Chapter 15
 Statistics

Exercise 15.1

Question 1

Find the mean deviation about the mean for the data in Exercises 1 and 2. 1. 4, 7, 8, 9, 10, 12, 13, 17

Solution:

First we have to find ($\overline{\mathrm{x}}$) of the given data
$\overline{\mathrm{x}}=\frac{1}{8} \sum_{\mathrm{i}=1}^{8} \mathrm{x}_{\mathrm{i}}=\frac{80}{8}=10$
So, the respective values of the deviations from mean, i.e., $x_{i}-\bar{x}$ are, $10-4=6,10-7=3,10-8=2,10-9=1$, $10-10=0,10-12=-2,10-13=-3,10-17=-7$ $6,3,2,1,0,-2,-3,-7$
Now absolute values of the deviations,
$6,3,2,1,0,2,3,7$
$\therefore \sum_{\mathrm{i}}^{8}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=24$
$\mathrm{MD}=$ sum of deviations/ number of observations
$=24 / 8$
$=3$
So, the mean deviation for the given data is 3 .

Question 2

$38,70,48,40,42,55,63,46,54,44$

Solution:

First we have to find ($\overline{\mathrm{x}}$) of the given data
$\overline{\mathrm{x}}=\frac{1}{10} \sum_{\mathrm{i}=1}^{10} \mathrm{x}_{\mathrm{i}}=\frac{500}{10}=50$
So, the respective values of the deviations from mean,
i.e., $x i-x$ are, $50^{-}-38=-12,50-70=-20,50-48=2,50-40=10,50-42=8$,
$50-55=-5,50-63=-13,50-46=4,50-54=-4,50-44=6$
$-12,20,-2,-10,-8,5,13,-4,4,-6$
Now absolute values of the deviations,
$12,20,2,10,8,5,13,4,4,6$
$\therefore \sum_{\mathrm{i}=1}^{10}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=84$
$\mathrm{MD}=$ sum of deviations/ number of observations
$=84 / 10$
$=8.4$
So, the mean deviation for the given data is 8.4.

Question 3

Find the mean deviation about the median for the data in Exercises 3 and 4.
$3.13,17,16,14,11,13,10,16,11,18,12,17$

Solution:

First we have to arrange the given observations into ascending order,
$10,11,11,12,13,13,14,16,16,17,17,18$.
The number of observations is 12
Then,
Median $=\left((12 / 2)^{\text {th }}\right.$ observation $+((12 / 2)+1)^{\text {th }}$ observation $) / 2$
$(12 / 2)^{\text {th }}$ observation $=6^{\text {th }}=13$
$(12 / 2)+1)^{\text {th }}$ observation $=6+1$
$=7^{\text {th }}=14$
Median $=(13+14) / 2$
$=27 / 2$
$=13.5$
So, the absolute values of the respective deviations from the median, i.e., $\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|$ are $3.5,2.5,2.5,1.5$, $0.5,0.5,0.5,2.5,2.5,3.5,3.5,4.5$
$\therefore \sum_{\mathrm{i}=1}^{12}\left|\mathrm{X}_{\mathrm{i}}-\mathrm{M}\right|=28$
Mean Division,
M.D. $(M)=\frac{1}{12} \sum_{i=1}^{12}\left|X_{i}-M\right|$

$$
\begin{aligned}
& =(1 / 12) \times 28 \\
& =2.33
\end{aligned}
$$

So, the mean deviation about the median for the given data is 2.33 .

Question 4

$36,72,46,42,60,45,53,46,51,49$

Solution:

First we have to arrange the given observations into ascending order, $36,42,45,46,46,49,51,53,60,72$.
The number of observations is 10
Then,
Median $=\left((10 / 2)^{\text {th }}\right.$ observation $+((10 / 2)+1)^{\text {th }}$ observation $) / 2$
$(10 / 2)^{\text {th }}$ observation $=5^{\text {th }}=46$
$(10 / 2)+1)^{\text {th }}$ observation $=5+1$
$=6$ th $=49$
Median $=(46+49) / 2$
$=95$
$=47.5$
So, the absolute values of the respective deviations from the median, i.e., |xi - M| are 11.5, 5.5, 2.5, 1.5, 1.5, 1.5, 3.5, 5.5, 12.5, 24.5
$\therefore \sum_{\mathrm{i}=1}^{10}\left|\mathrm{X}_{\mathrm{i}}-\mathrm{M}\right|=70$
Mean Deviation,
M.D. $(\mathrm{M})=\therefore \frac{1}{10} \sum_{\mathrm{i}=1}^{10}\left|\mathrm{X}_{\mathrm{i}}-\mathrm{M}\right|$

$$
\begin{aligned}
& =(1 / 10) \times 70 \\
& =7
\end{aligned}
$$

So, the mean deviation about the median for the given data is 7 .

Question 5

Find the mean deviation about the mean for the data in Exercises 5 and 6.

$\mathbf{x}_{\mathbf{i}}$	5	10	15	20	25
$\mathbf{f}_{\mathbf{i}}$	7	4	6	3	5

Solution:

Let us make the table of the given data and append other columns after calculations.

$\mathbf{X}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$	$\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{f}_{\mathbf{i}}\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$
5	7	35	9	63
10	4	40	4	16
15	6	90	1	6
20	3	60	6	18
25	5	125	11	55
	25	350		150

The sum of calculated data,
$N=\sum_{i=1}^{5} f_{i}=25 \sum_{i=1}^{5} f_{i} x_{i}=350$
Now we have to find (\bar{x}) by using the formula
$\Rightarrow \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{25} \times 350=14$
The absolute values of the deviations from the mean, i.e., $\left|x_{i}-\bar{x}\right|$, as shown in the table.
From the table, $\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}\left|\mathrm{X}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=158$
Therefore M.D. $(\bar{x})=\frac{1}{N} \sum_{i=1}^{5} f_{i}\left|x_{i}-\bar{x}\right|$

$$
\begin{aligned}
& =(1 / 25) \times 158 \\
& =6.32
\end{aligned}
$$

So, the mean deviation about the mean for the given data is 6.32.

Question 6

\mathbf{x}_{i}	10	30	50	70	90
\mathbf{f}_{i}	4	24	28	16	8

Solution:

Let us make the table of the given data and append other columns after calculations.

$\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$	$\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{x}_{\mathbf{i}}\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$
10	4	40	40	160
30	24	720	20	480
50	28	1400	0	0
70	16	1120	20	320
90	8	720	40	320
	80	4000		1280

The sum of calculated data,
$N=\sum_{i=1}^{5} f_{i}=80 \sum_{i=1}^{5} f_{i} x_{i}=4000$
Now, we have to find (\bar{x}) by using the formula
$\Rightarrow \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{80} \times 4000=50$
The absolute values of the deviations from the mean, i.e, $\left|x_{i}-\bar{x}\right|$, as shown in the table From the table, $\sum_{i=1}^{5} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=1280$
Therefore M.D $(\overline{\mathrm{x}})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|$

$$
\begin{aligned}
& =(1 / 80) \times 1280 \\
& =16
\end{aligned}
$$

So, the mean deviation about the mean for the given data is 16 .

Question 7

Find the mean deviation about the median for the data in Exercises 7 and 8.

X_{i}	5	7	9	10	12	15
f_{i}	8	6	2	2	2	6

Solution:

Let us make the table of the given data and append other columns after calculations.

