r}<1$
$\mathrm{Sn}=\frac{1}{5}\left[\frac{1-\left(\frac{1}{5}\right)^{n}}{1-\left(\frac{1}{5}\right)}\right]$
$\operatorname{Sn}=\frac{1}{5} \times \frac{5}{4}\left[1-\left(\frac{1}{5}\right)^{n}\right]$
Sn $=\frac{1}{4}\left[1-\left(\frac{1}{5}\right)^{n}\right]$

Question 4

Find the no. of terms of the series $25,5,1 \ldots \ldots \frac{1}{3125}$
(a) 6
(b) 7
(c) 8
(d) 9

Answer: (c)
Explanation:
Here gives the series $25,5,1 / 5 \ldots .$.
Let the Total Number of Terms $=\mathrm{n}$
First Term a $=25$

Common ratio $\mathrm{r}=1 / 5$
Last Term $\mathrm{a}_{\mathrm{n}}=\frac{1}{3125}$
we have the formula

$$
\begin{aligned}
& a_{n}=\operatorname{ar}^{\mathrm{n}-1} \\
& \rightarrow \frac{1}{3125}=25\left(\frac{1}{5}\right)^{n-1} \\
& \Rightarrow\left(\frac{1}{5}\right)^{5}=\left(\frac{1}{5}\right)^{n-3} \\
& \Rightarrow \mathrm{n}-3=5 \\
& \Rightarrow \mathrm{n}=8
\end{aligned}
$$

Yes, $1 / 3125$ is the $8^{\text {th }}$ term of the series.

Question 5

If the sum of five terms of AP is 75. Find the third term of the series.
(a) 35
(b) 30
(c) 15
(d) 20

Answer: (c)
Explanation:
We know
$S_{n}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{n}=5 \quad \mathrm{~S} 5=75$
$\mathrm{S}_{5}=\frac{5}{2}[2 \mathrm{a}+(5-1) \mathrm{d}]$
$75=\frac{5}{2}[2 a+4 d]$
$15=\mathrm{a}+2 \mathrm{~d} \quad------$ Eq (1)
$\mathrm{T}_{3}=\mathrm{a}+(3-1) \mathrm{d}$
$\mathrm{T}_{3}=\mathrm{a}+2 \mathrm{~d}$
------From Eq (1)
$\mathrm{T}_{3}=15$

Question 6

If the AM and GM of the two numbers is $\mathbf{6 . 5}$ and $\mathbf{6}$ the no's are:
(a) 3 and 2
(b) 9 and 4
(c) 81 and 16
(d) None

Answer: (b)
Explanation:
Let the two nos.be 'a' and 'b'
$\mathrm{AM}=\frac{a+b}{2} ; \quad \mathrm{GM}=\sqrt{a b}$
$\sqrt{a b}=6$

$$
\begin{array}{|ll}
\frac{a+b}{2}=6.5 & \begin{array}{c}
\text { On squaring } \\
a b=36 \quad--- \text { Equation (2) }
\end{array} \\
a+b=13 & \\
a=13-b & \\
\text { Put Eq (1) in Eq (2) } & \\
b \times(13-b)=36 & \\
13 b-b^{2}=36 & \\
b^{2}-13 b+36=0 & \\
b^{2}-9 b-4 b+36=0 & \\
b(b-9)-4(b-9)=0 & \\
b=9 & b=4 \\
a=13-9 & a=13-4 \\
a=4 & a=9
\end{array}
$$

So the two numbers are 4 and 9

Question 7

If $A M$ and $H M$ for numbers are 5 and $3: 2$, respectively GM will be
a) 20
b. 16
c. 4
d. 5

Answer:(c)
Explanation:
We know that
$(\mathrm{GM})^{2}=\mathrm{AM} \times \mathrm{HM}$
Here $(\mathrm{GM})^{2}=5 \times 3.2$
$(\mathrm{GM})^{2}=16$
$(\mathrm{GM})=4$.

DEC - 2020

Question 8

The $20^{\text {th }}$ term of arithmetic progression whose $6^{\text {th }}$ term is 38 and $10^{\text {th }}$ term is $\mathbf{6 6}$ is \qquad
(a) 136
(b) 118
(c) 178
(d) 210

Answer: a
Explanation:
Let a and d be the first term and common difference of an AP
It is given that, $6^{\text {th }}$ term $\mathrm{a}_{6}=38$ and $10^{\text {th }}$ term $\mathrm{a}_{10}=66$.

Therefore,
$a+5 d=38$
$a+9 d=66$
Subtracting (i) from (ii), we have
$4 d=-28$
$d=7$
Substituting in (i), we have
$a+5(7)=38$
Hence, the $20^{\text {th }}$ term is 136 .

