

For Enquiry – 62629696	604 6262969699
	permutations.
	The number of permutations of n things chosen r at a time is given by
	${}^{n}P_{r} = n(n-1)(n-2)(n-r+1)$
	Where the product has exactly r factors.
	(a)n ordinary permutations equal one circular permutation.
Circular	Hence there are ${}^{n}P_{n}/n$ ways in which all the <i>n</i> things can be arranged in a circle. This equals $(n-1)!$.
Permutations	(b) The number of necklaces formed with n beads of different colors
	• Number of permutations of n distinct objects taken r at a time when a particular object is not taken in any arrangement is $n-1p_r$.
	• Number of permutations of r objects out of n distinct objects when a particular object is always included in any arrangement
	The number of ways in which smaller or equal number of things are arranged or selected from a collection of things where the order of selection or arrangement is not important, are called combinations.
Combinations	ⁿ C _r = n!/r! (n – r)!
	${}^{n}C_{r} = {}^{n}C_{n-r}$
	${}^{n}C_{0} = n! / \{0! (n-0)!\} = n! / n! = 1.$
	${}^{\mathbf{n}}\mathbf{C}_{\mathbf{n}} = n! / \{n! (n-n)!\} = n! / n! . 0! = 1.$
	${}^{n}C_{r}$ has a meaning only when r and n are integers $0\mathbb{Z}$ r \mathbb{Z} n and ${}^{n}C_{n-r}$ has a meaning only when $0\mathbb{Z}n-r\mathbb{Z}n$.
	• $n+1C_r = nC_r + nC_{r-1}$
	• ${}^{n}P_{r} = {}^{n-1}P_{r} + {}^{n-1}P_{r-}$
	Permutations when some of the things are alike, taken all at atime
Permutations	Permutations when each thing may be repeated once, twice, up tor times in any arrangement =n!.
	The total number of ways in which it is possible to form
	groups by taking some or all of n things (2^n-1) .
	The total, number of ways in which it is possible to make groups by taking some or all out of n $(=n_1 + n_2 + n_3 +)$ things, where n ₁ things are alike of one kind and so on, is given by

6262969699

$\{(n_1 + 1) (n_2 + 1) (n_3 + 1)...\} - 1$

The combinations of selecting r_1 things from a set having n_1 objects and r_2 things from a set having n_2 objects where combination of r_1 things, r_2 things are independent

Question 1

An examination paper consists of 12 questions divided into parts A and B Part A contains 7 questions and part B contains 5 questions. A candidate is required to attempt 8 questions selecting at least 3 from each part. In how many maximum ways can the candidate select the question?

175 420

1	
(a) 35	(b)
(c) 210	(d)

Answer: d

Explanation:

The candidate can select 8 questions by selecting at last " three from each part in the following ways:

3 questions from part A and 5 questions from part B = $7_{C_3} \times 5_{C_5}$ = 35 ways

4 questions from part A and part B each

 $= 7_{C_4} \times 5_{C_4} = 175$ Ways.

Questions from part A and 3 questions from part B = $7_{C_5} \times 5_{C_3} = 210$ ways Hence, the total number of ways in which the candidate can select the question will be = 35 + 175 + 210 = 420 ways

Question 2

Code word is to consist of two English alphabets followed by two distinct numbers between 1 and 9. How many such code words are there?

(a) 6,15,800 (c) 7,19,500 (b) 46,800 (d) 4,10,800

Answer: b

Explanation:

The number of ways filling the first two places with English alphabets = $26 \times 25 = 650$ The number of ways of filling the last two places with distinct numbers = $9 \times 8 = 72$ The numbers of code words that can be formed are = 650×72 = 46800

Question 3

For Enquiry – 6262969604	6262969699	
A boy has 3 library tickets and 8 books of his interest in the library of these 8, he does not want to borrow Mathematics part – II unless Mathematics part – I is also borrowed? In how many ways can he choose the three books to be borrowed?		
(a) 41 (c) 61	(b) 51 (d) 71	
Answer: a		
been borrowed Numbers of ways = 6 _{C1} = 6 ways	wed (i.e. it means Mathematics Part – I has also prrowed (i.e. 3 books are to be selected out of 7)	
Number of ways = 7_{C_3} = 35 Ways		
Therefore, total number ways 35 + 6 = 41 ways		
Question 4		
Find 5!, 4! And 6!		
(a) 720	(b) 120	
(c) 380	(d) 620	
Answer: a		
Explanation: $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120: 4! = 4 \times 3 \times 2 \times 1 = 120$	= 24; 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720	
<u>Ouestion 5</u>		
Find $\frac{9!}{6!}$; $\frac{10!}{7!}$		
	(b) 504,720	
(a) 630,504 (c) 920,630	(d) 121,720	
Answer: b	(u) 121,720	
Explanation:		
$\frac{9!}{6!} = \frac{9 \times 8 \times 7 \times 6!}{6!} = \frac{9 \times 8 \times 7}{7!} = \frac{504}{7!}; \frac{10!}{7!} = \frac{10 \times 9 \times 8 \times 7!}{7!} =$	720	
$\frac{-1}{6!} - \frac{-1}{6!} - \frac{-1}{7!} - \frac{-1}{7!}, \frac{-1}{7!} - \frac{-1}$	720	
$\frac{\text{Question 6}}{x}$		
Find x if $\frac{1}{9!} + \frac{1}{10!} = \frac{x}{11!}$		
(a) 121	(b) 112	
(c) 211	(d) 111	
Answer: a		
Explanation:		
We have, $1 1 x$		
$\frac{1}{9!} + \frac{1}{10!} = \frac{x}{11!}$		
→ ¹ / _{9!} + ¹ / _{10×9!} = ^x / _{11×10×9!} → ¹ / _{9!} [1 + ¹ / ₁₀] = (^x / _{11×10}) × ¹ / _{9!}		
→ $1 + \frac{1}{10} = \frac{x}{11 \times 10}$		
For more Info \	5. 4 /isit - www.KlTest.in	

 $\Rightarrow \frac{11}{10} = \frac{x}{11 \times 10}$

→ X = 11 × 11 = 121

Question 7

Evaluate each of 5_{P_3} , 10_{P_2} , 11_{P_5} (a) 540 (b) 55440 (c) 5440 (d) 5540 Answer: b Explanation: $5_{P_3} = 5 \times 4 \times (5 - 3 + 1) = 5 \times 4 \times 3 = 60.$ $10_{P_2} = 10 \times \times (10 - 2 + 1) = 10 \times 9 = 90$ $11_{P_5} = \frac{11!}{(11 - 5)} = 11 \times 10 \times 9 \times 8 \times 7 \times \frac{6!}{6!} = 11 \times 10 \times 9 \times 8 \times 7 = 55440$

Question 8

How many three letters words can be formed using the letters of the word SQUARE? (a) 110 (b) 12 (c) 120 (d) 210

(c)120	(d) 21
Answer: c	

Explanation:

Since the word 'SQUARE' consists of 6 different letters, the number of permutations of choosing 3 letters out of six equals $6_{P_3} = 6 \times 5 \times 4 = 120$

Question 9

In how many different ways can five persons stand a line for a group photograph? (a) 110 ways (b) 120 ways (c) 130 ways (d) 20 ways Answer: b Explanation: Here we know that the order is important, hence this is the number of permutation ofn five things taken all at a time. Therefore, this equals $5_{P_5} = 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$ ways.

