<u>Chapter 2</u> <u>InverseTrigonometric Functions</u> <u>Exercise 2.1</u>

Question 1

Find the principal values of the following:

1. $\sin^{-1}\left(-\frac{1}{2}\right)$ 2. sin⁻¹ $\left[\frac{\sqrt{3}}{2}\right]$ 3. Cosec⁻¹ (2) 4. $\tan^{-1}(-\sqrt{3})$ 5. $\cos^{-1}\left(\frac{-1}{2}\right)$ 6. tan⁻¹ (-1) 7. sec⁻¹ $\frac{2}{\sqrt{2}}$ 8. cot⁻¹ ($\sqrt{3}$) 9. cos⁻¹ $\left(\frac{-1}{\sqrt{2}}\right)$ 10. cosec⁻¹ $(-\sqrt{2})$ **Solution 1:** Consider y = $\sin^{-1}\left(-\frac{1}{2}\right)$ Solve the above equation, we have $\sin y = -1/2$ We know that $\sin \pi/6 = \frac{1}{2}$ So, $\sin y = -\sin \pi/6$ Sin y = $\sin \left[-\frac{\pi}{6}\right]$ So, $\sin y = -\sin \pi/6$ **Trigonometric Functions** Since range of principle value of sin⁻¹ is $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ Principle value of $\sin^{-1}(-\frac{1}{2})$ is $-\pi/6$.

Solution 2:

Let $y = \cos^{-1}\left[\frac{\sqrt{3}}{2}\right]$ Cos $y = \cos \prod/6$ (as $\cos \prod/6 = \sqrt{3}/2$) $Y = \prod/6$ Since range of principle value of \cos^{-1} is $[0, \prod]$ Therefore, principle value of $\cos^{-1}\left[\frac{\sqrt{3}}{2}\right]$ is $\prod/6$

6262969699

Solution 3:

 $\operatorname{Cosec}^{-1}(2)$ Let $y = Cosec^{-1}(2)$ $\operatorname{Cosec} y = 2$ We know that, cosec $\prod / 6 = 2$ So, Cosec y = cosec $\prod/6$ Since range of principle value of Cosec⁻¹ is $\left|-\frac{\pi}{2},\frac{\pi}{2}\right|$ Therefore, Principle value of $Cosec^{-1}(2)$ is $\Pi/6$.

Solution 4:

 $\tan^{-1}(-\sqrt{3})$ Let y = $\tan^{-1}(-\sqrt{3})$ **Trigonometric Functions** $\tan y = -\tan \pi/3$ or tan y = tan $(-\pi/3)$ Since range of principle value of tan⁻¹ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ Therefore, Principle value of $\tan^{-1}(-\sqrt{3})$ is $-\pi/3$.

Solution 5:

 $\cos^{1}\left(\frac{-1}{2}\right)$ $Y = \cos^{-1}\left(\frac{-1}{2}\right)$ $\cos y = -1/2$ $\cos y = -\cos \frac{\pi}{2}$

 $\cos y = \cos (\prod - \prod/3) = \cos (2\pi/3)$ Since principle value of \cos^{-1} is $[0, \pi]$ Since principle value of $\cos^{-1}\left(\frac{-1}{2}\right)$ is $2\pi/3$.

tan⁻¹ (-1) Let $y = \tan^{-1}(-1)$ Tan(y) = -1Tan y = tan $\left(-\frac{\pi}{4}\right)$ Since principle value of tan⁻¹ is $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

Therefore, Principle value of $tan^{-1}(-1)$ is = $\pi/4$.

Solution 7:

 $\operatorname{Sec}^{-1}\left(\frac{2}{\sqrt{3}}\right)$ $Y = \sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$

6262969699

Sec y = $2/\sqrt{3}$ Sec y = sec $\frac{\pi}{6}$ Since principle value of sec⁻¹ is $[0.\pi]$ Therefore, Principle value of sec⁻¹ $\left(\frac{2}{\sqrt{3}}\right)$ is $\pi/6$

Solution 8:

 $\cot^{-1}(\sqrt{3})$ $Y = \cot^{-1}(\sqrt{3})$ $\cot y = \sqrt{3}$ $\cot y = \pi/6$ Since principle value of \cot^{-1} is $[0.\pi]$ Therefore, Principle value of $\cot^{-1}(\sqrt{3})$ is $\pi/6$.

Solution 9:

 $\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ Let $y = \cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ Cosy $= -\frac{1}{\sqrt{2}}$ Cos $y = -\cos\frac{\pi}{4}$ Cos $y = \cos\left[\pi - \frac{\pi}{4}\right] = \cos\frac{3\pi}{4}$ Since Principle value of \cos^{-1} is $[0,\pi]$ Therefore. Principle value of $\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ is $3\pi/4$.

