<u>CHAPTER - 6</u> <u>SEQUENCE AND SERIES-</u> <u>ARITHMETIC AND GEOMETRIC</u> <u>PROGRESSIONS</u>

SequenceAn ordered collection of numbers $a_1, a_2, a_3, a_4, \dots, a_n$,
 \dots is a
sequenceifaccordingtosomedefiniteruleorlaw,thereisadefinit
evalueof a_n , called the term or element of the sequence,
corresponding to any value of the natural number n
An expression of the form $a_1 + a_2 + a_3 + \dots + a_n + \dots$ which is the sum of the
elements of the sequence $\{a_n\}$ is called a *series*.
If the series contains a finite number of
elements, it is called a *finite series*, otherwise
called an infinite series.

For Enquiry – 6262969604		6262969699
Arithmetic Progression	A sequence $a_{1}, a_{2}, a_{3}, \dots, a_{n}$ is called an Arithmetic Progression (A.P.) when $a_{2} - a_{1} = a_{3} - a_{2} = \dots = a_{n} - a_{n-1}$ That means A. P. is a sequence in which each term is obtained by adding a constant d to the preceding term. This constant 'd' is called the <i>common difference</i> of the A.P. If 3 numbers a, b, c are in A.P., we say $b - a = c - b$ or $a + c = 2b$; b is called the arithmetic mean between a and c. $n^{th}term(t_{n}) = a + (n - 1)$ Where $a = First$ Term $D = Common$ difference= $t_{n} - t_{n-1}$ Sum of 1st n natural or counting numbers	
	Sum of n terms of AP	$s = \frac{n}{2} [2a + (n-1)d]$
	Sum of the first n terms	Sum of 1st n natural or counting numbers S = n(n + 1)/2
	Sum of 1st n odd number	$S = n^2$
	Sum of the Squares of the first, n natural numbers	n(<u>n + 1) (2n + 1</u>)
Geometric Progression (G.P)	If in a sequence of terms each term is constant multiple of theproceedingterm,thenthesequenceiscalledaGeometricProg ression(G.P).Theconstant multiplier is called the common ratio $\frac{\text{Anyterm}}{P\text{recedingterm}} = \frac{t_n}{t_{n-1}}$ $= \mathbf{ar^{n-1}/ar^{n-2} = r}$	
	terms of a GP	$a_{n} = a (1 - r^{n}) / (1 - r)$ when $r < 1$ $a_{n} = a(r^{n}-1)/(r-1)$ when $r > 1$ $\infty = a/(1-r)$ where $0 < r < 1$

For Enquiry – 6262969604		6262969699
	series	
Geometric mean		b)/2 ve get b/a = c/b => b ² = ac, b tric mean between a and c
Question: 1 Find the 7 th term of (a) 10 (c) 8 Answer: b Explanation: Here $a = 8, d = 5 - 8$ Now $t_7 = 8 + (7-1) d$ = 8 + (7 - 1) (-3) = 8 + 6 (-3) = 8 - 18 = -10		1, -4, b) -10 d) -8
(a) 2, 5, 8, 11, 14, (c) 2, 3, 4, 11, 14 Answer: a Explanation:	···· (m & d be the comn e two equations = 14 – 12 = 2	4 and 35 respectively, find the A.F b) 2, 3, 8, 11, 12, d) 2, 5, 8, 1, 4,

For Enquiry – 6262969604	6262969699
-	A.P. and are such that the product of
d, a, $a + d$ Thus $a - d + a + a + d = 69$ Or $3a = 69$ Or $a = 23$ So the three parts are $23 - d$, 23 , 23	(b) 21, 22, 23, (d) 21, 22, 25. The three parts which are in A.P. be a – + d as 483, therefore, we have 23 (23 – d) =
483 Or $23 - d = \frac{483}{23} = 21$ Or $d = 23 - 21 = 2$ Hence, the three parts which are in A Hence the three parts are 21, 23, and <u>Ouestion: 4</u> Find the arithmetic mean between	A.P. are 23 – 2 = 21, 23, 23 + 2 = 25 d 25
(a) 5 (c) 10 Answer: b Explanation:	(b) 7 (d) 3 (a+ b) / 2 Hence, The A.M. between 4 &
Question: 5 Find the G.P. series where 4^{th} term (a) 125, 50,20,9, (c) 125, 5,20,8 Answer: d Explanation: $t4 = ar^3 = 8$ T8 = 128/625 $\rightarrow ar^7 = 128/625$	n is 8 and 8th term is 128/625 (b) 125,50,20,10, (d) 125, 50,20,8
$T8/T4 = 128/625 \times 1/8$	

6262969699

→ $ar^7/ar^3 = 16/625$ → $r^4 = 2^4/5^4$ → r = 2/5 $ar^3 = 8$ → $a(2/5)^3 = 8$ → $a \times 8/125 = 8$ → a = 125Therefore, a = 125, $ar = 125 \times 2/5 = 50$, $ar^2 = 125 \times 4/125 = 20$ Or 125, 50, 20, 8... Forms a G.P.

Question: 6

Insert three geometric means between $\frac{1}{6}$ and 9 (b) $\frac{1}{8}, \frac{1}{5}, 1, 3, 9$ (a) $\frac{1}{9}, \frac{1}{3}, 1, 3, 9$ $(d)\frac{121}{9}, \frac{1}{3}, 1, 3$ (c) $\frac{11}{9}, \frac{1}{3}, 1, 3, 9$ **Answer:** a **Explanation:** G.P. Series $\frac{1}{9}$, --,--,-, 9 Here $t1 = a = \frac{1}{a}$ $t5 = a.r^4 = 9$ Now, $t5 = \frac{1}{9} \cdot r^4 = 9$ $= r^4 = 81$ $= r^4 = 3^4$ = r = 3 $t2 = ar = \frac{1}{9} \times 3 = \frac{1}{3}$ $t3 = ar^2 = \frac{1}{9} \times 3^2 = 1$ $t4 = ar3 = \frac{1}{0} \times 3^3 = 3$ Thus the series $\frac{1}{9}, \frac{1}{3}, 1, 3, 9$

Question: 7Find the sum of 1^{st} term of G.P. series 1+2+4+8+...(a) 155(b) 255(c) 185(d) -822Answer: bExplanation:Here a = 1, r = 2, n = 8

6262969699

 $S_n = a \cdot \frac{(r^{n-1})}{(r-1)}$ When r > 1 $S_8 = 1. \frac{(2^8 - 1)}{(2 - 1)}$ = 1 (256 - 1) = 255Thus $S_8 = 255$ **Ouestion: 8** Find the sum of the series -2, 6, -187 terms? (a) 1554 (b) -1094 (d) -8223 (c) 1094 **Answer: b Explanation:** Here a = -2, r = -3, n = 7 $S_n = a.\frac{(1-r^n)}{(1-r)}$ When <1 $S_7 = (-2) \frac{[1-(-3)^7]}{[1-(-3)]}$ $= (-2) \frac{(1+2187)}{4}$ $= (-2)\frac{\frac{4}{(2188)}}{4}$ $S_7 = -1094$ **Question: 9** In a G.P. the product of the 1st three terms 27/8. The middle term is (a) $\frac{27}{8}$ (b) $\frac{3}{2}$ (c) $\frac{2}{9}$ (d) $\frac{8}{27}$ Answer: h **Explanation:** Let the three terms Of GP are $\frac{a}{r}$, a, ar Now product of terms $\frac{a}{r} \times a \times ar = \frac{27}{8}$ $a^3 = \frac{27}{8}$ $a^3 = (\frac{3}{2})^3$ $a = \frac{3}{2}$ Thus the middle term, $a = \frac{3}{2}$