Question 10

How many three letters words can be formed using the letters the word HEXAGON? (a) 110 (b) 12 (c) 120 (d) 210 Answer: d Explanation: Since the word 'HEXAGON' contains 7 different letters, the number of permutations is $7_{P_3} = 7 \times 6 \times 5 = 210$.

<u>Question 11</u> First, second and third are to be awarded at an engineering fair in which 13 exhibits have been entered. In how many different?

For Enquiry – 6262969604	6262969699
(a) 1110 ways (c) 1830 ways Answer: d Explanation: Here, order of selection is important a	(b) 1320 ways (d) 1716 ways and repetitions are not meaningful as no exhibit can
	the answer is the number of permutations of 13 things and $13_{P_3} = \frac{13!}{10!} = 13 \times 12 \times 11 = 1,716$ ways
	$110 13p_3 - \frac{10}{10!} - 13 \times 12 \times 11 - 1,710$ ways
	students be associated with 4 chartered accountants, untant can take at most one student?
(a) 10 (c) 20	(b) 12 (d) 24
Answer: d	(u) 24
Explanation: This equals the number of permutation $4_{p_3} = 4 \times 3 \times 2 = 24$.	ons of choosing 3 persons out of 4, hence the answer is
Question 13	
Compute the sum of 4 digit number each digit is used only once in each	rs which can be formed with the four digits 1, 3, 5, 7, if
(a) 1,06,656	(b) 1,46,800
(c) 7,19, 500	(d) 4,10,800
Answer: a Explanation:	
	erent digits taken 4 at a time is given by 4_{p_4} = 4! = 24. All
hundreds, thousands.	er of times at each of the positions, namely ones, tens,
7	s in each of the positions. The sum of digits in one's
position will be $6 \times (1+3+5+7) = 96.5$ places. Therefore, the sum will be 96	Similar is the case in ten's, hundred's and thousand's + 96 × 100 + 96 × 1000 = 106,656.
Question 14	
	club with 10 members select a President, Secretary old two offices and each member is eligible for any
(a) 720	(b) 780
(c) 960 Answer: a	(d) 630
Explanation:	
-	ations of 10 persons chosen three at a time.
Question 15	
	e has eight shops to see, but he has time only to visit ways can he arrange her schedule in New York?
(a) 20,160	(b) 2016 (d) 21560
(c) 26105	(d) 21560
	5. 6

(a) 1024	(b) 945	
(c) 1000	(d) 1022	
Answer: b		
Explanation:		
Total question = 10		
No. of Mathematics questions = 6 No. of statics questions = 4.		
No. of ways at least one question of Mathematics		
$= (2^6 1) = (64 - 1) = 63$		
No. of ways at least one question of statics		
$= (2^4 1) = (16 - 1) = 15$		
Total no. of ways = 63 × 15 = 945		

Questions 19

For more Info Visit - www.KITest.in

For Enquiry – 6262969604

Answer: a **Explanation**:

She can arrange his schedule in $8_{P_6} = 8 \times 7 \times 6 \times 5 \times 4 \times 3 = 20,160$ ways

Question 16

When Dr. Ramanujan arrives in his dispensary, he finds 12 patients waiting to see him. If he can see only one patient at a time. Find the number of ways; he can schedule his patients if they all want their turn.

(a) 479001600 (c) 34879012

(b) 79833600 (d) 67800983

Answer: b Explanation:

There are 12-3 = 9 patients. They can be seen $12_{P_0} = 79,833,600$ ways.

Question 17

How many arrangements can be made out of the letters of the word 'DRAUGHT' the vowels never beings separated?

(a) 1440	(b) 720
(c) 740	(d) 750
Answer: a	

Explanation:

The word 'DRAUGHT' consists of 7 letters of which 5 are consonants and two are vowels. In the arrangement we are to take all the 7 letters but the restriction is that the two vowels should not be separated.

We can view the two vowels as one letter. The two vowels A and U in this one letter can be arranged in 2! = 2 ways. (i) AU or (ii) UA. Further, we can arrange the six letters: 5 consonants and one letter consisting of two vowels. The total number of ways of arranging them is $6_{P_6} = 6! = 720$ ways.

Hence, by the fundamental principle, the total number of arrangements of the letters of the word DRAUGHT, the vowels never being separated = $2 \times 720 = 1440$ ways.

Question 18

An examination paper with 10 questions consists of 6 questions in mathematics and 4 questions in statistic part. At least one question from each part is to be attempted in how many ways can this be done?

For Enquiry - 6262969604 6262969699 A student has three books on computer, three books on Economics and five books on Commerce. If these books are to be arranged subject wise, then these can be placed on a shelf in the number of ways: (b) 25092 (a) 25290 (c) 4320 (d) 25920 Answer: d **Explanation**: No. of ways = 3! 3! 5! 3! $= 6 \times 6 \times 120 \times 6$ $= 216 \times 120$ = 25,920 **Ouestions 20** A person has ten friends of whom six are relatives. If h invites five guests 'SUCH' that three are his relatives, then the total number of ways in which he can invite then are: (a) 30 (b) 60(c) 120 (d) 75 **Answer: c Explanation**: Total friend: 10 No. of Relative = 6No. of friend = 4No. of ways to invite five guests such that three of them are his relatives. $= 6_{C_3} \times 4_{C_2}$ $=\frac{6!}{3!\times 3!}\times\frac{4!}{2!\times 2!}$ $20 \times 6 = 120$ **Ouestions 24** Six seats of articled clerks are vacant in a 'Chartered Accountant Firm'. How many different batches of candidates can be chosen out of ten candidates? (a) 216 (b) 210 (d) 230 (c) 220 Answer: b **Explanation**: The number of ways in which 6 articled clerks can be selected out of 10 candidates $= 10_{C_6} = 210$ ways. **Ouestion 25** Six persons A, B, C, D, E and F are to be seated at a circular table. In how many ways can this be done, if A must always has either B or C on his right and B must always have either C or D on his right? (a) 3 (b) 6(c) 12 (d) 18 Answer: d **Explanation**: Using the given restrictions, we must have AB or AC and AB or BD Therefore, we have the following alternatives ABC, D, E, F, which gives (4 - 1)! Or 3! Ways.

6262969699

ABC, D, E, F which gives (4 - 1)! Or 3! Ways. AC, BD, E, F, which gives (4 - 1) or 3! Ways. Hence, the total number of ways are = 3! + 3! + 3!= 6 + 6 + 6 = 18 ways

Question 26

A fundamental principle of counting is:(a) $m \times n, m - n$ (b) $m \times n, m + n$ (c) $m + n, m \div n$ (d) $m \div n, m - n$ Answer: bExplanation:

Fundamental principles of counting

a. Multiplications Rule: m × n

b. Addiction Rule: m + n

Question 27

If $n_{c_r} = n_{c_{r-1}}|$ and n_{P_r} and $n_{P_{r+1}}$, then the value of n is 27. (a) 3 (b) 4 (c) 2 (d) 5 Answer: a Explanation: The conditions provided that $n - r = r - 1 \rho r = \frac{n+1}{2}$ so if We put n = 3, then r = 2 satisfies the conditions

Question 28

$n_{P_r} \div n_{C_r} =$	
(a) n!	(b) (n - r)!
(c) 48	(d) r!
Answer: d	
Explanation:	

