# CHAPTER - 14 <br> MEASURES OF CENTRAL TENDENCY AND DISPERSION 



## UNIT I: MEASURES OF CENTRAL TENDENCY

| CENTRAL <br> TENDENCY | Tendency of a given set of observations to cluster around a single central or middle value and the single value that represents the given set of observations is described as a measure of central tendency or, location, or average. |
| :---: | :---: |
|  | The AM may be defined as the sum of all the observations divided by the number of observations. Thus, if a variable $x$ assumes $n$ values $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots \ldots . . . . \mathrm{x}_{\mathrm{n}}$, then the AM of x , to be denoted by X , is given by: |
| $\begin{aligned} & \text { ARITHMETIC } \\ & \text { MEAN } \end{aligned}$ |  |
| MEDIAN - <br> PARTITION <br> VALUES | $\text { Median }=l+\frac{h}{f}\left(\frac{N}{2}-c\right)$ <br> Where: <br> $1=$ lower class boundary of the median class <br> $h=$ Size of the median class interval <br> $f=$ Frequency corresponding to the median class <br> $N=$ Total number of observations i.e. sum of the frequencies <br> $c=$ Cumulative frequency preceding median class. |


| Types of median | Calculation of Quartiles, Deciles and Percentiles <br> - For Continuous Series <br> 1. $\mathrm{Q}_{1}=$ Size of $\mathrm{N} / 4^{\text {th }}$ item <br> 2. $Q_{3}=$ Size of $3 N / 4^{\text {th }}$ item <br> 3. $D_{1}=$ Size of $N / 10^{\text {th }}$ item <br> 4. $D_{9}=$ Size of $9 N / 10$ item <br> 5. $P_{1}=$ size of $N / 100^{\text {th }}$ item <br> 6. $P_{99}=$ Size of $99 \mathrm{~N} / 100^{\text {th }}$ item <br> - Formula to be used in continuous series: <br> 1. $\mathrm{Q}_{1}=\mathrm{L}_{1}+\mathrm{N} / 4-\mathrm{c} . \mathrm{f}^{*} \mathrm{i} / \mathrm{f}$ <br> 2. $Q_{3}=L_{1}+3 N / 4-c . f * i / f$ <br> 3. $\mathrm{D}_{1}=\mathrm{L}_{1}+\mathrm{N} / 10-\mathrm{c} . \mathrm{f}^{*} \mathrm{i} / \mathrm{f}$ <br> 4. $D_{9}=L_{1}+9 N / 10-c . f * i / f$ <br> 5. $P_{1}=L_{1}+N / 100-c . f * i / f$ <br> 6. $P 99=L_{1}+99 N / 100-c . f *_{i} / f$ |
| :---: | :---: |
| Mode | Formula of Mode : $\begin{aligned} & Z=l_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times i \\ & \text { where, } \\ & Z=\text { value of Mode } \\ & l_{1}=\text { lower limit of modal class } \\ & f_{0}=\text { Frequency of the preceding modal class } \\ & f_{2}=\text { Frequency of the subsequent modal class or post modal class } \\ & i=\text { Class interval of the modal class } \end{aligned}$ |
| GEOMETRIC MEAN \& HARMONIC MEAN\& WEIGHTED MEAN | Geometric Mean: <br> Harmonic Mean: <br> Weighted Mean: $\begin{aligned} & G M=\sqrt[n]{\prod_{i=1}^{n} x_{i}}=\sqrt[n]{x_{1} x_{2} x_{3} \ldots x_{n}} \\ & H M=\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}=\frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{\mathrm{s}}}+\ldots+\frac{1}{x_{n}}} \\ & W M=\frac{\sum_{i=1}^{n} w_{i} x_{i}}{\sum_{i=1}^{n} w_{i}}=\frac{w_{1} x_{2}+w_{2} x_{2}+w_{3} x_{3}+\ldots+w_{n} x_{n}}{w_{1}+w_{2}+w_{3}+\ldots+w_{n}} \end{aligned}$ |
| Relationship between Mean, Median and | $\begin{aligned} & \text { Mean }- \text { Mode }=3(\text { Mean- Median }) \\ & \text { Mode }=3 \text { Median }-2 \text { Mean } \end{aligned}$ |
| Relation between AM, GM, and HM | $\mathbf{A M}>\mathbf{G M}>\mathbf{H M}$ |

## Question 1

Relationship between Mean, Median and Mode
(a) Mean - Mode $=3$ (Mean - Median)
(b) Mode $=3$ Median -2 Mean
(c) Both (a \& b)
(d) None of these

## Answer: C

Explanation:
If a frequency distribution is positively skewed, the mean is greater than median and median is greater than mode.

## Question 2

If median - 20 and mean- 22.5 in a moderately skewed distribution then compute approximate value of mode
(a) 15
(b) 20
(c) 25
(d) 30

Answer: A
Explanation:
Mean - Mode $=3($ Mean - Median $)$
22.5 - Mode $=3(22.5-20)$
$22.5-$ Mode $=7.5$
Mode $=22.5-7.5$
Mode $=15$
Question 3
A numerical value used as a summary measure for a sample, such as sample mean, is known as a
(a) Population parameter
(b) Sample parameter
(c) Sample statistic
(d) population mean

Answer: C
Explanations:
If it pertains to sample it is called a statistic, if it pertains to population, it is called a parameter.

## Question 4

Since the population size is always larger than the sample size, then the sample statistic
(a) Can never be equal to the population
(b) Can never be zero parameter
(c) Can never be smaller than the
(d) None of the above answers is correct
population parameter
Answer: D
Explanation:
Sample statistic will depend upon the sample chosen. It can be less than, greater than, equal to population parameter. It can assume the value of zero.

## Question5

Mu is an example of a
(a) Population parameter
(b) Sample statistic
(c) Population variance.
(d) Mode

Answer: A
Explanation:
M is a standard representation for population parameter.

## Question 6

The mean of a sample is
(a) Always equal to the mean of the population
(c) Computed by summing the data
values and dividing the sum by $(\mathrm{n}-1)$
(b) Always smaller than the mean of the population
(d) Computed by summing all the data values and dividing the sum by the number of items
Answer: D
Explanation:
Mean = Total of sample values/ sample size

## Question 7

The sum of the percent frequencies for all classes will always equal
(a) One
(b) The number of classes
(c) The number of items in the study
(d) 100

Answer: D
Explanation:
If we count the total frequency, it is equal to the sample size $n \cdot \frac{n}{n} \times 100=100$

## Question8

In a five number summary, which of the following is not used for data summarization?
(a) The smallest value
(b) The largest value
(c) The median
(d) The $25^{\text {th }}$ percentile

Answer: D
Explanation:
The $25^{\text {th }}$ percentile

## Question 9

Since the mode is the most frequently occurring data value, it
(a) Can never be larger than the mean
(b) Is always larger than the median
(c) Is always larger than the mean
(d) None of the above answers is correct.

Answer: D
Explanation:
The mean, median and mode values will be distributed according to the skewness of the distribution. Accordingly, mode can be greater than or less than mean or mode.

## Question 10

The following table gives the distribution of 100 accidents during seven days of the week of a given month. During a particular month there were 5 Fridays and Saturdays and four each of other days. Calculate the average number of accidents per day.

| Days | Sun | Mon | Tue | Wed | Thru | Fri | Sat. | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of <br> accidents | 20 | 22 | 10 | 9 | 11 | 8 | 20 | 100 |

(a) 14
(b) 12
(c) 17
(d) 19

Answer: A
Explanation:

## Calculation of number of Accidents per day

| Day | No. of Accidents <br> $(\mathbf{x})$ | No. of days in Month <br> $\mathbf{( f )}$ | Total <br> $\mathbf{f x}$ |
| :--- | :---: | :---: | :---: |
| Sunday | 20 | 4 | 80 |
| Monday | 22 | 4 | 88 |
| Tuesday | 10 | 4 | 40 |
| Wednesday | 9 | 4 | 36 |
| Thursday | 11 | 4 | 44 |
| Friday | 8 | 5 | 40 |
| Saturday | 20 | 5 | 100 |
| Total | 100 | $\mathrm{~N}=30$ | $\Sigma \mathrm{fx}=428$ |

$\frac{\sum \mathrm{fx}}{\mathrm{N}}=\frac{428}{30}=14.27$
14 accidents per day

## Question 11

Following are the daily wages in Rupees of a sample of 9 workers: $58,62,48,53,70,52$, $60,84,75$. Compute the mean wage.
(a) 62.44
(b) 62.04
(c) 60.44
(d) 31.22

Answer: a
Explanation:
Let x denote the daily wage in rupees.
Then as given $\mathrm{x}_{1}=58, \mathrm{x}_{2}=62, \mathrm{x}_{3}=48, \mathrm{x}_{4}=53, \mathrm{x}_{5}=70, \mathrm{x}_{6}=52$,
$X_{7}=60, x_{8}=84$ and $x_{9}=75$. Applying (15.1.1) the mean wage is
Given by,
$=\frac{\Sigma \mathrm{xi}}{n}$

| $n$ |
| :---: |
| $58+62+48+53+70+52+60+84+75$ |

$\frac{562}{9}=62.44$

## Question 12

Find the AM for the following distribution:

| class <br> interval | $350-369$ | $370-389$ | $390-409$ | $410-429$ | $430-449$ | $450-469$ | $470-489$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 23 | 38 | 58 | 82 | 65 | 31 | 11 |