6262969699

 $t_{10} = 2 + (10 - 1) 2 = 2 + 18 = 20$ Hence, the 10th term of the given A.P. is 20 **Ouestion: 13** The 10th term of an A.P. is -15 and 31st term is -57, find the 15th term (a) -20 (b) 20 (d) 25 (c) -25 **Answer: c Explanation**: Let a be the first term and d be the common d be the common difference of the A.P. Then from the formula: $t_n = a + (n - 1) d$, we have $t_{10} = a + (10 - 1) d = a + 9d$ $t_{31} = a + (31 - 1) d = a + 30 d$ We have. a + 9d = -15.... (1) $a + 30d = -57 \dots (2)$ Solve equations (1) and (2) to get the values of a and d. Subtracting (1) from (2), we have 21d = -57 + 15 = -42 $-42 \div 21 = 2$ Again from (1), a = -15 -9d = -15 - 9(-2) = -15 + 18 = 3 Now $t_{15} = a + (15 - 1) d$ = 3 + 14(-2) = -25Which term of the A.P.: 5, 11, 17 ... is 119? **Question: 14** (b) n = 2(a) n = 20(d) n = 19(c) n = 30**Answer:** a **Explanation:** Here a = 5, d = 11-5 = 6 $t_n = 119$ we know that

 $t_n = a + (n - 1) d$? 119 = 5 + (n - 1) x 6 $(n - 1) = \frac{119-5}{6} = 19$ n = 20, therefore, 119 is the 20th term of the given A.P.

Question: 15

For Enquiry – 6262969604	6262969699		
Is 600 a term of the A. P.: 2, 9, 16,?			
(a) yes (b) no		
(c) Not sure (d) none		
Answer: b			
Explanation:			
Here, $a = 2$, and $d = 9 - 2 = 7$.			
Let 600 be the n th term of the A.P. We h	have $t_n = 2 + (n - 1) 7$		
According to the question			
2 + (n - 1) 7 = 600			
(n-1) 7 = 598			
$rac{598}{7} + 1$ $n = 86\frac{3}{7}$			
Since n is a fraction, it cannot be a tern	h of the given A.P. Hence, 600 is not a		
term of the given A.P.			
Ouestion 10			
Question: 16 The common difference of on A D is	2 and the 15th term is 27. Find the		
The common difference of an A.P. is	3 and the 15 th term is 37. Find the		
first term.			
(a) -5	b) 5		
	d) -42		
Answer: a			
Explanation:	Contraction being the second second		
Here d = 3, t_{15} = 37, and n = 15 Let the	first term be a. we have		
$t_n = a + (n-1) d$			
37 = a + (15 - 1) 3			
Or, $37 = a + 42$			
a = -5			
Or, $37 = a + 42$ a = -5 Thus, first term of the given A.P. is -5			
Question: 17 Geometric mean G between two nur	nhors a and h id		
	b) ab ²		
	d) \sqrt{ab}		
Answer: d			
Explanation:			
If a single geometric mean 'G' is inserted	<u> </u>		
'b', then G is known as the geometric m	lean between a and b.		
$G.M. = G = G^2 = \sqrt{ab}$			

For Enquiry - 6262969604 6262969699 $G = \sqrt{ab}$ G. M. between $\frac{3}{2}$ and $\frac{27}{2} = \sqrt{\frac{3}{2} \times \frac{27}{2}}$ $=\frac{9}{2}$ **Ouestion21** Insert three geometric means between 1 and 256. (b) -4, 16, -64 (a) 4, 16, 64, (c) Both (d) None **Answer: c Explanation:** Let G₁, G₂, G₃, be 3 GMS both 1, & 256 Then, 1, G₁, G₂, G₃, 256 will be in GP Let common ratio be r \therefore G₁ = r So $r^4 = 256$ r = +4 $G_1 = \pm 4$ $G_2 = +16$

Question22

 $G_3 = \pm 64$

If 4, 36, 324 are in G.P. insert two more numbers in this progression so that it again forms a G.P. (a) 12,108 (b) 14,180 (c) 16,120 (d) 12, 10 Answer: a Explanation: G. M. between 4 and $36 = \sqrt{4 \times 36} = \sqrt{144} = 12$ G.M. between 36 and $324 = \sqrt{36 \times 324} = 6 \times 18 = 108$ If we introduce 12 between 4 and 36 and 108 between 36 and 324, the numbers 4, 12, 36, 108, 324 form a G.P. The two new numbers inserted are 12 and 108.

Question 23

The distance travelled (in cm) by a simple pendulum in consecutive seconds are 16, 12, 9,... How much distance will it travel before coming to rest?

6262969699

 $b^2a - ac^2 = a^2c - b^2c$ a $(b^2 + c^2) = c (a^2 + b^2)$ Trick: Put a=1, b=2, c=4, and check the alternates.

Question 26

The sum of infinity of the progression 9-3+1- $\frac{1}{3}$ + ... is

(a) 9 (b) 9/2 (c) 27/4 (d) 15/2 **Answer: c Explanation:** Infinite series $9 - 3 + 1 - \frac{1}{3} \dots \propto \text{is a G. P. with}$ $a = 9, r = \frac{-1}{3} S_{\infty} = \frac{a}{1-r} = \frac{9}{1+\frac{1}{3}} = \frac{9 \times 3}{4} = \frac{27}{4}$ **Question 27 The product (32) (32)**^{1/6} **(32)**^{1/36}**To** ∞ **is.** (a) 16 (b) 32 (c) 64 (d) 0 **Answer: c**

Explanation:

 $(32) (32) \frac{1}{6} (32) \frac{1}{36} \dots \infty = (32)^{1 + \frac{1}{6} + \frac{1}{36} + \dots \infty} = (32)^{\left(1 - \frac{1}{6}\right)}$ $(32)^{\frac{1}{5/6}} = (35)^{\frac{6}{5}} = 2^{6} = 64$

Ouestion 28 Obtain the sum of all positive integers up to 1000, which are divisible by 5 and not divisible by 2. (b) 5050 (a) 10050 (d) 50000 (c) 5000 Answer: d **Explanation:** The positive integers, which are divisible by 5, are 5, 10, 15,..., 1000 Out of these 10, 20, 30,.. 1000 are divisible by 2 Thus, we have to find the sum of the positive integers 5, 15, 25, ..., 995 If n is the number of terms in it the sequence then 995 = 5 + 10(n-1)=> 1000 = 10n Therefore, n = 100Thus the sum of the series = (100/2)(5 + 995) = (50)(1000) = 50000.