$\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}}$	c.f.	$\left\|\mathbf{x}_{\mathbf{i}}-\mathbf{M}\right\|$	$\mathbf{f}_{\mathbf{i}}\left\|\mathbf{x}_{\mathbf{i}}-\mathbf{M}\right\|$
5	8	8	2	16
7	6	14	0	0

9	2	16	2	4
10	2	18	3	6
12	2	20	5	10
15	6	26	8	48

Now, $\mathrm{N}=26$, which is even.
Median is the mean of the $13^{\text {th }}$ and $14^{\text {th }}$ observations. Both of these observations lie in the cumulative frequency 14, for which the corresponding observation is 7 .
Then,
Median $=\left(13^{\text {th }}\right.$ observation $+14^{\text {th }}$ observation $) / 2$
$=(7+7) / 2$
$=14 / 2$
$=7$
So, the absolute values of the respective deviations from the median, i.e., $\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|$ are shown in the table.
Therefore $\sum_{i=1}^{6} f_{i}=26$ and $\sum_{i=1}^{6} f_{i}\left|x_{i}-M\right|=84$
And M.D. $(M)=\frac{1}{N} \sum_{i=1}^{6} f_{i}\left|x_{i}-M\right|$

$$
\begin{aligned}
& =(1 / 26) \times 84 \\
& =3.23
\end{aligned}
$$

Hence, the mean deviation about the median for the given data is 3.23 .
Question 8

\mathbf{x}_{i}	15	21	27	30	35
\mathbf{f}_{i}	3	5	6	7	8

Solution:

$\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}}$	c.f.	$\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{x}_{\mathbf{i}}\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$
15	3	3	15	45
21	5	8	9	45
27	6	14	3	18
30	7	21	0	0
35	8	29	5	40

Now, $\mathrm{N}=29$, which is odd
So $29 / 2=14.5$
The cumulative frequency for greater than 14.5 is 21 , for which the corresponding observation is 30 .
Then,
Median $=\left(15^{\text {th }}\right.$ observation $+16^{\text {th }}$ observation $) / 2$
$=(30+30) / 2$
$=60 / 2$
$=30$
So, the absolute values of the respective deviations from the median, i.e., $\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|$ are shown in the table.

Therefore $\sum_{i=1}^{5} \mathrm{f}_{\mathrm{i}}=29$ and $\sum_{\mathrm{i}=1}^{5} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|=148$
And M.D. $(\mathrm{M})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|$

$$
\begin{aligned}
& =(1 / 29) \times 148 \\
& =5.1
\end{aligned}
$$

Hence, the mean deviation about the median for the given data is 5.1.

Question 9

Find the mean deviation about the mean for the data in Exercises 9 and 10.

Income per day in ₹	$0-100$	$100-200$	$200-300$	$300-400$	$400-500$	$500-600$	$600-700$	$700-800$
Number of person	4	8	9	10	7	5	4	3

Solution:

Let us make the table of the given data and append other columns after calculations.

Income per day in $₹$	Number of person $\mathbf{f}_{\mathbf{i}}$	Mid- point $\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i} \mathbf{x}_{\mathrm{i}}}$	$\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{f}_{\mathbf{i}}\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$
$0-100$	4	50	200	308	1232
$100-200$	8	150	1200	208	1664
$200-300$	9	250	2250	108	972
$300-400$	10	350	3500	8	80
$400-500$	7	450	3150	92	644
$500-600$	5	550	2750	192	960
$600-700$	4	650	2600	292	1160
$700-800$	3	750	2250	392	1176
	50		17900		7896

The sum of calculated data,
$N=\sum_{i=1}^{8} f_{i}=50, \sum_{i=1}^{8} f_{i} x_{i}=17900$
Now, we have to find (\bar{x}) by using the formula
$\Rightarrow \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{8} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{50} \times 17900=358$
The absolute values of the deviations from the mean, i.e, $\left|x_{i}-\bar{x}\right|$, as shown in the table
So, $\sum_{i=1}^{8} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=7896$
And M.D $(\overline{\mathrm{x}})=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{8} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|$

$$
\begin{aligned}
& =(1 / 50) \times 7896 \\
& =157.92
\end{aligned}
$$

Hence, the mean deviation about the mean for the given data is 157.92.

Question 10

Height in cms	$95-105$	$105-115$	$115-125$	$125-135$	$135-145$	$145-155$
Number of boys	9	13	26	30	12	10

Solution:

Let us make the table of the given data and append other columns after calculations.

Height in cms	Number of boy $\mathbf{f}_{\mathbf{i}}$	Mid- point $\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$	$\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$	$\mathbf{f}_{\mathbf{i}}\left\|\mathbf{x}_{\mathbf{i}}-\overline{\mathbf{x}}\right\|$
$95-105$	9	100	900	25.3	227.7
$105-115$	13	110	1430	15.3	198.9
$115-125$	26	120	3120	5.3	137.8
$125-135$	30	130	3900	4.7	141
$135-145$	12	140	1680	14.7	176.4
$145-155$	10	150	1500	24.7	247
	100		12530		1128.8

The sum of calculated data,
$\mathrm{N}=\sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}}=100, \sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=12530$
Now, we have to find ($\overline{\mathrm{x}}$) by using the formula
$\Rightarrow \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{\mathrm{i}=1}^{6} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{100} \times 12530=125.3$
The absolute values of the deviations from the mean, i.e, $\left|x_{i}-\bar{x}\right|$, as shown in the table
So, $\sum_{i=1}^{6} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=1128.8$
And M.D $(\bar{x})=\frac{1}{N} \sum_{i=1}^{6} f_{i}\left|x_{i}-\bar{x}\right|$

$$
\begin{aligned}
& =(1 / 100) \times 1128.8 \\
& =11.28
\end{aligned}
$$

Hence, the mean deviation about the mean for the given data is 11.28 .

Question 11

Find the mean deviation about median for the following data:

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Number of girls	6	8	14	16	4	2

Solution:
Let us make the table of the given data and append other columns after calculations.

Marks	Number of girls f_{i}	Cumulative frequency $(\mathbf{c} . \mathbf{f})$	Mid - point $\mathbf{x}_{\mathbf{i}}$	$\mid \mathbf{x}_{\mathbf{i}}-$ Med \mid	$\mathbf{f}_{\mathbf{i}} \mid \mathbf{x}_{\mathbf{i}}-$ Med \mid
$0-10$	6	6	5	22.85	137.1
$10-20$	8	14	15	12.85	102.8
$20-30$	14	28	25	2.85	39.9
$30-40$	16	44	35	7.15	114.4
$40-50$	4	48	45	17.15	68.6
$50-60$	2	50	55	27.15	54.3
	50				517.1

The class interval containing $\mathrm{N}^{\text {th }} / 2$ or $25^{\text {th }}$ item is $20-30$
So, 20-30 is the median class.
Then,
Median $=1+(((N / 2)-c) / f) \times h$
Where, $\mathrm{l}=20, \mathrm{c}=14, \mathrm{f}=14, \mathrm{~h}=10$ and $\mathrm{n}=50$
Median $=20+(((25-14)) / 14) \times 10$

$$
\begin{aligned}
& =20+7.85 \\
& =27.85
\end{aligned}
$$

The absolute values of the deviations from the median, i.e, $\left|x_{i}-M e d\right|$, as shown in the table So, $\sum_{i=1}^{6} \mathrm{f}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}-$ Med. $\mid=517.1$
And M.D. $(\bar{x})=\frac{1}{N} \sum_{i=1}^{6} f_{i}\left|x_{i}-M e d.\right|$

$$
\begin{aligned}
& =(1 / 50) \times 517.1 \\
& =10.34
\end{aligned}
$$

Hence, the mean deviation about the median for the given data is 10.34 .