Solution 10:

cosec⁻¹ ($-\sqrt{2}$) Ley = cosec⁻¹ ($-\sqrt{2}$) Cosec y = $-\sqrt{2}$ Cosec y = cosec $\frac{-\pi}{4}$ Since Principle value of cosec⁻¹ is $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ Therefore, Principle value of cosec⁻¹ ($-\sqrt{2}$) is $-\pi/4$

Find the values of the following:

11. $\tan^{-1}(1) + \cos^{-1}\frac{1}{2} + \sin^{-1}\frac{1}{2}$ 12. $\cos^{-1}\frac{1}{2} + 2\sin^{-1}\frac{1}{2}$ 13. If $\sin^{-1}x = y$, then (A) $0 \le y \le \pi$ (B) $-\frac{\pi}{2} \le y\frac{\pi}{2}$

6262969699

(C) $0 < y < \pi$ (D) $-\frac{\pi}{2} \le y \frac{\pi}{2}$ 14. tan⁻¹ ($\sqrt{3}$) - sec⁻¹ (-2) is equal to (A) π (B) $-\pi/3$ (C) $\pi/3$ (D) $2\pi/3$

Solution 11.

Tan⁻¹(1) +cos⁻¹($\frac{-1}{2}$) + sin⁻¹($\frac{-1}{2}$) = tan⁻¹ tan $\frac{\pi}{4}$ + cos⁻¹($-cos \frac{\pi}{3}$) + sin⁻¹($-sin \frac{\pi}{6}$) = $\frac{\pi}{4} + cos (\pi - \frac{\pi}{3}) + sin⁻¹ sin (-\frac{\pi}{6})$ = $\frac{\pi}{4} + \frac{2\pi}{3} + \frac{\pi}{6}$ = $\frac{3\pi + 8\pi - 2\pi}{9\pi 2}$ = $\frac{9\pi}{12} = \frac{3\pi}{34}$ Solution 12: Let cos⁻¹($\frac{1}{2}$) = *. Then, cos x = $\frac{1}{2} = cos(\frac{\pi}{3})$ Cos⁻¹($\frac{1}{2}$) = $\frac{\pi}{3}$ Let sin⁻¹($\frac{1}{2}$) = y. Then, sin y - $\frac{1}{2}$ = sin ($\frac{\pi}{6}$) Sin⁻¹($\frac{1}{2}$) = $\frac{\pi}{6}$ Now, Cos⁻¹($\frac{1}{2}$) + sin⁻¹($\frac{1}{2}$) = $\frac{\pi}{3} + \frac{2\pi}{6}$ $= \frac{\pi}{3} + \frac{\pi}{3}$ = 2m Mode to the formula of the f

Solution 13.

Option (B) is correct. Given $\sin^{-1} x = y$, The range of the principle value of $\sin^{-1} is \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ Therefore, $-\frac{\pi}{2} \le y \frac{\pi}{2}$ Solution 14. Option (B) is correct. Tan⁻¹ ($\sqrt{3}$) - sec⁻¹ (-2) = tan⁻¹ (tan $\pi/3$) - sec⁻¹ (-sec $\pi/3$) = $\pi/3$ - sec⁻¹ (sec ($\pi/3$)) = $\pi/3 - 2\pi/3 = -\pi/3$

Exercise 2.2

Prove the following:

Question 1

 $3 \sin^{-1} x = \sin^{-1} (3x - 4x^3)$. $X \in \left[-\frac{1}{2}, \frac{1}{2}\right]$

Solution:

```
3 sin<sup>-1</sup> x = sin<sup>-1</sup> (3x -4x<sup>3</sup>), x \in \left[-\frac{1}{2}, \frac{1}{2}\right]
(Use identity: sin 3\theta = 3 \sin\theta - 4\sin^3\theta)
Let x = sin\theta. Then
\theta = \sin^{-1} x
Now, RHS
= Sin<sup>-1</sup> (3x - 4x<sup>3</sup>)
= sin<sup>-1</sup> (3sin\theta - 4\sin^3)
= sin<sup>-1</sup> (sin 3\theta)
= 3 \theta
= 3 sin<sup>-1</sup> x
= LHS
Hence Proved
```

Question 2

```
3\cos^{-1} x = \cos^{-1} (4x^3 - 3x), x \in \begin{bmatrix} \frac{1}{2} & 1 \end{bmatrix}
```

Solution:

```
3\cos^{-1} = x = \cos^{-1} (4x^{3} - 3x), x \in \left[\frac{1}{2}, 1\right]
Using identity: \cos 3\theta = 4\cos^{3}\theta - 3\cos\theta
Put x = \cos\theta

\theta = \cos^{-1} (x)

Therefore, \cos 3\theta = 4x^{3} - 3x

RHS:

\cos^{-1} (4x^{3} - 3x)

= 3\theta

= 3\cos^{-1} (x)

= LHS

Hence Proved.
```

Ouestion 3

 $\operatorname{Tan}^{-1}\frac{2}{11}$ + $\operatorname{tan}^{-1}\frac{7}{24}$ = $\operatorname{tan}^{-1}\frac{1}{2}$

6262969699

Solution:

 $\operatorname{Tan}^{-1}\frac{2}{11}$ + $\operatorname{tan}^{-1}\frac{7}{24}$ = $\operatorname{tan}^{-1}\frac{1}{2}$ Tan⁻¹ x + tan⁻¹ y = tan⁻¹ $\frac{x+y}{1-xy}$ Using identity: LHS = $\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24}$ $= \tan^{-1} \frac{1}{11}$ $= \tan^{-1} \frac{48+77}{264-14}$ $= \tan^{-1}(125/250)$ $= \tan^{-1}(1/2)$ = RHS **Hence** Proved **Question 4** $2\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{31}{17}$ Solution: $2\tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2}$ Use identity: LHS $= 2 \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{7}$ $= \operatorname{Tan}^{1} \frac{2x_{2}^{1}}{1 - (\frac{1}{2})} + \tan^{-1} \frac{1}{7}$ Again, using identity: Tan⁻¹ x+tan⁻¹ y = tan⁻¹ $\frac{x+y}{1-xy}$ We have. Tan⁻¹ $= \tan^{-1} \left(\frac{\frac{32}{28+3}}{21-4} \right)$

 $= \tan^{-1} (31/17)$

RHS

write the following functions in the simplest form:

Question 5

$$\tan^{-1}\frac{\sqrt{1+x^2}-1}{x}, x \neq 0$$

6262969699

Solution:

Let's say x = tan θ then θ = tan⁻¹ x We get. $\tan^{-1}\frac{\sqrt{1+x^2-1}}{x} = \tan^{-1}\left[\frac{\sqrt{1+\tan^2\theta-1}}{\tan\theta}\right]$ $= \tan^{-1} \left\{ \frac{\sec \theta - 1}{\tan \theta} \right\}$ $= \tan^{-1} \left[\frac{1 - \cos \theta}{\sin \theta} \right]$ $= \tan^{-1} \left(\frac{2\sin^2 \theta}{2\sin^2 \cos^2 \theta} \right)$ $= \tan^{-1}\left(\tan\frac{\theta}{2}\right) = \frac{\theta}{2} = \frac{1}{2}\tan^{-1}x$ This is simplest form of the function.

Ouestion 6

 $\tan^{-1}\frac{1}{\sqrt{x^2-1}}, |x| > 1$

Solution:

Let us consider, $x = \sec \theta$, then $\theta = \sec^{-1} x$ $\tan^{-1}\frac{1}{\sqrt{x^2-1}} = \tan^{-1}\frac{1}{\sqrt{\sec^2\theta - 1}}$ $= \tan^{-1} \frac{1}{\sqrt{\tan \theta}}$ $= \tan^{-1} \left[\frac{1}{\tan \theta} \right]$ $= \tan^{-1} (\cot \theta)$ $= \tan^{-1} \tan(\pi/2 - \theta)$ $=(\pi/2-\theta)$ $= \pi/2 - \sec^{-1} x$ This is simplest form of the given function.

Ouestion 7

$$\tan^{-1}\left[\sqrt{\frac{1-\cos x}{1+\cos x}}\right]. 0 < x < \pi$$

Solution:

$$\operatorname{Tan}^{-1}\left[\sqrt{\frac{1-\cos x}{1+\cos x}}\right] = \tan^{-1}\left[\sqrt{\frac{2\sin^2 x}{2\cos^2 \frac{x}{2}}}\right]$$
$$= \tan^{-1}\left[\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\right]$$
$$= \tan^{-1}\left(\tan \frac{x}{2}\right) = \frac{x}{2}$$

6262969699

Question 8

$$\operatorname{Tan}^{-1}\left(\frac{\cos x - \sin x}{\cos x + \sin x}\right), \frac{-\pi}{4} < x < \frac{3\pi}{4}$$

Solution:

cons(x) sin(x)
$\tan \left(\frac{\cos(x)}{\cos(x)}\right)$
$\operatorname{tall}^{-1}\left(\frac{\cos\left(x\right)}{\cos\left(x\right)}\right)$
$\cos(x) \cos(x)$
$1 = \frac{\sin (x)}{2}$
$-$ tap-1 $\int_{\cos(\pi x)}^{1-\cos(\pi x)}$
$- \tan^{-1}\left(\frac{1}{1+\sin \frac{\pi}{2}}\right)$
$1 + \frac{1}{\cos \left(\frac{1}{x}\right)}$
$\tan^{-1}\left(\frac{1-tanx}{1+tanx}\right)$
$\begin{bmatrix} \tan \frac{\pi}{4} - \tan x \end{bmatrix}$
$Tan^{-1} = \frac{4}{\pi}$
$\lfloor 1 + tan \frac{1}{4} tanx \rfloor$
$= \tan^{-1} \tan(\pi/4 - x)$
$= \pi/4 - x$

Question 9

```
\tan^{-1}\frac{x}{\sqrt{a^2 - x^2}}, |x| < a
```

Solution:

Put x =a sin θ , which implies sin θ = x/a and θ = sin⁻¹(x/a) Substitute the value into given function, we get

$$\tan^{-1} \frac{x}{\sqrt{a2 - x^2}} = \tan^{-1} \left[\frac{a \sin \theta}{\sqrt{a^2 - a^2 \sin^2 \theta}} \right]$$