Question 29

If s is the sum of an infinite G.P., the first term a then the common ratio r given by (a) $\frac{a-s}{s}$ (b) $\frac{s-a}{s}$ (c) $\frac{a}{1-s}$ (d) none Answer: b Explanation: $S = \frac{a}{1-r}$ s-sr = a

-sr = a-s $r = \frac{s-a}{s-a}$

Question30

If in an infinite G.P. first term is equal to the twice of the sum of the remaining terms, then its common ratio is

```
(a) 1

(b) 2

(c) 1/3

Answer: c

Explanation:

Given, a=2\left(\frac{ar}{1-r}\right)

1-r = 2r

r = \frac{1}{3}
```

Question 31

If n geometric means between a and b be G₁, G₂,.... G_n and a geometric mean be G, then the true relation is

```
(a) G_1, G_2, \dots, G_n = G (b) G_1, G_2, \dots, G_n = G^{1/n}

(c) G_1, G_2, \dots, G_n = G^n (d) none

Answer: c

Explanation:

Here G = (a \ b)^{1/2} and

G_1 = ar^1, G_2 = ar^2, \dots, G_n = ar^n. therefore

G_1, G_2, G_3, \dots, G_n = a^n r^{1+2+\dots+n} = a^n r^{n(n+1)/2} But

ar^{n+1} = b

r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}
```

For Enquiry - 6262969604 6262969699 Therefore, the required product is $a^n \left(\frac{b}{a}\right)^{\frac{1}{(n+1)}.n(n+1)/2}$ $= (ab)^{n/2}$ $= \{(ab)^{1/2}\}^n$ $= G^n$ Note: It is a well-known fact. **Question 32** 7th term of the sequence $\sqrt{2}$, $\sqrt{10}$, $5\sqrt{2}$... is (b) $25\sqrt{2}$ (a) $125\sqrt{10}$ (c) 125 (d) $125\sqrt{2}$ **Answer: D Explanation: Given sequence** is $\sqrt{2}$, $\sqrt{10}$, $5\sqrt{2}$**Common ratio** $r = \sqrt{5}$, first term a $= \sqrt{2}$, then 7th term $t_7 = \sqrt{2}(\sqrt{5})^{7-1} = \sqrt{2}(\sqrt{5})^6 = \sqrt{2}(5)^3$ $125\sqrt{2}$ **Ouestion 33** If the first term of a G.P. be 5 and common ratio be -5, then which term is 3125? (b) 5th (a) 6th (c) 7th (d) 8th **Answer: b Explanation**: Given that first term a=5 and common ratio r=-5. Suppose that nth term is 3125 Then $ar^{n-1} = 3125$ $5(-5)^{n-1} = \frac{5^5}{5} 5^4$ $n - 1 = 4 = (n \rightarrow 5)$ **Ouestion 34** The sums of n terms of three A.P.'s whose first term is 1 and common differences are 1, 2, 3 are S_1, S_2, S_3 respectively. The true relation is

(a) $S_1 + S_2 = S_3$ (b) $S_1 + S_3 = 2S_2$ (c) $S_1 + S_2 = 2S_3$ (d) none **Answer: b**

6262969699

Explanation:

We have $a_1 = a_2 = a_3 = 1$ $d_1 = 1, d_2 = 2, d_3 = 3$ Therefore, $S_1 = \frac{n}{2}(n + 1)....(i)$ $S_2 = \frac{n}{2}(2n + 1)...(ii)$ $S_3 = \frac{n}{2}(3n + 1)$... (iii) Adding (i) and (iii), $S_1 + S_3 = \frac{n}{2}[(n + 1) + (3n + 1)] \rightarrow \frac{n}{2}[4n + 2]$ $= 2[\frac{n}{2}(2n + 1)] = 2S_2$ Hence correct relation $S_1 + S_3 = 2S_2$

Question 35

What is the sum of all 3 digit numbers that leave a remainder of '2' when divided by 3?

(a) 897

(c) 164,749

Answer: b

Explanation:

The smallest 3 digit number that will leave a remainder of 2 when divided by 3 is 101.

(b) 164,850

(d) 149,700

The next number that will leave a remainder of 2 when divided by 3 is 104, 107,

The largest 3 digit number that will leave a remainder of 2 when divided by 3 is 998.

So, it is an AP with the first term being 101 and the last term being 998 and common difference being 3.

Sum of an AP = $\frac{First \ term + Last \ term}{2}$ × Number of term

We know that in an A.P., the nth term $a_n = a_1 + (n - 1)^*d$ In this case, therefore, $998 = 101 + (n - 1)^*3$ i.e. $897 = (n - 1)^*3$ Therefore n - 1 = 299Or n = 300

Sum of the AP will therefore be $\frac{101+998}{2} \times 300 = 164,850$

Question 36 What is the sum of the following series? -64, -66, -68,...., -100

6262969699

(b) -1558 (a) -1458 (c) -1568 (d) -1664 **Answer: b Explanation:** The sequence is -64, -66, -68,....-100. The given set of numbers are in an arithmetic progression Key data: First term is -64. The common difference is -2. The last term is -100 Sum of the first n term is an AP = $\frac{n}{2}[2a_1 + (n-1)d]$ To compute the sum, we know the first term $a_1 = -64$ and the common difference d = -2We do not know the number of terms n. Let us first compute the number of terms and then find the sum of the terms. Step to compute number of terms of the sequence $a_n = a_1 + (n - 1) d$ -100 = -64 + (n - 1)(-2)Therefore, n = 19. Sum $S_n = \frac{19}{2} [2(-64) + (919-1) (-2)]$ $S_n = \frac{19}{2} [-128-36]$ $S_n = 19 x (-82) = -1558$ **Ouestion 37** The sum of third and ninth term of an A.P. is 8. Find the sum of the first **11 terms of the progression.** (b) 22 (d) None of these (a) 44 (c) 19 **Answer:** a **Explanation**: The third term $t_3 = a + 2d$ The ninth term $t_9 = a + 8d$ $t_3 + t_9 = 2a + 10d = 8$ Sum of first 11 terms of an AP is given by $S_{11} = \frac{11}{2} [2a + 10d]$ $S_{11} = \frac{11}{2}[8] = 44$

Question38

For Enquiry - 6262969604 6262969699 The sum of the three numbers in A.P is 21 and the product of the first and third number of the sequence is 45. What are the three numbers? (a) 9, 7 and 5 (b) 3, 7, and 11 (c) Both A & B (d) None of these Answer: a **Explanation:** Let the number are be a - d, a, a + dThen a - d + a + a + d = 213a = 21a=7and (a - d) (a + d) = 45 $a^2 - d^2 = 45$ $d^2 = 4$ d = +2Hence, the number are 5, 7 and 9 when d = 2 and 9, 7 and 5 when d = -2. In both the cases numbers are the same. **Ouestion 39** If the first term of G.P. is 7, Its nth term is 448 and sum of first n terms is 889, then find the fifth term of G. P. (a) 112 (b) 110 (c) 62 (d) 39 Answer: a **Explanation**: Given a = 7 the first term $t_n = ar^{n-1} = 7(r)^{n-1} = 448$. $7r^{n} = 448 r ---- (1)$ Also $S_{n} = \frac{a(r^{n}-1)}{r-1} = \frac{7(r^{n}-1)}{r-1}$ $889 = \frac{448r-7}{r-1} \{ \text{value of } r^n \text{ from (1)} \}$ R = 2Hence $T_s = ar^4 = 7(2)^4 = 112$ **Ouestion 40** If the third and fourth terms of arithmetic sequence are increased by 3 and 8 respectively. Then the first four terms form a geometric sequence. Find