Question 12

Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age (in years)	$16-20$	$21-25$	$26-30$	$31-35$	$36-40$	$41-45$	$46-50$	$51-55$
Number	5	6	12	14	26	12	16	9

[Hint Convert the given data into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval]

Solution:

The given data is converted into continuous frequency distribution by subtracting 0.5 from the lower limit and adding the 0.5 to the upper limit of each class intervals and append other columns after calculations

Age	Number \mathbf{f}_{i}	Cumulative frequency (c.f)	Mid - point \mathbf{x}_{i}	$\mid \mathbf{x}_{\mathrm{i}}-$ Med \mid	$\mathbf{f}_{\mathrm{i}} \mid \mathbf{x}_{\mathbf{i}}-$ Med \mid
$15.5-20.5$	5	5	18	20	100
$20.5-25.5$	6	11	23	15	90
$25.5-30.5$	12	23	28	10	120
$30.5-35.5$	14	37	33	5	70
$35.5-40.5$	26	63	38	0	0
$40.5-45.5$	12	75	43	5	60
$45.5-50.5$	16	91	48	10	160
$50.5-55.5$	9	100	53	15	135
	100				735

The class interval containing $\mathrm{N}^{\text {th }} / 2$ or $50^{\text {th }}$ item is $35.5-40.5$
So, $35.5-40.5$ is the median class.
Then,
Median $=1+(((\mathrm{N} / 2)-\mathrm{c}) / \mathrm{f}) \times \mathrm{h}$
Where, $\mathrm{l}=35.5, \mathrm{c}=37, \mathrm{f}=26, \mathrm{~h}=5$ and $\mathrm{N}=100$
Median $=35.5+(((50-37)) / 26) \times 5$

$$
\begin{aligned}
& =35.5+2.5 \\
& =38
\end{aligned}
$$

The absolute values of the deviations from the median, i.e, $\left|x_{i}-M e d\right|$, as shown in the table So, $\sum_{i=1}^{8} \mathrm{f}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}-$ Med. $\mid=735$
And M.D $\left.(M)=\frac{1}{N} \sum_{i=1}^{6} f_{i} \right\rvert\, x_{i}-M e d$. \mid

$$
\begin{aligned}
& =(1 / 00) \times 735 \\
& =7.35
\end{aligned}
$$

Hence, the mean deviation about the median for the given data is 7.35 .

Exercise 15.2

Question 1

Find the mean and variance for each of the data in Exercise 1 to 5.
$6,7,10,12,13,4,8,12$

Solution:

We have,
Mean $\bar{x}=\frac{\sum_{i=1}^{\mathrm{a}} \mathrm{x}_{\mathrm{i}}}{n}$
Where, $\mathrm{n}=$ number of observation
$\sum_{i=1}^{a} x_{i}=$ sum of total observation
So, $\bar{x}=(6+7+10+12+13+4+8+12) / 8$
$=72 / 8$
$=9$
Let us make the table of the given data and append other columns after calculations.
For more Info Visit - www.KITest.in

\mathbf{X}_{i}	Deviations from mean $\left(\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right)$	$\left(\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right)^{\mathbf{2}}$
6	$6-9=-3$	9
7	$7-9=-2$	4
10	$10-9=1$	1
12	$12-9=3$	9
13	$13-9=4$	16
4	$4-9=-5$	25
8	$8-9=-1$	1
12	$12-9=3$	9
		74

We know that Variance,
$\sigma^{2}=\frac{1}{n} \sum_{i}^{a}\left(x_{i}-\bar{x}\right)^{2}$
$\sigma^{2}=(1 / 8) \times 74$
$=9.2$
\therefore Mean $=9$ and Variance $=9.25$

Question 2

First n natural numbers

Solution:

We know that Mean = Sum of all observations/Number of observations
\therefore Mean, $\overline{\mathrm{x}}=((\mathrm{n}(\mathrm{n}+1)) 2) / \mathrm{n}$
$=(n+1) / 2$
and also WKT Variance,
$\sigma^{2}=\frac{1}{n} \sum_{\mathrm{i}}^{\mathrm{a}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
By substitute that value of \bar{x} we get,
$=\frac{1}{n} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\frac{\mathrm{n}+1}{2}\right)^{2}$
We know that $(a-b)^{2}=a^{2}-2 a b+b^{2}$
$=\frac{1}{n} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}\right)^{2}-\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} 2 \mathrm{x}_{\mathrm{i}}\left(\frac{\mathrm{n}+1}{2}\right)+\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\frac{\mathrm{n}+1}{2}\right)^{2}$
Substituting the summation values
$=\frac{1}{n} \frac{n(n+1)(2 n+1)}{6}-\frac{n+1}{n}\left[\frac{n(n+1)}{2}\right]+\frac{(n+1)^{2}}{4 n} \times n$
Multiplying and Computing
$=\frac{(n+1)(2 n+1)}{6}-\frac{(n+1)^{2}}{2}+\frac{(n+1)^{2}}{4}$
By taking LCM and simplifying, we get
$=\frac{(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}-\frac{(\mathrm{n}+1)^{2}}{4}$
By taking ($\mathrm{n}+1$) common from each term, we get
$=(n+1)\left[\frac{4 n+2-3 n-3}{12}\right]$
$=\frac{(\mathrm{n}+1)(\mathrm{n}-1)}{12}$
WKT $(a+b)(a-b)=a^{2}-b^{2}$
$\sigma^{2}=\left(n^{2}-1\right) / 12$
\therefore Mean $=(\mathrm{n}+1) / 2$ and Variance $=\left(\mathrm{n}^{2}-1\right) / 12$

Question 3

First 10 multiples of 3

Solution:

First we have to write the first 10 multiples of $3,3,6,9,12,15,18,21,24,27,30$ We have,
Mean $=\bar{x}=\frac{\sum_{i=1}^{a} x_{i}}{n}$
Where, $\mathrm{n}=$ number of observation
$\sum_{i=1}^{\mathrm{a}} \mathrm{x}_{\mathrm{i}}=$ sum of total observation
So, $\overline{\mathrm{x}}=(3+6+9+12+15+18+21+24+27+30) / 10$

$$
\begin{aligned}
& =165 / 10 \\
& =16.5
\end{aligned}
$$

Let us make the table of the data and append other columns after calculations.

\mathbf{X}_{i}	Deviation from mean $\left(\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right)$	$\left(\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right)^{2}$
3	$3-16.5=-13.5$	182.25
6	$6-16.5=-7.5$	110.25
9	$9-16.5=-7.5$	56.25
12	$12-16.5=-4.5$	20.25
15	$15-16.5=-1.5$	2.25
18	$18-16.5=1.5$	2.25
21	$21-16.5=4.5$	20.25
24	$24-16.5=7.5$	56.25
27	$27-16.5=10.5$	110.25
30	$30-16.5=13.5$	182.25
		742.5

Then, Variance

$$
\begin{aligned}
\sigma^{2} & =\frac{1}{\mathrm{n}} \sum_{\mathrm{i}}^{\mathrm{a}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2} \\
& =(1 / 10) \times 742.5 \\
& =74.25
\end{aligned}
$$

\therefore Mean $=16.5$ and Variance $=74.25$

Question 4

$\mathbf{x}_{\mathbf{i}}$	6	10	14	18	24	28	30
$\mathbf{f}_{\mathbf{i}}$	2	4	7	12	8	4	3

Solution:
Let us make the table of the given data and append other columns after calculations.

\mathbf{x}_{i}	\mathbf{f}_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	Deviation from mean $\left(\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right)$	$\left(\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right)^{\mathbf{2}}$	$\mathbf{f}_{\mathbf{i}}\left(\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right)^{\mathbf{2}}$
6	2	12	$6-9=13$	169	338
10	4	40	$10-19=-9$	81	324
14	7	98	$14-19=-5$	25	175
18	12	216	$18-19=-1$	1	12
24	8	192	$24-19=5$	25	200
28	4	112	$28-19=9$	81	324
30	3	90	$30-19=11$	121	363
	$\mathrm{~N}=40$	760			1736

Then Mean, $\bar{x}=\frac{\sum_{i=1}^{a} f_{i j} x_{i}}{N}$
Where $\mathrm{N}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}_{\mathrm{i}}$
$\overline{\mathrm{x}}=760 / 70$
$=19$
Now, Variance, $\sigma^{2}=\frac{1}{N} \sum_{i}^{a} f_{i}\left(x_{i}-\bar{x}\right)^{2}$
$=(1 / 40) \times 1736$
$=43.4$
\therefore Mean $=19$ and Variance $=43.4$

Question 5

$\mathbf{x}_{\mathbf{i}}$	92	93	97	98	102	104	109
$\mathbf{f}_{\mathbf{i}}$	3	2	3	2	6	3	3

Solution:

\mathbf{x}_{i}	\mathbf{f}_{i}	$\mathbf{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	Deviation from mean $\left(\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right)$	$\left(\mathbf{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{\mathbf{2}}$	$\mathbf{f}_{\mathrm{i}}\left(\mathbf{x}_{\mathrm{i}}-\overline{\mathbf{x}}\right)^{\mathbf{2}}$
92	3	276	$92-100=-8$	64	
93	2	186	$93-100=-7$	49	192
97	3	291	$97-100=-3$	9	98
98	2	196	$98-100=-2$	4	27

For more Info Visit - www.KITest.in

102	6	612	$102-100=2$	4	24
104	3	312	$104-100=4$	16	48
109	3	327	$109-100=9$	81	243
	$\mathrm{~N}=22$	2200			640

Then Mean, $\overline{\mathrm{x}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{a}} \mathrm{f}_{\mathrm{i}} x_{\mathrm{i}}}{\mathrm{N}}$
Where $\mathrm{N}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}_{\mathrm{i}}$
$\overline{\mathrm{x}}=2200 / 22$
$=100$
Now, Variance, $\sigma^{2}=\frac{1}{N} \sum_{\mathrm{i}}^{\mathrm{a}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
$=(1 / 22) \times 640$
$=29.09$
\therefore Mean $=100$ and Variance $=29.09$

Question 6

Find the mean and standard deviation using short-cut method.