(a) 416
(b) 416.17
(c) 416.71
(d) 41.71

Answer: C
Explanation:
Computation of AM

| Class <br> Interval | Frequency(f) | Mid-Value(x) | $\mathbf{d =} \mathbf{x i - A}$ <br> $\mathbf{x i}=-\mathbf{4 1 9 . 5 0}$ | fx |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $(1)$ |  | $(2)$ | $(3)$ | $(4)$ | $(5)=(2) \times(4)$ |
| $350-369$ |  | 23 | 359.50 | -3 | -69 |
| $370-389$ |  | 38 | 379.50 | -2 | -76 |
| $390-409$ |  | 82 | 399.50 | -1 | -58 |
| $410-429$ |  | 65 | 419.50 | 0 | 0 |
| $430-449$ |  | 31 | 439.50 | 1 | 65 |
| $450-469$ |  | 11 | 479.50 | 2 | 62 |
| $470-489$ |  | 308 | - | 3 | 33 |
| Total |  |  | - | -43 |  |

The required AM is given by
$\mathrm{X}=\mathrm{A}+\frac{\Sigma f i d i}{N} \times C$
$=419.50+\frac{(-43)}{308} \times 20$
$=419.50-2.79$
$=416.71$

## Question 13

The mean salary for a group of 40 female workers is Rs. 5200 per month and that for a group of $\mathbf{6 0}$ male workers is Rs. $\mathbf{6 8 0 0}$ per month. What is the combined mean salary?
(a) 6160
(b) 616
(c) 6.16
(d) 61.6

Answer: A
Explanation:
As given $\mathrm{n}_{1}=40, \mathrm{n}_{2}=60, \mathrm{x}_{1}=$ Rs. 5200 and
$\mathrm{X}_{2}=$ Rs. 6800
Hence, the combined mean salary per month is
$\mathrm{X}=\frac{n_{1} x_{1}+n_{2} x_{2}}{n_{1}+n_{2}}$
$40 \times$ Rs. $5200+60 \times$ Rs. 6800
$=6160$

## Question 14

The sum of the deviation of a given set of individual observations from the arithmetic mean is always infinite. The statement is True or not?
(a) Correct
(b) Incorrect
(c) Error
(d) None

Answer: B
Explanation:
According to Mathematical properties of the Arithmetic Mean: The sum of the deviation of a given set of individual observations from the arithmetic mean is always zero. Symbolically $=0$. It is due to this property that property the arithmetic mean is characterized as the center as the center gravity i.e., the sum of positive deviations from the mean is equal to the sum of negative deviations.

## Question 15

The mean age of a combined group of men and women is 30 years. If the mean age of the group of men is 32 and that of women group is 27 . Find out the percentage of men and women in the group.
(a) $30 \%, 70 \%$
(b) $20 \%, 80 \%$
(c) $60 \%, 40 \%$
(d) $40 \%, 60 \%$

Answer: C
Explanation:
Let us take group of men as first group and women as second group. Therefore $=32$ years, $=27$ years, and = 30 years. In the problem, we are not given the number of men and women. We can assume
$\mathrm{N} 1+\mathrm{N} 2=100$ and therefore. $\mathrm{N} 1=100-\mathrm{N} 2$
Apply =
$30=\left(\right.$ Substitute $\mathrm{N}_{1}=100-\mathrm{N}_{2}$ )
$30 \times 100=32\left(100-\mathrm{N}_{2}\right)+27 \mathrm{~N}_{2}$ or $5 \mathrm{~N}_{2}=200$
$\mathrm{N}_{2}=\frac{200}{5}=40 \%$
$N_{1}=\left(100-N_{2}\right)=(100-40)=60 \%$
Therefore, the percentage of men in the group is 60 and that of women is 40 .

## Question 16

Median and mode of the wage distribution are known to be Rs. 33.5 and 34 respectively. Find the third missing values.

| Wages (Rs.) | No. of Workers |
| :---: | :---: |
| $0-10$ | 4 |
| $10-20$ | 16 |
| $20-30$ | $?$ |
| $30-40$ | $?$ |
| $40-50$ | $?$ |
| $50-60$ | 6 |
| $60-70$ | 4 |
| Total | 230 |

(a) 6
(b) 10
(c) 9
(d) 40

## Answer: D

Explanation:
We assume the missing frequencies as $20-30$ as $x, 30-40$ as $y$, and $40-50$ as $230-(4+16+$ $x+y+6+4)=200-x-y$.

We now proceed further to compute missing frequencies:

| Wages (Rs.) <br> $\mathbf{x}$ | No. of workers <br> $\mathbf{f}$ | Cumulative frequencies <br> $\mathbf{c f}$ |
| :---: | :---: | :---: |
| $0-10$ | 4 | 4 |
| $10-20$ | 16 | 20 |
| $20-30$ | x | $20+\mathrm{x}$ |
| $30-40$ | y | $20+\mathrm{x}+\mathrm{y}$ |
| $40-50$ | $200-\mathrm{x}-\mathrm{y}$ | 220 |
| $50-60$ | 6 | 226 |
| $60-70$ | 4 | 230 |

For more Info Visit - www.KITest.in

|  | $\mathrm{N}=230$ |  |
| :--- | :---: | :--- |

Apply median =
$33.5=$
$\mathrm{Y}(33.5-30)=(115-20-\mathrm{x}) 10$
$3.5 y=1150-200-10 x$
$10 x+3.5 y=950 \ldots$ (i)
Apply mode =
$34=$
$4(3 y-200)=10(y-x)$
$10 \mathrm{x}+2 \mathrm{y}=800$
Subtract equation (ii) from equation (i),
$1.5 \mathrm{y}=150, \mathrm{y}=100$
Substitute the value of $y=100$ in equations (i0, we get
$10 \mathrm{x}+3.5(100)=950$
$10 x=950-350$
$\mathrm{X}=\frac{600}{10}=60$
Third missing frequency $=200-\mathrm{x}-\mathrm{y}=200-60-100=40$.
Question 17
Calculate mode from the following data:

| Marks | Frequency |
| :---: | :---: |
| Below 10 | 4 |
| $" ' 20$ | 6 |
| $" 30$ | 24 |
| $" 40$ | 46 |
| $" 50$ | 67 |
| $" 60$ | 86 |
| $" 70$ | 96 |
| $" 80$ | 99 |
| $" 90$ | 100 |

(a) 41.3
(b) 40
(c) 40.13
(d) 89

Answer: A
Explanation:
Since we are given the cumulative frequency distribution of marks, first we shall convert it into the normal frequency distribution:

| Marks | Frequencies |
| :---: | :---: |
| $0-10$ | 4 |
| $10-20$ | $6-4=2$ |
| $20-30$ | $24-6=18$ |
| $30-40$ | $46-24=22$ |
| $40-50$ | $67-46=21$ |
| $50-60$ | $86-67=19$ |
| $60-70$ | $96-86=10$ |
| $70-80$ | $99-96=3$ |
| $80-90$ | $100-99=1$ |

It is evident from the table that the distribution is irregular and maximum chances are that the distribution would be having more than one mode. You can verify by applying the grouping and analyzing table.
The formula to calculate the value of mode in cases of bio-modal distribution is:
Mode $=3$ median -2 mean .
Computation of Mean and Median

| Marks | Mid-Value <br> $\mathbf{x}$ | Frequency <br> $\mathbf{f}$ | Cumulative <br> frequencies <br> $\mathbf{c f}$ | (dx) | fdx |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $0-10$ | 5 | 4 | 4 | -4 | -16 |
| $10-20$ | 15 | 2 | 6 | -3 | -6 |
| $20-30$ | 25 | 18 | 24 | -2 | -36 |
| $30-40$ | 35 | 22 | 46 | -1 | -22 |
| $40-50$ | 45 | 21 | 67 | 0 | 0 |
| $50-60$ | 55 | 19 | 86 | 1 | 19 |
| $60-70$ | 65 | 10 | 96 | 2 | 20 |
| $70-80$ | 75 | 3 | 99 | 3 | 9 |
| $80-90$ | 85 | 1 | 100 | 4 | 4 |
|  | 405 | $\Sigma \mathrm{f}=100$ | 528 | 0 | $\Sigma \mathrm{fdx}=-28$ |

Mean =?
Median $=$ size of item $=50^{\text {th }}$ item
Because 50 is similar to 67 in C.f. column, Median class is $40-50$
Apply Mode $=3$ median -2 Mean
Mode $=3 \times 41.9-2 \times 42.2=125.7-84.6=41.3$

## Question 18

Find the arithmetic mean of the first 7 natural numbers.
(a) 5
(b) 6
(c) 7
(d) 4

Answer: D
Explanation:
The first 7 natural numbers are $1,2,3,4,5,6$ and 7 .
Let $x$ denote their arithmetic mean.
Then mean $=$ Sum of first 7 natural numbers/number of natural numbers
$\mathrm{X}=(1+2+3+4+5+6+7) / 7$
$=28 / 7$
$=4$
Hence, their mean is 4.

## Question 19

The heights of five runners are $160 \mathrm{~cm}, 137 \mathrm{~cm}, 149 \mathrm{~cm}, 153 \mathrm{~cm}$, and 161 cm respectively. Find the mean height per runner.
(a) 152
(b) 150
(c) 148
(d) 120

Answer: A
Explanation:
Mean height = Sum of the heights of the runners/number of runners
$=\frac{(160+137+149+153+161)}{5 \mathrm{~cm}}$
$=\frac{760}{5 \mathrm{~cm}}$
$=152 \mathrm{~cm}$.
Hence the mean height is 152 cm .