=
$$\tan^{-1} \left[\frac{a \sin \theta}{a \sqrt{1 - \sin^2 \theta}} \right]$$

=
$$\tan^{-1} \left(\frac{a \sin \theta}{a \cos \theta} \right)$$

=
$$\tan^{-1} (\tan \theta)$$

=
$$\theta$$

=
$$\sin^{-1} (x/a)$$

Question 10

$$\tan^{-1}\left[\frac{3a^2x-x^3}{a^3-3ax^2}\right], a > 0: \frac{-a}{\sqrt{3}} < x < \frac{a}{\sqrt{3}}$$

Solution:

After dividing numerator and denominator by a^3 we have. $f(\frac{x}{2}) - f(\frac{x}{2})^3$

$$\tan^{-1} \frac{\frac{3(\frac{x}{a}) - (\frac{x}{a})^3}{1 - 3(\frac{x}{a})^2}}{1 - 3(\frac{x}{a})^2}$$

6262969699

Put x/a = tan θ and θ = tan⁻¹ (x/a) $-1\left[\frac{3\tan\theta-\tan^3\theta}{1-3\tan^2\theta}\right]$ tan $= \tan^{-1} (\tan 3 \theta)$ $= 3 \theta$ $= 3 \tan^{-1}(x/a)$ Find the values of each of the following:

Ouestion 11

 $\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2}\right)\right]$

Solution:

```
= \tan^{-1} \left[ 2 \cos \left( 2 \sin^{-1} \sin \frac{\pi}{6} \right) \right]
= \tan^{-1} \left| 2\cos\left(2x\frac{\pi}{6}\right) \right|
= \tan^{-1} (2 \cos \pi / 3)
= \tan^{-1} (2 \times \frac{1}{2})
= \tan^{-1}(1)
= \tan^{-1} (\tan (\pi / 4))
=\pi/4
```

Ouestion 12

 $\cot(\tan^{-1}a + \cot^{-1}a)$

Solution:

Cot $(\tan^{-1}a + \cot^{-1}a) = \cot \pi/2 = 0$ Using identity: $tan^{-1}a + cot^{-1}a = \pi/2$

Question 13

Complete KIT of Education $\tan \frac{1}{2} \left[sin^{-1} \frac{2x}{1+x^2} + cos^{-1} \frac{1-y^2}{1+y^2} \right]$, $|\mathbf{x}| < 1$. $\mathbf{Y} > 0$ and $\mathbf{xy} < 1$

Solution:

Put x = tan θ and y = tan ϕ , we have $\tan\frac{1}{2}\left[\sin^{-1}\frac{2\tan\theta}{1+\tan^{2}\theta}+\cos^{-1}\frac{1-\tan^{2}\phi}{1+\tan^{2}\phi}\right]$ $= \tan 1/2 [\sin^{-1} \sin 2\theta + \cos^{-1} \cos 2\phi]$ $= \tan(1/2) [2\theta + 2\phi]$ $= \tan (\theta + \phi)$ $=\frac{\tan\theta + \tan\phi}{1}$ $1-tan\phi tan\phi$ = (x+y) / (1 - xy)

6262969699

Question 14

if
$$\sin\left[\sin^{-1}\frac{1}{5} + \cos^{-1}x\right]^{=1}$$
, then find the value of x.

Solution:

We know that, sin 90 degrees = sin $\pi/2 = 1$ So, given equation turned as, $\sin^{-1}\frac{1}{5} + \cos^{-1}x = \frac{\pi}{2}$ $\cos^{-1}x = \frac{\pi}{2} - sin^{-1}\frac{1}{5}$ Using identity: $\sin^{-1}t + \cos^{-1}t = \pi/2$ $\cos^{-1}x = \cos^{-1}\frac{1}{5}$ we have, which implies, the value of x is 1/5.

Question 15

if $\tan^{-1}\frac{x-1}{x-2}$ + $\tan^{-1}\frac{x+1}{x+2} = \frac{\pi}{4}$, then find the value of x.

Solution:

We have reduced the given equation using below identity: $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}$

 $\tan^{-1}\frac{x}{1-x}$

or $\tan^{-1}\frac{(x-1)(x+2)+(x+1)(x-2)}{(x-2)(x+2)-(x-1)(x+1)} = \frac{\pi}{4}$ or $\tan^{-1}\frac{x^2+2x-x-2+x^2-2x+x-2}{x^2-4-(x^2-1)} = \frac{\pi}{4}$ or $\frac{2x^2-4}{x^2-4-x^2+1} = \tan\left(\frac{\pi}{4}\right)$ or $(2x^22-4)/-3 = 1$ or $x = \pm \frac{1}{\sqrt{2}}$ the value of x is either $\frac{1}{\sqrt{2}}$ or $-\frac{1}{\sqrt{2}}$

Find the values of each of the expressions in Exercise 16 to 18.