(i) the sum of the first four ter	ms of A.P.
(a) 54	(b) 27
(c) 23	(d) 79

6262969699

Answer: a Explanation: Sol. a, (a + d), (a + 2d), (a + 3d) in A.P. a, a + d, (a + 2d + 3), (a + 3d + 8) are in G.P. Hence a + d = ar also $r = \frac{a+d}{a} = \frac{a+2d+3}{a+d} = \frac{a+3d+8}{a+2d+3}$ $\frac{d+3}{d} = \frac{d+5}{d+3}$ → $d^2 + 6d + 9 = d^2 + 5d \rightarrow d = -9$ $\frac{a-9}{a} = \frac{a-15}{a-9}$ → $a^2 - 18a + 81 = a^2 - 15a \rightarrow 3a = 8_1 \rightarrow a = 27$ Hence A.P. is 27, 18, 9, 0, Sum of the first four terms of AP = 54

Question 41

Three positive numbers form a G.P. If the second term is increased by 8, the resulting sequence is an A.P. In turn, if we increase the last term of this A.P. by 6₄, we get a G.P. Find the three numbers.

or child rain i by	04) 110 500 4			amberbi	
(a) 4, 12, 36		(b)	4, 8, 16		
(c) 5, 15, 20		(d)	none		
Answer: a					

Question42

The sum of the first five terms of a geometric series is 18₉. The sum of the first six terms is 3⁸, and the sum of the first seven terms is 7⁶5.

What is the common ratio in	the series?	
(a) 3	(b) 2	
(c) 6	(d) 56	
Answer: b		
Explanation:		
Let the numbers be a, a r, a r ²	when $r > 0$	
Hence a, $(a r + 8)$, $a r^2$ in A.P.	- (1)	
Also a, $(a r + 8)$, $a r^2 + 6_4$ in G.P	. – (2)	
→ $(a r + 8)^2 = a (a r^2 + 6_4) a$	= 4/4-r - (3)	
Also (1) \rightarrow 2(ar + 8) = (a + ar ²) \rightarrow (1 - r) ² = 16/a - (4)		
From (3) and (4) r = 3 or -5 (r	ejected)	
Hence a = 4 numbers are: 4, 12	2, and 36	
Explanation:		

6262969699

 $S_5 = 18_9$; $S_6 = 3^{81}$; $S_7 = 7^65$; $t_6 = S_6 - S_5 = 3^{81} - 18_9 = 19^2$ $t_7 = S_7 - S_6 = 7^65 - 3^{81} = 3^{84}$ Now common ratio $= \frac{t_7}{t_6} = \frac{3^{84}}{19^2} = 2$

Question43

Find the 3rd n th term for the AP: 11, 17, 23, 29,.....

(a) 23

(c) 11

Answer: a

Explanation:

Here, a = 11, d = 17-11 = 23 - 17 = 29 - 23 = 6 We know that nth term of an AP is a + (n - 1) d => nth term for the given AP = 11 + (n - 1) 6 => nth term for the given AP = 11 + (n - 1) 6 => nth term for the given AP = 5 + 6n We can verify the answer by putting values of 'n' => n = a -> First term = 5 + 6 = 11 => n = 2 -> Second term = 5 + 12 = 17 => n = 3 -> Third term = 5 + 18 = 23

Question 44

The sum of three numbers in a GP is 26 and their product is 216. and the numbers.

(b) 17

(d) 6

(a) 2,6 and 18 (b) 3, 7 and 11 (c) Both Answer: a Explanation: Let the numbers be $\frac{a}{r}$, a, ar. $=> (\frac{a}{r}) + a + ar = 26$ $=> a \frac{(1+r+r^2)}{r} = 26$ Also, it is given that product = 216 $=> (\frac{a}{r}) \times (a) \times (a r) = 216$ $=> a^3 = 216$ => a = 6 $=> 6 \frac{(1+r+r^2)}{r} = 26$ $=> \frac{(1+r+r^2)}{r} = 26$ $=> \frac{(1+r+r^2)}{r} = 26$

6262969699

$=> 3 + 3r + 3r^2 = 13 r$
$=> 3 r^2 - 10r + 3 = 0$
$=> (r-3) (r - (\frac{1}{3})) = 0$
$=> r = 3 \text{ or } r = \frac{1}{3}$
Thus, the required numbers are 2, 6 and 18.

Question 45

A Sequence in which the ratio of two consecutive terms is always constant (1, 0) is called

(b) GP (a) AP (d) NP (c) HP Answer: b **Explanation**: A Sequence in which the ratio of two consecutive terms is always constant (1, 0) is called a Geometric progression (G.P.) **Ouestion46** For the elements 4 and 6, verify (a) $A \ge G \ge H$ (b) $A < G \geq H$ (c) $A > G \geq H$ (d)None **Answer: a Explanation**: A = Arithmetic Mean = (4 + 6) / 2 = 5

G = Geometric Mean = $\sqrt{4 \times 6}$ = 4.8989 H = Harmonic Mean = $(2 \times 4 \times 6) / (4 + 6) = 48 / 10 = 4.8$ Therefore, $A \ge G \ge H$

Ouestion 47

A sequence of numbers is called?

(c) Harmonic Progression

(a) Geometric Progression (b) Arithmetic progression (AP) (d) All

Answer: d

Explanation: Harmonic Progression (HP)

A sequence of numbers is called a harmonic progression if the reciprocal of the terms are in AP. In simple terms, a, b, c, d, e, f are in HP if 1/a, 1/b, 1/c, 1/d, 1/e, 1/f are in AP.

Arithmetic Progression (AP)

6262969699

A sequence of numbers is called an arithmetic progression if the difference between any two consecutive terms is always same.

Geometric Progression (GP)

A sequence of numbers is called a geometric progression if the ratio of any two consecutive terms is always same.

Ouestion 48

An AP has 13 terms whose sum is 143. The third term is 5, then first term is:

```
(a) 4
                                 (b) 7
                                 (d) None of these
(c) 9
Answer: d
Explanation:
S(13) = 143
S(13) = (n/2)(2a+(n-1)d)
= (13/2) \times (2a-12d)
= 13 \times (a+6d)
= 13a + 78d = 143
                     ----- (1)
Divide both sides by 13
a+6d=11 ..... (1)
T(3) = a+2d=5 ..... (2)
Subtract (2) from (1)
4d=6
d = 3/2
Substituted in any of the equations .....(am using 2)
a + 2(3/2) =5
a+ 3=5
a=2
Ouestion 49
```

The series $1^3 + 2^3 + 3^3 + \dots 20^3$ is equal to (b) 4410000 (a) 4410 (d) None of these (c) 44100 **Answer: c Explanation** $(n(n+1)/2)^2$ $(20(20+1)/2)^2$

44100.

PREPARE FOR WORST

Question 1

What is the sum of all 3 digit numbers that leave a remainder of `2' when divided by 3?

(a) 897 (c) 164,749

(b) 164,850 (d) 149,700

Question 2

A piece of equipment cost a certain factory Rs. 6, 00,000. If it depreciates in value, 15% the first year, 13.5% the next year. 12% the third year, and so on, what will be its value at the end of 10 years, all percentages applying to the original cost

(a) 2,00,000	(b) 1,05,000
(c) 4,05,000	(d) 6,50,000

Question 3

If a rubber ball consistently bounces back 2/3 of the height from which it is dropped, what Fraction of its original height wills the ball bounce after being dropped and bounced four times without being stopped?