\mathbf{x}_{i}	60	61	62	63	64	65	66	67	68
\mathbf{f}_{i}	2	1	12	29	25	12	10	4	5

Solution:

Let the assumed mean $A=64$. Here $h=1$
We obtain the following table from the given data.

$\mathbf{x}_{\mathbf{i}}$	Frequency $\mathbf{f}_{\mathbf{i}}$	$\mathbf{Y}_{\mathbf{i}}=\left(\mathbf{x}_{\mathbf{i}}-\mathbf{A}\right) / \mathbf{h}$	$\mathbf{Y}_{\mathbf{i}}{ }^{2}$	$\mathbf{f}_{\mathbf{i} \mathbf{y}_{\mathbf{i}}}$	$\mathbf{f}_{\mathbf{i} \mathbf{y}_{\mathbf{i}}}$
60	2	-4	16	-8	38
61	1	-3	9	-3	9
62	12	-2	4	-24	48
63	29	-1	1	-29	29
64	25	0	0	0	0
65	12	1	1	12	12
66	10	2	4	20	40
67	4	3	9	12	39
68	5	4	16	20	80
				0	286

Mean,
$\bar{x}=A+\frac{\sum_{i=1}^{a} f_{i} y_{i}}{N} \times h$
Where $A=64, h=1$
So, $\overline{\mathrm{x}}=64+((0 / 100) \times 1)$
$=64+0$
$=64$
For more Info Visit - www.KITest.in
15. 13

Then, variance,
$\sigma^{2}=\frac{h^{2}}{N^{2}}\left[N \sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}-\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{2}\right]$
$\sigma^{2}=\left(1^{2} / 100^{2}\right)\left[100(286)-0^{2}\right]$
$=(1 / 10000)[28600-0]$
$=2.86$
Hence, standard deviation $=\sigma=\sqrt{ } 2.886$

$$
\text { = } 1.691
$$

\therefore Mean $=64$ and Standard Deviation $=1.691$

Question 7

Find the mean and variance for the following frequency distributions in Exercises 7 and 8.

Classes	$0-30$	$30-60$	$60-90$	$90-120$	$120-150$	$150-180$	$180-210$
Frequencies	2	3	5	10	3	5	2

Solution:
Let us make the table of the given data and append other columns after calculations.

Classes	Frequency $\mathbf{f}_{\mathbf{i}}$	Mid - point \mathbf{x}_{i}	$\mathbf{f}_{\mathrm{i} \mathrm{x}_{\mathrm{i}}}$	$\left(\mathbf{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)$	$\left(\mathbf{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{\mathbf{2}}$	$\mathbf{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{\mathbf{2}}$
$0-30$	2	15	30	-92	8464	16928
$30-60$	3	45	135	-62	3844	11532
$60-90$	5	75	375	-32	1024	5120
$90-120$	10	105	1050	-2	4	40
$120-150$	3	135	405	28	784	2352
$150-180$	5	165	825	58	3364	16820
$180-210$	2	195	390	88	7744	15488
	$\mathrm{~N}=30$		3210			68280

Then Mean, $\overline{\mathrm{x}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{a}} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\mathrm{N}}$
Where $\mathrm{N}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}_{\mathrm{i}}$
$\overline{\mathrm{x}}=3210 / 30$
= 107
Now, Variance, $\sigma^{2}=\frac{1}{N} \sum_{\mathrm{i}}^{\mathrm{a}} \mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
$=(1 / 30) \times 68280$
$=2276$
\therefore Mean $=107$ and Variance $=2276$
Question 8

Classes	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequencies	5	8	15	16	6

Solution:
Let us make the table of the given data and append other columns after calculations.

Classes	Frequency $\mathbf{f}_{\mathbf{i}}$	Mid - point \mathbf{x}_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\left(\mathbf{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)$	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{\mathbf{2}}$	$\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{\mathbf{2}}$
$0-10$	5	5	25	-22	484	2420
$10-20$	8	15	120	-12	144	1152
$20-30$	15	25	375	-2	4	60
$30-40$	16	35	560	8	64	1024
$40-50$	6	45	270	18	324	1944
	$\mathrm{~N}=50$		1350			6600

Then Mean, $\overline{\mathrm{x}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{a}} \mathrm{f}_{\mathrm{i}} x_{\mathrm{i}}}{\mathrm{N}}$
Where $\mathrm{N}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}_{\mathrm{i}}$
$\overline{\mathrm{x}}=1350 / 50$
$=27$
Now, Variance, $\sigma^{2}=\frac{1}{N} \sum_{\mathrm{i}}^{\mathrm{a}} \mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$

$$
\begin{aligned}
& =(1 / 50) \times 6600 \\
& =132
\end{aligned}
$$

\therefore Mean $=27$ and Variance $=132$

Question 9

Find the mean, variance and standard deviation using short-cut method

Height in cms	$70-75$	$75-80$	$80-85$	$85-90$	$90-95$	$95-100$	$100-$ 105	$150-$ 110	$110-$ 115
Frequencies	3	4	7	7	15	9	6	6	3

Solution:
Let the assumed mean, $\mathrm{A}=92.5$ and $\mathrm{h}=5$
Let us make the table of the given data and append other columns after calculations.

Height (class)	Number of children Frequency $\mathbf{f}_{\mathbf{i}}$	Midpoint $\mathbf{X}_{\mathbf{i}}$	$\mathbf{Y}_{\mathbf{i}}=\left(\mathbf{x}_{\mathbf{i}}-\right.$ $\mathbf{A}) / \mathbf{h}$	$\mathbf{Y}_{\mathbf{i}}{ }^{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{i}}{ }^{\mathbf{2}}$	$\mathbf{f}_{\mathbf{i} \mathbf{i}^{2}{ }^{2}}$
$70-75$	2	72.5	-4	16	-12	48
$75-80$	1	77.5	-3	9	-12	36
$80-85$	12	82.5	-2	4	-14	28
$85-90$	29	87.5	-1	1	-7	7
$90-95$	25	92.5	0	0	0	0
$95-100$	12	97.5	1	1	9	9
$100-105$	10	102.5	2	4	12	24

For more Info Visit - www.KITest.in

$105-110$	4	107.5	3	9	18	54
$110-115$	5	112.5	4	6	12	48
	$\mathrm{~N}=60$				6	254

, $\bar{x}=A+\frac{\sum_{i=1}^{a} f_{i} y_{i}}{N} \times h$
Where, $\mathrm{A}=92.5, \mathrm{~h}=5$
So, $\bar{x}=92.5+((6 / 60) \times 5)$

$$
\begin{aligned}
& =92.5+1 / 2 \\
& =92.5+0.5 \\
& =93
\end{aligned}
$$

Then, Variance,
$\sigma^{2}=\frac{\mathrm{h}^{2}}{\mathrm{~N}^{2}}\left[\mathrm{~N} \sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}-\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}\right]\right.$
$\sigma 2=\left(5^{2} / 60^{2}\right)\left[60(254)-6^{2}\right]$
$=(1 / 144)$ [15240-36]
= 15204/144
= $1267 / 12$
= 105.583
Hence, standard deviation $=\sigma=\sqrt{ } 105.583$
$=10.275$
\therefore Mean $=93$, variance $=105.583$ and Standard Deviation $=10.275$

Question 10

The diameters of circles (in mm) drawn in a design are given below:

Diameters	$33-36$	$37-40$	$41-44$	$45-48$	$49-52$
No. of circles	15	17	21	22	25

Calculate the standard deviation and mean diameter of the circles.
[Hint first make the data continuous by making the classes as 32.5-36.5, 36.5-40.5, 40.5-44.5, 44.5-48.5, 48.5-52.5 and then proceed.]