## Question 20

Find the mean of the first five prime numbers.
(a) 4.6
(b) 6.5
(b) 78
(d) 5.6

Answer: D
Explanation:
The first five prime numbers are $2,3,5,7$ and 11 .
Mean = Sum of first five prime numbers/number of prime numbers
$=\frac{(2+3+5+7+11)}{5}$
$=\frac{28}{5}$
$=5.6$
Hence, their mean is 5.6

## Question 21

Find the mean of the first six multiples of 4.
(a) 12
(b) 13
(c) 14
(d) 15

Answer: C
Explanation:
The six multiples of 4 are $4,8,12,16,20$, and 24 .
Mean = Sum of the first six multiples of $\frac{4}{\text { No.of multiple }}$
$=\frac{(4+8+12+16+20+24)}{6}$
$=\frac{84}{6}$
$=14$.
Hence, their mean is 14.

## Question 22

If the mean of $9,8,10, x, 12$ is 15 , find the value of $x$.
(a) 30
(b) 41
(c) 36
(d) 63

Answer: C
Explanation:
Mean of the given numbers $=\frac{(9+8+10+x+12)}{5}=\frac{(39+x)}{5}$
According to the problem, mean $=15$ (given).
Therefore, $\frac{(39+x)}{5}=15$
$\rightarrow 39+x=15 \times 5$
$\rightarrow 39+x=75$
$\rightarrow 39-39+x=75-39$
$\rightarrow \mathrm{x}=36$
Hence $x=36$.

## Question 23

If the mean of five observations $x, x+4, x+6, x+8$, and $x+12$ is 16 , find the value of $x$.
(a) 154
(b) 54
(c) 451
(d) 541

Answer: C
Explanation:
Mean of the given observations
$=\frac{x+(x+4)+(x+6)+(x+8)+(x+12)}{5}$
$=\frac{(5 x+30)}{5}$
According to the problem mean $=16$ (given).
Therefore, $\frac{(5 x+30)}{5}=16$
$\rightarrow 5 \mathrm{x}+30=16 \times 5$
$\rightarrow 5 \mathrm{x}+30=80$
$\rightarrow 5 \mathrm{x}+30-30=80-30$
$\rightarrow 5 \mathrm{x}=50$
$\rightarrow \mathrm{x}=\frac{50}{5}$
$\rightarrow \mathrm{x}=10$
Hence, $x=10$.

## Question 24

The mean of 40 numbers was found to be 38 . Later on, it was detected that a number 56 was misread as 36 . Find the correct mean of given numbers.
(a) 38
(b) 26
(c) 38.5
(d) 89

Answer: C
Explanation:
Calculated mean of 40 numbers $=38$.
Therefore, calculated sum of these numbers $=(38 \times 40)=1520$.
Correct sum of these numbers
$=[1520-($ wrong item $)+($ correct item $)]$
$=(1520-36+56)$
$=1540$.
Therefore, the correct mean $=\frac{1540}{40}=38.5$.

## Question 25

The mean of the heights of 6 boys is 152 cm . If the individual heights of five of them are $151 \mathrm{~cm}, 153 \mathrm{~cm}, 155 \mathrm{~cm}, 149 \mathrm{~cm}$ and 154 cm , find the height of the sixth boy.
(a) 157
(b) 159
(c) 150
(d) 89

Answer: C
Explanation:
Mean height of 6 boys $=152 \mathrm{~cm}$.
Sum of the heights of 6 boys $=(152 \times 6)=912 \mathrm{~cm}$
Sum of the heights of 5 boys $=(151+153+155+149+154) \mathrm{cm}=762 \mathrm{~cm}$.
Height of the sixth boy
$=$ sum of the heights of 6 boys $)-$ (sum of the heights of 5 boys)
$=(912-762) \mathrm{cm}=150 \mathrm{~cm}$.
Hence, the height of the sixth girl is 150 cm .

## Question 26

Find the mode of the following set of marks.

| Marks | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Frequency | 6 | 7 | 7 | 5 | 3 |

(a) 2 and 4
(b) 4 and 3
(c) 2 and 3
(d) 2 and 5

Answer: C
Explanation:
The marks 2 and 3 have the highest frequency. So, the modes are 2 and 3.
Note: The above example shows that a set of observation may have more than one mode.

## Question 27

There are 8 number cards with values 0 - 7. Each time a card is drawn at random and the card value is recorded. The frequency refers to the number of times a value is shown.

| Card <br> values | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 8 | 12 | 7 | 10 | 12 | 13 | 12 | 10 |

(a) 75,5
(b) 5,79
(c) 80,89
(d) None

Answer: A
Explanation:
(a) Mode: 75 kg (highest frequency of 12)
(b) Mode: 5 (highest frequency of 13)

## Question 28

The following frequency table shows the marks obtained by students in a quiz. Given that 4 is the mode, what is the least value for $x$ ?

| Marks | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of students (frequency) | 7 | 9 | 10 | x | 9 | 11 |

(a) 12
(b) 10
(c) 3
(d) 6

Answer: A
Explanation:
X is as least 12 (if x is less than 12 then 4 will not be the mode)
Question 29
The mean of the following frequency distribution is

| Class Interval | Frequency |
| :--- | :--- |
| $0-10$ | 4 |
| $10-20$ | 6 |
| $20-30$ | 10 |
| $30-40$ | 16 |


| $40-50$ | 14 |
| :--- | :--- |

(a) 25
(b) 35
(c) 30
(d) 31

Answer: D
Explanation:

| Class interval | Mid-point | Freq. | Diff, from <br> $(\mathrm{A}=25)$ | fd |
| :--- | :--- | :--- | :--- | :--- |
| $0-10$ | 5 | 4 | -20 | -80 |
| $10-20$ | 15 | 6 | -10 | -60 |
| $20-30$ | 25 | 10 | 0 | 0 |
| $30-40$ | 35 | 16 | 10 | 160 |
| $40-50$ | 45 | 14 | 20 | 280 |
| Total | $\Sigma \mathrm{f}=50$ |  |  | $\Sigma \mathrm{fd}=300$ |

$(\mathrm{x})=\mathrm{A}+\frac{\Sigma F D}{\Sigma F}=25+\frac{300}{50}=31$

## Question 30

Mean of twenty observations is 15 . If two observations 3 and 14 replaced by 8 and 9 respectively, then the new mean will be
(a) 14
(b) 15
(c) 16
(d) 17

Answer: D
Explanation:
Mean of 20 observations $=15$
$\therefore$ Sum of 20 observations $=15 \times 20=300$
Replacing 3 and 14 by 8 and 9 will mean that $3+14=17$ is replaced by $8+9=17$
Hence there will be no effect on the sum. It will remain 300, so the mean will not change and will remain 15.

Question 31

| Factory A | Factory B |
| :--- | :---: |
| No. of wage of earners 250 | 200 |
| Average daily wage Rs. 2.00 | Rs. 2.50 |

The average of daily wages for the earners of the two factories combined is
(a) Rs. 2.12
(b) Rs. 2.06
(c) Rs. 2.20
(d) Rs. 2.22

Answer: D
Explanation:
Required average $=\frac{250 \times 2.00+\times 2.50 \times 200}{250+200}$
$=\frac{1000}{450}$
$=\frac{20}{9}$
Rs. 2.22
Question 32
The height of 30 boys of a class are given in the following table:

| $120-129$ | 2 |
| :---: | :---: |
| $130-139$ | 8 |
| $140-149$ | 10 |
| $150-159$ | 7 |
| $160-169$ | 3 |

If by joining of a boy of height 140 cm , the median of the heights is changed from $\mathrm{M}_{1}$ to $M_{2}$ then $M_{1}-M_{2}$ in cm is
(a) 0.1
(b) -0.1
(c) 0
(d) 0.2

Answer: C
Explanation:

| Height in cms | Frequency | Cumulative frequency | Actual Class limit |
| :---: | :---: | :---: | :---: |
| $120-129$ | 2 | 2 | $119.5-129.5$ |
| $130-139$ | 8 | 10 | $129.5-139.5$ |
| $140-149$ | 10 | 20 | $139.5-149.5$ |
| $150-159$ | 7 | 27 | $149.5-159.5$ |
| $160-169$ | 3 | 30 | $159.5-169.5$ |
| $\mathrm{n}=30$ |  |  |  |

Here $\mathrm{n}=30$
$\therefore \frac{n}{2}+1=15+1=16$
$\therefore 16$ is under cumulative frequency 20 . So median class be 140-149
$\mathrm{L}_{1}=139.5, \mathrm{~L}_{2}=149.5, \mathrm{f}=10, \mathrm{n}=30, \mathrm{c}=10$.
Median $\mathrm{M}_{1}=\mathrm{L}_{1}+\frac{L_{2}-L_{1}}{f}\left(\frac{n}{2}-c\right)$
$=139.5+\frac{10}{10}(15-10)$
$=139.5+\frac{10}{10} \times 5=144.5$
If by joining f a boy of height 140 cms , the $\mathrm{n}=31, \mathrm{f}=11$
$\therefore$ Median $\mathrm{M}_{2}=139.5+\frac{149.5-139.5}{11}(15.5-10)$
$=139.5+\frac{10}{11} \times 5.5=144.5 \mathrm{cms}$
Then $M_{1}-M_{2}=144.5-144.5=0$

Question 33
The marks awarded to seven students in a school admission test were:

|  | Mathematics | English |
| :---: | :---: | :---: |
| A | 55 | 35 |
| B | 45 | 32 |
| C | 75 | 44 |
| E | 15 | 50 |
| F | 10 | 45 |
| G | 40 | 60 |

Which subject has the better median value?
(a) Mathematics
(b) English
(c) Both (a) and (b) above
(d) None of the above

Answer: B
Explanation:
The awarded makes in Mathematics and English were arranged in ascending in ascending order separately.

| Maths | English |
| :---: | :---: |
| 06 | 32 |
| 10 | 35 |
| 15 | 40 |
| 40 | 44 |
| 45 | 45 |
| 55 | 50 |
| 75 | 60 |

Hence, English has the better median value.