(a) 16/81	(b) 16/27
(c) 4/9	(d) 37/81

Question 4

Find the sum of first 30 positive integer multiple of 6

Question 5

How many numbers are there between 200 and 800 which are divisible by both? 5 and 7?

Question 6

If (p + q)th term of an A.P is m and (p-q)th term is n, then pth(a) mn(b) \sqrt{mn} (c) $\frac{1}{2}(m-n)$ (d) $\frac{1}{2}(m+n)$

Question 7

For Enquiry – 6262969604	6262969699
If 7 times the 7th term of an A.P is eq	ual to 11 times of its 11th term , then
18th term is	
(a) 18	(b) 9
(c) 77	(d) 0
Question 8	
There is a set of four numbers p, q, r	
that first three are in G.P. and the last	
6. If the first and the fourth numbers	
(a) 8	(b) 2
(c) -4	(d) -24
Oreastican O	
Question 9 An arithmetic program has 22 to	rma the sum of the middle three
An arithematic progression has 23 te	
terms of the arithematic progression	
terms of the Arithmetic progress is 1 arithematic progression?	520. What is the 10 th term of this
(a) 240	(b) 360
(a) 240 (c) 340	(d) 440
	(u) 440
Ouestion 10	
Find the value of `a' given that the ge	ometric mean between x and y is
(a) -2/3	(b) -1/4
(c) -3/2	(d) -7/6
Question 11	
Sum of three numbers in GP with con	nmon ratio greater than 1 is 105 If
the first two numbers are multiplied	by 4 and the 3 rd number is
multiplied by 3, then the resulting	
Terms are in AP. What is the highest	of the three numbers given?
(a) 60	(b) 50
(c) 30	(d) 45
Question 12	
	4&40 such that (i) their sum is 37 (ii)
4,x,y are consecutive terms of an A,P	and (iii) y,z,40 are the consecutive
terms of a G.P, Find the value of Z	
(a) 20	(b) 10 (d) 15
(c) 12	(d) 15

Question 13

A tortoise walks 500 m in one day, the next day it walks 250 m, the next day 125, m and so on, what is the limiting distance which it could walk?

Question 14

In a geometric progression the sum of first 3X term of the series is S and the sum of first 2X terms of the series is 12s /133. If the sum of first X terms of the series is s/k, find the value of `k' it is given that the common difference of the gp is positive.

(a) 120	(b) 133
(c) 155	(d) 160

Question 15

In a infinite geometric progression with common ratios less than 1 the sum of any two consecutive terms is 8 times the sum of all the terms that follow. What is the ratio of any term and the sum of all the terms that follow it?

(a) 2	(b) -2
(c) -4	(d) Cannot be determined

Question 16

In an arithematic progression, the sum of the first 10 terms is half the sum of first 15 terms. Find the ratio of the sum of first 16 terms and first 21 terms of some AP.

(a) 7:11	(b) 6:10
(c) 12:17	(d) 8:13

ANSWERS AVAILABLE ON:

- TELEGRAM CHANNEL: t.me/KINSHUKInstitute
- WEBSITE :<u>WWW.KITest.IN</u>
- KITest APP

Past Examination Questions

MAY - 2018

Question 1

The sum to m terms of the series $1 + 11 + 11 + 1111 + \dots$ Upto m terms is equal to:

(c) $(10^{m+1} - 9m - 10)$

(a) $\frac{1}{81}(10^{m+1} - 9m - 10)$ (b) $\frac{1}{27}(10^{m+1} - 9m - 10)$ (d) None

Explanation:

Answer: a

Given series: 1+11+111+m term $\frac{1}{9}[9+99+999+.......mterm]$ $\frac{1}{9}(10-1)+(100-1)+(1000-1)+1$ + m term] $\frac{1}{9} \left[\frac{10.(10^{m-1})}{10-1} - m \right]$ $\frac{\frac{1}{9} \begin{bmatrix} 10^{-1} & 1 \\ 10^{m-1} - 10 \\ 9 \end{bmatrix} - m \end{bmatrix}$ $\frac{1}{9} \begin{bmatrix} 10.10^{m-1} - 10 - 9m \\ 9 \end{bmatrix} - m \end{bmatrix}$ $\frac{1}{81}(10.10^{m-1}-9m-10)$

Question 2 A person pays Rs.975 in monthly installments; each installment is less than former by Rs.5. The amount (a) 26 months (b) 15 months

(c) both (a) & (b) **Answer: c Explanation**: *s*_n = 975, a = 100, d = -5, n =? $s_n = \frac{n}{2}(2a + (n-1)d)$ $975 = \frac{\overline{n}}{2} [2 \times 100 + (n - 1)(-5)]$ 1950=n[200-5n+5]

(d) 18 months

1950=n[205-5n] 1950=205n-5n² $5n^2 - 205n + 1950 = 0$ $5(n^2-41n+390) = 0$ $n^2 - 41n + 310 + 0$ n^2 -26n-15n+390=0 n(n-26)-15(n-26)=0(n-26)(n-15)=0If n-15=0 if n-26=0 N=15 n=26 The entire amount will be paid in 15 months **Ouestion 3** If the sum of n terms of an AP is 3n² – n and its common different is 6, then its term is: (a) 3 (b) 2(d) 1 (c) 4 Answer: b **Explanation**: Let s_n be the sum of n terms of an AP with first term a and common difference d. Since $s_n = 3n^2$ - n and d = 6 → $S_n = \frac{n}{2}(2a + (n - 1)d) = 3n^2 - n$ $=\frac{n}{2}(2a + (n - 1)6) = 3n^2 - n$ $= n(a + (n - 1)3) = 3n^2 - n$ = (a + 3n - 3) = 3n - 1a = 2**Question 4** Insert two arithmetic means between 68 and 260. (a) 132,196 (b) 130,194 (c) 70,258 (d) none Answer: a **Explanation**: Let two A.M.'S between 68 and 260 are A₁, A₂ 68, A₁, A₂:260 $d = \frac{b-a}{a}$ $d = \frac{260 - 68}{2 + 1} = \frac{192}{3} = 64$ A₁ = a + d = 68 + 64 = 132 For more Info Visit - www.KITest.in

 $A_1 = a + 2d = 68 + 2 \times 64 = 196$ <u>NOV - 2018</u> **Ouestion:1** If the pth term of an A.P. is 'q' and the qth term is 'p', and then its rth term is (b) p+q+r (a) p+q-r(c) p-q-r (d) p-q Answer: a **Explanation**: Let 1st term of AP is 'a' And common different is'd' Given $T_p = q$ a + (p-1)d = q _____ (i) and $T_p = p$ a + (q-1)d = pa+ qd - d = p _____ (ii) Equation (i) and equation (ii) a + pd - d = qa+qd-d=pPd - qd = q - pd(p-q) = -(p-q)d = -1 Putting d = -1 in equation (i) a + p(-1) - (-1) = qa = (p + q - 1)Then, $T_r = a + (r - 1)d$ = p + q - 1 + (r - 1)(-1)= p+q-1-r+1= p + q - r**Question 2** The 3rd term G.P. is $\frac{2}{3}$ and the 6th term is $\frac{2}{81}$, term the 1st term is $(b)\frac{1}{3}$ (a) 6 (d) 2(c) 9 **Answer:** a **Explanation**:

For Enquiry - 6262969604

For more Info Visit - <u>www.KITest.in</u>

6262969699

Let 1st term of G.P. is 'a' and common ratio is 'r' then Given $T_3 = \frac{2}{3}$ and $T_6 = \frac{2}{81}$ $ar^2 = \frac{2}{3}$ ____ (i) $ar^5 = \frac{2}{81}$ (ii) Eq (2) / eq (1) $\frac{ar^5}{ar^2} = \frac{\frac{2}{81}}{\frac{2}{2}}$ $r^3 = \frac{2}{81} \times \frac{3}{2} \rightarrow r^3 = \frac{1}{27} \rightarrow r = \frac{1}{3}$ Putting $r = \frac{1}{3}$ in equation (i) $ar^2 = \frac{2}{2}$ $a = \left[\frac{1}{3}\right]^2 = \frac{2}{3} \rightarrow a \times \frac{1}{9} = \frac{2}{3}$ $a = \frac{2}{3} \times \frac{9}{1}$ a = 6 **Question 3** The sum of the series -8,--6-4 ...n terms is 52. The number of terms n is: (a) 11 (b) 12 (d) 10 (c) 13 **Answer: c Explanation**: **Given series** -8, -6, -4, n term Let term (a) = -8Common difference (d) = (-6) - (-8)= -6 + 8= 2 Sum of 'n 'term $(S_n) = 52$, n=? We know that $S_n = \frac{n}{2}(2a + (n-1)d)$ $52 = \frac{n}{2} \left[2 \times (-8) + (n-1)(2) \right]$ 104 = n[2n-18] $104=2n^2 - 18n$ $2n^2 - 18n - 104 = 0$ $n^2 - 9n - 52 = 0$

(n-13)(n+4)=0If $n-13 \rightarrow n = 13$ and $n + 4 = 0 \rightarrow n = -4$ **Question 4** The value of K, for which the mean the term 7K+3,4K-5,2K+10 are in A.P., is (a) 13 (b) -13 (d) -23 (c) 23 Answer: d **Explanation:** If 7K+3, 4K-5, 2K+10 are in A.P Then, (4K-5)-(7K+3) = (2K+10)-(4K-5)4K-5-7K-3 = 2K+10-4K+5-3K-8 = -2K+15-8-15 = -2K+3K-23 = K**MAY - 2019 Ouestion1** If $y = 1 + x + x^2 + ... \infty$ then x =(b) $\frac{y+1}{y}$ (d) $\frac{y}{y-2}$ (a) $\frac{y-1}{2}$ (C) $\nu + 1$ Answer: a **Explanation:** $\mathbf{y} = 1 + \mathbf{x} + \mathbf{x}^2 + \dots \infty$ is equivalent to GP = $\frac{a}{1-r}$ $Y = \frac{1}{1-x}$ $1-x = \frac{1}{y}$ $1\frac{1}{y} = x$ $\frac{y-1}{x} = x$ **Ouestion2** If 2 + 6 + 10 + 14 + 18 + + x = 882 then the value of x (b) 80 (a) 78 For more Info Visit - www.KITest.in

For Enquiry - 6262969604

6.30

6262969699

6262969699

(c) 82 **Answer: c Explanation**: $2 + 6 + 10 + 14 + 18 + \dots + x = 882$ Sum of AP $S_m = \frac{n}{2} [2a + (n-1)d]$ $S_m = \frac{n}{2}[a+1]$ $882 = \frac{n}{2} [2 + x] \dots (1)$ $882 = \frac{n}{2} \times 2[2 + (n-1)2]$ 882 = n[2+2n+2] $882 = 2n^2$ $N^2 = 441$ $n = \sqrt{441}$ n = 21 Put n in eq 1 $882 = \frac{21}{2} [2 + x]$ 84 = 2 + xX = 84 - 2 = 82

<u>Question 3</u>

In a G.P, if the fourth term is '3' then the product of first seven terms is (a) 3⁵ (b) 3⁷ (c) 3⁶ (d) 3⁸

Answer: b Explanation:

Let first term be a and common ratio be r.

Then according to question $ar^3 = 3$

Product of 1^{st} 7 terms (a)⁷(r)²¹ = (ar³)⁷ = (3)⁷

Question 4The ratio of sum of n terms of the two AP's is (n + 1): (n - 1) then the ratio oftheir mth terms is(a) (m + 1): 2m(b) (m + 1): (m - 1)(c) (2m - 1): (m + 1)(d) m : (m - 1)Answer: dExplanation:

6262969699

 $\frac{\frac{n}{2}[2a+(n-1)d]}{\frac{n}{2}[2a'+(n-1)d']} = \frac{n+1}{n-1}$ $\frac{\frac{a+\frac{(n+1)d}{2}}{\frac{a'+(n-1)d'}{2}} = \frac{n+1}{n-1}$ $T_n^{\text{th}} = a+(n-1) d$ $\frac{n-1}{1} = n-1$ n-1 = 2n-2 n = 2m-2+1 n = 2m n = 2m-1 $\frac{2m}{2m-2} = \frac{2m}{2(m-1)} = \frac{m}{m-1}$

Question 5

The sum of the series

Explanation:

Given series 0.5 + 0.55 + 0.555..... n terms we know that.

$$0.1 + 0.1^{2} + 0.1^{3} + \dots = \frac{0.1 (1 - 0.1^{n})}{0.9} = \frac{(1 - 0.1^{n})}{9}$$

$$\Rightarrow 5(0.1 + 0.11 + 0.111 + \dots)$$

$$\Rightarrow 5\left(\frac{1}{10} + \frac{11}{100} + \frac{111}{1000} + \dots\right)$$

$$\Rightarrow \frac{5}{9}\left(\frac{9}{10} + \frac{99}{100} + \frac{999}{1000} + \dots\right)$$

$$\Rightarrow \frac{5}{9}\left(\left(1 - \frac{1}{10}\right) + \left(1 - \frac{1}{100}\right) + \left(1 - \frac{1}{1000}\right) + \dots\right)$$

$$\Rightarrow \frac{5}{9}\left(1 + 1 + \dots \text{ n terms}\right) - \left(\frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \dots\right)$$

$$\Rightarrow \frac{5}{9}\left(n - \frac{(1 - 0.1^{n})}{9}\right)$$

<u>NOV - 2019</u>

Question 1 If $\frac{(b+c-a)}{a}$, $\frac{(c+a-b)}{b}$, $\frac{(a+b-c)}{c}$ are in AP then a, b, c are in