Question 16

 $\sin^{-1}\left(\sin\left(\frac{2a}{3}\right)\right)$

6262969699

Solution:

Given expression is $\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$ First split $\frac{2\pi}{3}$ as $\frac{(3\pi-\pi)}{3}$ or $\pi - \frac{\pi}{3}$ After substituting in given we get. Sin⁻¹ $\left(\sin\left(\frac{2\pi}{3}\right)\right) = \sin^{-1}\left(\sin\left(\pi - \frac{\pi}{3}\right)\right) = \frac{\pi}{3}$ Therefore, the value of $\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$ is $\frac{\pi}{3}$

Question 17

 $\tan^{-1}(\tan(\frac{3\pi}{4}))$

Solution:

Given expression is $\tan^{-1}\left(\tan\left(\frac{3\pi}{3}\right)\right)$ First split $\frac{3\pi}{4}$ as $\frac{(4\pi-\pi)}{4}$ or $\pi - \frac{\pi}{4}$ After substituting in given we get. $\tan^{-1}\left(\tan\left(\frac{3\pi}{4}\right)\right) = \tan^{-1}\left(\tan\left(\pi - \frac{\pi}{4}\right)\right) = -\frac{\pi}{4}$ The value of $\tan^{-1}\left(\tan\left(\frac{3\pi}{4}\right)\right)$ is $\frac{-\pi}{4}$.

Question 18

 $\tan\left(\sin^{-1}\left(\frac{3}{5}\right) + \cot^{-1}\frac{3}{2}\right)$

Solution:

Given expression is $\tan (\sin^{-1}(\frac{3}{5}) + \cot^{-1}\frac{3}{2})$ Putting, $\sin^{-1}(\frac{3}{5}) = x$ and $\cot^{-1}(\frac{3}{2}) = y$ NCERT Solution for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Or sin (x) = 3/5 and cot y = 3/2 Now, sin(x) = 3/5 => cos x = $\sqrt{1 - sin^2}x = \frac{4}{5}$ and sec x = 5/4(using identities: cos $x = \sqrt{1 - sin^2}x$ and sec x = 1/cos x) Again, tan $x = \sqrt{sec^2x - 1} = \sqrt{\frac{25}{10} - 1} = \frac{3}{4}$ and tan y = 1/cot(y) = 2/3Now, we can write given expression as, Tan(sin^{-1}(\frac{3}{5}) + cot^{-1}\frac{3}{2}) = tan (x + y) $= \frac{tanx + tan y}{1 - tan x tan y} = \frac{\frac{3}{4} + \frac{2}{3}}{1 - \frac{3}{4}x_3^2}$ = 17/6

6262969699

Question 19

 $\cos^{-1}(\cos\frac{7\pi}{6})$ is equal to (A) 7 $\pi/6$ (B) 5 $\pi/6$ (C) $\pi/3$ (D) $\pi/6$

Solution:

Option (B) is correct. Explanation: $\cos^{-1}(\cos\frac{7\pi}{6}) = \cos^{-1}(\cos(2\pi - \frac{7\pi}{6}))$ (As $\cos(2\pi - A) = \cos A$) Now $2\pi - \frac{7\pi}{6} = \frac{12\pi - 7\pi}{6} = \frac{5\pi}{6}$

Question 20

 $\sin\left[\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right] \text{ is equal to}$ $(A) \frac{1}{2} (B) \frac{1}{3} (C) \frac{1}{4} (D) 1$

Solution:

Option (D) is correct. Explanation: First solve for: $\sin^{-1}\left(-\frac{1}{2}\right)$ $\sin^{-1}\left(-\frac{1}{2}\right) = \sin^{-1}\left(-\sin\frac{\pi}{6}\right) = \sin^{-1}\left[\sin\left(-\frac{\pi}{6}\right)\right]$ $= -\pi/6$ Again, $\sin\left[\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right]$ $= \sin\left[\frac{\pi}{3} - \left(-\frac{\pi}{6}\right)\right]$ $= \sin\left[\frac{\pi}{3} + \frac{\pi}{6}\right]$ $= \sin(\pi/2)$ = 1

Question 21

tan⁻¹ $\sqrt{3}$ – cot⁻¹ (- $\sqrt{3}$) is equal to (A) π (B) – $\pi/2$ (C) 0 (D) $2\sqrt{3}$

Solution:

Option (B) is correct. Explanation: $\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3})$ can be written as

$$= \tan^{-1} \tan \frac{\pi}{3} - \cot^{-1} \left(-\cot \frac{\pi}{6} \right)$$

$$= \frac{\pi}{3} - \cot^{-1} \left[\cot \left(\pi - \frac{\pi}{6} \right) \right]$$

$$= \frac{\pi}{3} - \frac{5\pi}{6}$$

$$= -\pi/2$$
Miscellaneous Exercise
Find the value of the following:
Question 1
Cos⁻¹ (cos^{13\pi}/₆)
Solution:
First solve for, cos^{13\pi}/₆ = cos (2\pi + \frac{\pi}{6}) = cos \frac{\pi}{6}
Now, cos⁻¹ (cos^{13\pi}/₆) = cos⁻¹ (cos $\frac{\pi}{6}$) = $\frac{\pi}{6} \in [0, \pi]$
[As cos⁻¹ cos(x) = x if x $\in [0, \pi]$]
So, the value of cos⁻¹ (cos^{13\pi}/₆) is $\frac{\pi}{6}$,
Question 2

$\tan^{-1}(\tan\frac{7\pi}{6})$

Solution: First solve for, $\tan \frac{7\pi}{6} = \tan \left(\pi + \frac{\pi}{6}\right) = \tan \frac{\pi}{6}$ Now: $\tan^{-1} \left(\tan \frac{7\pi}{6}\right) = \tan^{-1} \left(\tan \frac{\pi}{6}\right) = \frac{\pi}{6} \in (-\pi/2, \pi/2)$

[As $\tan^{-1} \tan(x) = x$ if $x \in (-\pi/2, \pi/2)$] So, the value of $\tan^{-1}(\tan\frac{7\pi}{6})$ is $\frac{\pi}{6}$.