Question 34
Identify the mode of the given distribution.

| Marks | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Number of <br> students | 3 | 5 | 10 | 6 | 1 |

(a) 7
(b) 1
(c) 8
(d) 6

Answer: D
Explanation:
Mode is 6 as it has the highest frequency

## Question 35

The given data are the times (in minutes), it takes seven students to go to school from their homes.

| 11 | 6 | 22 | 7 | 10 | 6 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Which statement about the data is false?
(a) Their median is 11 .
(b) Their mean is 15.
(c) Their range is 16.
(d) Their mode is 6 .

Answer: a
Explanation:
Arranging the given data in ascending order, we get $6,6,7,10,11,15,22$
Mean $=\frac{6+6+7+10+11+15+22}{7}$
$\frac{77}{7}=11$
Mode $=6$ Median $=4^{\text {th }}$ value $=10$
Question 36

The medians of the following two sets of numbers are equal, and the sets are arranged in ascending order $\{1,4, x, 8\}$ and $\{2,5, y, 9\}$. What is $y-x$ ?
(a) -1
(b) 0
(c) -2
(d) 3

Answer: a
Explanation:
Recall that the median of an even-numbered of numbers is the arithmetic mean of the pair of middle terms. Thus $\frac{(4+x)}{2}=$ median of the first set and $\frac{(5+y)}{2}-=$ median of the second set. Since both median are equal, we can set the equations equal to each other. $\frac{(4+x)}{2}=\frac{(5+y)}{2}$. Multiply both sides by 2 and we get $4+x=5+y$. we also know that $4<x<8$ and $5<y<9$, since the sets are arranged in ascending order. This narrows our options for $x$ and $y$ down significantly. Plugging in various values will eventually get you to $x=7$ and $y=6$, since $7+4=11$ and $5+6=11$, and thus the median in both cases would be 5.5. thus, $y-x=-1$

## Question 37

What is the median in the following set of numbers $16,19,16,7,2,20,9,5$.
(a) 2
(b) 16
(c) 4.5
(d) 12.5

Answer: d
Explanation:
$16,19,16,7,2,20,9,5$
Order the numbers from smallest to largest.
$2,5,7,9,16,19,20$
The median is the number in the middle.
In this case, there is a 9 and 16 in the middle.
When that happens, take the average of the two numbers.

## Question 38

Find the median: 4,4,4,4,6,7,9,9,12,12,12,12,12,12,12,18,76,90.
(a) 11.9
(b) 9
(c) 76
(d) 12

Answer: d
Explanation:
To find the median, arrange the numbers from smallest to largest:
4,4,4,4,6,7,9,9,12,12,12,12,12,12,18,76,90
There are 17 numbers in total. Since 17 is an odd number, the median will be the middle number of the set. In this case, it is the $9^{\text {th }}$ number, which is 12 .

## Question 39

There are 3,500 people in group $A$ and 5,000 people in group $B$ :

| Car type | \% in group A who own | \% in group B who own |
| :---: | :---: | :---: |
| Motorbike | 4 | 9 |
| Sedan | 35 | 25 |
| Minivan | 22 | 15 |
| Van | 9 | 12 |
| Coupe | 3 | 6 |

What is the median of the number of people in group B who own either a minivan.Van or coupe?
(a) 600
(b) 300
(c) 1500
(d) 750

Answer: A
Explanation:
Treat the percentage as a list, as we are including every demographic from the 3 vehicle types mentioned. If we do each $0.06(5000), 0.12(5000)$, and $0.15(5000)$ we note from observation that the median, or middle value, would have to be the $12 \%$ row
Since the sample size does not change. The question asks for EITHER of 3 categories, so we can ignore the other two.
$0.12(5000)=600(\mathrm{van})$ is the median of the 3 categories.
$8,12,9,8,7,11,10,6$

## Question 40

The grades on a test taken by 15 students are $50,70,87,95,100,34,56,76,43,88,92$, $76,82,45$, and 65 respectively. What was the medians score for this test?
(a) 73
(b) 76
(c) 70
(d) 89

Answer: b
Explanation:
To solve this problem, we must be aware of the definition of a median for a set of numbers. The median is defined as the number that is in middle of a set of numbers sorted from smallest to largest. Therefore, we must first sort the numbers from largest to smallest.
$34,43,45,50,56,65,70,76,76,87,88,92,95,100$
43,45,50,56,65,70,76,81,87,88,92,95
45,50,56,65,70,76,76,87,88,92
50, 56, 65, 70, 76,76,87,88
56, 65, 70,76,76,87
65, 70, 76, 76
70, 76, 76
76
Then by slowly eliminations the smallest and the largest numbers we find that the median score for this test is 76 .

## Question 41

Set A = [-10, 4, 2,-14,-2]
Quantity A: The mean of Set A
Quantity B: The median of set $A$
(a) Quantity B is greater.
(b) Quantity A is greater.
(c) The relationship cannot be
(d) The two quantities are equal. determined
Answer: a
Explanation:
Begin by reordering the set in numerical order:
Set $A=[-10,4,2,-14,-2]$
Then becomes
Set $A=[-14,-10,-2,2,4]$
Since there are an odd number of values, the median is the middle value.
Quantity B: -2
Now, to find the arithmetic mean, take the sum of values divided by the total number of values.
$\frac{-14-10-2+2+4}{5}$
Quantity A: -4

## Question 42

The arithmetic mean of $2-x, 3 x 2,7-15 x, x 2-8 x+23$ is -1
Quantity A: 3
Quantity B: The median of 2, x, 1, 4, 10, 8,, 2, x, 1, 4, 10, 8
(a) Quantity B is greater.
(b) Quantity A is greater
(c) The relationship cannot be
(d) The two quantities are equal. determined
Answer: a
Explanation:
X is an unknown value, but it can be found given what we know about the mean of the set 2-
$\mathrm{x}, 3 \mathrm{x} 2,7-15 \mathrm{x}, \mathrm{x} 2-8 \mathrm{x}+23$ :
$\frac{(2-x)+\left(3 x^{2}\right)+(7-15 x)+\left(x^{2}-8 x+23\right)}{4}=-1$
$4 x^{2}-24 x+32=-4$
$x^{2}-6 x+8=-1$
$x^{2}-6 x+9=0$
$(\mathrm{X}-3)(\mathrm{X}-3)=0$
$\mathrm{X}=3$
Now, Quantity B: is out of order; arrange in numerically:
$1,2, x=3,4,8,10$
Since, there is even number of values; the median is the mean of the two middle most values: Quantity B: $\frac{3+4}{2}=3.5$
$3+42=3.5$

## Question 43

Bill runs for 30 minutes at 8 mph and then runs for 15 minutes at 13 mph . what was his average speed during his entire run?
(a) 10 mph
(b) $9 \frac{2}{3} \mathrm{mph}$
(c) 11 mph
(d) $10 \frac{1}{2} \mathrm{mph}$

Answer: b
Explanation:
Rate = distance/time.
Find the distance for each individual segment of the run ( 4 miles and 3.25 miles.). Then add total distance and divide by total time to get the average rate, while making sure the units are compatible (miles per hour not mils per minute), which means the total 45 minute run time needs to be converted to 0.75 of an hour ; therefore ( 4 miles $+3.25 \mathrm{miles} / 0.75$ hour) is the final answer.