Solution:

Let the assumed mean, $\mathrm{A}=42.5$ and $\mathrm{h}=4$
Let us make the table of the given data and append other columns after calculations.

Height (class)	Number of children (Frequency $\mathbf{f i}_{\mathrm{i}}$	Midpoint $\mathbf{X}_{\mathbf{i}}$	$\mathbf{Y}_{\mathbf{i}}=\left(\mathbf{x}_{\mathbf{i}}-\right.$ $\mathbf{A}) / \mathbf{h}$	$\mathbf{Y}_{\mathbf{i}}{ }^{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{i}}{ }^{\mathbf{2}}$	$\mathbf{f i y}_{\mathbf{i}}{ }^{2}$
$32.5-36.5$	15	34.5	-2	4	-30	60
$36.5-40.5$	17	48.5	-1	1	-17	17
$40.5-44.5$	21	42.5	-0	0	0	0
$44.5-48.5$	22	46.5	1	1	22	22
$48.5-52.5$	25	50.5	2	4	50	100

For more Info Visit - www.KITest.in

	$\mathrm{N}=100$				25	199

Mean,

$$
\bar{x}=A+\frac{\sum_{i=1}^{a} f_{i} y_{i}}{N} \times h
$$

Where, $\mathrm{A}=42.5, \mathrm{~h}=4$
So, $\bar{x}=42.5+(25 / 100) \times 4$

$$
\begin{aligned}
& =42.5+1 \\
& =43.5
\end{aligned}
$$

Then, Variance,
$\sigma^{2}=\frac{h^{2}}{N^{2}}\left[\mathrm{~N} \sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}-\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}\right]\right.$
$\sigma 2=\left(4^{2} / 100^{2}\right)\left[100(199)-25^{2}\right]$
$=(1 / 625)$ [19900-625]
$=19275 / 625$
$=771 / 25$
$=30.84$
Hence, standard deviation $=\sigma=\sqrt{30.84}$

$$
=5.553
$$

\therefore Mean $=43.5$, variance $=30.84$ and Standard Deviation $=5.553$.

Exercise 15.3

Question 1

From the data given below state which group is more variable, A or B?

Marks	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Group A	9	17	32	33	40	10	9
Group B	10	20	30	25	43	15	7

Solution:-

For comparing the variability or dispersion of two series, we calculate the coefficient of variance for each series. The series having greater C.V. is said to be more variable than the other.
The series having lesser C.V. is said to be more consistent than the other.
Co-efficient of variation (C.V.) $=(\sigma / \bar{x}) \times 100$
Where, $\sigma=$ standard deviation, $\bar{x}=$ mean
For Group A

Marks	Group A \mathbf{f}_{i}	Midpoint $\mathbf{X}_{\mathbf{i}}$	$\mathbf{Y}_{\mathrm{i}}=\left(\mathbf{x}_{\mathrm{i}}-\mathbf{A}\right) / \mathbf{h}$	$\mathbf{Y}_{\mathbf{i}}{ }^{2}$	$\mathbf{Y}^{2}{ }^{2}$	$\mathbf{f}_{\mathrm{i}} \mathrm{y}^{\mathbf{2}}$
$10-20$	9	15	$((15-$ $45) / 10=-3$	$(-3)^{2}=9$	-27	81
$20-30$	17	25	$((25-$ $45) / 10))=-2$	$(-2)^{2}=4$	-34	68
$30-40$	32	35	$((35-$ $45) / 10))=-1$	$(1)^{2}=1$	-32	32

$40-50$	33	45	$((45-$ $45) / 10))=0$	$0^{2}=$	0	0
$50-60$	40	55	$((55-$ $45) / 10))=1$	$1^{2}=1$	40	40
$60-70$	10	65	$((65-$ $45) / 10))=2$	$2^{2}=4$	20	40
$70-80$	9	75	$((75-$ $45) / 10))=3$	$3^{2}=9$	27	81
Total	150				-6	342

Mean, $\overline{\mathrm{x}}=\mathrm{A}+\frac{\sum_{\mathrm{i}=1}^{\mathrm{a}} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{N}} \times \mathrm{h}$
Where $A=45$,
And $\mathrm{y}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-\mathrm{A}\right) / \mathrm{h}$
Here $\mathrm{h}=$ class size $=20-10$
$\mathrm{h}=10$
So, $\bar{x}=45+((-6 / 150) \times 10)$

$$
\begin{aligned}
& =45-0.4 \\
& =44.6
\end{aligned}
$$

Then, Variance,
$\sigma^{2}=\frac{\mathrm{h}^{2}}{\mathrm{~N}^{2}}\left[\mathrm{~N} \sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}-\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}\right]\right.$
$\sigma 2=\left(10^{2} / 150^{2}\right)\left[150(342)-(-6)^{2}\right]$
$=(100 / 22500)[51,300-36]$
$=(100 / 22500) \times 51264$
$=227.84$
Hence, standard deviation $=\sigma=\sqrt{ } 227.84$ $=15.09$
$\therefore C . V$ for group $A=(\sigma / \bar{x}) \times 100$

$$
\begin{aligned}
& =(15.09 / 44.6) \times 100 \\
& =33.83
\end{aligned}
$$

Now, for group B.

Marks	$\begin{gathered} \text { Group B } \\ f_{i} \\ \hline \end{gathered}$	$\begin{gathered} \text { Midpoint } \\ \mathrm{X}_{\mathrm{i}} \\ \hline \end{gathered}$	$\mathrm{Y}_{\mathrm{i}}=\left(\mathrm{X}_{\mathrm{i}}-\mathrm{A}\right) / \mathrm{h}$	$\mathbf{Y i}^{2}$	$Y_{i}{ }^{2}$	fiyy^{2}
10-20	10	15	((15- 45) $/ 10=-3$	$(-3)^{2}=9$	-30	90
20-30	20	25	$\begin{gathered} ((25- \\ 45) / 10))=-2 \end{gathered}$	$(-2)^{2}=4$	-40	80
30-40	30	35	$\begin{gathered} ((35- \\ 45) / 10))=-1 \end{gathered}$	$(1)^{2}=1$	-30	30
40-50	25	45	$\begin{gathered} ((45- \\ 45) / 10))=0 \end{gathered}$	$0^{2}=$	0	0
50-60	43	55	$\begin{gathered} ((55- \\ 45) / 10))=1 \\ \hline \end{gathered}$	$1^{2}=1$	43	43
60-70	15	65	$\begin{gathered} ((65- \\ 45) / 10))=2 \\ \hline \end{gathered}$	$2^{2}=4$	30	60

For more Info Visit - www.KITest.in
15. 18

$70-80$	7	75	$((75-$ $45) / 10))=3$	$3^{2}=9$	21	63
Total	150				-6	366

Mean, $\overline{\mathrm{x}}=\mathrm{A}+\frac{\sum_{i=1}^{\mathrm{a}} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\mathrm{N}} \times \mathrm{h}$
Where $A=45$,
$\mathrm{h}=10$
So, $\overline{\mathrm{x}}=45+((-6 / 150) \times 10)$

$$
\begin{aligned}
& =45-0.4 \\
& =44.6
\end{aligned}
$$

Then, Variance,
$\sigma^{2}=\frac{\mathrm{h}^{2}}{\mathrm{~N}^{2}}\left[\mathrm{~N} \sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}-\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}\right]\right.$
$\sigma 2=\left(10^{2} / 150^{2}\right)\left[150(366)-(-6)^{2}\right]$
$=(100 / 22500)[54,900-36]$
$=(100 / 22500) \times 54,864$
$=243.84$
Hence, standard deviation $=\sigma=\sqrt{2} 43.84$

$$
=15.61
$$

\therefore C.V for group $A=(\sigma / \overline{\mathrm{x}}) \times 100$

$$
\begin{aligned}
& =(15.61 / 44.6) \times 100 \\
& =35
\end{aligned}
$$

By comparing C.V. of group A and group B.
C.V of Group B > C.V. of Group A

So, Group B is more variable.

