

6262969699

STANDARD NORMAL DISTRIBUTION

The Standard Normal Distribution

If each data value of a normally distributed random variable x is transformed into a z-score, the result will be the standard normal distribution.

 $z = \frac{x - \mu}{2}$

Normal Distribution

11

Standard Normal Distribution

Use the Standard Normal Table to find the cumulative area under the standard normal curve.

POISSON DISTRIBUTION:

In a Poisson distribution, if 'n' is the number of trials and 'p' is the probability of success, then the mean value is given by

(a) m = n p	(b) m = $(np)^2$
(c) m = n p (1-p)	(d) $m = p$
Answer: a	
Explanation:	100
For a discrete probability function,	, the mean value or the expected value is
given by	
Mean $(\mu) = \sum_{x=0}^{n} xp(x)$	
For Poisson Distribution $P(x) = \frac{e^{-n}}{2}$	$\frac{n_m x}{x!}$ substitute in above equation and
solve to get $\mu = m = n p$.	¢!
control of google in the pr	
a lampiete A	

Question2

Ouestion1

If 'm' is the mean of A Poisson Distribution, then variance is given by (a) m^2 (b) $m_{\frac{1}{2}}^{1}$ (d) $m/_{2}$

(c) m

Answer: c

Explanation:

For a discrete probability function, the variance is given by Variance (v) = $\sum_{x=0}^{n} x^2 p(x) - \mu^2$

Where μ is the mean, substitute P(x) = $\frac{e^{-m_m x}}{x!}$, in the above equation and put μ = m to obtain

V = m.

6262969699

Ouestion 3

The p.d.f of Poisson distribution is given by $\frac{e^{-m_{x!}}}{m^x}$

(a) $\frac{e^{-m_m x}}{x!}$	(b) $\frac{e^{-m_{\chi!}}}{m^{\chi}}$
(c) $\frac{x!}{m^x e^{-m}}$	(d) $\frac{e^m m^x}{x!}$

Answer: a

Explanation:

This is a standard formula for Poisson distribution, is needs no explanation. Even though if you are interested to know the derivations in detail, you can refer to any of the books or source on internet that speaks of this matter.

Ouestion 4 If 'm' is the mean of a Poisson distribution, the standard deviation is given by (b) m^2 (d) m/2(a) $m^{1/2}$ (c) m Answer: a **Explanation:** The variance of a Poisson distribution with mean 'm' is given by V = m, hence standard Deviation = $(Variance)^{1/2} = m^{1/2}$ **Ouestion 5** In a Poisson distribution the mean and variance are equal (a) True (b) False (c) Can't say (d) Not justifiable Answer: a Explanation: Mean = mVariance = m \therefore Mean = Variance. **Question 6** In a Poisson distribution, if mean (m) = e, then P(x) is given by (a) $\frac{e^{-m}m^{x}}{\frac{x!}{x!}}$ (c) $\frac{x}{m^{x}e^{-m}}$ (b) $\frac{e^{-m_{x!}}}{m^x}$ (d) $\frac{e^m m^x}{x}$

Answer: a **Explanation:**

Put m = e. $P(x) = \frac{e^m m^x}{x!}$

Ouestion 7

Poisson distribution is applied for

(a) Continuous Random variable

(b) Discrete Random variable (c) Irregular Random variable (d) Uncertain Random Variable

Answer: b Explanation:

Poisson distribution along with Binomial Distribution is applied for discrete Random variable. Speaking more precisely, Poisson Distribution is an extension of Binomial Distribution for larger values 'n'. since Binomial Distribution is of discrete nature, so is its extension Poisson Distribution.

Ouestion 8 If 'm' is the mean of Poisons Distribution, the P(0) is given by (a) e^{-m} (b) e^{m} (d) m^{-e} (c) e **Answer:** a **Explanation**: $P(x) = \frac{e^{-m_m x}}{m_m x}$ Put x = 0, to obtain e^{-m} . **Ouestion 9** In a Poisson distribution, the mean and standard deviation are equal (b) False (a) True (d) Not justified (c) Can't say **Answer: b Explanation**: In a Poisson distribution, Mean = mStandard deviation = $m^{1}/_{2}$: Mean and Standard deviation are not equal. **Ouestion 10** For a Poisson distribution, if mean (m) = 1, then P(1) is (a) $\frac{1}{a}$ (b) e

For more Info Visit - www.KITest.in

(c) $\frac{e}{2}$ **Answer:** a **Explanation**: $P(x) = \frac{e^{-m_m x}}{r!}$ Put m = x = 1, (given) to obtain 1/e.

Ouestion 11

The recurrence relation between P(x) and P(x+1) in a Poisson distribution is given by

(d) Indeterminate

(b) m P(x+1) - P(x) = 0

(d) (x+1) P(x) - x P(x+1) = 0

(a) P(x+1) - m P(x) = 0(c) (x+1) P(x+1) - m P(x) = 0

Answer: c

Explanation:

 $P(x) = \frac{e^{-m_m x}}{x!}$

P (x+1) = $e^{-m} \frac{m^{x+1}}{(x+1)!}$

Divide P(x + 1) by P(x) and rearrange to obtain (x+1) P(x+1) - m P(x) = 0.

(b) 0.1804465

(d) None

Ouestion 12

The mean value for an event X to occur is 2 in a day. Find the probability of event X to occur thrice in a day.

(a) 0.1804(c) 0.18 Answer: **b** Explanation:

Mean, m=2 x = 3

Probability of the event to occur thrice, P (3; 2) = $e^{-2} \frac{2^3}{3!} = 0.1804465$

Ouestion 13

A man was able to complete 3 files a day on an average. Find the probability that he can complete 5 files the next day.