## Question 44

Find the mode for the following data.

| Age | $0-6$ | $6-12$ | $12-18$ | $18-24$ | $24-30$ | $30-36$ | $36-42$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frequency | 6 | 11 | 25 | 35 | 18 | 12 | 6 |

(a) 20.22
(b) 19.47
(c) 21.12
(d) 20.14

## Answer: a

Explanation:
Since, maximum class frequency is 35 , so the mode class is $18-24$.
Now, Mode $=\mathrm{L}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h$
$18+\left(\frac{35-25}{2 \times 35-25-18}\right) \times 6$
$=18+2.22=20.22$
Question 45
Find the median for the following distribution of workers.

| Daily wages | No. of workers | Daily wages | No. of workers |
| :--- | :--- | :--- | :--- |
| $1-3$ | 6 | $9-11$ | 21 |
| $3-5$ | 53 | $11-13$ | 16 |
| $5-7$ | 85 | $13-15$ | 4 |
| $7-9$ | 86 | $15-17$ | 4 |

(a) 7.14
(b) 6.84
(c) 5.92
(d) 5.57

Answer: b
Explanation:

| Daily wages | No. of workers | Cumulative frequency (cf) |
| :--- | :--- | :--- |
| $1-3$ | 6 | 6 |
| $3-5$ | 53 | 59 |
| $5-7$ | 85 | 144 |
| $7-9$ | 86 | 230 |
| $9-11$ | 21 | 251 |
| $11-13$ | 16 | 267 |
| $13-15$ | 4 | 271 |
| $15-17$ | 4 | 275 |

Here, $\mathrm{n}=275$
$\frac{n}{2}=137.5$
Median class 5-7
Median $=1+\left(\frac{\frac{n}{2} \text { c.f. }}{f}\right) \times \mathrm{h}$
$=5+\left(\frac{137.5-59}{85}\right) \times 2=5+\frac{78.5}{85} \times 2$
$=5+1.84$
$=6.84$

## Question 46

In an examination of $\mathbf{6 7 5}$ candidates of maximum marks 100 the examiner supplied the following information.

| Marks obtained | No. of candidates |
| :---: | :---: |
| Less than $\mathbf{1 0 \%}$ | 7 |
| Less than $\mathbf{2 0 \%}$ | 39 |


| Less than $30 \%$ | 95 |
| :---: | :---: |
| Less than $40 \%$ | 201 |
| Less than $50 \%$ | 381 |
| Less than $60 \%$ | 545 |
| Less than $70 \%$ | 631 |
| Less than $80 \%$ | 675 |

Calculated median and mode respectively of the percentage marks obtained.
(a) $47,58,46,33$
(b) $49,12,48,22$
(c) $45,24,46,22$
(d) $47.58,48.22$

Answer: d
Explanation:

| Marks (fi) | cf | Frequency |
| :---: | :---: | :---: |
| $0-10$ | 7 | 7 |
| $10-20$ | 39 | 32 |
| $20-30$ | 95 | 56 |
| $30-40$ | 201 | 106 |
| $40-50$ | 381 | 180 |
| $50-60$ | 545 | 164 |
| $60-70$ | 631 | 86 |
| $70-80$ | 675 | 44 |

Here, $\mathrm{n}=675$
$\frac{n}{2}=337.5$
So, median class 40-50
Median $=1+\left(\frac{\frac{n}{2}-c . f .}{f}\right) \times \mathrm{h}$
$40+7.58=47.58$
Now, maximum frequency is 180
So modal class is 40-50
Modes $=1+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times \mathrm{h}$
$40+\left(\frac{180-106}{2 \times 180-106-164}\right) \times 10$
$40+\frac{74}{90} \times 10=40+8.22=48.22$

## Question 47

Find the mean, median and mode of the following data.

| Classes | $0-20$ | $20-40$ | $40-60$ | $60-80$ | $80-100$ | $100-120$ | $120-$ <br> 140 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frequency | 6 | 8 | 10 | 12 | 6 | 5 | 3 |

(a) 88
(b) 60
(c) 65
(d) 100

Answer: C
Explanation:

| Class | (xi) | Frequency <br> (fi) | xifi | Cumulative <br> frequency (cf) |
| :--- | :--- | :--- | :--- | :--- |
| $0-20$ | 10 | 6 | 60 | 6 |
| $20-40$ | 30 | 8 | 240 | 14 |


| $40-60$ | 50 | 10 | 500 | 24 |
| :--- | :--- | :--- | :--- | :--- |
| $60-80$ | 70 | 12 | 840 | 36 |
| $80-100$ | 90 | 6 | 540 | 42 |
| $100-120$ | 110 | 5 | 550 | 47 |
| $120-140$ | 130 | 3 | 390 | 50 |
| Total |  | $\Sigma \mathrm{fi}=50$ | $\Sigma$ fixi $=3120$ |  |

Mean $=\frac{\Sigma f i x i}{\Sigma f i}$
$=\frac{3120}{50}=62.4$
$\mathrm{n}=50, \frac{n}{2}=25$
Median class is 60-80
Median $=1+\frac{\left(\frac{n}{2}-c . f .\right)}{f} \times \mathrm{h}$
$=60+\left(\frac{25-24}{12}\right) \times 20$
$=60+1.67$
Maximum frequency is 12 , so modal class is 60-80
Mode $=1+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times \mathrm{h}$
$60+\left(\frac{12-10}{2 \times 12-10-6}\right) \times 20$
$60+5=65$
Question 48
The mean of $1,3,4,5,7,4$ is m . The numbers $3,2,2,4,3,3, p$ have mean $\mathrm{m}^{-1}$ and median q . Then, $p+q=$
(a) 4
(b) 5
(c) 6
(d) 7

Answer: d
Explanation:
Mean of $1,3,4,5,7$ and 4 is m .
$\rightarrow \frac{1+3+4+5+7+4}{6}=\mathrm{m}$
$\mathrm{M}=4$
Now, mean of $3,2,2,4,3,3$ and $p$ is $\mathrm{m}^{-1}$
$\frac{3+2+2+4+3+3+p}{6}=3$
$(\therefore \mathrm{m}=4) \rightarrow 17+\mathrm{p}=21$
$\Rightarrow p=4$
Arranging 3, 2, 2,4,3,3 and 4 in ascending order, we get 2,2,3,3,3,4,4
$\therefore$ Median $(q)=n\left(\frac{7+1}{2}\right)^{m}$ term $-4^{\text {th }}$ term $=3$
$\therefore \mathrm{p}+\mathrm{q}=4+3=7$

## Question 49

The mean of six numbers is 21 . If one number is excluded, then their mean is 19 , the excluded number is $\qquad$ .
(a) 31
(b) 26
(c) 28
(d) 25

Answer: a
Explanation:

Let the excluded number be x and the sum of rest of numbers be y. then, $21=\frac{x+y}{6}$
$\rightarrow 126=\mathrm{x}+\mathrm{y}$
$19=\frac{y}{5}$
$\rightarrow \mathrm{y}=95$
$\therefore$ From (i)
$\mathrm{x}=31$

## Question 50

If $7,2,9$, and 5 occur with frequencies $2,3,6$ and 4 respectively, then the arithmetic mean is - $\qquad$ .
(a) 6.25
(b) 6.75
(c) 6.27
(d) 6.42

Answer: c
Explanation:
Arithmetic mean $=\frac{x 1 f 1+x 2 f 2+\cdots+x n f n}{f 1+f 2+\cdots+f n}$
$\frac{(7 \times 2)+(2 \times 3)+(9 \times 6)+(5 \times 4)}{2+3+6+4}$
$\frac{14+6+54+20}{15}=\frac{94}{15}=6.27$

## Question 51

Find $n$ such that $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ may be the geometric mean between $a$ and $b$ :
(a) $\frac{1}{2}$
(b) 1
(c) $\frac{-1}{2}$
(d) 0

Answer: c
Explanation:
We know that geometric mean between $\mathrm{a} \& \mathrm{~b}$ is $\mathrm{a} \& \mathrm{~b}=\sqrt{a b}$
It is given that
G.M. between $\mathrm{a} \& \mathrm{~b}=\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$
$\sqrt{a b}=\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$
$a b^{\frac{1}{2}}=\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$
$(a b)^{\frac{1}{2}\left(a^{n}+b^{n}\right)=a^{n+1}}+b^{n+1}$
$\mathrm{a} \frac{1}{2} \mathrm{~b} \frac{1}{2}\left(a^{n}+\mathrm{b}^{\mathrm{n}}\right)=\mathrm{a}^{\mathrm{n}+1}+\mathrm{b}^{\mathrm{n}+1}$
$\frac{1}{a^{2}}+\mathrm{n}=\frac{b^{n}+\frac{1}{2}\left[\frac{1}{b^{2}}-\frac{1}{a^{2}}\right]}{\frac{1}{b^{2}}-\frac{1}{a^{2}}}$
$\frac{1}{a^{2}}+\mathrm{n}=1$
$\left(\frac{a}{b}\right)^{\frac{1}{2}+n}=\left(\frac{a}{b}\right)^{0}$
Comparing power
$\frac{1}{2}+\mathrm{n}=0$
$\mathrm{n}=-\frac{1}{2}$

Question 52
What is the mode of $10,2,8,6,7,8,9,10,10,11$ and 10 ?
(a) 10
(b) 12
(c) 14
(d) 8

Answer: a
Explanation:
Mode = observation with the highest frequency $=10$

## Question 52

The mean of the marks in statistics of 100 students in class $x$ was 72 . The mean of marks for boys was 75 , while their number was 70 . What is the mean of marks of girls in the class?
(a) 35
(b) 65
(c) 68
(d) 86

Answer: b
Explanation:
Total marks of boys
Total number of girls
$\frac{100 \times 72-75 \times 70}{30}=\frac{7200-5250}{30}$
$\frac{1950}{30}=65$

## Question 53

Which of the following is true about the mode of a given data?
(a) It may or may not exist for a
(b) It is always unique.
Given data.
(c) It is very difficult to compute Mode.
(d) We cannot calculate mode without The empirical formula.