Question 9

Three numbers in G.P with their sum is 130 and their product is 27,000 are
(a) $90,30,10$
(b) 10, 30, 90
(c) 10, 20, 30
(d) Both

Answer: d
Explanation:
Let the three number be $\frac{a}{r}$,a, ar
$\frac{a}{r}+a+a r=130$
$\frac{a}{r} . a \cdot a r=27000 \rightarrow a^{3}=(30)^{3}$
$=30$
$a\left[\frac{1+r+r^{r}}{r}\right]=130$
$\frac{1+r+r^{r}}{r}=\frac{13}{3}$
$\rightarrow 3 r^{r}-10 r+3$
$\rightarrow r=3$ or $\frac{1}{3}$
The numbers are 10,30 , and 90

Question 10

Divide 69 into 3 parts which are in A.P and are such that the product of first two parts is 460
(a) $20,23,26$
(b) $21,23,25$
(c) 19, 23, 27
(d) $22,23,24$

Answer: a
Explanation:
Let the first term of the AP be 'a'

And the common difference be 'd'
Since 69 split into 3 parts such that they form an AP.
Let the three parts be $(a-d),(a)$ and $(a+d)$.
Therefore,
$(a-d)+(a)+(a+d)=69$
$3 \mathrm{a}=69$
$\mathrm{a}=23$
The product if two smaller parts $=460$
So,
(a) $\times(\mathrm{a}-\mathrm{d})=460$
$23 \times(23-d)=460$
$\Rightarrow 529-23 \mathrm{~d}=460$
$\Rightarrow-23 \mathrm{~d}=460-529$
$\Rightarrow-23 \mathrm{~d}=-69$
$\Rightarrow \mathrm{d}=63 / 23$
$\Rightarrow \mathrm{d}=3$
Therefore,
The 3 parts are
$23-3=20$;
And $23+3=26$
Hence the parts of the given AP are 20,23 , and 26

JAN - 2021

Question 1

The $n^{\text {th }}$ term of the series $\mathbf{3 + 7 + 1 3 + 2 1 + 3 1 + \ldots .}$ is
(a) $4 \mathrm{n}-1$
(b) $n^{2}+2 n$
(c) $n^{2}+n+1$
(d) $n^{3}+2$

Answer: c
Explanation:
$3+7+13+21+\ldots . . a_{n-1}+a_{n}-$
$3+7+13+21+\ldots . . a_{n-2}+a_{n-1}+a_{n}$
Eq 1 - Eq 2
s -s $=3-0+(7+3)+(13-7)+\ldots \ldots+\left(a_{n-1}-a_{n-2}+\left(a_{n}-a_{n-1}\right)-a_{n}\right.$
$0=\left[3+4+6+\ldots .+a_{n-1}\right]-a_{n}$
$a_{n}=3+\left[4+6+8+---+a_{n-1}\right.$
Now $4+6+8+---+a_{n-1}$ are in A.P.
First term $\mathrm{a}=4$, Common difference $\mathrm{d}=2$
Sum of n herm of $\mathrm{AP}=\frac{n}{2}[2 a+(n-1) d]$
$=4+6+8 \pm--a_{n-1}=\frac{n-1}{2}[2 \times 4+(n-1-1) \times 2]$
$=\left(\frac{n-1}{2}\right)[8+2 n-4]$
$=\frac{n-1}{2}(2 n+4)$
$=\left(4+6+8+\ldots \ldots .+a_{n-1}=(n-1)(n+2)\right.$
By Eq 3
$a_{n}=3+\left[4+6+8+---+a_{n-1}\right]$
$a_{n}=3+(\mathrm{n}-1)(\mathrm{n}+2)$
$=3+n^{2}-n+2 n-2$
$a_{n}=\mathrm{n}^{2}+\mathrm{n}+1$

Question 2

The number of integers from 1 to 100 which are neither divisible by 3 , nor by 5 nor by 7 , is
(a) 67
(b) 55
(c) 45
(d) 33

Answer: c
Explanation:
Total No. - 100
divide by $3=100 / 3=33$
divide by $5=100 / 5=20$
divide by $7=100 / 7=14$
$=33+20+14=67$
$3 \& 5=100 / 15=6$
$5 \& 7=100 / 35=2$
$7 \& 3=100 / 21=4$
$=6+2+4=12$
$=67-12=55$
Total Divisible by $3,5 \& 7$ are 55
Total -divisible = not divisible
$100-55=45$

Question 3

In a geometric progression, the $3^{\text {rd }}$ and $6^{\text {th }}$ terms are respectively, 1 and $1 / 8$. The first term (a) and common ratio are respectively.
(a) 4 and $\frac{1}{2}$
(b) 4 and $\frac{-1}{4}$
(c) 4 and $\frac{-1}{2}$
(d) 4 and $\frac{1}{4}$