Question 29

The number of ordered triplets of positive integers which are solutions of the equation x+y+z = 100 is (a) 6005 (b) 4851 (c) 5081 (d) none of these Answer: b Explanation: The number of triplets of positive integers which re solutions of X + y + z = 100 = coefficient of x¹⁰⁰ in (x + x² + x³ +)³ = coefficient of x¹⁰⁰ in x³(1 - x) -³ = coefficient of x¹⁰⁰ in X³ (1 + 3x + 6x² + + $\frac{(n+1)(n+2)}{2}x^n$ +) = $\frac{(97+1)(97+2)}{2}$ = 49 × 99 = 4851

Question 30

For Enquiry – 6262969604	6262969699
The number of way to sit 3 me men and women on each side	en and 2 women in a bus such that total number of sitted is 3
(a) 5!	(b) $6_{c_5} \times 5!$
(c) $6! \times 6_{P_5}$	(d) $5! + 6_{C_5}$
Answer: b	5
Explanation:	
The number of ways to sit 5 mer	A group of 5 members make 5! Permutations with each other. mbers = 5! 6 places are filled by 5 members by 6_{C5} ways. The embers on 6 seats of a bus = $6_{C5} \times 5!$
Question 31 If $P(n, r) = 1680$ and $C(n, r) = 7$	70 then 60n+r! =
If P (n, r)=1680 and C (n,r) = 7 (a) 128	(b) 576
(c) 256	(d) 625
Answer: b	(4) 020
Explanation:	
P (n, r) = $1680 \frac{n!}{(n-r)!} = 1680?$ (i	
$\frac{n!}{r!(n-r)!}$ = 70? (ii) $\frac{1680}{r!}$ = 70. [From	n (i) and (ii)]
$r! = \frac{1680}{70} = 24\rho r = 4 : P(n, 4) = 1$	
$n(n-1)(n-2)(n-3) = 1680 \rho n$	
$8 \times 7 \times 6 \times 5 = 1680 + r! = 69 \times 8$ = 576	3 + 4! = 552 + 24
- 370	
Question 32	
Number of divisors of n = 388	08 9eexcept 1 and n) is
(a) 70	(b) 68
(c) 72	(d) 74
Answer: a	
Explanation:	
Since 38808 = 8 × 4851	
$8 \times 9 \times 539 = 8 \times 9 \times 7 \times 7 \times 11 = 2^3 \times 3^2$ Number of divisors = (2 + 1) (2	
38808. Hence the required num	+ 1) $(2 + 1) (1 + 1) = 72$. This includes two divisors 1 and box off divisors = $72 = 2 = 70$
Soobo. Hence the required hum	ber 011 011 011 011 015 - 72 - 2 - 70
Ouestion 33	
-	ittee sit at a round table so that the president and secretary
always sit together, then the n	
(a) 10! × 2	(b) 10!
(c) 9! × 2	(d) None of these
Answer: c	
Explanation:	
Required number of ways 9! × 2	(by fundamental property of Circular permutation).
Question 34	
In how many ways can 5 keys	
(a) $\frac{1}{2}$ 4!	$(b)\frac{1}{2}5!$
(c) 4 <u></u> !	(d) 5 ⁻ !
	5. 10

6262969699

Answer: a

Explanation: Mark the keys as 1, 2, 3, 4, 5 Assume the ring as a circle with 5 positions. First position can be taken by any one of them. The 2^{nd} positions has 4 possibility, 3^{rd} has 3, 4^{th} has 2, 5^{th} has 1 Totally $4 \times 3 \times 2 \times 1 = 24$.

Question 35

A question paper is divided into two parts A and B and each part contains 5 questions. The number of ways in which a candidate can answer 6 questions selecting at least two questions from each part is

(a) 80 (c) 200

Answer: c

(b) 810(d) None of these

Explanation:

The number of ways that the candidate may select 2 questions from A and 4 from $B=5_{C_2} \times 5_{C_3}$ 4 questions from A and 2 from $B=5_{C_4} \times 5_{C_2}$. Hence total numbers of ways are 200.

Question 36

How many number lying between 10 and 1000 can be formed from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 (repetition is allowed)

(a) 1024 (c) 2346 (b) 810(d) None of these

Answer: b

Explanation:

The total number between 10 and 1000 are 989 but we have to form the numbers by using numerals 1, 2,.....9, i.e. 0 is not occurring so the numbers containing any 0? would be excluded i.e., Required number of ways

 $= 989 - \begin{cases} 20, 30, 40, \dots, 100 = 9\\ 101, 102, \dots, 300 = 19\\ 201, \dots, 300 = 19\\ \dots, 901, \dots, 990 = 18 \end{cases}$

= 989-(9+18+19×8) = 810. Alter: Between 10 and 1000, the numbers are of 2 digits And 3 digits. Since repetition is allowed, so each digit can be filled in 9 ways. Therefore number of 2 digit numbers = $9 \times 9 = 81$ and number of 3 digit numbers $9 \times 9 \times 9 = 729$. Hence total ways = 81 + 729 = 810

Question 37

Answer: c Explanation:

The number of ways in which the letters of the word TRIANGLE can be arranged suchthat two vowels do not occur together is(a) 1200(b) 2400(c) 14400(d) None of these

6262969699

T R N G L Three vowels can be arrange at 6 places in 6_{P_3} = 120 ways. Hence the required number of arrangements = $120 \times 5! = 14400$

Question 38

There are four balls of different colours and four boxes of colours same as those of the balls. The number of ways in which the balls one in each box, could be such that a ball does not go to box of its own colour is

(a) 8 (b) 7 (c) 9 (d) None of these Answer: c Explanation: Since the number of derangements in such a problems is given by $n! \left\{ 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} \dots \dots (-1)^n \frac{1}{n!} \right\}$ \therefore Number of derangements are = $4! \left\{ \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} \right\}$ = 12-4+1 = 9

Question 39

If $56_{P_{r+6}}$: $54_{P_{r+3}}$ = 30800:1, then r = (a) 31 (c) 51 Answer: b Explanation: $\frac{56!}{(50-r)!} \times \frac{(51-r)!}{54!}$ $\frac{30800}{1}$ = $56 \times 55 \times (51-r)$ = 30800 r = 41

Question 40

The number of ways of dividing 52 cards amongst four players so that three players have 17 cards each and the fourth player just one card, is

(b) 41

(d) none of these

(a) $\frac{52!}{(17!)^3}$	(b) $\frac{52!}{(17!)^2}$
(c) 52!	(d) none

Answer: a Explanation:

For the first set number of ways $52_{C_{17}}$. Now out of 35 cards left 17 cards can be put for second in $35_{C_{17}}$ ways similarly for 3^{rd} in $18_{C_{17}}$. One card for the last set can be put in only one way.