6262969699

(a) AP (b) GP(c) HP (d) None **Answer:** (c) **Explanation:** Given : $\frac{(b+c-a)}{a}$, $\frac{(c+a-b)}{b}$, $\frac{(a+b-c)}{c}$ are in A.P. Add 2 to each $\frac{(b+c-a)}{a}$ + 2, $\frac{(c+a-b)}{b}$ + 2, $\frac{(a+b-c)}{c}$ + 2 $= \frac{a+b+c-a+2a}{a}, \frac{c+a-b+2b}{b}, \frac{a+b-c+2c}{c}$ $= \frac{a+b+c}{a}, \frac{a+b+c}{b}, \frac{a+b+c}{c}$ Now, divide by a+b + c $=\frac{1}{a},\frac{1}{b},\frac{1}{c}$ are in A.P. We know, HP = $\frac{1}{AP}$ = a, b, c are in H.P. ∴ Option c i.e. H.P is the correct option, **Question 2** Sum upto infinity of series $\frac{1}{2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^4} + \frac{1}{25^2} +$ (b) 24/19 (a) 19/24 (c) 5/24 d) none Answer: (a) **Explanation**: We know $S\infty = \frac{a}{1-r'}$ r < 1 Here, $\frac{1}{2} + \frac{1}{3^2} + \frac{1}{2^3} + \frac{1}{3^4} + \frac{1}{25^2} + \dots$ $\left(\frac{1}{2} + \frac{1}{3^3} + \frac{1}{2^5} + \dots + \infty\right) + \frac{1}{2} + \frac{1}{3^3} + \frac{1}{2^5} + \dots + \infty$ $\left\{a = \frac{1}{2}, r = \frac{1}{4} < 1\right\}; \left\{a = \frac{1}{2}, r = \frac{1}{4}, 1\right\}$ $\left(\frac{\frac{1}{2}}{1-\frac{1}{2}}\right) + \left(\frac{\frac{1}{9}}{1-\frac{1}{2}}\right)$

6262969699

$ \begin{bmatrix} \frac{1}{2} & + & \frac{1}{9} \\ \frac{3}{4} & \frac{1}{9} \end{bmatrix} $	
$\frac{1}{2} \times \frac{4}{3} + \frac{1}{9} \times \frac{9}{8}$	
$\frac{2}{3} + \frac{1}{8}$	
<u>19</u> 24	
Question 3 Sum the series $\frac{1}{5}, \frac{1}{5^2}, \frac{1}{5^3}, \dots, \frac{1}{5^n}$	$1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}^n$
(a) $\frac{1}{4} \left[1 - \left(\frac{1}{5}\right)^n \right]$ (c) both	(b) $\frac{1}{5} \left[1 - \left(\frac{1}{4}\right)^n \right]$ (d) none
Answer: (a) Explanation:	
Series $\frac{1}{5}, \frac{1}{5^2}, \frac{1}{5^3}, \dots, \frac{1}{5^n}$	
So, here $a = \frac{1}{5}$, $r = \frac{1}{5}$, $\frac{1}{5} < 1$	
Sn= $a\frac{(1-r^n)}{(1-r)}$, r < 1	
$\operatorname{Sn} = \frac{1}{5} \left[\frac{1 - \left(\frac{1}{5}\right)^n}{1 - \left(\frac{1}{5}\right)} \right]$	
$\operatorname{Sn} = \frac{1}{5} \times \frac{5}{4} \left[1 - \left(\frac{1}{5}\right)^n \right]$	
$\operatorname{Sn} = \frac{1}{4} \left[1 - \left(\frac{1}{5}\right)^n \right]$	
Question 4	1
Find the no. of terms of the series 2	25, 5, 1 $\frac{1}{3125}$
(a) 6	(b) 7
(c) 8	(d) 9
Answer: (c)	
Explanation:	
Here gives the series 25, 5, 1/5 Let the Total Number of Terms = n	
First Term $a = 25$	

Common ratio r = 1/5Last Term $a_n = \frac{1}{3125}$ we have the formula $a_n = \operatorname{ar}^{n-1}$ $\Rightarrow \frac{1}{3125} = 25 \left(\frac{1}{5}\right)^{n-1}$ $\rightarrow \left(\frac{1}{5}\right)^5 = \left(\frac{1}{5}\right)^{n-3}$ \rightarrow n - 3 = 5 \rightarrow n = 8 Yes, 1/3125 is the 8^{th} term of the series. **Ouestion 5** If the sum of five terms of AP is 75. Find the third term of the series. (b) 30 (a) 35 (c) 15 (d) 20Answer: (c) **Explanation**: We know $S_n = \frac{n}{2} [2a + (n-1) d]$ S5 = 75 n=5 $S_5 = \frac{5}{2}[2a+(5-1)d]$ $75 = \frac{5}{2}[2a + 4d]$ 15 = a + 2d ------Eq (1) $T_3 = a + (3 - 1) d$ $T_3 = a + 2d$ -----From Eq (1) $T_3 = 15$ **Ouestion 6** If the AM and GM of the two numbers is 6.5 and 6 the no's are: (a) 3 and 2 (b) 9 and 4 (c) 81 and 16 (d) None Answer: (b) **Explanation**: Let the two nos.be 'a' and 'b' AM = $\frac{a+b}{2}$; $GM = \sqrt{ab}$ For more Info Visit - www.KITest.in

6262969699

 $\sqrt{ab} = 6$ $\frac{a+b}{2} = 6.5$ **On squaring** ab = 36 ----Equation (2) a + b = 13a = 13 - b----Equation (1) Put Eq (1) in Eq (2) $b \times (13 - b) = 36$ $13b - b^2 = 36$ $b^2 - 13b + 36 = 0$ $b^2 - 9b - 4b + 36 = 0$ b(b-9) - 4(b-9) = 0b = 9b = 4a = 13 – 9 a = 13 - 4a = 4 a = 9 So the two numbers are 4 and 9 **Ouestion 7** If AM and HM for numbers are 5 and 3:2, respectively GM will be h. 16 a) 20 d. 5 c. 4 **Answer:**(c) **Explanation**: We know that $(GM)^2 = AM \times HM$ Here $(GM)^2 = 5 \times 3.2$ $(GM)^2 = 16$ (GM) = 4.**DEC - 2020 Ouestion 8** The 20th term of arithmetic progression whose 6th term is 38 and 10th term is 66 is_____ (a) 136 (b) 118 (d) 210(c) 178 Answer: a **Explanation**: Let a and d be the first term and common difference of an AP It is given that, 6^{th} term $a_6 = 38$ and 10^{th} term $a_{10} = 66$.

6262969699

Therefore, $a + 5d = 38 \dots (i)$ $a + 9d = 66 \dots (ii)$ Subtracting (i) from (ii), we have 4d = -28 d = 7Substituting in (i), we have a + 5(7) = 38Hence, the 20th term is 136.

Question 9

Three numbers in G.P with their sum is 130 and their product is 27,000 are

(a) 90, 30, 10	(b) 10, 30, 90			
(c) 10, 20, 30	(d) Both			
Answer: d				
Explanation:				
Let the three number be $\frac{a}{r}$, a, ar				
$\frac{a}{r} + a + ar = 130$				
r				
$\frac{a}{r} \cdot a \cdot ar = 27000 \rightarrow a^3 = (30)^3$				
= 30				
$a\left[\frac{1+r+r^r}{r}\right] = 130$				
$\frac{1+r+r^r}{r} = \frac{13}{3}$				
$r^{3} \rightarrow 3r^{r} - 10r + 3$				
\rightarrow r=3 or $\frac{1}{2}$				
The numbers are 10, 30, and 90				
Question 10				
Divide 69 into 3 parts which are in A.P and are such that the product of first				
two parts is 460				
(a) 20, 23, 26	(b) 21, 23, 25			
(c) 19, 23, 27	(d)22, 23, 24			
Answer: a				
Explanation:				
Let the first term of the AP be 'a'				