Ouestion 3

Prove that 2
$$\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$$

Solution:

Step 1: Find the value of cos x and tan x

6262969699

Let us consider $\sin^{-1}\frac{3}{5} = x$, then $\sin x = 3/5$ So, $\cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - (\frac{3}{5})^2} = 4/5$ $\tan x = \sin x / \cos x = \frac{3}{4}$ therefore, $x = \tan^{-1}(3/4)$, substitute the value of x, $\sin^{-1}\frac{3}{5} = \tan^{-1}\left(\frac{3}{4}\right)....(1)$ step 2: Solve LHS $2\sin^{-1}\frac{3}{5} = 2\tan^{-1}\frac{3}{4}$ Using identity =: $2\tan^{-1} x = \tan^{-1} \left(\frac{2x}{1-x^2}\right)$, we get $= \tan^{-1} \left(\frac{2(\frac{3}{4})}{1-(\frac{3}{2})^2} \right)$ $= \tan^{-1}(24/7)$ = RHSHence Proved. **Ouestion 4** Prove that $\sin^{-1}\frac{8}{17} + \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{77}{36}$ **Solution:** Let $\sin^{-1}(\frac{8}{17}) = x$ then $\sin x 8/17$ Again, $\cos x = \sqrt{1 - \sin^2 x} = \sqrt{1 - \frac{64}{289}} = 15/17$ And, $\tan x = \sin x / \cos x = 8/15$ Again, Let $\sin^{-1}\left(\frac{3}{5}\right) = y$ then $\sin y = 3/5$ Let $\sin^{4}(\frac{1}{5}) = y \tan^{2} \frac{1}{5}$ Again, $\cos y = \sqrt{1 - \sin^{2} y} = \sqrt{1 - \frac{9}{25}} = 4/5$ Solve for tan (x + y), using below identity. tan (x + y) = $\frac{\tan x + \tan y}{1 - \tan x \tan y}$ $=\frac{32+45}{60-24}$ = 77/36 This implies $x + y = \tan^{-1}(77/36)$ Substituting the values back, we have $\sin^{-1}\frac{8}{17} + \sin^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$

Question 5

6262969699

Prove that
$$\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$$

Solution:

Let
$$\cos^{-1}\frac{4}{5} = 0$$

 $\cos \theta = \frac{4}{5}$
 $\sin \theta = \sqrt{1 - \cos^2 \theta}$
 $= \sqrt{1 - \frac{16}{25}}$
 $= \frac{3}{5}$
Let $\cos^{-1}\frac{12}{13} = \phi$
 $\cos \phi = \frac{12}{13}$
 $\sin \phi = \sqrt{1 - \cos^2 \phi}$
 $= \sqrt{1 - \frac{144}{169}}$
 $= \frac{5}{13}$

Solve the expression, Using identity: $\cos (\theta + \phi) = \cos \theta \cos \phi - \sin \theta \sin \phi$ = 4/5 x 12/13 - 3/5 x 5/13 = (48 - 15)/65 = 33/65 This implies $\cos (\theta + \phi) = 33/65$

Or $\theta + \dot{\Phi} = \cos^{-1}(33/65)$ Putting back the value of θ and $\dot{\Phi}$, we get $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$ Hence proved.

Question 6

Prove that
$$\cos^{-1}\left(\frac{12}{13}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{56}{65}\right)$$

Solution:

Let
$$\cos^{-1}\frac{12}{13} = \theta$$
 let $\sin^{-1}\frac{3}{5} = \phi$
So, $\cos\theta = \frac{12}{13}$ So $\sin\phi = \frac{3}{5}$
Sin $\theta = \sqrt{1 - \cos^2\theta}$ $\cos\phi = \sqrt{1 - \sin^2\phi}$
 $= \sqrt{1 - \frac{144}{169}} = \sqrt{1 - \frac{9}{25}}$
 $= \frac{5}{13} = \frac{4}{5}$
Solve the expression, Using identity: $\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi$
 $= 12/13 \times 3/5 + 12/13 \times 3/5$
 $= (20 + 36)/65$
 $= 56/65$
Or $\sin(\theta + \phi) = 56/65$
Or $\sin(\theta + \phi) = 56/65$
Putting back the value of θ and ϕ , we get
 $\cos^{-1}\left(\frac{12}{13}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{56}{65}\right)$
Hence Proved.