Therefore the required number of ways for the proper distribution = $\frac{52!}{35!17!} \times \frac{35!}{18!17!} \times \frac{18!}{17!1!} \times \frac{18!}$

$$1! = \frac{52!}{(17!)^3}$$

Question 41

m men and n women are to be seated in a row so that no two women sit together. If m>n, them then the number of ways in which can be seated is

(a) $\frac{m!(m+1)!}{(m-n+1)!}$	(b) $\frac{m!(m-1)!}{(m-n+1)!}$
(c) $\frac{(m-1)!(m+1)!}{(m-n+1)!}$	(d) none

Answer: a

Explanation:

First arrange m men, in arrow in m! Ways. Since n<m and no two women can sit together, in any one of the m! Arrangement, there are places in which n women can be arranged in m + $1_{P_n} - \frac{m!(m+1)!}{m!} = \frac{m!(m+1)!}{m!}$

 $=\frac{m!(m+1)!}{[(m+1)-n)!}=\frac{m!(m+1)!}{(m-n+1)!}$

Question 42

The number of times the digit 3 will be written when listing the integers from 1 to 1000 is:

(a) 369	(b) 300
(c) 271	(d) 302

Answer: b

Explanation:

To find number of times 3 occurs in listing the integer from 1 to 999. (Since 3 does not occur in 1000). Any number between 1 to 999 is a 3 digit number xyz where the digit x, y, z are any digits from 0 to 9. Now, we first count the numbers in which 3 occurs once only. Since 3 can occur at one place in 3_{C_1} ways. There $\operatorname{are3}_{C_1}$. (9 × 9) + 3 × 1 = 300

Question 43

Ten persons, amongst whom are A, B, and c to speak at a function. The number of ways in which it can be done. If A wants to speak before B and B wants to speak before C is		
(a) $\frac{10!}{6}$	(b) $\frac{3!}{7!}$	
(c) 10_{P_3} .7!	(d) None of these	
Answer: a		

Explanation:

For A, B, C, to speak in order of alphabets 3 places out of 10 may be chosen first in 1. $3_{C_2} = 3$ ways. The remaining 7 persons can speak in 7! Ways. Hence, the number of ways in which all the 10 person can speak is 10_{C_3} . $7! = \frac{10!}{3!} = \frac{10!}{6}$

Question 44

How many words can be made out from the letters of the word INDEPENDENCE, in which vowels always come together? (a) 16800 (b) 16630 (c) 1663200 (d) None of these Answer: a **Explanation**: Required numbers of ways are $\frac{8!}{2!3!} \times \frac{5!}{4!} = 16800$. {Since IEEEENDPNDNC = 8 letters}. **Question 45** The exponent of 3 in 100! Is (b) 44 (a) 33 (c) 48 (d) 52 **Answer: c Explanation**:

Let E (n) denote the exponent of 3 in n. the greatest integer less than 100 divisible by 3 is 99. We have

E(100!) = E(1.2.3.4....99.100)

= E (3.6.9....99)= E [(3.1)(3.2) (3.3)..... (3.33)] = 33 + E (1.2.3.....33) Now E (1.2.3.....33) = E (3.6.9....33) = E [(3.1) (3.2) (3.3)..... (3.11)] = 11+ E (1.2.3....11) And E (1.2.3....11) = E [(3.1) (3.2) (3.3)] 3 + E (1.2.3) = 3 + 1 = 4 Thus E (100!) = 33 + 11 + 4 = 48

Question 46

A dictionary is printed consisting of 7 lettered words only that can be made with a letter of the word CRICKET. If the words are printed at the alphabetical order, as in an ordinary dictionary, then the number of word before the word CRICKET is (a) 530 (b) 480 (d) 481 (c) 531 Answer: a **Explanation**: The number of words before the word CRICKET is $4 \times 5! + 2 \times 4! + 2! = 530$ **Question** 47 The number of positive integral solutions of abc = 30 is (a) 30 (b) 27 (d) none of these (c) 8 **Answer: b Explanation**: We have, $30 = 2 \times 3 \times 5$. So, 2 can be assigned to either a or b or c i.e. 2 can be assigned in 3 ways. Similarly, each of 3 and 5 can be assigned in 3 ways. Thus the no. of solutions is $3 \times 3 \times 3$ = 27. **Ouestion 48** The number of different words that can be formed out of the letters of the word 'MORADABAD' taken four at a time is (a) 500 (b) 600 (c) 620 (d) 626 Answer: d **Explanation:** In MORADABAD, we have 6 different types of letters 3A^s, 2D^s and rest four different. We have to form words of 4 letters. (i) All letters $6_{P_4} = 6 \times 5 \times 4 \times 3 = 360$. (II) Two different two a like

 $2_{C_1} \times 5_{C_2} \times \frac{4!}{2!} = 240$ (iii) 3 alike 1 different $1_{C_1} \times 5_{C_1} \times \frac{4!}{2!} = 20$ (iv) 2 alike of one type and 2 alike of other type $2_{C_2} \times \frac{4!}{3!} = 6$ Therefore total number of words = 360 + 240 + 20 + 6 = 626

PREPARE FOR WORST

Question 1

How many 3 letter words with or without meaning can be formed out of the letters of the word MONDAY when repetition of words is allowed?

For more Info Visit - www.KITest.in

6262969699

For Enquiry – 6262969604	6262969699
(a) 125	(b) 216
(c) 120	(d) 320
Question 2	
In how many ways the letters in the v (a) 120	word TOOTH can be arranged? (b) 40
(c) 20	(d) 30
<u>Type – 2</u>	
Question 1	
How many five letters words with or 'COMPLEXIFY', if repetition of letters	without meaning, can be formed from the word s is not allowed?
(a) 43200	(b) 30240
(c) 12032	(d) 36000
Question 2	
· · · · · · · · · · · · · · · · · · ·	letters of the word 'LOGARITHMS' be arranged so that
the vowels always come together? (a) 6720	(b) 241920
(c) 40320	(d) 360344
Ouestion 3	
	be formed from the digits 3, 4, 5, 7, 8, and 9. Also, the
number formed should be divisible b	by 5 and no repetition is allowed?
(a) 20 (c) 25	(b) 24 (d)
(1) 23	(u)
<u>Type 3</u> Ouestion 1	
	ce-creams. John wants to buy 15 ice creams for his
friends. In how many ways can he bu	iy the ice-cream?
(a) 1450 (c) 3879	(b) 3768 (d) 1540
(C) 3879	(d) 1540
Question 2 There are 5 types of eads flavor evoil	1.11. 's s show to be some some som 10 and a florense
There are 5 types of soda flavor avail be selected?	lable in a shop. In how many ways can 10 soda flavors
(a) 1454	(b) 1001
(c) 1211	(d)1540
<u>Type - 4</u>	
Question 1	2 winds halls and 4 mean halls. Fins out in how many
	3 pink balls and 4 green balls. Fins out in how many wooden box. Make sure that at least one pink ball is
included in the draw?	
(a) 64	(b) 46
(c) 56	(d) 65
Question 2	
	5. 15
For more	Junfo Visit Junuar KlTost in

For Enquiry – 6262969604	6262969699
There are 5 boys and 10 girls in a clas	ssroom. In how many ways teacher can select 2 boys
and 3 girls to make a dance group?	
(a) 720	(b) 1200
(c) 240	(d) 840
Question 2	
Question 3 There are 10 consenants and 5 years	ls. Out of which how many words of 5 consonants and
2 vowels can be made?	is. Out of which now many words of 5 consonants and
(a) 2520	(b) 1200
(c) 210	(d) 720
Question 4 A committee of 5 percent is to be form	nod from 6 mon and 4 woman. In how many wave can
this be done when at least 2 women a	med from 6 men and 4 women. In how many ways can
(a) 196	(b) 186
(c) 190	(d) 200
	(d) 200
Question 5	
If the letters of the word SACHIN are a	arranged in all possible ways and these words are
	word 'SACHIN' appears at serial number:
(a) 601	(b) 600
(c) 603	(d) 602
Question 6	
	5-member team and a captain will be selected out of
these 10 players. How many different	• • • • • • • • • • • • • • • • • • •
(a) 1260	(b) 1400
(c) 1250	(d) 1600
Overtice 7	
Question 7 When four fair disc are called simult	aneously, in how many outcomes will at least one of
the dice show 3?	ineously, in now many outcomes will at least one of
(a) 620	(b) 671
(c) 625	(d) 567
Question 8	
	ach marked with six different letters. The number of
distinct unsuccessful attempts to ope	
(a) 215	(b) 268
(c) 254	(d) 216
Ouestion 9	
	he word EDUCATION be rearranged so that the
	onsonants remain the same as in the word
EDUCATION?	
(a) 4! x 4!	(b) 5! x 5!
(c) 4! x 5!	(d) 3! x 4!
<u>Ouestion 10</u>	
<u></u>	
	5. 16