6262969699

And the common difference be 'd' Since 69 split into 3 parts such that they form an AP. Let the three parts be (a - d), (a) and (a + d). Therefore, (a - d) + (a) + (a + d) = 693a = 69a = 23The product if two smaller parts = 460So, $(a) \times (a - d) = 460$ $23 \times (23 - d) = 460$ \Rightarrow 529 - 23d = 460 \Rightarrow - 23d = 460 - 529 \Rightarrow - 23 d = - 69 \Rightarrow d = 63/23 \Rightarrow d = 3 Therefore, The 3 parts are 23 - 3 = 20;And 23 + 3 = 26Hence the parts of the given AP are 20, 23, and 26

JAN - 2021

Ouestion 1 The nth term of the series 3 + 7 + 13 + 21 + 31 + is (b) $n^2 + 2n$ (a) 4n - 1 (c) $n^2 + n + 1$ (d) $n^3 + 2$ Answer: c **Explanation:** $3 + 7 + 13 + 21 + \dots a_{n-1} + a_n$ ------(1) $3 + 7 + 13 + 21 + \dots + a_{n-2} + a_{n-1} + a_n$ ------ (2) Eq 1 – Eq 2 $s-s = 3-0+(7+3) + (13-7) + \dots + (a_{n-1} - a_{n-2} + (a_n - a_{n-1}) - a_n)$ $0 = [3 + 4 + 6 + \dots + a_{n-1}] - a_n$ Now $4+6+8+---+a_{n-1}$ are in A.P. First term a = 4, Common difference d = 2 Sum of n herm of AP = $\frac{n}{2}[2a + (n-1)d]$

6262969699

$$=4 + 6 + 8 \pm - - a_{n-1} = \frac{n-1}{2} [2 \times 4 + (n-1-1) \times 2]$$

$$= \left(\frac{n-1}{2}\right) [8 + 2n - 4]$$

$$= \frac{n-1}{2} (2n + 4)$$

$$= (4 + 6 + 8 + \dots + a_{n-1}) = (n-1) (n+2)$$
By Eq 3
$$a_n = 3 + [4 + 6 + 8 + \dots + a_{n-1}]$$

$$a_n = 3 + (n-1) (n+2)$$

$$= 3 + n^2 - n + 2n - 2$$

$$a_n = n^2 + n + 1$$

Question 2

The number of integers from 1 to 100 which are neither divisible by 3, nor by 5 nor by 7, is

(a) (7)	
(a) 67	(b) 55
(c) 45	(d) 33
Answer: c	
Explanation:	
Total No. – 100	
divide by 3 = 100/3 = 33	
divide by 5 = 100/5 = 20	
divide by 7 = 100/7 = 14	
= 33+20+14 = 67	
3& 5 = 100/15=6	
5& 7 = 100/35=2	
7& 3 = 100/21=4	
= 6+2+4 = 12	
= 67-12 = 55	
Total Divisible by 3,5&7 are 55	
Total –divisible = not divisible	
100-55 = 45	
Question 3	
In a geometric progression, the 3 rd	and 6 th ter

Question 3In a geometric progression, the 3rd and 6th terms are respectively, 1 and -1/8. The first term (a) and common ratio are respectively.(a) 4 and $\frac{1}{2}$ (b) 4 and $\frac{-1}{4}$ (c) 4 and $\frac{-1}{2}$ (d) 4 and $\frac{1}{4}$ Answer: c

6262969699

Explanation: By option c a=4 & r = -1/2Check 3^{rd} GP $1/2 \times 4 ====(4 \text{ time equals to}) = 1$ checking 6^{th} GP $1/2 \times 4 =====(7 \text{ time equals to}) = -0.125$ = -1/8 = 0.125

JULY - 2021

Question 1		
<u>Question 1</u> The number of terms of the series: 5 +	$7 + 9 + \dots$ Must be taken so that the	
sum may be 480	, i) i mini Must be taken so that the	
(a) 20	(b) 10	
(c) 15	(d) 25	
Answer: Options (a)		
Explanation:		
5 + 7 + 9		
a = 5, d = 2, s = 480		
$S = \frac{n}{2}$ (2a + n - 1) d		
$480 = \frac{n}{2} (2 (5) + (n - 1) (2))$		
$480 = \frac{n}{2}(10 + 2n - 2)$		
480 = n(2n+8)		
$480 = 2n^2 + 8n$		
$2n^2 + 8n - 480$		
$2(n^2 + 4n - 480)$		
\Rightarrow n ² + 4n - 480		
$n^2 + 20n + 24n - 480$		
n (n – 20) + 24(n – 20)		
$\begin{array}{c c} n+24 = 0 & n-20 = 0 \\ \hline n = -24 & n = 20 \end{array}$		
n = -24 n = 20		
Ouestion 2		
The fifth term of an AP of n terms, whose sum is $n^2 - 2n$, is		
(a) 5	(b) 7	
(c) 8	(d) 15	
For more Info Visit - <u>www.KITest.in</u>		
	6.40	

6262969699

```
Answer: Options (b)
Explanation:-
Given: Sum of n terms of an AP = n^2 - 2n.
To find: The fifth term =?
Sum of 'n' terms of an AP = n^2 - 2n
\therefore Sum of 1<sup>st</sup> 5 terms
   \Rightarrow s<sub>5</sub> = 5<sup>2</sup> - 2.(5)
    \Rightarrow 25 - 10 = 15
Similarly,
Now, sum of first 4 terms
S_5 = 5^2 - 2.(5)
= 25 - 10 = 15
Similarly,
Now, sum of first 4 terms
S_4 = 5^2 - 2.(4)
= 16 - 8 = 8
\therefore The 5<sup>th</sup> term of an AP"
   \Rightarrow t<sub>5</sub> = S<sub>5</sub> - S<sub>4</sub> ..., (Using T<sub>n</sub> = S<sub>n</sub> - S<sub>n-1</sub>)
= 15 - 8
= 7
So, option 2 is correct.
```

Question 3

The sum of three numbers in a geometric progression is 28. When 7, 2 and 1 are subtracted from the first, second and third numbers respectively, then the resulting numbers are in arithmetic progression. What is the sum of squares of the original three numbers?

(a) 510 (b) 456 (c) 400 (d) 336 Answer: Options (d) If sum of three number in a G.P. IS 28 Then numbers re in G.P. 16, 8,,4 When 7, 2 and 1 are subtracted from first second and third numbers we get (16-7), (8-2), (4-1) So condition is satisfied The sum of squares if the original Three no. = $(16)^2 + (8)^2 + (4)^2$ = 256 + 64 + 16

= 336

Question 4	
If the sum of `n' terms of an AP (Arithmetic Progression) is $2n^2$, the fifth	1
term is	
(a) 20 (b) 50	
(c) 25 (d) 18	
Answer: Option (c)	
Explanation:	
Given $S_n = 2n^2$	
$S_1 = 2 (1)^2 = 2 \times 1 = 2$	
$S_2 = 2 (2)^2 = 2 \times 4 = 8$	
$S_3 = 2 (3)^2 = 2 \times 9 = 18$	
$T_1 = S_1 = 2$	
$T_2 = S_2 - S_1 = 8 - 2 = 6$	
$T_3 = S_3 - S_2 = 18 - 8 = 10$	
Series,	
2, 6, 10,15 terms	
a = 2, d = 6 - 2 = 4, n = 15	
$T_n = a + (n-1) d$	
$T_{15} = 2 + (5-1) \times 4$	
$= 2 + 4 \times 4$	
= 2 + 16	
= 18	

For more Info Visit - www.KITest.in