(a) 0.108	(b) 0.1008
(c) 0.008	(d) None

Answer: b

Explanation:

Here we know this is a Poisson experiment with following values given: μ = 3, average number of files completed a day

For more Info Visit - www.KITest.in

X = 5, the number of files required to be completed next day And e = 2.71828 being a constant On substituting the values in the Poisson distribution formula mentioned above we get the Poisson probability in this case. We get $P(x, \mu) = \frac{(e^{-\mu})(\mu^x)}{x!}$ → P (5, 3) = $\frac{(2.71828)^{-3}(3^5)}{5!}$ = 0.1008 approximately. Hence the probability for the person to complete 5 files the next day is 0.1008 approximately. **Ouestion 14** The number of calls coming per minute into a hotels reservation center is Poisson random variable with mean 3. Find the probability that no calls come in a given 1-minute period (a) e^{-3} (b) e^3 (d) m^{-e} (c) e **Answer:** a **Explanation**: Let x denote the number of calls coming in that given 1 minute period. X ~ Poisson (3) $P(x=0) = \frac{e^{-3}3^0}{0!}$ $= \rho^{-3}$ Question 15 If the random variable X follows a Poisson distribution with mean 3.4, find P(x=6) (b) 0.00125948 (a) 0.071604409 (d) 0.015792 (c) 0.0023698 **Answer:** a **Explanation**: This can be written more quickly as: if X = Po(3, 4)Find (x = 6)Now $P(x = 6) = \frac{e^{-\lambda}\lambda^{6}}{6!}$ $= \frac{e^{-3.4}(3.4)^{6}}{6!} (mean, \lambda = 3.4)$

For Enquiry –	6262969604
---------------	------------

= 0.071604409 or 0.072(to 3 p.d.f)

BINOMIAL DISTRIBUTION:

<u>Question 1</u> In a binomial Distribution, 'if 'n' is probability of success, then the me	-
(a) np	(b) n
(c) p	(d) np(1 – p)
Answer: a	
Explanation:	
given by Mean $(\mu) \sum_{x=0}^{n} xp(x)$	ne mean value or the expected value is
For Binomial Distribution $P(x) = {}^{x}C_{x} p$	D ^x q ^(n-x) , substitute in the above
equation and solve to get	
$\mu = np.$	
Question 2 In the Binomial Distribution, If p, of failure and number of trials respect (a) np (c) np ² q	
Answer: b	
Explanation:	
For a discrete probability function, the variance is given by Variance (V) = $\sum_{x=0}^{n} x^2 p(x) - \mu^2$ Where μ is the mean, substitute P(x) = P(x) = ${}^{x}C_{x} p^{x} q^{(n-x)}$, in the above equation and put μ = np to obtain V = npq.	

Question 3

If 'x' is a random variable, taking values 'x' probability of success and failure being 'p' and 'q' respectively and 'n' trials being conducted, then what is the probability that 'x' takes values 'x'? Use Binomial Distribution

(a) $P(X = x) = {}^{n}C_{x} p^{x}q^{x}$ (c) $P(X = x) = {}^{n}C_{x} p^{x} q^{(n-x)}$ **Answer: b**

(b) $P(X = x) = {}^{n}C_{x} p^{x} q^{(n-x)}$ (d) $P(x = x) = {}^{x}C_{n}p^{x}q^{x}$

Explanation:

It is the formula for Binomial Distribution that is asked here which is given by $P(X = x) = {}^{n}C_{x} px q^{(n-x)}$

Question 4

If 'p', 'q' and 'n' are probability of success, failure and number of trials respectively in a Binomial Distribution, what is its standard Deviation?

(a) $(np)^{1/2}$	(b) $(pq)^{1/2}$
(c) $(np)^2$	(d) $(npq)^{1/2}$

Answer: d

Explanation: The variance (V) for a Binomial Distribution is given by V = npq

Question 5

In a Binomial Distribution, the mean and variance are equal

(a) True
(b) False
(c) can't say
(d) Not justifiable
Answer: b
Explanation:
Mean = np
Variance = npq
∴ Mean and Variance are not equal.

Question 6

It is suitable to use Binomial Distribution only for

(a) Large value of 'n'
(c) Small values of 'n'
Answer: c

(b) Fractional values of 'n'(d) Any values 'n'

Answer: c

Explanation:

As the value of 'n' increase, it becomes difficult and tedious to calculate value of ${}^{\rm n}C_{x}$

Question 7

For larger values of 'n' Binomial Distribution

(a) Loses its discreteness(c) Stays as it isAnswer: bExplanation:

(b) Tends to Poisson Distribution(d) Gives oscillatory values

For Enquiry —	6262969604
---------------	------------

Ouestion 11 The incidence of occupational disease in an industry is such that the workmen have a 10% chance of suffering from it. What is the probability that out of 5 workmen, 3 or more will contract the disease? (a) 890 (b) .0086 (d) None (c) .00086 **Answer:** c **Explanation**; Let x denote the number of workmen in the sample. X follows binomial with parameters n = 5 and p = probability that a workman suffers from the occupational disease = 0.1Hence q = 1 - 0.1 = 0.9Thus f (x) = 5_{c_x} (0.1)^x. (0.9)^{5-x} For x = 0, 1, 25. The probability that 3 or more workmen will contract the disease $= P(x \ge 3)$ = f(3) + f(4) + f(5) $= 5_{c_3}(0.1)^3(0.9)^{5-3} + 5_{c_4}(0.1)^4 \cdot (0.9)^{5-4} + 5_{c_5}(0.1)^5$ $= 10 \times 0.001 \times 0.814 + 5 \times 0.0001 \times 0.9 + 1 \times 0.00001$ = 0.0081 + 0.00045 + 0.00001= 0.0086.

Question 12

Find the probability of a success for the binomial distribution satisfying the following relation 4 P (x = 4) = P (x = 2) and having the parameter n as six.