Answer: a
Explanation:
Mode of a given data may or may not exist sometimes.
Range $=22-6=16$

## Question 54

The A.M. of 12 observations is 15 . If an observation 20 is removed, what is the arithmetic mean of the remaining observations?
(a) 14.5
(b) 13
(c) 15
(d) 13.5

Answer: a
Explanation:
he A.M. of 12 observations is 15 .
$\rightarrow$ Sum of 12 observations $=12 \times 15=180$
An observation 20 is removed
$\rightarrow$ Mean of the remaining observations
$=\frac{180-20}{(12-1)}=\frac{160}{11}=14.5$

## Question 55

If for a given data median is 125.6 and mean is 128 , find mode.
For more Info Visit - www.KITest.in
(a) 120.8
(b) 128.0
(c) 108.2
(d) 180.2

Answer: a
Explanation:
Given median $=125.6$ and mean $=128$. Mode $=3$ Median -2 Mean
$=(3 \times 125.6)-(2 \times 128)$
$=376.8-256$
$=120.8$

## Question 56

What is the arithmetic mean of $a+2$, $a$ and $a-2$ ?
(a) $a+2$
(b) a
(c) $a-2$
(d) 3 a

Answer: b
Explanation:
Mean $=\frac{a+2+a+a-2}{3}=\frac{3 a}{3}=\mathrm{a}$
Question57
Which of the following is not a measure of central tendency?
(a) Mean
(b) Median
(c) Mode
(d) Standard deviation

Answer: d
Explanation:
Mean, median and mode are the measures of central tendency.

## UNIT II: DISPERSION



DISPERSION

CLASSIFICATION OF DISPERSION

The amount of deviation of the observations, usually, from an appropriate measure of central tendency. Two distributions may be identical in respect of its first important characteristic i.e. central tendency and yet they may differ on account of scatterness.


## Range $=$ L-S

## ALGEBRIC MEASURES

$$
M e a n(\text { population })=\mu=\frac{\sum_{i=1}^{k} f_{i} w_{i}}{m}
$$

StandardDeviation(population) $=\sigma=\sqrt{\sum_{i=1}^{h} \frac{f_{h}\left(x_{i}-\mu\right)^{2}}{n}}$ $\operatorname{Vartance}($ population $)=\sigma^{2}=\sum_{i=1}^{k} \frac{f_{i}\left(p_{i}-\mu\right)^{2}}{n}$

## RELATIVE MEASURES

(i) Coefficient of Range

$$
=\frac{\text { Range }}{\text { Highest value }+ \text { Lowest value }} \times 100
$$

(ii) Coefficient of Variation
$=\frac{\text { Standard Deviation }}{\text { Mean }} \times 100$
(iii) Coefficient of Quartile Deviation
$=\frac{\text { Quartile Deviation }}{\text { Median }} \times 100$
(iv) Coefficient of Mean Deviation

$$
=\frac{\text { Mean Deviation }}{\text { Mean or Median }} \times 100
$$



## Question 1

Following are the wages of 8 workers expressed in rupees: 82, 96, 52, 75, 70, 65, 50, 70. Find the range and also its coefficient.
(a) $46,31.51$
(b) 64,32
(c) 56,76
(d) 90,33

Answer: a
Explanation:
The largest and the smallest wages are $\mathrm{L}=$ Rs. 96 and $\mathrm{S}=$ Rs. 50 Thus range $=$ Rs. 96 - Rs. $50=$ Rs. 46

Coefficient of range $=\frac{96-50}{96+50} \times 100$
= 31.51

## Question 2

What is the coefficient of range for the following distribution of weights?

| Weights in <br> kgs: | $50-54$ | $55-59$ | $60-64$ | $65-69$ | $70-74$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| No. of <br> students | 12 | 18 | 23 | 10 | 3 |

(a) 20
(b) 21
(c) 20.16
(d) 40.34

Answer: c
Explanation:
The lowest class boundary is 49.50 kgs. And the highest class boundary is 74.50 kgs .
Thus we have
Range $=74.50 \mathrm{kgs},-49.50 \mathrm{kgs}$.
$=25 \mathrm{kgs}$.
Coefficient of range $=\frac{74.50-49.50}{74.50+49.50} \times 100$
$=\frac{25}{124} \times 100$
$=20.16$

## Question 3

Anubhav scored 85, 91, 88, 78, 85 for a series of exams. Calculate the mean deviation for his test scores?
(a) 3.28
(b) 5.78
(c) 6.89
(d) None

Answer: a
Explanation:
Given test score; 85, 91, 88, 78, 85
Mean $=\frac{(85+91+88+78+85)}{5}=85.4$
Subtracting mean from each score:

| $\mathbf{x}$ | $\mathbf{x}_{\mathbf{i}} \mathbf{x}$ | $\left\|x_{i}-\boldsymbol{x}\right\|$ |
| :---: | :---: | :---: |
| $\mathbf{8 5}$ | -0.4 | 0.4 |
| $\mathbf{9 1}$ | 5.6 | 5.6 |
| $\mathbf{8 8}$ | 2.6 | 2.6 |
| $\mathbf{7 8}$ | -7.4 | 7.4 |
| $\mathbf{8 5}$ | -0.4 | 0.4 |

Mean deviations $=\frac{16.4}{5}=3.28$

## Question 4

The wheat production (in kg ) of 220 acres is given as: 1120, 1240, 1320, 1040, 1080, 1200, 1440, 1360, 1680, 1730, 1785, 1342, 1960, 1880, 1755, 1720, 1600, 1470, 1750, and 1885 . Find the quartile deviation
(a) 246.875
(b) 246
(c) 246.89
(d) 175

## Answer: a

Explanation:
After arranging the observations in ascending order, we get
1040, 1080, 1120, 1200, 1240, 1320, 1342, 1360, 1440, 1470, 1600, 1680, 1720, 1730, 1750, 1755, 1785, 1880, 1885, 1960.
Q1 = Value of $\left(\frac{n+1}{4}\right)$ th item
$=$ Value of $\left(\frac{20+1}{4}\right)^{\text {th }}$
$=$ Value of $(5.25)^{\text {th }}$ item
$=5^{\text {th }}$ item $+0.25\left(6^{\text {th }}\right.$ item $-5^{\text {th }}$ item $)=1240+0.25(1320-1240)$
Q1 $=1240+20=1260$
$\mathrm{Q} 3=$ value of $3\left(\frac{n+1}{4}\right)$ th item
= value of $3\left(\frac{20+1}{4}\right)$ thitem
$=$ value of $(15.75)^{\text {th }}$ item $=15^{\text {th }}$ item $+0.75\left(16^{\text {th }}\right.$ item $-15^{\text {th }}$ item $)=1750$
Q3 $=1750+3.75=1753.75$
Q. D. $=\frac{Q_{3}-Q_{1}}{2}=\frac{1753.75-1260}{2}=\frac{492.75}{2}$
$=246.875$

## Question 5

Compute coefficient of variation from the following data:

| Age : | under | under | under | under | under | under |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 20 | 30 | 40 | 50 | 60 |  |
| No. of persons <br> dying: | 10 | 18 | 30 | 45 | 60 | 80 |

(a) 48.83
(b) 89.88
(c) 756.34
(d) None

Answer: a
Explanation:

| Age in years <br> class <br> interval | No. of <br> persons dying <br> $\left(\mathbf{f}_{\mathbf{i}}\right)$ | Mid value <br> $\left(\mathbf{x}_{\mathbf{i}}\right)$ | $\mathbf{d}_{\mathbf{i}}=\mathbf{x}_{\mathbf{i}}-\mathbf{2 5}$ <br> $\mathbf{1 0}$ | $\mathbf{f}_{\mathbf{i}} \mathbf{d}_{\mathbf{i}}$ | $\mathbf{f}_{\mathbf{i} \mathbf{i}^{\mathbf{2}}}{ }^{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $0-10$ | 10 | 5 | -2 | -20 | 40 |
| $\mathbf{1 0 - 2 0}$ | $18-10=8$ | 15 | -1 | -8 | 8 |
| $\mathbf{2 0 - 3 0}$ | $30-18=12$ | 25 | 0 | 0 | 0 |
| $\mathbf{3 0 - 4 0}$ | $45-30=15$ | 35 | 1 | 15 | 15 |
| $\mathbf{4 0 - 5 0}$ | $60-45=15$ | 45 | 2 | 30 | 60 |
| $\mathbf{5 0 - 6 0}$ | $80-60=20$ | 55 | 3 | 60 | 180 |
| Total | 80 | - | - | 77 | 303 |

The AM is given by:
$\overline{\mathrm{x}}=\mathrm{A}+\frac{\Sigma f_{i} d_{i}}{N} \times \mathrm{C}$
$=25\left(\frac{77 \times 10}{80}\right)$ years
$C V=\frac{S}{x} \times 100$
$=34.63$ years
The standard deviation is
$\sqrt{\frac{\Sigma f_{i} d_{i}}{N}-\left[\frac{\Sigma f_{i} d}{N}\right]^{2}} \times \mathrm{C}$
$\sqrt{\frac{303}{80}-\left[\frac{77}{80}\right]^{2} \times 10 \text { years }}$
$\sqrt{3.79-0.93} \times 10$ year
$=16.91$ years
Thus the coefficient of variation is given by
$=\frac{16.91}{34.63} \times 100$
$=48.83$

## Question 6

What is the mean deviation about mean for the following numbers? $5,8,10,10,12,9$.
(a) 1.74
(b) 1.67
(c) 1.87
(d) 1.47

Answer: b
Explanation:
The mean is given by
$\overline{\mathrm{X}}=\frac{5+8+10+10+12+9}{6}$
$=9$
Computation of MD about AM

| $\mathbf{X}_{\mathrm{i}}$ | $\mathbf{X}_{\mathrm{i} \cdot} \mathbf{X}$ |
| :---: | :---: |
| 5 | 4 |
| 8 | 1 |
| 10 | 1 |
| 10 | 1 |
| 12 | 3 |
| 9 | 0 |
| Total | 10 |