Question 2

From the prices of shares X and Y below, find out which is more stable in value:

X	35	54	52	53	56	58	52	50	51	49
y	108	107	105	105	106	107	104	103	104	101

Solution:

From the given data,
Let us make the table of the given data and append other columns after calculations.

$\mathbf{X}\left(\mathbf{x}_{\mathbf{i}}\right)$	$\mathbf{Y}\left(\mathbf{y}_{\mathbf{i}}\right)$	$\mathbf{X}_{\mathbf{i}}{ }^{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{i}}{ }^{\mathbf{2}}$
35	108	1125	11664
54	107	2916	11449
52	105	2704	11025
53	105	2809	11025
56	106	8136	11236
58	107	3364	11449
52	104	2704	10816
50	103	2500	10609

For more Info Visit - www.KITest.in

51	104	2601	10816
49	101	2401	10201
Total $=510$	1050	26360	110290

We have to calculate Mean for x ,
Mean $\bar{x}=\sum \mathrm{x}_{\mathrm{i}} / \mathrm{n}$
Where, $\mathrm{n}=$ number of terms
$=510 / 10$
$=51$
Then, Variance for $\mathrm{x}=\frac{1}{\mathrm{n}^{2}}\left[\mathrm{~N} \sum \mathrm{x}_{\mathrm{i}}{ }^{2}-\left(\sum \mathrm{x}_{\mathrm{i}}\right)^{2}\right]$

$$
=\left(1 / 10^{2}\right)\left[(10 \times 26360)-510^{2}\right]
$$

$=(1 / 100)(263600-260100)$
$=3500 / 100$
$=35$
WKT Standard deviation $=\sqrt{ }$ variance
$=\sqrt{35}$
$=5.91$
So, co-efficient of variation $=(\sigma / \bar{x}) \times 100$
$=(5.91 / 51) \times 100$
= 11.58
Now, we have to calculate Mean for y ,
Mean $\bar{y}=\sum \mathrm{y}_{\mathrm{i}} / \mathrm{n}$
Where, $\mathrm{n}=$ number of terms

$$
\begin{aligned}
& =1050 / 10 \\
& =105
\end{aligned}
$$

Then, Variance for $\mathrm{y}=\frac{1}{\mathrm{n}^{2}}\left[\mathrm{~N} \sum \mathrm{y}_{\mathrm{i}}{ }^{2}-\left(\sum y_{1}\right)^{2}\right]$

$$
\begin{aligned}
& =\left(1 / 10^{2}\right)\left[(10 \times 110290)-1050^{2}\right] \\
& =(1 / 100)(1102900-1102500) \\
& =400 / 100 \\
& =4
\end{aligned}
$$

WKT Standard deviation $=\sqrt{ }$ variance

$$
=\sqrt{4}
$$

= 2
So, co-efficient of variation $=(\sigma / \bar{x}) \times 100$
$=(2 / 105) \times 100$
= 1.904
By comparing C.V. of X and Y .
C.V of X > C.V. of

So, Y is more stable than X .

Question 3

An analysis of monthly wages paid to workers in two firms A and B, belonging to the same industry, gives the following results:

	Firm A	Firm B
No. of wages earners	586	648

Mean of monthly wages	Rs 5253	Rs 5253
Variance of the distribution of wages	100	121

(i) Which firm A or B pays larger amount as monthly wages?
(ii) Which firm, A or B, shows greater variability in individual wages?

Solution:

From the given table,
Mean monthly wages of firm A = Rs 5253
and Number of wage earners $=586$
Then,
Total amount paid $=586 \times 5253$

$$
\text { = Rs } 3078258
$$

Mean monthly wages of firm $B=$ Rs 5253
Number of wage earners $=648$
Then,
Total amount paid $=648 \times 5253$

$$
=\text { Rs } 34,03,944
$$

So, firm B pays larger amount as monthly wages.
(ii) Variance of firm $A=100$

We know that, standard deviation $(\sigma)=\sqrt{ } 100$ $=10$
Variance of firm B=121
Then,
Standard deviation $(\sigma)=\sqrt{ }(121)$

$$
=11
$$

Hence the standard deviation is more in case of Firm B that means in firm B there is greater variability in individual wages.

Question 4

The following is the record of goals scored by team A in a football session:

No. of goals scored	$\mathbf{0}$	7	2	3	4
No. of matches	1	9	7	5	3

For the team B, mean number of goals scored per match was 2 with standard deviation 1.25 goals. Find which team may be considered more consistent?

Solution:

From the given data,
Let us make the table of the given data and append other columns after calculations.

Number of goals scored X_{i}	Number of matches f_{i}	$\mathrm{f}_{\mathrm{i} \mathrm{X}_{\mathrm{i}}}$	$\mathrm{X}_{\mathrm{i}}{ }^{2}$	$\mathrm{f}_{\mathrm{i} \mathrm{X}_{\mathrm{i}}{ }^{2}}$

For more Info Visit - www.KITest.in

0	1	0	0	0
1	9	9	1	9
2	7	14	4	28
3	5	15	9	45
4	3	12	16	48
Total	25	50		130

First we have to calculate Mean for team A,
Mean $=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{50}{25}=2$
Then,
Variance $=\frac{1}{\mathrm{~N}^{2}}\left[\mathrm{~N} \sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}-\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{2}\right]$

$$
=\frac{1}{25^{2}}[25 \times 130-2500]=\frac{750}{625}=1.2
$$

We know that, Standard deviation $\sigma=\sqrt{ }$ variance $=\sqrt{ } 1.2=1.09$
Hence co-efficient of variation of team A,
C.V.A $\frac{\sigma}{\bar{x}} \times 100=\frac{1.09}{2} \times 100=54.5$

For team B
Given, $\overline{\mathrm{x}}=2$
Standard deviation $\sigma=1.25$
So, co-efficient id variation of team B,
$\Rightarrow C . V_{\cdot B}=\frac{1.25}{2} \times 100=62.5$
Since C.V. of firm B is greater
\therefore Team A is more consistent.

Question 5

The sum and sum of squares corresponding to length x (in cm) and weight y (in gm) of 50 plant products are given below:
$\sum_{i=1}^{50} x_{i}=212, \quad \sum_{i=1}^{50} x_{i}{ }^{2}=902.8, \quad \sum_{i=1}^{50} y_{i}=261, \quad \sum_{i=1}^{50} y_{i}{ }^{2}=1457.6$
Which is more varying, the length or weight?

Solution:

First we have to calculate Mean for Length x
Mean $=\overline{\mathrm{x}}=\frac{\sum \mathrm{x}_{\mathrm{i}}}{\mathrm{n}}=\frac{212}{50}=4.24$
Then,
Variance $=\frac{1}{\mathrm{~N}^{2}}\left[\mathrm{~N} \sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}{ }^{2}-\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}{ }^{2}\right]\right.$

$$
\begin{aligned}
& =\left(1 / 50^{2}\right)\left[(50 \times 902.8)-212^{2}\right] \\
& =(1 / 2500)(45140-44944) \\
& =196 / 2500 \\
& =0.0784
\end{aligned}
$$

We know that, Standard deviation $\sigma=\sqrt{ }$ variance
$=\sqrt{ } 0.0784$

$$
=0.28
$$

Hence co-efficient of variation of team A,
C.V. $\cdot x=\frac{\sigma}{\bar{x}} \times 100=\frac{0.28}{4.24} \times 100=6.603$

Now we have to calculated mean of Weight y
$\overline{\mathrm{y}}=\sum \mathrm{y}_{\mathrm{i}} / \mathrm{n}$
$=261 / 50$
=5.22
Then,
Variance $=\left(\frac{1}{\mathrm{~N}^{2}}\right)\left[\left(\mathrm{N} \sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}{ }^{2}\right)-\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{2}\right.$

$$
=\left(1 / 50^{2}\right)\left[(50 \times 1457.6)-261^{2}\right]
$$

$=(1 / 2500)(72880-68121)$
$=4759 / 2500$

$$
=1.9036
$$

We know that, Standard deviation $\sigma=\sqrt{ }$ variance
$=\sqrt{1.9036}$
$=1.37$
So, co-efficient of variation of team B,
C.V. $\mathrm{y}=\frac{\sigma}{\frac{\partial}{x}} \times 100=\frac{1.37}{5.22} \times 100=26.24$

Since C.V of firm weight y is greater
\therefore Weight is more varying.