(a) $P \neq 1$ (c) P = 1 (b) $P \neq -1$ (d) P = 0

Answer: b

Explanation:

We are given that n = 6. The probability mass function of x is given by F (x) = $n_{c_x} p^x q^{n-x} = 6_{c_x p^x q^{n-x}}$ For x = 0, 1, 6,

Thus P(x = 4) = f(4);

 $= 6_{c_4} p^4 q^{6-4} = 15 p^4 q^2$

And P (x = 2) = f (2) = $6_{c_4}p^2q^{6-2} = 15 p^2q^4$

Hence 4 P (x = 4) = P (x = 2) = $60 p^4 q^2 = 15 p^2 q^4$ = $15 p^2 q^2 (4p^2 - q^2) = 0$ = $4p^2 - q^2 = 0$ (as p - 0, q - 0) = $4p^2 - (1 - p)^2 = 0$ (as q = 1 - p) = (2p + 1 - p) = 0 or (2p - 1 + p) = 0= p = -1 or p = $\frac{1}{3}$ thus p = $\frac{1}{3}$ (as p \neq -1)

NORMAL DISTRIBUTION:

Question 1

Normal distribution is applied for

- (a) Continuous Random Distribution
- (c) Irregular Random Variable

(b) Discrete Random Variable

(d) Uncertain Random Variable

(b) Flat

Answer: a Explanation:

Normal Distribution is applied for Continuous Random Distribution. A discrete probability distribution is a probability distribution characterized by a probability mass function. Thus, the distribution of a random variable x is discrete, and x is called a discrete random variable, if, as u runs through the set of all possible values of x.

Question 2

The shape of the Normal curve is

(a) Bell shaped(c) CircularAnswer: a

Explanation:

Due to the nature of the probability Mass function, a bell shaped curve is obtained.

Question 3

Normal Distribution is symmetric is about

(a) Variance(c) Standard deviationAnswer: bExplanation:

(b) Mean (d) Covariance

(d) Spiked

For more Info Visit - www.KITest.in

6262969699

Ouestion 4

(a) ∞

(c) 0

(a) 0

(c) ∞

Due to the very nature of p.m.f of Normal Distribution, the graph appears such that it is symmetric about its mean.

(b) 1 (d) Not defined **Answer: c Explanation**: For a normal variate, if its mean = 0 and standard deviation = 1, then its called as standard Normal variate. Here, the converse is asked. **Ouestion 5** The area under a standard normal curve is (b) 1(d) Not defined **Answer: b Explanation**: For any probability distribution, the sum of all probabilities is 1. Area under normal curve refers to sum of all probabilities.

For a standard normal variate, the value of mean is

Ouestion 6 The standard normal curve is symmetric about the value. (a) ∞ (b) 0 (c) 0.5 (d) 1Answer: b **Explanation**: Normal curve is always symmetric about mean, for standard normal curve or variate mean = 0. **Ouestion 7** For a standard normal variate. The value of standard deviation is (a) 3 (b) 1(d) Not defined (c)∞

Answer: b

Explanation:

If the mean and standard deviation of a normal variate are 0 and 1 respectively, it is called as standard normal variate.

For more Info Visit - www.KITest.in

6262969699

6262969699

Ouestion 8

Normal Distribution is also known as

(a) Cauchy's Distribution (c) Gaussian Distribution (b) Laplacian Distribution (d) Lagrangian Distribution

Answer; c

Explanation:

Named after the one who proposed it. For further details, refer to books or internet.

Ouestion 9

Skewers of Normal distribution is (a) Negative (b) Positive (d) Undefined (c) 0**Answer: c Explanation**: Since the normal curve is symmetric about its mean, its skewness is zero.

This is a theoretical explanation for mathematical proofs, you can refer to books or website that

Speak on the same in detail.

Question 10

For a normal distribution its mean, median, mode are equal (b) False (a) True

(c) Not defined Answer: a

(d) Can't say

Explanation:

It has theoretical evidence that requires some serious background on several topics for more details you can refer to any book or website that speaks on the same.

Ouestion 11

In Normal distribution, the highest value of ordinate occurs at

- (a) Mean
- (c) Extremes

- (b) Variance
- (d) Same value occurs at all points

Answer: a

Explanation: This is due the behavior of the p.d.f of Normal distribution.

Ouestion 12

The shape of the normal curve depends on its

(a) Mean deviation(c) Quartile deviation

(b) Standard deviation(d) None

Answer: b Explanation:

This can be seen in the p.d.f on the normal distribution where standard deviation is a variable.

Question 13

The value of constant 'e' appearing in normal distribution is

(a) 2.5185 (b) 2.7836 (c) 2.1783 (d) None **Answer: c Explanation:** This is a standard constant.

Question 14

In standard normal distribution, the value of median is

(a) 1 (b) 0 (c) 2 (d) Not fixed Answer: b Explanation: In a standard normal distribution the value of mean is 0 and in normal

distribution mean, median and mode coincide.

Question 15

In a certain book, the frequency distribution of the number of words per page may be taken as approximately normal with mean 800 and standard deviation 50. If three pages are chosen at random, what is the probability that none of them has between 830 and 845 words each?

(a) 0.7536	(b) .7654
(c) .9084	(d) .8733

Answer: a Explanation:

Let X is a normal variate which denotes the number of words per page. It is given that X – N (800, 50).

The probability that a page, select at random, does not have number of words between 830 and 845, is given by

6262969699

1-P (830< X < 845) 1 - P $\left(\frac{830-800}{50} \le \le \le \frac{845-800}{50}\right)$ = 1 - P (0.6 < = < 0.9) = 1 - P (0 < = < 0.9) + P (0 < = < 0.6)= 1 - 0.3159 + 0.2257 = 0.9098 = 0.91

Thus, the probability that none of the three pages, selected at random, have number of words lying between 830 and 845 = (0.91)3 = 0.7536.

Ouestion 16

The distribution of 1,000 examines according to marks percentage is given below:

% Marks	less than 40	40-75	75 or more	Total
No. of examines	430	420	150	1000

Assuming the marks percentage to follow a normal distribution, calculate the mean and standard deviation of marks. If not more than 300 examines are to fail, what should be the passing marks?