For Enquiry – 6262969604	6262969699
In a Plane there are 37 straight lines, of which through the point B. Besides, no three lines pa through both points A and B, and no two are	ass through one point, no lines passes
intersection of the straight lines.	
	(b) 535 (d) 555
Question 11 How many different four letter words can be using the letters of the word "MEDITERRANE. letter is R?	
	(b) 56
(c) 64 ((d) 55
	ted in 3 identical boxes such that no box is toys? (b) 25 (d) 72
ANSWERS AVAILABLE ON: • TELEGRAM CHANNEL: t.me/KINSHUKI • WEBSITE : <u>WWW.KITest.IN</u> • KITest APP	nstitute
	ton questions:
	<u>2018</u>
<u>Question 1</u> The number of triangle that can be formed by c seven of which lie on the same straight line, is:	choosing the vertices from a set of 12 points,
(a) 185 (b) 175) 105
Answer: a	
Explanation:	
Here n = 12, k = 7 No. of triangle are formed from 'n' point	
In which (k) points are collinear = n_{C_3} - k_{C_3}	
For more info Visit	5.17

 $= 12_{C_3} - 7_{C_3}$ = $\frac{12 \times 11 \times 10}{3 \times 2 \times 1} - \frac{7 \times 6 \times 5}{3 \times 2 \times 1}$ = 220-35 = 185

Question 2

If $1000_{C_{98}}$ + $999_{C_{97}}$ + $x_{C_{901}}$, find x: (a) 999 (c) 997 Answer: a Explanation: If $1000_{C_{98}} - 999_{C_{97}} + x_{C_{901}}$ $\therefore n_{C_r} + n_{C_{r-1}} = n + 1_{C_r}$ Then x = $999 [999_{C_{901}} + 999_{C_{98}}]$

(b) 998 (d) 1000

<u>NOV 2018</u>

Ouestion 1

A bag contains 4 red, 3 black, and 2 white balls. In how many ways 3 balls can be drawn from his bag so that they include at least one black ball? (a) 64 (b) 46 (c) 85 (d) None Answer: a Explanation: No. of total balls = 4 Red+3 Black + 2 white = 9 balls Total number of ways = 3C3 + (3C2 x 6C1) + (3C1 x 6C2) [because 6 are non black] =1+[3×6]+[3×(6×52×1)]=1+18+45=64 Question 2 The number of words from the letter word BHARAT, in which B and H will never come

The number of words from the letter word BHARAT, in which B and H will never content together, is (a) 360 (b) 240 (c) 120 (d) None Answer: b Explanation: Given word 'B H A R A T' 1 2 3 4 5 6 Total No. of ways arrange the letter word $= \frac{6!}{2!} = \frac{720}{2} = 360$ If Letter 'B' and 'H' are never taken together = 360-120= 240

Question 3

For more Info Visit - www.KITest.in

5. 18

6262969699

The value of N in = $\frac{1}{7!} + \frac{1}{8!} + \frac{N}{9!}$ is	
(a) 81	(b) 78
(c) 89	(d) 64
Answer: a	
Explanation:	
$If \frac{1}{7!} + \frac{1}{8!} = \frac{N}{9!}$	
$\frac{9 \times 8 \times 1}{9 \times 8 \times 7!} - \frac{9 \times 1}{9 \times 8!} = \frac{N}{9!}$ $\frac{72}{9!} + \frac{9}{9!} = \frac{N}{9!}$ $\frac{81}{9!} - \frac{N}{9!}$	
72 9 N	
$\frac{1}{9!} + \frac{1}{9!} = \frac{1}{9!}$	
$\frac{81}{N} = \frac{N}{N}$	
$\overline{9!} = \overline{9!}$	
N = 81	
Organization 4	
<u>Question 4</u> If $n = 720$ $n = 120$ then n is	
If n_{P_r} =720, n_{P_r} = 120, then r is	(1-) 4
(a) 3	(b) 4 (d) 6
(c) 5 Answer: a	(d) 6
Explanation:	
Given $n_{P_r} = 720$, $n_{C_r} = 120$	
We know that	
$\frac{n_{C_r}}{1} = \frac{1}{2}$	
n _c r	
$\frac{120}{100} = \frac{1}{100}$	
$\frac{\frac{120}{720}}{\frac{1}{6}} = \frac{1}{r}$	
R = 3	
	<u>MAY 2019</u>
Ouestion 1	
If $11_{C_r} = 11_{C_{2r-4}}$ and $x \neq 4$ then the value	ue of $7_c =$
(a) 20	(b) 21
(c) 22	(d) 23
Answer: b	(-)
Explanation:	
Equate bases of LHS and RHS	
So x=4	
Therefore, LHS = RHS	
11-x = 2x-4	
x=5	
$7_{C_3} = 7_{C_2} = 21$	
Question 2	
UNESTION /	

Question 2

Which of the following is not a correct statement? (a) $n_{P_n} = n_{P_{n-1}}$ (b) $n_{P_n} = 2.n_{P_{n-2}}$

For Enquiry – 6262969604	6262969699
(c) $n_{P_n}=3.n_{P_{n-3}}$	(d) $n_{P_n} = n. n. (n-1)_{P_{n-1}}$
Answer: d	$(a) n p_n^{-1} \dots (n-1) p_{n-1}$
Explanation:	
LHS ≠ RHS	
In case of d option	
Question 3	
	etter of the world "PARALLEL". So that all L's do
not come together?	(1.) 2000
(a) 2000 (c) 4000	(b) 3000 (d) None of these
Answer: b	(u) None of these
Explanation:	
	s of "PARALLEL", but since there are three "L"s and
two "A"s, we must divide through by 3!×2! to g	
Okay, so how many of these have all three "L"s	$_{3 \times 2 }$ permutations
$\frac{8!}{3!\times 2!} - 6 \times \frac{5!}{2!} = 3000$	
Question 4	
The Indian cricket team consists of 16 play	ers. It includes 2 wicket keepers and 5 bowlers. In
· · ·	ected if we have to select 1 wicket keeper and
atleast 4 bowlers?	
(a) 1024	(b) 1900
(c) 2000	(d) 1092
Answer: d Explanation:	
-	t keeper and 4 bowlers or, 1 wicket keeper and 5
bowlers.	t keeper and 1 bowlers of, 1 wieket keeper and 5
Number of ways of selecting 1 wicket keeper, 4	4 bowlers and 6 other player's in
$2_{C_1} \times 5_{C_4} \times 9_{C_6} = 840$	
Number of ways of selecting 1 wicket keeper, !	5 bowlers and 5 other players in $2_{C_1} \times 5_{C_4} \times 9_{C_5} = 252$
Total number of ways of selecting the term = 8	1 1 5
<u>NO</u>	<u>V 2019</u>
Ouestion 1	
	a row so that no two girls sit together. Total no. of
ways of this arrangement are:	
(a) 14,400	(b) 120
(c) 5_{P_3}	(d) 3! × 5!
Answer: a	
Explanation:	
(a) Required arrangement	
X B ₁ X B ₂ X B ₃ X B ₄ X B ₅ X	
No. of ways of arranging 3 girls in 6 places $= 5_{p_3}$	
<i>^p</i> ²	
	5.20
	Visit www.KITestin