Thus mean deviation about mean is given by
$\mathrm{X}_{\mathrm{i}}-\mathrm{X}=\frac{\Sigma 10}{6}=1.67$

## Question 7

From the above data calculate coefficient of mean deviation
(a) 12.45
(b) 123
(c) 989
(d) None

Answer: a
Explanation:
Coefficient of mean deviation $=\frac{\text { MD about Median }}{\text { Median }} \times 100$
$\frac{8714.28}{70000} \times 100$
$=12.4$

## Question 8

For a group of 60 boy5 students, the mean and SD of stats. Marks are 45 and 2 respectively. The same figures for a group of 40 girl students are 55 and 3 respectively. What is the SD of marks if the two groups are pooled together?
(a) 5.44
(b) 5.48
(c) 49
(d) 3

Answer: c

Explanation:
$\mathrm{X}=\frac{n_{1} x_{1}+n_{2} x_{2}}{n_{1}+n_{2}}$
$\frac{60 \times 45+40 \times 55}{60+40}$
$=49$

## Question 9

From the above questions and expression find standard deviation of marks
(a) 5.44
(b) 5.48
(c) 30
(d) 3

Answer: b
Explanation:
$d_{1}=\mathrm{X}_{1}-\mathrm{X}=45-49=-4$
$S=\sqrt{\frac{n_{1} S_{1}{ }^{2}+n_{2} s_{2}{ }^{2}+n_{1} d_{1}{ }^{2}+n_{2} d_{2}{ }^{2}}{n_{1}+n_{2}}}$
$d_{1}=X_{1}-\mathrm{X}=55-49=6$

$$
\frac{\sqrt{60 \times 2^{2}+40 \times 3^{2}+60 \times(-4)^{2}+40+6^{2}}}{60+40}
$$

$\sqrt{30}=5.48$
Question10
Calculate the mean deviation about median for the following data

| Class | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 6 | 7 | 15 | $\frac{1}{6}$ | 4 | 2 |

(a) 10.16
(b) 30.69
(c) 28
(d) 30

Answer: a
Explanation:

| Class | Frequency | Cumulative <br> frequency | Mid - point <br> Xi |
| :---: | :---: | :---: | :---: |
| $0-10$ | 6 | 6 | 5 |
| $10-20$ | 7 | $7+6=13$ | 15 |
| $20-30$ | 15 | $13+15=28$ | 25 |
| $30-40$ | 16 | $28+16=44$ | 35 |
| $40-50$ | 4 | $44+4=48$ | 45 |
| $50-60$ | 2 | $48+2=50$ | 55 |
|  | 50 |  |  |

$\mathrm{N} \Sigma \mathrm{f}_{\mathrm{i}}=50$
Median Class $\left(\frac{N}{2}\right)^{\text {th }}$ term
$\left(\frac{50}{2}\right)^{\text {th }}$ term
$25^{\text {th }}$
In above data cumulative frequency of class 20-30 is 28 which is slightly greater than 25 .
$\therefore$ Median class $=20-30$

Median $=1+\frac{\frac{N}{2}-c}{f} \times \mathrm{h}$
Where,
L = Lower limits of median class
$\mathrm{N}=$ Sum of frequencies
$\mathrm{F}=$ frequency of median class
C = Cumulative frequency of class before median class
Here, $\mathrm{l}=20, \mathrm{~N}=50, \mathrm{C}=13, \mathrm{~h}=10, \mathrm{f}=15$
Median $=1+\frac{\frac{N}{2}-c}{f} \times h$
$20+\frac{\frac{50}{2}-13}{15} \times 10$
$20+\frac{12}{15} \times 10$
$20+8=28$
Finding mean deviations about Median $=\frac{\Sigma f_{i\left|X_{I}-M\right|}}{\Sigma f_{i}}$

| Class | Frequency | Cumulative <br> frequency | Mid - point <br> $\mathrm{x}_{\mathrm{i}}$ | $\left\|x_{i}-M\right\|$ | $f_{i}\left\|x_{i}-M\right\|$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $0-10$ | 6 | 6 | 5 | $\|5-28\|=23$ | $6 \times 23=138$ |
| $10-20$ | 7 | $7+6=13$ | 15 | $\|15-28\|=13$ | $7 \times 13=91$ |
| $20-30$ | 15 | $13+15=28$ | 25 | $\|25-28\|=3$ | $15 \times 3=45$ |
| $30-40$ | 16 | $28+16=44$ | 35 | $\|35-28\|=7$ | $16 \times 7=112$ |
| $40-50$ | 4 | $44+4=48$ | 45 | $\|45-28\|=17$ | $4 \times 17=68$ |
| $50-60$ | 2 | $48+2=50$ | 55 | $\|55-28\|=27$ | $2 \times 27=54$ |
|  | $\Sigma f_{i}=50$ |  |  | $\Sigma f_{i}\left\|x_{i}-M\right\|$ | 508 |

$\sum f_{i}=50 \&\left|x_{i}-M\right|=508$
$\therefore$ Mean deviation $(\mathrm{M})=\frac{\sum f_{i}\left|x_{i}-M\right|}{\sum f_{i}}$
$\frac{508}{50}=10.16$

## Question 11

5 students obtained following marks in statistics: 20, 35, 25, 30, 15 find out range and coefficient of range.
(a) $20,0.4$
(b) 20, 0.5
(c) 30,10
(d) 30,5

## Answer: a

Explanation:
Here,
Highest value (H) = 35
Lowest value ( L ) = 15
Range $=$ Highest value - Lowest value
i.e. $\mathrm{R}=\mathrm{H}-\mathrm{L}$

Substituting the given values in the formula
$\mathrm{R}=35-15=20$
Coefficient of range is as follows:
CR $=\frac{H-L}{H+L}$
Or, $C R=\frac{35-15}{35+15}$
$=\frac{20}{50}$
$C R=0.4$
Hence, the range ( R ) of the above data is 20 and coefficient of Range (CR) is 0.4

## Question 12

Prices of shares of a company were not as under from Monday through Saturday. Find out range and the coefficient of range.

| Day | Mon. | Tues. | Wed. | Thu. | Fri | Sat. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Price | 200 | 210 | 208 | 160 | 220 | 250 |

(a) $20,0.4$
(b) $90,0.22$
(c) $30,0.65$
(d) $30,5.69$

Answer: b
Explanation:
Here,
Highest value among the prices of shares =
250 Lowest value among the prices of shares $=160$
Range (R) = Highest value (H) - Lowest value (L) or, $R=250-160$
$\mathrm{R}=90$
Coefficient of Range 9CR $)=\frac{\mathrm{H}-\mathrm{L}}{\mathrm{H}+\mathrm{L}}$
Or, CR $=\frac{250-160}{250+160}$
$=\frac{90}{410}$
CR $=0.219$ or 0.22 (Approx.)
Question13
You know share market is going bullish during the last several months. Collect weekly data on the share price of any two important industries during the past six months. Calculate the range of share prices. Comment on how volatile is the share prices.
(a) Tata motors shares are more
(b) Tata motors shares are less volatile volatile as compared to the prices of Reliance shares. as compared to the prices of Reliance
shares.
(c) Tata motors shares are equal as a
(d) None of these

To the prices of Reliance shares.
Answer: b
Explanation:

| Month | Price of shares Tata Motors | Price of shares Reliance |
| :--- | :--- | :--- |
| Oct. | 325 | 913.35 |
| Nov. | 397 | 900.25 |
| Dec. | 405 | 750.90 |
| Jan. | 415 | 780.70 |
| Feb. | 420 | 799.25 |
| Mar. | 388 | 850.35 |

For TATA Motors Highest Value $=420$ Lowest Value $=325$
Range (R) = Highest Value (H) - Lowest Value (L) or, $\mathrm{R}_{1}=420-325$
$\mathrm{R}_{1}=95$
Coefficient of Range (CR) $=\frac{\mathrm{H}-\mathrm{L}}{\mathrm{H}+\mathrm{L}}$

Or, $\mathrm{Cr}=\frac{420-325}{420+325}$
$=\frac{95}{745}=0.127$
For Reliance
Highest Value $=913.35$
Lowest value $=750.90$
Range (R) = Highest Value (H) - lowest Value (L) or, $\mathrm{R}_{2}=913.25-750.90$
$\mathrm{R}_{2}=162.45$
Coefficient of Range (CR) $=\frac{\mathrm{H}-\mathrm{L}}{\mathrm{H}+\mathrm{L}}$
$C R=\frac{913.35-750.90}{913.35+750.90}$
$=\frac{162.45}{1664.25}=0.097$
From the above results we can observe that the price of the Tata Motors shares is less volatile as compared to the prices of Reliance shares.