Miscellaneous Exercise

Question 1

The mean and variance of eight observations are 9 and 9.25 , respectively. If six of the observations are $6,7,10,12,12$ and 13 , find the remaining two observations.

Solution:

From the question is given that,
Variance of eight observations 9 and 9.25.
There are six observations given $6,7,10,12,12$, and 13
Let us assume the remaining two observation to be x and y respectively such that, Observations 6, 7, 10, 12, 12, 13, x, y.
We have calculated the mean of given observations,
\therefore Mean, $\overline{\mathrm{x}}=\frac{6+7+10+12+12+13+\mathrm{x}+\mathrm{y}}{8}$

$$
9=\frac{6+7+10+12+12+13+x+y}{8}
$$

$60+x+y=72$
$\mathrm{x}+\mathrm{y}=12 \quad$... [we call it as as equation (i)]
Now, Variance $=\frac{1}{n} \sum_{i=1}^{8}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}\right)^{2}$
$9.25=\frac{1}{8}\left[(-3)^{2}+(-2)^{2}+1^{2}+3^{2}+4^{2}+x^{2}+y^{2}-18(x+y)+2 \times 9^{2}\right]$
By using equation (i) substitute 12 instead of ($\mathrm{x}+\mathrm{y}$)
$9.25=\frac{1}{8}\left[9+4+1+9+9+16+\mathrm{x}^{2}+\mathrm{y}^{2}-18 \times 12+162\right]$
$9.25=\frac{1}{8}\left[48+x^{2}+y^{2}-216+162\right]$
$9.25=\frac{1}{8}\left[\mathrm{x}^{2}+\mathrm{y}^{2}-6\right]$
$\mathrm{x}^{2}+\mathrm{y}^{2}=80 \quad \ldots$ [we call it as equation (ii)]
So, from equation (i) we have:

$$
x^{2}+y^{2}=2 x y=144
$$

Thus from (ii) and (iii), we have
$2 x y=64$ (iv)
Now by subtracting (iv) from (ii), we get:
$x^{2}+y^{2}-2 x y=80-64$

$$
x-y= \pm 4(v)
$$

Hence, from equation (i) and (v) we have:
When $\mathrm{x}-\mathrm{y}=4$
Then, $x=8$ and $y=4$
And, when $x-y=-4$
Then, $x=4$ and $y=8$
\therefore The remaining observations are 4 and 8

Question 2

The mean and variance of 7 observations are 8 and 16, respectively. If five of the observations are $\mathbf{2 , 4}, 10,12,14$. Find the remaining two observations.

Solution:

From the question is given that,
Variance of seven observations 8 and 16.
There are 6 observations given $2,4,10,12$, and 14
Let us assume the remaining two observation to be x and y respectively such that, Observations 2, 4, 10, 12, 14, x, y.
We have calculated the mean of given observations,
\therefore Mean, $\bar{x}=\frac{2+4+10+12+14+\mathrm{x}+\mathrm{y}}{7}$

$$
x+y=14 \quad[\text { we call it as equation (i)] }
$$

In the question it is given that,
Variance $=16$
We know that,
Variance $=\frac{1}{n} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}\right)^{2}$
$16=\frac{1}{7}\left[(-6)^{2}+(-4)^{2}+(2)^{2}+(4)^{2}+(6)^{2}+x^{2}+y^{2}-2 \times 8(x+y)+2 \times(8)^{2}\right]$
By using equation (i) substitute 14 instead of ($\mathrm{x}+\mathrm{y}$)
$16=\frac{1}{7}\left[36+16+4+16+36+x^{2}+y^{2}-16(14)+2(64)\right]$
$16=\frac{1}{7}\left[12+\mathrm{x}^{2}+\mathrm{y}^{2}\right]$
$x^{2}+y^{2}=112-12$
$x^{2}+y^{2}=100 \quad \ldots$ [we call it as equation (ii)]
So, from equation (i) we have:
$\mathrm{x}^{2}+\mathrm{y}^{2}=2 \mathrm{xy}=196 \ldots$ [we call it as equation (iii)]
Thus from equation (ii) and (iii), we have
$2 x y=196-100$
$2 x y=96$ (iv)
Now by subtracting (iv) from (ii), we get:
$x^{2}+y^{2}-2 x y=100-96$
$(x-y)^{2}=4$

$$
x-y= \pm 2(v)
$$

Hence, from equation (i) and (v) we have:
When x - $\mathrm{y}=2$
Then, $x=8$ and $y=6$
And, when $\mathrm{x}-\mathrm{y}=-2$
Then, $x=2$ and $y=8$
\therefore The remaining observations are 6 and 8

Question 3

The mean and standard deviation of six observations are 8 and 4, respectively. If each observation is multiplied by 3 , find the new mean and new standard deviation of the resulting observations.

Solution:

From the question it is given that,

Mean of six observations = 8
Standard deviation of six observations $=4$
Let us assume the observations be $\mathrm{x}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}, \mathrm{X}_{5}, \mathrm{X} 6$
So, mean of assumed observations,

$$
\therefore \text { Mean } \overline{\mathrm{x}}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}+\mathrm{x}_{5}+\mathrm{x}_{6}}{6}=8
$$

Then, as per the question if each observation is multiplied by 3 and the resulting observations are y_{i} then, we have:
$Y_{i}=3 x_{i}$
Hence, $\mathrm{x}_{\mathrm{i}}=\frac{1}{3} \mathrm{y}_{\mathrm{i}}($ For $\mathrm{i}=1$ to 6$)$
\therefore New mean, $\overline{\mathrm{y}}=\frac{\mathrm{y}_{1}+\mathrm{y}_{2}+\mathrm{y}_{3}+\mathrm{y}_{4}+\mathrm{y}_{5}+\mathrm{y}_{6}}{6}$

$$
\begin{aligned}
& =\frac{3\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)}{6} \\
& =3 \times 8 \\
& =24
\end{aligned}
$$

We know that,
Standard deviation $(\sigma)=\sqrt{\frac{1}{n} \sum_{i=1}^{6}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}$
By squaring on the both sides
$\therefore(4)^{2}=\frac{1}{6} \sum_{i=1}^{6}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
$\sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)^{2}=96(i i)$
Hence, from (i) and (ii) we have:
$\bar{y}=3 \bar{x}$
$\overline{\mathrm{x}}=\frac{1}{3} \overline{\mathrm{y}}$
Now, by substituting the values of x_{i} and $\overline{\mathrm{x}}$ in (ii) we have:
$\sum_{i=1}^{6}\left(\frac{1}{3} y_{i}-\frac{1}{3} \bar{y}\right)^{2}=96$
Thus, $\sum_{i=1}^{6}\left(y_{i}-\bar{y}\right)^{2}=864$
So, the variance of new observation $=(1 / 6) \times 864$

$$
=144
$$

Therefore, standard deviation of new observation $=\sqrt{144}$

$$
=12
$$

Question 4

Given that \bar{x} is the mean and $\sigma 2$ is the variance of n observations $x_{1}, x_{2}, \ldots, x_{n}$. Prove that the mean and variance of the observations $\mathrm{ax}_{1}, \mathrm{ax}_{2}, \mathrm{ax}_{3}, \ldots, \mathrm{ax}_{\mathrm{n}}$ are ax and $\mathrm{a}^{2} \boldsymbol{\sigma}^{2}$, respectively, ($\mathrm{a} \neq$ $0)$.