Answer: c

Explanation:

By option c
$a=4 \& r=-1 / 2$
Check $3^{\text {rd }}$ GP
$1 / 2 \times 4====(4$ time equals to) $=1$
checking $6^{\text {th }}$ GP
$1 / 2 \times 4=======(7$ time equals to) $=-0.125$
$=-1 / 8=0.125$

JULY - 2021

Question 1

The number of terms of the series: $5+7+9+\ldots$. Must be taken so that the sum may be 480
(a) 20
(b) 10
(c) 15
(d) 25

Answer: Options (a)
Explanation:
5 + 7 + 9 -------
$a=5, d=2, s=480$
$\mathrm{S}=n / 2(2 \mathrm{a}+\mathrm{n}-1) \mathrm{d}$
$480=n / 2(2(5)+(n-1)(2)$
$480=n / 2(10+2 n-2)$
$480=n(2 n+8)$
$480=2 n^{2}+8 n$
$2 n^{2}+8 n-480$
$2\left(n^{2}+4 n-480\right)$
$\Rightarrow n^{2}+4 n-480$
$n^{2}+20 n+24 n-480$
n ($\mathrm{n}-20$) $+24(\mathrm{n}-20)$

$\mathrm{n}+24=0$	
$\mathrm{n}=-24$	$\mathrm{n}-20=0$
$\mathrm{n}=20$	

Question 2

The fifth term of an AP of n terms, whose sum is $n^{2}-2 n$, is
(a) 5
(b) 7
(c) 8
(d) 15

Answer: Options (b)
Explanation:-
Given: Sum of n terms of an $A P=n^{2}-2 n$.
To find: The fifth term =?
Sum of ' n ' terms of an $A P=n^{2}-2 n$
\therefore Sum of $1{ }^{\text {st }} 5$ terms
$\Rightarrow \mathrm{s}_{5}=5^{2}-2$. (5)
$\Rightarrow 25-10=15$
Similarly,
Now, sum of first 4 terms
$S_{5}=5^{2}-2$. (5)
$=25-10=15$
Similarly,
Now, sum of first 4 terms
$\mathrm{S}_{4}=5^{2}-2$. (4)
$=16-8=8$
\therefore The $5^{\text {th }}$ term of an AP"
$\Rightarrow t_{5}=S_{5}-S_{4} \quad \ldots,\left(U \operatorname{sing} T_{n}=S_{n}-S_{n-1}\right)$
$=15-8$
$=7$
So, option 2 is correct.

Question 3

The sum of three numbers in a geometric progression is 28 . When 7,2 and 1 are subtracted from the first, second and third numbers respectively, then the resulting numbers are in arithmetic progression. What is the sum of squares of the original three numbers?
(a) 510
(b) 456
(c) 400
(d) 336

Answer: Options (d)
If sum of three number in a G.P. IS 28
Then numbers re in G.P.
16, 8,,4
When 7,2 and 1 are subtracted from first second and third numbers we get (167), (8-2), (4-1)

So condition is satisfied
The sum of squares if the original
Three no. $=(16)^{2}+(8)^{2}+(4)^{2}$
$=256+64+16$
$=336$

Question 4

If the sum of ' n ' terms of an AP (Arithmetic Progression) is $2 n^{2}$, the fifth term is \qquad
(a) 20
(b) 50
(c) 25
(d) 18

Answer: Option (c)
Explanation:
Given $\mathrm{S}_{\mathrm{n}}=2 \mathrm{n}^{2}$

$$
\begin{aligned}
& \mathrm{S}_{1}=2(1)^{2}=2 \times 1=2 \\
& \mathrm{~S}_{2}=2(2)^{2}=2 \times 4=8 \\
& \mathrm{~S}_{3}=2(3)^{2}=2 \times 9=18 \\
& \mathrm{~T}_{1}=\mathrm{S}_{1}=2 \\
& \mathrm{~T}_{2}=\mathrm{S}_{2}-\mathrm{S}_{1}=8-2=6 \\
& \mathrm{~T}_{3}=\mathrm{S}_{3}-\mathrm{S}_{2}=18-8=10
\end{aligned}
$$

Series,

$$
\begin{aligned}
& 2,6,10, \ldots . .15 \text { terms } \\
& \mathrm{a}=2, \mathrm{~d}=6-2=4, \mathrm{n}=15 \\
& \mathrm{~T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
& \mathrm{~T}_{15}=2+(5-1) \times 4 \\
& \quad=2+4 \times 4 \\
& \quad=2+16 \\
& \quad=18
\end{aligned}
$$