6262969699

Total ways = ${}^{6}p_{3} \times {}^{5}p_{5}$	
$=\frac{6!}{(6-3)!} \times 5!$	
$=\frac{6 \times 5 \times 4 \times 3!}{3!} \times 120 = \text{Rs. } 14,400$	
$-\frac{3!}{3!}$ × 120 - KS. 14,400	
Oursetion 2	
Question 2 User many services and the formed with the	halo of $2, 2, 4, 5, 4, 4$ which is not divisible by 5
	help of 2, 3, 4, 5, 6, 1 which is not divisible by 5,
given that it is a five-digit no. and not repeat	
(a) 600	(b) 400 (d) 1400
(c) 1200 Answer: a	(d) 1400
Explanation:	
(a) No's 2, 3, 4, 5, 6, 1.	
A no. is divisible by 5 when it ends with 0 or 5	
TTHTHHO	
No. of ways of filling one's digit = 5 (all except 5	5)
No. of ways of filing ten's digit = 5	
No. of ways of filling thousand place = 4	
No. of ways of filling ten thousand place = 3	
No. of ways of filling hundred's place = 2	
Total ways = $5 \times 5 \times 4 \times 3 \times 2$	
= 600 ways	
Question 3	
How many different groups of 3 people can	
(a) 5	(b) 6
(c) 10	(d) 9
Answer: c	
Explanation:	
(c) We know,	ic nC
No. of ways to choose r objects out of n objects	IS "Cr
Using the formula, Choosing 3 distinct objects (groups) from	
$5 = {}^{5}C_{3} = \frac{5!}{(5-3)! \times 3}$	
$=\frac{5!}{2!\times 3!}$	
$=\frac{5\times4\times3!}{2\times3!}$	
=10 ways	
Question 4	
Question 4 In how many ways can 4 noonlo be selected	at random from 6 hove and 4 girls if there are
exactly 2 girls?	at random from 6 boys and 4 girls if there are
(a) 90	(b) 360
(a) 90 (c) 92	(d) 480
Answer: a	
Explanation	
(a) Boys (6)Girls (4)	
2 2	
	5. 21
For more Info \	/isit - www.KITest.in

6262969699

No. of ways of selecting 2 boys out of $6 = {}^{6}C_{2}$ No. of ways of selecting 2 girls out of $4 = {}^{4}C_{2}$ Total ways = ${}^{6}C_{2} \times {}^{4}C_{2}$ = $\frac{6!}{(6-2)! \times 2} \times \frac{4!}{21 \times (4-2)!}$ = $\frac{6 \times 5 \times 4!}{4! \times 2} \times \frac{4 \times 3 \times 2!}{2! \times 2}$ = 15 × 6 = 90 ways. Question 5 ⁿp₃ : ⁿp₂ = 2: 1 (a) 4 (c) 5 Answer: a Explanation: (a) ⁿp_r = $\frac{n!}{(n-r)!}$ ⁿP_r : ⁿP₂ = 2:1 $\frac{n!}{(n-3)!} : \frac{n!}{(n-2)!} = \frac{2}{1}$ $\frac{n!}{(n-3)!} \times \frac{(n-2)(n-3)!}{n!} = \frac{2}{1}$

<u>DEC 2020</u>

(b) 7/2

(d) 2/7

Question 15 If Np4 = 20 Np2 = where P denotes the number of permutations n =_____ (a) 4 (b) 2(c) 5 (d) 7 Answer: d **Explanation**: $n_{P_r} = \frac{n!}{(n-r)!}$ Here, $n_{P_4} = 20 n_{P_2}$ $=\frac{n!}{(n-4)!}=20=\frac{n!}{(n-2)!}$ (n-2)! = 20(n-4)!(n-2)(n-3)(n-4)! = 20(n-4)!(n-2)(n-3) = 20 $n^2 - 5n + 6 = 20$ $n^2 - 5n - 14 = 0$ $n^2 - 7n + 2n - 14 = 0$ n(n-7) + 2(n-7) = 0(n+2)(n-7) = 0If $n+2 = 0 \Rightarrow n = -2$ (Not possible) If $n-7 = 0 \Rightarrow n = 7$ Thus, the value of n is 7.

For Enquiry –	6262969604
---------------	------------

Question 16
A fruit basket contains 7 apples, 6 bananas and 4 mangoes. How many selections of 3 fruits
can be made so that all 3 are apples?
(a) 120 ways (b) 35 ways
(c) 168 ways (d) 70 ways
Answer: b
Explanation:
Given:
Number of Bananas = 6
Number of Apples = 7
Number of Mangoes = 4
To find: Number of ways can a person make a selection of fruits from the basket.
Number of ways to select zero or more bananas = $6 + 1 = 7$ ways Number of ways to select zero or more apples = $7 + 1 = 8$ ways
Number of ways to select zero or more mangoes in $4 + 1 = 5$ ways
So, Total number of ways = $5 \times 8 \times 7 = 280$
We included a case of 0 Banana, 0 apple and 0 mangoes, so we have to subtract this from total
number of ways, \rightarrow Number of ways = 280 $\pm 1 = 270$ ways
\Rightarrow Number of ways = 280 - 1 = 279 ways Therefore A nonzero can make a calentical of fruits from the healest is 270 ways
Therefore, A person can make a selection of fruits from the basket is 279 ways.
\therefore 3 fruits can be made so that all 3 are apples is 35
Overtice 17
Question 17 Out of 7 hours and 4 girls a team of a debate slub of Γ is to be chosen. The number of teams
Out of 7 boys and 4 girls a team of a debate club of 5 is to be chosen. The number of teams
such that each team includes at least one girl is(b) 420
(a) 429 (b) 439 (c) 419 (d) 441
(d) 441 Answer: d
Explanation:
The Team Consist of 4 girls +1 boy
Number of selections $4_{C_3} \times 7_{C_1} = 1 \times 7 = 7$
Hence, the total number of teams that can be formed = 140+210+84+7= 441
Question 18
From a group of 8 men and 4 women, 4 persons are to be selected to form a committee so that
at least 2 women are there on the committee. In how many ways can it be done?
(a) 201 (b) 168
$\begin{array}{c} (a) 201 \\ (b) 103 \\ (c) 202 \\ (d) 220 \end{array}$
Answer: a
Explanation:
Total number of men = 8
Total number of women = 4
Committee = 4 persons \rightarrow at least 2 women
Case $1 \rightarrow 2$ Women + 2 men $\rightarrow 4_{C_2} \times 8_{C_2} = 168$
Case 2 \rightarrow 3 women + 1 men \rightarrow 4 _{C3} × 8 _{C1} = 32
Case 3 \rightarrow 4 women + 0 men \rightarrow 4 _{C4} = 1
Total 201