Solution:

From the question it is given that, n observations are $x_{1}, x_{2}, \ldots . . x_{n}$
Mean of the n observation $=\overline{\mathrm{x}}$
Variance of the n observation $=\sigma^{2}$
As we know that,
Variance, $\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n} y_{i}\left(x_{i}-\bar{x}\right)^{2} \quad \ldots . .$. [equation (i)]
As per the condition given in the question, if each of the observation is being multiplied by 'a' and the new observation are y_{i} the, we have:

$$
y_{i}=a x_{i}
$$

Thus, $x_{i}=\frac{1}{a} y_{i}$
$\therefore \overline{\mathrm{y}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{y}_{\mathrm{i}}$
$\overline{\mathrm{y}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{ax}_{\mathrm{i}}$
$\bar{y}=\frac{\mathrm{a}}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}$
$\overline{\mathrm{y}}=\mathrm{a} \overline{\mathrm{x}}$
Therefore, mean of the observations $\mathrm{ax}_{1}, \mathrm{ax}_{2}$ ax_{n} is $\mathrm{a} \overline{\mathrm{x}}$

Now, by substituting the values of x_{i} and $\bar{x} i n$ equation (i), we get:

$$
\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{a} y_{i}-\frac{1}{a} \bar{y}\right)^{2}
$$

$a^{2} \sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$
\therefore the variance of the given observation $\mathrm{ax}_{\mathrm{i}}, \mathrm{ax}_{2}, \ldots \mathrm{ax}_{\mathrm{n}}$ is $\mathrm{a}^{2} \sigma^{2}$

Question 5

The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On rechecking, it was found that an observation 8 was incorrect.
Calculate the correct mean and standard deviation in each of the following cases: (i) If wrong item is omitted. (ii) If it is replaced by 12

Solution:

(i) If wrong item is omitted,

From the question it is given that,
The number of observations i.e. $\mathrm{n}=20$
The incorrect mean $=20$
The incorrect standard deviation $=2$
$\overline{\mathrm{X}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{20} \mathrm{X}_{\mathrm{i}}$
$10=\frac{1}{20} \sum_{\mathrm{i}=1}^{20} \mathrm{X}_{\mathrm{i}}$
$\sum_{i=1}^{20} X_{i}=200$
By the calculation the incorrect sum of observation $=200$
Hence, correct sum of observations $=200-8$

$$
\text { = } 192
$$

Therefore the correct mean $=$ correct sum/19

$$
\begin{aligned}
& =192 / 19 \\
& =10.1
\end{aligned}
$$

We know that, Standard deviation $(\sigma)=\sqrt{\frac{1}{n} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}-\frac{1}{\mathrm{n}^{2}}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\right)^{2}}$

$$
2=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}}-(\bar{x})^{2}
$$

$4=\frac{1}{20}$ Incorrect $\sum_{i=1}^{n} x_{i}^{2}-100$
Incorrect $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}{ }^{2}=2080$
Therefore, correct $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}{ }^{2}=\operatorname{Incorrect} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}{ }^{2}-(8)^{2}$

$$
\begin{aligned}
& =2080-64 \\
& =2016
\end{aligned}
$$

Finally we came to calculate correct standard deviation,
Hence, correct standard deviation $=\sqrt{\frac{\text { Correct } \sum \mathrm{X}_{1}{ }^{2}}{\mathrm{n}}-(\text { correct Mean })^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{2016}{19}-(10.1)^{2}} \\
& =\sqrt{1061.1-102.1}
\end{aligned}
$$

$$
=2.02
$$

(ii) If it is replaced by 12 ,

From the question it is given that,
The number of incorrect sum observations i.e. $\mathrm{n}=200$
The correct sum of observations $n=200-8+12$

$$
\mathrm{n}=204
$$

Then, correct mean $=$ correct sum $/ 20$
= 204/20
$=10.2$
Standard deviation $(\sigma)=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}-\frac{1}{n^{2}}\left(\sum_{i=1}^{n} x_{i}\right)^{2}}$

$$
2=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}}-(\bar{x})^{2}
$$

$4=\frac{1}{20}$ Incorrect $\sum_{i=1}^{n} \mathrm{x}_{\mathrm{i}}{ }^{2}-100$
Incorrect $\sum_{i=1}^{n} x_{i}^{2}=2080$
Thus, correct $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}^{2}=\operatorname{Incorrect} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}^{2}-(8)^{2}+(12)^{2}$

$$
\begin{aligned}
& =2080-64+144 \\
& =2160
\end{aligned}
$$

Hence, correct standard deviation $=\sqrt{\frac{\text { Correct } \sum \mathrm{X}_{1}{ }^{2}}{\mathrm{n}}-(\text { correct Mean })^{2}}$

$$
\begin{gathered}
=\sqrt{\frac{2160}{20}-(10.2)^{2}} \\
=\sqrt{108-104.04} \\
=\sqrt{3.96}
\end{gathered}
$$

$$
\text { = } 1.98
$$

Question 6

The mean and standard deviation of marks obtained by 50 students of a class in three subjects, Mathematics, Physics and Chemistry are given below:

Mean	42	32	40.9
Standard deviation	12	15	20

Which of the three subjects shows the highest variability in marks and which shows the lowest?

Solution:

From the question it is given that,
Mean of Mathematics $=42$
Standard deviation of Mathematics $=12$
Mean of Physics = 32
Standard deviation of physics $=15$
Mean of Chemistry $=40.9$
Standard deviation of chemistry $=20$
As we know that,
Coefficient of variation (C.V) $=\frac{\text { Standard deviation }}{\text { Mean }} \times 100$
Then,
C.V. in Mathematics $=(12 / 42) \times 100$

$$
=28.57
$$

C.V. in Mathematics $=(15 / 32) \times 100$

$$
=46.87
$$

C.V. in Mathematics $=(20 / 40.9) \times 100$

$$
=48.89
$$

Hence, subject with highest variability in marks is chemistry as subject with the greater C.V is more variable than others

Question 7

The mean and standard deviation of a group of 100 observations were found to be 20 and 3, respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18 . Find the mean and standard deviation if the incorrect observations are omitted.

Solution:

From the question it is given that,
The total number of observations (n) $=100$
Incorrect mean, $(\bar{x})=20$
And, Incorrect standard deviation $(\sigma)=3$
$\therefore 20=\frac{1}{100} \sum_{\mathrm{i}=1}^{100} \mathrm{x}_{1}$
By cross multiplied, we get
$\sum_{i=1}^{100} x_{1}=20 \times 100$
$\sum_{i=1}^{100} x_{1}=2000$
Hence, incorrect sum of observation is 2000
Now, correct sum of observation $=2000-21-21-18$

$$
\begin{aligned}
& =2000-60 \\
& =1940
\end{aligned}
$$

Therefore correct Mean = Correct sum/ (100-3)

$$
\begin{aligned}
& =1940 / 97 \\
& =20
\end{aligned}
$$

We know that, Standard deviation $(\sigma)=\sqrt{\frac{1}{n} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{1}-\frac{1}{\mathrm{n}^{2}}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}\right)^{2}}$

$$
3=\sqrt{\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{1}{ }^{2}-(\overline{\mathrm{x}})^{2}}
$$

$$
3=\sqrt{\frac{1}{100} \times \text { Incorrect } \sum \mathrm{x}_{1}{ }^{2}-(20)^{2}}
$$

Incorrect $\sum \mathrm{x}_{1}{ }^{2}=100(9+400)$
Incorrect $\sum \mathrm{x}_{1}{ }^{2}=40900$
Correct $\begin{aligned} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{1}{ }^{2} & =\text { Incorrect } \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{1}{ }^{2}-(21)^{2}-(21)^{2}-(18)^{2} \\ & =40900-441-441-324 \\ & =40900-1206\end{aligned}$

$$
=39694
$$

Hence, correct standard deviation $=\sqrt{\frac{\text { Correct } \sum X_{1}{ }^{2}}{n}-(\text { correct Mean })^{2}}$

$$
\begin{aligned}
&=\sqrt{\frac{39694}{97}-(20)^{2}} \\
&=\sqrt{409.216-400} \\
&=3.036
\end{aligned}
$$