(a) 30%	(b) 40%
(c) 50%	(d) None

(C) 50%**Answer:** a

Explanation:

Let X denotes the percentage of marks and its mean and S.D. be m and s respectively. From the given table, we can write

P(x < 40) = 0.43 and $P(X \ge 75) = 0.15$, which can also be written as

$$\frac{40-\mu}{\alpha}$$
 = -0.175 or 40 - μ = -0.175 $_{\circ}$

And
$$\frac{75 - \mu}{\alpha} = 1.04$$
 or $75 - \mu = 1.040$

Solving the above equations simultaneously, we get $\mu = 45.04$ and O = 28.81Let x, be the percentage or marks required to pass the examination.

Then we have P (x < x₁) = 0.3 or P (=
$$<\frac{x_1 - 45.04}{28.81}$$
) = 0.3
 $\therefore \frac{x_1 - 45.04}{28.81}$ = -0.525 $\Rightarrow x_1$ - 29.91 or 30% (approx)

Question 17

At a petrol station, the mean quantity of petrol sold to a vehicle is 20 litres per day with a standard deviation of 10 liters. If on a particular day, 100 vehicles took 25 or more litres of petrol, estimate the total

For more Info Visit - www.KITest.in

.....(2)

number of vehicles who took petrol from the station on the day. Assume that the quantity of petrol taken from the station by a vehicle is a normal variate.

(a) 333	(b) 343
(c) 324	(d) 567

Answer: c

Examination:

Let X denotes the quantity of petrol taken by a vehicle. It is given that X – N (20, 10).

∴ P (X ≥ 25) = P
$$\left(=\geq \frac{25-20}{10}\right)$$
 = P (= ≥ 0.5)
= 0.5000-P (0 ≤= ≤ 0.5) = 0.5000 - 0.1915 = 0.3085
Let N be the total number of vehicles taking petrol on that day.

:. $0.3085 \times N = 100 \text{ or } N = \frac{100}{0.3085} = 324 \text{ (approx.)}$

Question 18

Using the table areas under the standard normal curve, find the following probabilities:

(i) P ($0 \le z \le 1.3$) (ii) P ($-1 \le z \le 0$) (iii) P ($-1 \le z \le 12$) (a) 0 0.4032, 0.3413,0.8185 (c) 0.40456, 0.3456,0.8155

(b) 0.4072, 0.4413,0.8185 (d) None

Answer: a

Explanation:

The required probability, in each question, is indicated by the shaded are of the corresponding figure.

(a) From the table.

(b) (i) we can write $P(0 \le z \le 1.3) = 0.4032$.

(c) (ii) we can write $P(-1 \le z \le 1)$, because the distribution is symmetrical.

Question 19 Determine the value or values of z in the following situations: (i) Area between 0 and z is 0.4495.

(ii) Area between - ∞ to z is 0.1401.

(a) -1.64, -1.08 (b) -1.08, -1.64 (c) 1.64, 1.08 (d) -1.64, 1.08 **Answer: a Explanation:**

6262969699

(i) On locating the value of z corresponding to an entry of area 0.4495 in the table of areas under the normal curve, we have z = 1.64 we note that same situations may correspond to a negative value of z. Thus, z can be 1.64 or – 1.64.

(ii) Since the area between $-\infty$ to z<0.5, z will be negative. Further, the area between z and 0 = 0.5000 - 0.1401 = 0.3599. On locating the value of z corresponding to this entry in the table, we get z = -1.08

Question 20

 $E(X) \leq E(Y)$

<u>Question 20</u>				
In distribution, mean = variance:				
(a) Binomial	(b) Poisson			
(c) Normal	(d) None of these			
Answer: b				
Explanation:				
Poisson; np=npq				
Np = mean				
Npq = variance				
Ouestion 21				
In a Binomial Distribution, if p =	q, then P(X = x) is given by			
(a) $n_{C_r}(0.5)^n$	(b) ${}^{n}C_{n}$ (0.5) ⁿ			
(c) ${}^{n}C_{x} p^{(n-x)}$	(d) ${}^{n}C_{n}p^{(n-x)}$			
Answer: a				
Explanation:				
If $p = q$, then $p = 0.5$				
Substituting in $P(x) = {}^{n}C_{x} p^{x}q^{(n-x)} we$	$e get {}^{n}C_{n} (0.5) {}^{n}$.			
Substituting in $P(x) = {}^{n}C_{x} p^{x}q^{(n-x)}$ we get ${}^{n}C_{n} (0.5) {}^{n}$.				
Question 22				
If $Y \ge x$ then mathematical expectation is				
(a) $E(X) > E(Y)$	(b) $E(X) \leq E(Y)$			
(c) $E(x) = E(Y)$	(d) $E(X)$. $E(Y) = 1$			
Answer: b				
Explanation:				
Explanation:				

6262969699

Past Examination Questions

MAY - 2018

Question 1 The variance of a binomial distribution (a) $np^2(1-p)$ (c) $\sqrt{np - (1-p)}$ Answer: b Explanation: = npq = nqp	bution with the parameters n and p is: (b) nq(1-q) (d) $n^2p^2(1-p)^2$
<pre>= nq(1-q) Question 2 X is a passion variate satisfying th 6) = P (X = 2). What is the value o (a) 0.5655 (c) 0.7358</pre>	he following condition 9 P(X = 4) + 90 (X = f P (X ≤ 1)? (b) 0.5655 (d) 0.8835
Answer: c Explanation: Given X ~ P (m) P (x = 2) = 9 P(x = 4) + 90 P(x = 6) $\frac{e^{-m}.m^2}{2!} = + \frac{9.e^{-m}.m^4}{4!} + \frac{90.e^{-m}.m^e}{2!}$	
$\frac{90.e^{-m}.m^{e}}{2!} + \frac{9.e^{-m}.m^{4}}{4!} - \frac{e^{-m}.m^{2}}{2!} = 0$ $e^{-m}.m^{2} \left[\frac{90.m^{4}}{6!} + \frac{9m^{2}}{4!} - \frac{1}{2!} \right] = 0$ $e^{-m}.m^{2} \left[\frac{90.m^{4}}{6!} + \frac{9m^{2}}{4!} - \frac{1}{2} \right] = 0$	
$e^{-m} \cdot m^2 \left[\frac{90 \cdot m^4}{6!} + \frac{9m^2}{4!} - \frac{1}{2} \right] = 0$	