<u>JAN 2021</u>

Question 1	
	o women and three men are to be seated by
-	en choose the chairs from the chairs numbered 1
to 4 and then men select the chairs from th	e remaining. The number of possible
arrangements is:	
(a) 120	(b) 288
(c) 32	(d) 1440
Answer: d	
Explanation:	
1440	
Step-by-step explanation:	
First women can take any of the chairs marked	d 1 to 4 in 4 different way.
Second women can take any of the remaining	3 chairs from those marked 1 to 4 in 3 different ways.
So, total no of ways in which women can take	seat =4×3
$\Rightarrow 4P2$	
4P2 = 4!(4-2)!	
=4×3×2×12×1 =12	
After two women are seated 6 chairs remains	
	lifferent ways, second man can take seat in any of the
remaining 5 chairs in 5 different ways	
Third man can take seat in any of the remaining	ng 4 chairs in 4 different ways.
So, total no of ways in which men can take sea	•
⇒6P3	
6P3=6!(6-3)!	
⇒6×5×4×3×2×13×2×1	
⇒120	
Hence total number of ways in which men and	l women can be seated =120×12
⇒1440	
Question 2	
	ailable but the actual combination is not known.
	eded to assigns the keys to the corresponding
locks is.	5 7 1 5
(a) $(n-1) C_2$	(b) $(n + 1) C_2$
(c) $\sum_{k=2}^{n} (k-1)$	$(d)\sum_{k=2}^{n} K$
Answer: d	
Question 3	
The harmonic mean of the roots of the equ	ation
$(5 + \sqrt{2})x^2 - (4 + \sqrt{5})x + 8 + 2\sqrt{5} = 0$, is	
(a) 2 (a) 2 (a) $2 = (4 + \sqrt{3})x + 6 + 2\sqrt{3} = 0$, is	(b) 4
(a) 2 (c) 6	(d) 8
Answer: b	(u) 0
Explanation:	
let the 2 roots be α, β	

6262969699

H.M. =	2αβ _	$\frac{2\times\frac{8+\sqrt{5}}{5+\sqrt{2}}}{5+\sqrt{2}}$	$2 \times 2 (4 + \sqrt{5}) - 4$
11.11. –	$\alpha + \beta$	$\frac{4+\sqrt{5}}{6+\sqrt{2}}$	$(4+\sqrt{5})$ – 4

Question 4

There are ten fights operating between city A and city B. The number of ways in which a person can travel from city A to city B and return by different fight, is

(b) 95

(d) 78

0

(a) 90 (c) 80

Answer: a

Explanation:

To go from A to B = 10 Flight & to go from B to A = 9 flights (as cannot complaining in some flight) $10 \times 9 = 90$ ways

Question 5

How many odd numbers of four digits can be formed with digits 0, 1, 2, 3, 4, 7 and 8? (a) 150 (b) 180

(c) 120	(d) 21
	(~) =0

NOTE: The correct Ans is: 300

Answer: b

Explanation: $5 \times 5 \times 4 \times 3 = 300$ (0 cannot be here & 1 used in last cannot be here) (1,3,7) can be on last place as it should be odd

<u>Question 6</u>

In how many different ways, can the letters of the word 'DETAIL' be arranged in such a way that the vowels occupy only the odd numbered position?

(a) 32	(b) 36
(c) 48	(d) 60
Answer: b	

Explanation:

Since detail has 6 letters, there are 3 odd positions, the 1st, 3rd, and 5th spots. Let's determine how many ways the word can be arranged when the vowels occupy the odd positions.

1st spot: 3 options (any of the 3 vowels)

2nd spot: 3 options (any of the 3 consonants)

3rd spot: 2 options (any of the 2 remaining vowels)

4th spot: 2 options (any of the 2 remaining consonants)

5th spot: 1 option (the last remaining vowel)

6th spot: 1 option (the last remaining consonant)

So, the word can be arranged in $3 \times 3 \times 2 \times 2 \times 1 \times 1 = 36$ ways.

Question 7

$^{n}C_{p}+2^{n}C_{P-1}+{}^{n}C_{p-2}$?
(a) ⁿ⁺ C _P	
(c) $^{n+1}C_{p+1}$	
Answer: d	

(b) ⁿ⁺²C_p (d) ⁿ⁺²C_{p-1}

Explanation:

Direct Formula for refer another origin formula ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$

Question 8

A business house wishes to simultaneously elevate two of its six branch heads. In how many ways these elevations can take place?

(a) 12	(b) 3
(c) 6	(d) 15

Answer: d Explanation:

 ${}^{6}C_{2} = \frac{6 \times 5}{2} = 15$

JULY 2021

Question 1	
If ${}^{n}p_{6} = 20 {}^{n}p_{4}$ then the value of n is given by	
(a) n =5	(b) n =3
(c) n = 9	(d) n = 8
Answer: Options (c)	
Explanation:	
By option Method	
Taking n = 9	
$4n_{c} - 20.9n_{4}$	

 ${}^{4}p_{6} = 20 {}^{9}p_{4}$ 6040 = 20 × 3024 60480 = 60480

Question 2

How many number of seven digit numbers which can be formed for the digits 3,4,5,6,7,8,9 no digits being repeated are not divisible by 5?

(a) 4320	(b) 4690
(c) 3900	(d) 3890

Answer: Options (a)

If no should not \div 5 then 5 not on last plag (3,4,5,6,7,8,9) = 6 × 5 × 4 × 3 × 2 × 1 × 6 = 4320

Question 3

A person can go from place 'A' to 'B' by 11 different modes of transport but is allowed to return back to "A" by any mode other than the one earlier. The number of different ways, the entire journey can be complete is______(b) 1010

(a) 110	(b) 10 ¹
(c) 9 ⁵	(d) 10 ⁹

Answer: Options (a)

If a person has 11 ways of going and cannot come from same place 10 ways of coming $11 \times 10 = 110$

Question 4

For Enquiry – 6262969604	6262969699
The number of ways 5 boys and 5 girls can be	seated at a round table, so no two boys are
adjacent is	(1) 2000
(a) 2550	(b) 2880
(c) 625	(d) 2476
Answer: Options (b)	
Explanation:	
5 boys can sit around the circular table in (5–1)!	
For boys and girls to occupy alternate positions,	
The girls can be arranged in these gaps in 5! way Therefore, total number of seating arrangements	
Therefore, total number of seating arrangements	<u>- 4: 5: - 24 120 - 2000</u>
DEC	<u>2021</u>
Question 1	
The number of four letter words can be forme	ed using the letters of the word DECTIONARY is
(a) 5040	(b) 720
(c) 30240	(d) 90
Answer: a	
Explanation:	
	letters can be selected and arranged out of these
10 letters in ${}^{10}C_4 \times 4!$ ways.	
Therefore, $10 \times 0 \times 7$	
$10_C \times 4! = \frac{10 \times 9 \times 8 \times 7}{1 \times 2 \times 3 \times 4} \times 4! = 5,040$	
$1 \times 2 \times 3 \times 4$	
Question 2	
The number of words that can be formed usin	ig the letters of the"PETROL" such that the
words do not have "P" in the first position, is	
(a) 720	(b) 120
(c) 600	(d) 540
Answer: c	
Explanation:	
We have 6 places to fill:	
The first place can be filled either with E, T, R, O,	or L, i.e., in 5ways.
	econd place can be filled either with P, E, R, O, or L,
i.e., in 5 ways.	
	e third place can be filled either with E, R, O, or L,
i.e., in 4 ways.	
Suppose you fill the third place with F. Now, the	fourth. be filled either with R, O, or L, i.e., in 3 ways.
	e Can fifth be filled either with 0, or L, i.e., in 2 ways.
	ixth place cab be filled either with L, i.e., in 1 way.
Therefore, the number of words that can be form	
Question 3	
If $^{n}P_{2} = 12$, then the value of n is	
(a) 2	(b) 3
-	5. 27
For more Info Vis	sit - www.KITest.in

6262969699

(d) 6

(c) 4

Answer: c Explanation: Try the options. Option (a) -2 $^{2}P_{2} = 2$ Option (b) -3 $^{3}P_{2} = 3 \times 2 = 6$ Option (c) -3 $^{4}P_{2} = 4 \times 3 = 12$

<u>Question 4</u>

The number of different ways the letters of the word "DETAIL" can be arranged in such a way that the vowels can occupy only the odd position is

(a) 32	(b) 36
(c) 48	(d) 60

Answer:

Explanation: Vowels: E, A I Consonants: D, T, L These are six places to be filled:

1 2 3 4 5 6

There are three odd positions, i.e., 1, 3 and 5. Also, there are three vowels. Thereore, three vowels can be arranged in 3 places in 3! Ways.