For more Info Visit - www.KITest.in

2. 15

6262969699

Question 7

Prove that
$$\tan^{-1}\left(\frac{63}{16}\right) = \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right)$$

Solution:

Let $\sin^{-1}\frac{5}{13} = \theta$ let $\cos^{-1}\frac{3}{5} = \phi$ So, $\sin\theta = \frac{5}{13}$ so $\cos\varphi = \frac{3}{5}$ $\cos\theta = \sqrt{1 - \sin^2\theta}$ $\sin\varphi = \sqrt{1 - \cos^2\varphi}$ $= \sqrt{1 - \frac{25}{169}}$ $= \sqrt{1 - \frac{9}{25}}$ $= \frac{12}{13}$ $= \frac{4}{5}$ Tan $\theta = \frac{\sin\theta}{\cos\theta} = \frac{5}{12}$ tan $\varphi = \frac{\sin\varphi}{\cos\varphi} = \frac{4}{3}$ Solve the expression, Using identity: Tan $(\theta + \varphi) = \frac{\tan\theta + \tan\varphi}{1 - \tan\theta\tan\varphi}$ $= \frac{\frac{5}{12} + \frac{4}{3}}{1 - \frac{5}{12}x\frac{4}{3}}$ = 63/16 $(\theta + \varphi) = \tan^{-1}(63/16)$

Putting back the value of θ and ϕ , we get $\operatorname{Tan}^{-1}\left(\frac{63}{16}\right) = \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right)$ Hence Proved.

Question 8

Prove that
$$\tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{8}\right) = \frac{\pi}{4}$$

LHS = $\tan^{-1}\left(\frac{1}{5}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{8}\right)$) Solve above expressions, using below identity:

$$tan^{-1}x + tan^{-1}y = tan^{-1}\frac{x+y}{1-xy}$$

$$= \tan^{-1} \left(\frac{\frac{1}{5} + \frac{1}{7}}{1 - \frac{1}{5}x\frac{1}{7}} \right) + \tan^{-1} \left(\frac{\frac{1}{3} + \frac{1}{8}}{1 - \frac{1}{3}x\frac{1}{8}} \right)$$

After simplifying, we have = $\tan^{-1} (6/17) + \tan^{-1} (11/23)$ Again, applying the formula, we get After simplifying, = $\tan^{-1} (325/325)$ = $\tan^{-1} (1)$

6262969699

 $= \pi / 4$

Question 9

Prove that $\tan^{-1}\sqrt{x} = \frac{1}{2}\cos^{-1}\frac{1-x}{1+x}, x \in (0, 1)$

Solution:

Let $\tan^{-1}\sqrt{x} =$, then $\sqrt{x} = \tan \theta$ Squaring both the sides $\tan^2\theta = x$ now, substitute the value of x in $\frac{1}{2}\cos^{-1}\frac{1-x}{1+x}$, we get $=\frac{1}{2}\cos^{-1}\left[\frac{1-\tan^2\theta}{1+\tan^2\theta}\right]$ $= \frac{1}{2} \cos^{-1} (\cos 2\theta)$ $\frac{1}{2}(2\theta)$ = θ $= \tan^{-1}\sqrt{x}$ **Ouestion 10** Prove that $\cot^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right) = \frac{x}{2}, x \in (0, \pi/4)$ Solution: We can write 1+sin x as, $1 + \sin x = \cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\cos \frac{x}{2}\sin \frac{x}{2} = \left[\cos \frac{x}{2} + \sin \frac{x}{2}\right]^2$ And 1+sin x = $\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\cos \frac{x}{2}\sin \frac{x}{2} = \left[\cos \frac{x}{2} + \sin \frac{x}{2}\right]^2$ LHS: $Cot^{-1} \left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right] \\ = cot^{-1} \left[\frac{(\cos \frac{x}{2} + \sin \frac{x}{2}) + (\cos \frac{x}{2} + \sin \frac{x}{2})}{(\cos \frac{x}{2} + \sin \frac{x}{2}) - (\cos \frac{x}{2} + \sin \frac{x}{2})} \right]$ $= \cot^{-1} \left(\frac{2\cos\left(\frac{x}{2}\right)}{2\sin\left(\frac{x}{2}\right)} \right)$ $= \cot^{-1} (\cot (x/2))$ = x/2

Question 11

Prove that $\tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x, -\frac{1}{\sqrt{2}} \le x \le 1$ [Hint: Put x = cos 2 θ]

For more Info Visit - www.KITest.in

2.17

6262969699

Solution:

Put x = cos 2 θ so, $\theta = \frac{1}{2} \cos^{-1} x$ LHS = $\tan^{-1} \left[\frac{\sqrt{1 + x - \sqrt{1 - x}}}{\sqrt{1 + x} + \sqrt{1 - x}} \right]$ $= \tan^{-1} \left| \frac{\sqrt{1 + \cos 2\theta} - \sqrt{1 - \cos 2\theta}}{\sqrt{1 + \cos 2\theta} + \sqrt{1 - \cos 2\theta}} \right|$ $\frac{\sqrt{2\cos^2\theta} - \sqrt{2\sin^2\theta}}{\sqrt{2\cos^2\theta} + \sqrt{2\sin^2\theta}}$ = tan-1 $\frac{\sqrt{2\cos\theta + \sqrt{2\sin\theta}}}{\sqrt{2\cos\theta + \sqrt{2\sin\theta}}}$ $= \tan^{-1}$ Divide each term by $\sqrt{2} \cos \theta$ = $\tan^{-1} \left(\frac{1 - \tan \theta}{1 + \tan \theta} \right)$ $tan\frac{\pi}{A}-tan\theta$ $= \tan^{-1} \frac{\tan \frac{\pi}{4}}{1 + \tan \frac{\pi}{4} \tan \theta}$ $= \tan^{-1} \tan \left(\frac{\pi}{4} - \theta \right)$ $=\frac{\pi}{4}-\theta$ $=\frac{\pi}{4}-\frac{1}{2}\cos^{-1}x$ = RHSHence proved **Question 12** Prove that $\frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3} = \frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}$