6262969699

 $e^{-m} \cdot m^2 \left[\frac{m^4}{8} + \frac{3m^2}{8} - \frac{1}{2} \right] = 0$ $\frac{e^{-m}}{2}\left[\frac{m^4+3m^2-4}{4}\right]=0$ $\frac{e^{m} \cdot m^2}{8} (m^4 + 3m^2 - 4) = 0$ $m^{4} + 4m^2 - m^2 - 4 = 0$ $m^2 (m^2 + 4) - 1 (m^2 + 4) = 0$ $(m^2 + 4)(m^2 - 1) = 0$ lf m² + 4 = 0 if m² - 1 = 0 m^2 = -4 if m² = + 1 $m^2 = \neq \sqrt{1}$ m = (:: m > 0) $P(x \le 1) = P(x = 0) + P(x = 1)$ $=\frac{e^{-1} \cdot 1^{0}}{0!} + \frac{e^{-1} \cdot 1!}{1!} = \frac{1}{e} + \frac{1}{e} = \frac{2}{e}$ $\frac{2}{2.7182} = 0.7358$ **Question 3** What is the first quartile of x having the following probability of function? f (x) $\frac{1}{\sqrt{72x}} e^{-(x-10)^{\frac{2}{72}}}$ for - $\infty < x < \infty$ (a)4 (c) 5.95 Answer: c **Explanation:** Given: $f(x) \frac{1}{\sqrt{72x}} e^{-(x-10)^{\frac{2}{72}}}$ for $-\infty < x < \infty$

 $f(x) \frac{1}{\sqrt[6]{2x}} e^{-(x-10)^{\frac{2}{72}}}$ on company $f(x) \frac{1}{\sqrt[6]{2x}} e^{\frac{-(x-\mu)^2}{2(o')^2}}$ we get $0' = 6, \mu = 10$ First quartile $Q_1 = \mu - 0.6750^{\circ}$ $= 10-0.675 \times 6$ = 10-4.05

For more Info Visit - www.KITest.in

(b) 5 (d) 6.75

For Enquiry – 6262969604	6262969699
= 5.95	
Question 4	
An example of bi-parametric discre	ete probability distribution is
(a) Binomial distribution	(b) Poisson distribution
(c) Normal distribution	(d) Both a and b
Answer: d	
Explanation:	
Binomial distribution is an example o	f a bi- parametric discrete probability
distribution.	
Question 5 Drobability distribution may be	
Probability distribution may be	
(a) Discrete	(b) Continuous
(c) Infinite	(d) a or b
Answer: d	
Explanation:	
Probability distribution may be discre	ete or continuous.
Ouestion 6	
-	we between $z = 0$ to $z = 1$ is 0.3413, then
the value of ø (1) is.	
(a) 0.5000	(b) 0.8413
(c) -0.5000	(d) 1
Answer: b	
Explanation:	
The area of standard of normal curve	between $z = 0$ to $z = 1$ is 0.3413 then
$\emptyset(1) = 0.3413 + 0.5$	
0.8413	
NO	<u>V-2018</u>
Question 1	
For a poisson variate X, P(X = 2) = 3	3P (X = 4), then the standard deviation of
X is	
(a) 2	(b) 4
(c) $\sqrt{2}$	(d) 3
Answer: c	
	Visit way KlTost in

For more Info Visit - <u>www.KITest.in</u>

6262969699

Explanation: For Poisson Variate X, $\frac{e^{-m}m^2}{2} = \frac{3e^{-m}m^4}{2}$ $\frac{m^2}{2} = \frac{1}{2}$ $\frac{2}{3m^4} = \frac{3m^4}{4!}$ $6m^4 = 24 m^2$ $m^2 = \frac{24}{6}$ $m^2 = 4$ m =2 S.D. = $\sqrt{m} = \sqrt{2}$ **Question 2** The mean of the Binomial distribution B $\left(4,\frac{1}{3}\right)$ is equal to (a) $\frac{3}{5}$ (b) $\frac{8}{3}$ (d) $\frac{4}{3}$ (c) $\frac{3}{4}$ Answer: d **Explanation**: $X_4 B (n, P) = B \left(4, \frac{1}{3}\right)$ We get n = 4, P = $\frac{1}{3}$ Mean = np $=4 \times \frac{1}{2} = \frac{4}{2}$ **Question 3** If for a normal distribution $Q_1 = 54.52$ and $Q_3 = 78.86$, then the median of the distribution is (b) 12.17 (a) 12.17 (c) 66.369 (d) None **Answer: c Explanation**: $Q_1 = 54.52$ and $Q_3 = 78.86$ We know that $Q_1 = \mu - 0.675 = 54.52$ (1) $Q_3 = \mu - 0.675 = 78.86$ (2) On adding $2\mu = 133.38$

 $\mu = \frac{133.28}{2}$ $\mu = 66.69$ In normal distribution Mean, Median and mode are equal. So, Median = Mean = 66.369 **Question 4** What is the mean of X having the following density function? $F(X) = \frac{1}{\frac{4}{2x}} e^{\left(\frac{x-10}{32}\right)^{e}} \text{ for } -\infty < x < \infty$ (b) 4 (a) 10 (c) 40 (d) None Answer: a **Explanation:** Given Normal distribution $F(x) = \frac{1}{\sqrt[4]{2x}} e^{\left(\frac{x-10}{32}\right)^{e}}$ for -∞<x<∞ On comparing from $f(x) = \frac{1}{\sqrt[4]{2x}} e(\frac{x-10}{32})^e \text{ for } -\infty < x < \infty$ on comparing from $f(X) = \frac{1}{\frac{0}{2}} e^{\frac{\tilde{x}-\mu}{2(0')^2}}$ we get Mean $(\mu) = 10$ **Question 5** The probability that a student is not a Swimmer is $\frac{1}{5}$, then the probability that out of five student four are swimmer is $(a)\left(\frac{4}{5}\right)^4\left(\frac{1}{5}\right)$ (b) $5_{C_1} \left(\frac{1}{5}\right)^4 \left(\frac{4}{5}\right)^4$ (c) $5_{c_4} \left(\frac{4}{5}\right)^1 \left(\frac{1}{5}\right)^4$ (d) None Answer: c **Explanation**: Given: Probability that a student is not a swimmer $(q) = \frac{1}{5}$ Probability that a student is a swimmer (P) = $1 - q = 1 - \frac{1}{r} = \frac{4}{r}$ Total No. of student (n) = 5P (Exactly 4 student are swimmer) For more Info Visit - www.KITest.in