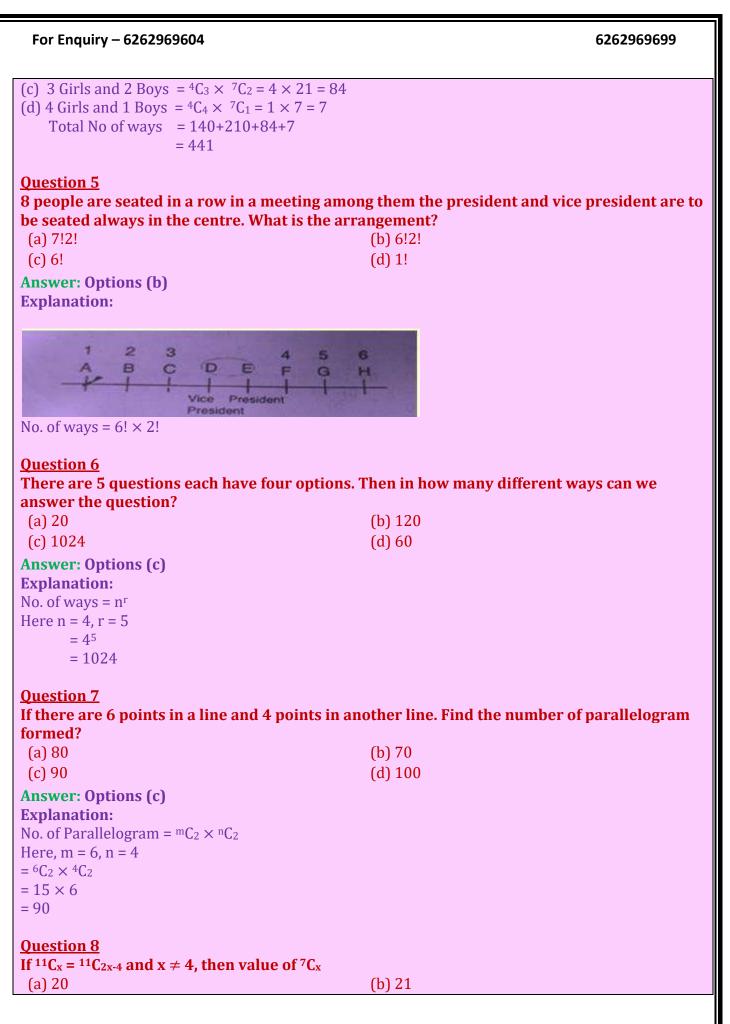
Similarly, the 3 consonants can be arranged in the positions 2,4, and 6 in 3! Ways. Therefore, total number of ways = $3! \times 3! = 6 \times 6 = 36$.

Question 5

Six boys and five girls are to be seated for a photograph in a row such that no two girls sit together and no two boys sit together. Find the number of ways in which this can be done. (a) 74,200 (b) 96,900

(a) 74,200	(b) 96,900
(c) 45,990	(d) 86,400

Answer:


Explanation: No. of Boys = 6 No. of Girls = 5 $B_1 \times B_2 \times B_3 \times B_4 \times B_5 \times B_6$ No. of ways = 5P_4 = 6! = 5! × 6! = 120×720 =86,400

<u>IUNE 2022</u>

Question 1

If a man travels from place A to B in 10 ways then by hoe many ways can become back by another train?

For Enquiry – 6262969604	6262969699
(a) 94 (c) 90 Answer: Options (c) Explanation: No. of ways = 10 × 9 = 90	(b) 110 (d) 99
Question 2If four words are taken with or without mean repetition. How many words will be formed?(a) 5040(c) 120Answer: Options (a)Explanation: 'Logarithm' Here n = 10 and r = 4No. of ways = npr= $10p_4$ = $\frac{L10}{L10-4} = \frac{L10}{L6}$ = $\frac{10x9x8x7L6}{L6}$ = 5040	ing from the word 'Logarithm' without (b) 2520 (d) 40320
Question 3 If $\frac{n!}{10} = \frac{(n-1)!}{(n-1-n+3)!}$, find 'n'. (a) 4 (c) 6 Answer: Options (b) Explanation: If $\frac{n!}{10} = \frac{(n-1)!}{(n-1-n+3)!}$ $\frac{n(n-1)!}{10} = \frac{(n-1)!}{2!}$ $\frac{n}{10} = \frac{1}{2} \Rightarrow 2n = 10$ n = 5	(b) 5 (d) 7
Question 47 boys and 4 girls from which a team of 5 is togirl is:(a) 429(c) 419Answer: Options (d)Explanation:BoysGirls74If at least one girl is selected then it may be follow(a) 1 Girls and 4 Boys = ${}^{4}C_{1} \times {}^{7}C_{4} = 4 \times 35 = 140$ (b) 2 Girls and 3 Boys = ${}^{4}C_{2} \times {}^{7}C_{3} = 6 \times 35 = 210$	
$(b) 2 \text{ diffs and 5 boys} = 62 \times 63 = 6 \times 55 = 210$	5.29

5.30

6262969699

(c) 22

(d) 23

Answer: Options (b) Explanation: If ${}^{11}C_x = {}^{11}C_{2x-4}$ [:. if ${}^{n}C_x = {}^{n}C_y$, then n = n + ythen, x + 2n - 4 = 11 3n = 15 $n = \frac{15}{3} = 5$ ${}^{7}C_n = {}^{7}C_5 = {}^{7}C_2 = \frac{7 \times 6}{2 \times 1} = 21$

DEC 2022

Question 1

There are 20 points in a plane area. How many triangles can be formed by these points if 5points are collinear?a) 550b) 560c) 1130d) 1140

Answer: Options (d)

Explanation:

To get a triangle, three points must be connected. Hence, we have to select 3 points from 20 points. Therefore,

 ${}^{20}C_3 = \frac{20!}{17! \times 3!} = \frac{20 \times 19 \times 18}{3 \times 2} = 1140$

Question 2

The number of ways 4 boys and 3 girls can be seated in a row so that they are alternate is: a) 12 b) 288 c) 144 b) 256 Answer: Options (c) Explanation: B <u>G</u> B <u>G</u> B <u>G</u> B 4 boys take their seats in 4! ways 3 girls take their seats in 3! ways Required number = 4! x 3! = 24 x 6 = 144

Question 3 If $n_{P_r} = 3024$ and $n_{C_r} = 126$, then find n and r a) 9,4 b) 10,3 c) 12,4 Answer: Options (a) Explanation: $n_{P_r} = 3024 = 72 \times 42 = 9 \times 8 \times 7 \times 6 = \frac{9!}{(9-4)!} = 9_{P_4}$ Hence (n, r)=(9,4)