Solution:

LHS
$$= \frac{9\pi}{8} - \frac{9}{4} \sin^{-1}\frac{1}{3}$$

 $= \frac{9}{4}\frac{1}{6} = \sin^{-1}\frac{1}{3}$
 $= \frac{9}{4}\cos^{-1}\frac{1}{3}$
.... (1)
(Using identity: $\sin^{-1}\theta + \cos^{-1}\theta = \frac{\pi}{2}$)
Let $\theta = \cos^{-1}(1/3)$, so $\cos \theta = 1/3$
As
 $\sin \theta = \sqrt{1 - \cos^{2}\theta} = \sqrt{1 - \frac{1}{9}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}$
Using equation (1). $\frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}$
Which is right hand side of the expression.
Solve the following equations:

Question 13

6262969699

$2\tan^{-1}(\cos x) = \tan^{-1}(2 \csc x)$

Solution:

 $2 \tan^{-1} (\cos x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (\cos^{2} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (\cos^{2} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$ $\tan^{-1} (2 \operatorname{cose} x) = \tan^{-1} (2 \operatorname{cose} x)$

Question 14

Solve $\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2} \tan^{-1} x, (x > 0)$

Solution:

Put x = tan θ tan⁻¹ $\left[\frac{t-x}{t+x}\right] = \frac{1}{2}$ tan⁻¹ x this implies tan⁻¹ $\left[\frac{t-x}{t+x}\right] = \frac{1}{2}$ tan⁻¹ x tan⁻¹ $\left[\frac{t-x}{t+x}\right] = \frac{1}{2}$ tan⁻¹ tan θ tan⁻¹ $\left[\frac{tan}{t+x}\right] = \frac{1}{2}$ θ tan⁻¹ tan $\left[\frac{\pi}{4} - \theta\right] = \frac{\theta}{2}$ $\pi/4 - \theta = \theta/2$ or $3\theta/2 = \pi/4$ $\theta = \pi/6$ therefore, x = tan θ = tan $\pi/6 = 1/\sqrt{3}$

Question 15

sin (tan⁻¹ x), |x| < 1 is equal to (A) $\frac{x}{\sqrt{1-x^2}}$ (B) $\frac{1}{\sqrt{1-x^2}}$ (c) $\frac{1}{\sqrt{1+x^2}}$ (D) $\frac{x}{\sqrt{1+x^2}}$

Solution:

Option (D) is correct. Explation: Let $\theta = \tan^{-1} x$ so, $x = \tan \theta$

6262969699

Again, let's say

Sin (tan⁻¹x) = sin θ This emplies, Sin (tan⁻¹ x) = $\frac{1}{cosec \theta} = \frac{1}{\sqrt{1+cot^2\theta}}$ Put cot $\theta = \frac{1}{tan\theta} = \frac{1}{x}$ Which shows, Sin (tan⁻¹x) = $\frac{1}{\sqrt{1+\frac{1}{x^2}}} = \frac{x}{\sqrt{x^2+1}}$

Question 16

 $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$ then x is equal to (A) 0, ¹/₂ (B) 1, ¹/₂ (C) 0 (D) ¹/₂

Solution:

Option (C) is correct. Explanation: Put sin⁻¹ $x = \theta$ so, $x = sin \theta$ Now, Sin⁻¹ $(1 - x) - 2 sin⁻¹ x = \frac{\pi}{2}$ Sin⁻¹ $(1 - x) - 2\theta = \frac{\pi}{2}$ Sin⁻¹ $(1 - x) - 2\theta = \frac{\pi}{2}$ Sin⁻¹ $(1 - x) = \frac{\pi}{2} + 2\theta$ $1 - x = sin (\frac{\pi}{2} + 2\theta)$ $1 = x = sin cos 2\theta$ $1 - x = 1 - 2x^2$ (As x = sin) After simplifying, we get X (2x - 1) = 0 X = 0 or 2x - 1 = 0 $X = 0 \text{ or } x = \frac{1}{2}$. Equation is not true for $x = \frac{1}{2}$.so, the answer is x = 0.

Question 17

 $\tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\left(\frac{x-y}{x+y}\right)$ is equal to (A) $\pi/2$ (B) $\pi/3$ (C) $\pi/4$ (D) $-3 \pi/4$

Solution:

Option (C) is correct. Explanation:

A Complete KIT of Education