6262969699

= P (x=4) $5_{c_4} \left(\frac{4}{5}\right)^1 \left(\frac{1}{5}\right)^4 \{ \therefore P (x = n) = n_{c_{n,n}x_{-n}n-x} \}$		
$c_{4}(5)(5)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)$		
<u>MAY-2019</u>		
Question 1		
If mean and variance are 5 and 3 respectively then relation between p & q		
is		
(a) $p > q$ (b) $p < q$		
(c) p = q (d) p is symmetric Answer: b		
Explanation:		
If mean and variance are 5 and 3 respectively then relation between p & q is p <	- a	
in mean and variance are 5 and 5 respectively then relation between p & q is p <	·Y	
Question 2		
4 coins were tossed 1600 times. What is the probability that all 4 coins do		
not turn head upward at a time?		
(a) $1600e^{-100}$ (b) $1000e^{-100}$		
(c) $100e^{-1600}$ (d) e^{-100}		
Answer: d		
Probability of Head = $1/2$		
Probability of not head = $1 - 1/2 = 1/2$		
probability that all 4 coins do not turn head upward at a time = 1 - Probability that 4 coins turn head upward at a time		
$= 1 - {}^{4}C_{4}(1/2)^{4}(1/2)^{0}$		
= 1 - 0.4(1/2)(1/2) = 1 - 1/16		
= 15/16		
15/16 is the probability that all 4 coins do not turn head upward at a time		
1600 * 15/16 = 1500		
1500 times all 4 coins do not turn head upward at a time		
Question 3		
In a poisson distribution if $p(x = 4) = p(x = 5)$ then the parameter of		
poisson distribution is:		
(a) $\frac{4}{5}$ (b) $\frac{5}{4}$		
(c) 4 (d) 5		
Answer: (d)		
For more Info Visit - <u>www.KITest.in</u>		
16. 24		

6262969699

Explanation:	
In poisson distribution	
P(x = 4) = p(x = 5)	
$\frac{e^{-m}.m^4}{\dots} = \frac{e^{-m}.m^5}{\dots}$	
4! 5!	
$\frac{1}{4!} = \frac{m}{5!}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\frac{1}{24} = \frac{m}{120}$	
24 m = 120	
M = 5	
Question 4	
$\frac{\text{Question 4}}{\text{Area between - 1 06 to 1 in a normal}}$	distribution is
Area between = 1.96 to + in a normal	
(a) 95.45%	(b) 95%
(c) 96%	(d) 99%
Answer: (b)	
Explanation:	al distribution is OF0/
Area between – 1.96 to + 1.96 in a norm	al distribution is 95%
Ouestion 5	
If the points of inflexion of a normal of	urve are 40 and 60 respectively then
its mean deviation is:	arve are 40 and 00 respectively then
(a) 8	(b) 45
(c) 50	(d) 60
Answer: (a)	(4) 00
Explanation:	
If the point of inflexion of a normal Distr	ribution Are 40 and 60
Then	ibution Are 40 and 00.
$\mu - \sigma = 40$ (1)	
$\mu - \sigma = 60$ (1) $\mu - \sigma = 60$ (2)	
Solving eq. (1) and (2) we get	
$\mu = 50$	
Then M.O = $\frac{4}{5}$ S.D.	
$=\frac{4}{5} \times 10$	
$=\frac{5}{8}$	
	- 2019
Question 1	
For more into Vis	it - <u>www.KITest.in</u>

For Enquiry – 6262969604	6262969699
Area under U = 30'	
(a) 99.73%	(b) 99%
(c) 100%	(d) 99.37%
Answer: a	
Explanation:	
	ne values of a normal variable lies between (u
-30°) and (u + 30^{\circ}).	
Thus probability that a value of x lies $(100 - 99.73) = 0.27\%$	s. Outside the limit is as low as
Question 2	
For a Poisson distribution:	
(a) mean and SD are equal	(b) mean and variance are equal
(c) SD and Variance	(d) Both a and b
Answer: b	
Explanation: (b) Deisson distribution is theoretics	al discrete probability distribution which can
describe many processes	al discrete probability distribution which can
Mean is given by m i.e. $U = m$	
Variance is also given by m i.e. $o^2 = m$	n
So in pass on distribution mean and	
Question 3	
Find mode when n = 15 and p = $\frac{1}{4}$ i	n binomial distribution?
(a) 4	(b) 4 and 3
(c) 4.2	(d) 3.7
Answer: b	
Explanation:	
(b) In binomial distribution,	
m = (n + 1) p	
$m = (15 + 1) \times \frac{1}{4}$	
m = 4	
Since 4 is a integer so there will 2 m	odes
4 and (4 – 1)	
Mode = 4 and 3	
Question 4	

6262969699

In Poisson distribution, if P (x = 2)	$=\frac{1}{2}$ p (x = 3) find m?
(a) 3	(b) $\frac{1}{6}$
(c) 6	(b) $\frac{1}{6}$ (d) $\frac{1}{3}$
Answer: c	3
Explanation:	
(c) In Poisson distribution $P(x = x) =$	$\frac{e^{-m} \cdot m^2}{m}$
Here P (x = 2) = $\frac{1}{2}$ P(x = 3)	<i>x</i> !
-	
$\frac{e^{-m} \cdot m^2}{2!} = \frac{1}{2} \times \frac{e^{-m} \cdot m^3}{3!}$	
$\frac{e^{-m}.m^2}{1} = \frac{1}{2} \times \frac{e^{-m}.m^3}{1}$	
$m^{2!} 1 m^{3!}$	
$\frac{n}{2} = \frac{1}{2} \times \frac{n}{6}$	
2 2 1 2	
$m^2 = \frac{1}{12} = \frac{1}{6}m^3$	
$\frac{e^{-m} \cdot m^2}{2!} = \frac{1}{2} \times \frac{e^{-m} \cdot m^3}{3!}$ $\frac{m^2}{2} = \frac{1}{2} \times \frac{m^3}{6}$ $m^2 = \frac{2}{12} = \frac{1}{6}m^3$ $m^{-1}\frac{1}{6}$ $\frac{1}{m} = \frac{1}{6} = m = 6$	
$\frac{1}{m} = \frac{1}{c} = m = 6$	
m 6	
<u>Ouestion 5</u>	
In a binomial distribution B(n, p)	
$n = 4 P(x = 2) = 3 \times P(x = 3) find P$	
(a) $\frac{1}{2}$	(b) $\frac{2}{2}$
(a) $\frac{1}{3}$ (c) $\frac{6}{4}$	(b) $\frac{2}{3}$ (d) $\frac{4}{3}$
Answer: a	(a) ₃
Explanation:	
We know $P(x = 1) = {}^{n}C_{r}(p)^{r}(q)^{n-r}$	
Here $n(y - 2) - 2 P(y - 2)$	
$4_{c_2}(p)^2(q)^{4-2} = 3 \times {}^4c_3(p)^3(q)^1$	
$\frac{4!}{(4-2)1\times 2!}(p)^{2}(q)^{4-2} = 3 \times {}^{4}c_{3}(p)^{3}(q)^{1}(q)^{4}(q)^{2}(1-p^{2})^{2} = 3 \times \frac{4!}{(4-3)1\times 3!} \times \frac{4!}$	$(p)^3 (1 - p)$
Since ${}^{n}C_{r} = \frac{n!}{(n-r)!1 \times r!}$ $6 \times (1 - p) = 3 \times 4 p$	
$(n-r)!1 \times r!$ 6 × (1 – n) = 3 × 4 n	
6 - 6p = 12 p	

6262969699

18 p = 6 $P = \frac{1}{3}$ $q=1-\frac{1}{3}=\frac{2}{3}$ What is the SD and mean X if f(x) = $\frac{\sqrt{2}}{\sqrt{\pi}} \cdot e^{\frac{x-\mu}{20/2}}$ (1) Here, $\sqrt{\frac{2}{\pi}} \cdot e^{-2}(x-3)^2$ $=\sqrt{\frac{2}{\Pi}} \cdot e - \left(\frac{1-3}{\frac{1}{2}}\right)^2$ On comparing with equation ------(1) $2 0^2 = \frac{1}{2} u = 3$ $0^2 = \frac{1}{2}$ $0 = \frac{1}{2}$ So SD = $\frac{1}{2}$, mean = 3 **Question 6** Which is the SD and mean x if (x) = $\frac{\sqrt{2}}{\sqrt{\pi}} e^{-2(x-3)^2}$, - $\infty < x < \infty$ (a) $3^{\frac{1}{2}}$ (b) $3,\frac{1}{4}$ (c) $2^{\frac{1}{2}}$ (d) $2,\frac{1}{2}$ Answer: a **Explanation:** The standard from of probability density function is $F(x) = \frac{1}{\sqrt{2\pi}}$ ------ (1) Here, $\sqrt{\frac{2}{\pi}} e^{-2(x-3)^2}$ $=\sqrt{\frac{2}{\pi}}e^{\left(\frac{13}{1/2}\right)^2}$ On comparing with equation ------(1) $2\sigma^2 = \frac{1}{2}u = 3$ $\sigma^2 = \frac{1}{2}$

For more Info Visit - www.KITest.in

$\sigma = \frac{1}{2}$	
2	
So SD = $\frac{1}{2}$, mean = 3	

DEC - 2020

<u>Question1</u> Which of the following is uni-parametric distribution?

(a) Normal(c) Binomial

(b) Poisson(d) Hyper geometric

Answer: b

Explanation: Poisson distribution is uniparametric distribution. the parameter is m which is mean=np

Question2

If the probability of success in a binomial distribution is less than one – half, then the binomial distribution _____

(a) Is skewed to left

(b) Is skewed to right

(c) Has two modes

(d) Has median at a point > mean

$+ \frac{1}{2}$

Answer: b Explanation: Is skewed to right

Question3If we change the parameter(s) of a _____ distribution the Sharpe ofprobability curve does not change.(a) Binomial(b) Normal(c) Poisson(d) Non – GaussianAnswer: bExplanation:

If we change the parameter(s) of abnormal distribution the Sharpe of probability curve does not change.

Question4

Which one of the following has Poisson distribution?

(a) The number of days to get a Complete cure(b) The number of defects per meter on Long roll Of coated

For Enquiry – 6262969604	6262969699		
	Polythene sheet.		
 (c) The errors obtained in repeated Measuring of The Length of a rod. Answer: b 	(d) The number of claims rejected By an Insurance agency.		
Explanation: The number of defects per meter or	n long roll of coated polythene sheet.		
	e X, we have P(X = 7) = 8. P (X = 9), the		
mean of the distribution is (a) 4	(b) 3		
(a) 4 (c) 7	(d) 9		
Answer: b			
Explanation:			
$P(X = n) = \frac{\lambda^7 e^{-\lambda}}{7!} = \frac{8 \cdot \lambda^9 e^{-\lambda}}{9!} \frac{9!}{7! \times 8!}$	λ^2		
$\lambda = 3$			
Question6 The quartile deviation of a norma	al distribution with mean 10 and standard		
deviation 4 is			
(a) 54.24	(b) 23.20		
(c) 0.275	(d) 2.70		
Answer: d			
Explanation:	iation is related to standard deviation as		
Q.D. = 0.675σ	action is related to standard deviation as		
$Q.D. = 0.675 \times 4$			
Q.D. = 2.70			
Therefore, quartile deviation is 2.70).		
Quastian7			
Question7 If the parameter of poison distrib	oution is m and (mean + S.D.= 25 6 then		
find m.	auton is in and finean + 5.0 25 0 then		
(a) $\frac{3}{25}$	(b) $\frac{1}{2}$		
$(a)^{4}$	(b) $\frac{1}{25}$ (d) $\frac{3}{5}$		
(c) $\frac{\frac{4}{25}}{25}$	$\left(u \right) \frac{1}{5}$		
Answer: b			
For more info	b Visit - <u>www.KITest.in</u> 16. 30		

Let, Mean of the Poisson distribute $=\mu$

Explanation:

For a Poisson distribution, Standard Deviation (SD)= $\sqrt{\text{mean}}$ \Rightarrow SD= $\sqrt{\mu}$ Mean+SD= $\frac{6}{25}$ (Given) $\mu + \sqrt{\mu} = \frac{6}{25}$ $\Rightarrow \sqrt{\mu} = \frac{6}{25} - \mu$ On squaring both sides, $(\sqrt{\mu})^{2} \left(\frac{6}{25} - \mu\right)^{2}$ $\mu = \mu^{2} - \frac{12}{25}\mu + \frac{36}{625}$ $\Rightarrow 0 = \mu^{2} - \frac{37}{25}\mu + \frac{36}{625}$ $\Rightarrow 0 = \left(\mu - \frac{1}{25}\right) \left(\mu - \frac{36}{25}\right)$ $\Rightarrow \mu = \frac{1}{25}, \frac{36}{25}$ Maximum likelihood estimate of a sample from Poisson Distribution is the sample mean which is equal to parameter of Poisson's Distribution. $\Rightarrow \mu = m = \frac{1}{25}$: The correct option is B $\frac{1}{2\pi}$ **JAN - 2021 Ouestion1** If X is a poisson variable, and P (X = 1 = P(X = 2), then P(X = 4) is (a) $\frac{2}{2}e^{2}$ (c) $\frac{3}{2}e^{2}$ Answer: a **Explanation**: $P(x;\mu) = \frac{e^{-u}\mu^x}{x!}$ P(X = 1) = P(X = 2) $e^{-u}\mu^1$ $e^{-u}\mu^2$

For more Info Visit - www.KITest.in

(b) $\frac{2}{3}e^{4}$ (d) $\frac{3}{2}e^{4}$

 $\mu = 2$

P(X = 4) =	$e^{-u}\mu^x$	$-\frac{2}{2}$
$\Gamma(X - 4) -$	4!	$-\frac{1}{3}e$

Ouestion2

Which one of the following is an uniparametric distribution?

(a) Poisson

(c) Binomial

(b) Normal

(d) Hyper geometric

Answer: a **Explanation:**

Poisson distribution is uniparametric distribution. The parameter is m which is mean=np. Bcz it has λ as a parameter.

Ouestion3

For a normal distribution, the value of third moment about mean is

(a	l)	0	

C >	0
I C) /
(-)	

Answer: a

Explanation:

 $E[(X-\mu)3]=0$ since $X-\mu$ is normally distributed with mean zero, then expand out the cube. If the distribution of a random variable X is symmetric about 0, meaning Pr(X>x)=Pr(X<-x) for every x>0, then its third moment, if it exists at all, must be 0, as must all of its odd-numbered moments.

(b) 1 (d) 3

Ouestion4

A coin with probability for head as $\frac{1}{r}$ is tossed 100 times. The standard deviation of the number of head 5 turned up is.

(a) 3 (b	o) 2
(c) 4 (c	l) 6
Answer: a	
Explanation:	
Here n = 100	
Probability of success (p) = $\frac{1}{5}$	
Probability of failure (q) = 1-p	
$=1-\frac{1}{5}$	
$=\frac{1}{2}$	
6 D 4	
S.D. = \sqrt{npq}	

6262969699

$=\frac{2}{3}$ S.D. = \sqrt{npq} = $\sqrt{90 \times \frac{1}{3} \times \frac{2}{3}}$ = $\sqrt{20}$ S.D. = $2\sqrt{5}$		
Question 3 For a certain type of mobiles, the length of time between charges of the battery is normally distributed with a mean of 50 hours and a standard deviation of 15 hours. A person owns one of these mobiles and want to know the probability the Length of time will be between 50 and 70 hours is (Given \oplus (1.33) = 0.9082, \oplus (0) = 0.5)		
(a) -0.4082	(b) 0.5	
(c) 0.4082l	(d) -0.5	
Answer: Options (c)		
Explanation:		
Given,		
μ=50 (mean)		
σ =15 (standard/deviation)		
find the probability for 50 <x<70< td=""><td></td></x<70<>		
Converting the problem in standard form $Z = \frac{(x-\mu)}{2}$	n	
for $x=50$,		
Z=0		
For x=70,		
Z= (70-50)/15=1.33		
For finding the probability for 50 <x<70< td=""><td></td></x<70<>		
In the standard form 0 <z<1.33< td=""><td></td></z<1.33<>		
using Z-table, the area is equal to 0.4082		
Question 4		
In normal distribution mean, media and mode are:		
(a) Zero	(b) Not equal	
(c) Equal	(d) Null	
Answer: Option (c)		
Explanation:		

For Enquiry – 6262969604	6262969699	
In normal Distribution, Mean, Median and mode are equal.		
Question 5 Which of the following diagram various heads in total cost? (a) Pie chart	m is the most appropriate to represents (b) Bar graph	
(c) Multiple line chart	(d) Scatter plot	
Answer: Option (c) Explanation: Pie chart is the most appropriate to represents various heads in total cost		
Pie chart is the most appropriate to represents various heads in total cost.		