## Question 14

Calculate range and the coefficient of range of the following series:

| Marks | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of students | 15 | 18 | 25 | 30 | 16 | 10 | 9 |

(a) $20,0.4$
(b) $20,0.5$
(c) $60,0.75$
(d) 30,5

## Answer: c

Explanation:
Here,
Highest value $=70$
Lowest value $=10$
Range (R) = Highest value (H) - Lowest Value (L)

$$
\begin{aligned}
& =70-10 \\
& =60
\end{aligned}
$$

Coefficient of Range (CR) $=\frac{H-L}{H+L}$
$\mathrm{CR}=\frac{70-10}{70+10}=\frac{60}{80}=0.75$
Hence, the Range (R) of the above series is 60 and coefficient of Range (CR) is 0.75

## Question15

Find the variance of the following data: $6,8,10,12,14,16,18,20,22,24$.
(a) 33
(b) 15
(c) 10
(d) 14

Answer: a
Explanation:

| $\mathrm{Xi}^{2}$ | $d_{i}=\frac{x_{i}-14}{2}$ | $x_{i}-\mathrm{x}$ | $\left(x_{i}-x\right)^{2}$ |
| :---: | :---: | :---: | :---: |
| 6 | $\frac{6-14}{2}=-4$ | $6-15=-9$ | $(-9)^{2}=81$ |
| 8 | $\frac{8-14}{2}=3$ | $8-15=-7$ | $(-7)^{2}=49$ |


| 10 | $\frac{10-14}{2}=-2$ | $10-15=-5$ | $(5)^{2}=25$ |
| :---: | :---: | :---: | :---: |
| 12 | $\frac{12-14}{2}=-1$ | $12-15=-3$ | $(-3)^{2}=9$ |
| 14 | $\frac{14-14}{2}=0$ | $14-15=-1$ | $(-1)^{2}=1$ |
| 16 | $\frac{16-14}{2}=1$ | $16-15=1$ | $(1)^{2}=1$ |
| 18 | $\frac{20-14}{2}=2$ | $18-15=3$ | $(3)^{2}=9$ |
| 20 | $\frac{22-14}{2}=4$ | $20-15=5$ | $(5)^{2}=25$ |
| 22 | $\frac{24-14}{2}=5$ | $22-15=7$ | $(7)^{2}=49$ |
| 24 | $\sum \frac{1^{0}}{1} d_{i}=5$ |  | $(9)^{2}=81$ |

Mean $\overline{\mathrm{X}}=$ assumed mean $\frac{\sum \frac{1^{0}}{1}}{n} \times \mathrm{h}$
Where $\mathrm{a}=$ assumed mean $=14$
$d_{i}=\frac{x_{i}-a}{h}$
$\mathrm{h}=$ class width $=8-6=2$
$\mathrm{n}=$ number of observation $=10$
Mean $\bar{X}=14+\frac{5}{10} \times 2=15$
Variance $\left(0^{2}\right)=\frac{1}{n} \Sigma\left(x_{i}-\bar{X}\right)^{2}$
$\frac{1}{10} \times 330$
33

## Question 16

Find the standard deviation of the following data:

| Class | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-$ <br> 100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frequency | 3 | 7 | 12 | 15 | 8 | 3 | 2 |

(a) 14
(b) 50
(c) 62
(d) 14.17

Answer: d
Explanation:

| Class | Frequency <br> $\left(f_{i}\right)$ | Mid - point <br> $\left(x_{i}\right)$ | $f_{i} x_{i}$ |
| :--- | :--- | :--- | :---: |
| $30-40$ | 3 | 35 | $35 \times 3=105$ |
| $40-50$ | 7 | 45 | $45 \times 7=315$ |
| $50-60$ | 12 | 55 | $55 \times 12=660$ |
| $60-70$ | 15 | 65 | $65 \times 15=975$ |
| $70-80$ | 8 | 75 | $75 \times 8=600$ |


| $80-90$ | 3 | 85 | $85 \times 3=255$ |
| :--- | :--- | :--- | :--- |
| $90-100$ | 2 | 95 | $95 \times 2=190$ |
|  | $\sum f_{i}=50$ |  | $\sum f_{i} x_{i}=3100$ |

$\sum f_{i} x_{i}=3100$
$\sum f_{i}=50$
Mean $\bar{X}=\frac{\sum f_{I} x_{i}}{\sum f_{i}}$
$\frac{3100}{50}=62$
Variance $\left(O^{2}\right)=\frac{1}{n} \Sigma\left(x_{i}-\bar{X}\right)^{2}$
$\frac{1}{50} \times 10050=201$
Standard deviation $\left(O^{\prime}\right)=\sqrt{201}$
$\left(O^{\prime}\right)=14.17$

## Questioin17

Estimate coefficient of quartile deviation of the following data:

| Sr. No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Data | 8 | 9 | 11 | 12 | 13 | 17 | 20 | 21 | 23 | 25 | 27 |

(a) 3.53
(b) 0.353
(c) 0.689
(d) 0.591

Answer: b
Explanation:
In order to find the quartile deviation in case of individual series, we need to find out the values of third quartile and first quartile using the following equations:
$\mathrm{Q}_{1}=$ size of $\left(\frac{N+1}{4}\right)^{\text {th }}$ item
$Q_{1}=$ size of $\left(\frac{11+1}{4}\right)^{\text {th }}$ item
$\mathrm{Q}_{1}=$ size of 3th term
$\mathrm{Q}_{1}=11$
$\mathrm{Q}_{1}=$ size of $3\left(\frac{N+1}{4}\right)^{\text {th }}$ item
$\mathrm{Q}_{1}=$ size of $3\left(\frac{11+1}{4}\right)^{\text {th }}$ item
Or, $Q_{3}=$ size of $9^{\text {th }}$ term
Or, $Q_{3}=23$
Calculating Quartile Deviation and Coefficient of Quartile Deviation:
Quartile Deviation (Q.D.) $\frac{Q_{3}-Q_{1}}{2}$
Q.D. $\frac{23-11}{2}$
Q.D. $\frac{12}{2}$
Q.D. $=6$

Coefficient of Quartile Deviation (Q.D.) $\frac{Q_{3}-Q_{1}}{Q_{3}+Q_{2}}=\frac{23-11}{23+11}=\frac{12}{34}=0.353$

## Question18

A measure of relative dispersion is given by the:
(a) Co-efficient of variance
(b) Standard deviation
(c) Quartile deviation
(d) Variance

Answer: a
Explanation:
Co-efficient of variance: This term is used commonly to mean scatter, deviation, Fluctuation, Spread or variability of data. .... Relative Measures of Dispersion Relative measures of dispersion are also known as coefficient of dispersion are obtained as ratios or percentages.

Question19
The ___ is the easiest measure of dispersion to calculate.

| Symbol | Symbol Name | Meaning / definitions |
| :---: | :--- | :--- |
| Var $(X)$ | variance | variance of random variable X |
| $\mathrm{O}^{2}$ | variance | variance of population values |
| std $(\mathrm{X})$ | standard deviation | standard deviation of random variable X |
| $\mathrm{O}_{x}^{\prime}$ | standard deviation | standard deviation value of random variable X |

(a) Standard Deviation
(b) Range
(c) Mean absolute deviation
(d) Variance

Answer: b
Explanation:
Range is basically the difference between the lowest and highest values.

## Question20

Which of the following symbols represents the standard deviation of the population?
(a) $\mathrm{O}^{2}$
(b) $\mu$
(c) $\mathrm{O}^{\prime}$
(d) $\bar{X}$

Answer: c
Explanation:
O'

## Question21

## The variance can never be

(a) Larger than the standard deviation
(b) Negative
(c) Smaller than the standard deviation
(d) Zero

Answer: b
Explanation:
Sometimes (negative or positive number) squared is always a positive number, except zero squared which is still zero. .... Because the squared deviations are all positive numbers or zeroes, their smallest possible mean is zero. It can't be negative. This average of the squared deviations is in fact variance. Hence the variance can be negative.

## Question22

The numerical value of the standard deviation can never be
(a) Negative
(b) Larger than the variance
(c) Zero
(d) None

Answer: a
Explanation:

Standard deviation formula is computed using squares of the numbers. Square of a number cannot be negative. Hence standard deviation cannot be negative. Here (x-mean) is squared, so, this cannot be negative. N , number of terms cannot be negative, hence SD cannot be negative.

## Question23

The description measure of dispersion that is based on the concept of a deviation about the mean is
(a) The absolute value of the range
(b) Range
(c) Standard deviation
(d) Inter quartile range

Answer: c
Explanation:
A measure of dispersion is a numerical value describing the amount of variability present in a data set. The standard deviation (SD) is the most commonly used measures of dispersion. With the SD you can measure dispersion relative to the scatter of the values about their mean.

## Question24

When should measures of location and dispersion be computed from grouped data rather than from individual data values?
(a) Whenever computer packages for
(b) As much as possible since computations descriptive statistics are unavailable are easier
(c) Only when the data are from a population
(d) Only when individual data values are unavailable
Answer: d
Explanation:
Only when individual data values are unavailable should measures of location and dispersion be computed from grouped data rather than from individual data values.

## Question25

## Which information is false regarding Lorenz curve

(a) The Lorenz curve devised by Dr. Max 0 . is a graphic method of studying
(b) Used this technique to show employment of a group of people
Dispersion.
(c) The Lorenz curve always lies below the line of equal distribution, unless the distribution is uniform
(d) The area between the line of equal distribution and the plotted curve gives the extent of inequality in the items. The larger the area, more is the inequality

Answer: b

## Explanation:

A graph on which the cumulative percentage of total national income (or some other variable) is plotted against the cumulative percentage of the corresponding population (ranked in increasing size of share). The extent to which the curve saqs below a straight diagonal line indicates the degree of inequality of distribution.

Question25
Adding a constant to each value in a data set does not change the distance between values so the standard deviations remains.
(a) Constant
(b) Vary
(c) Vary with multiple of prime
(d) None of these

## Answer: a

## Explanation:

For example, consider the following numbers
$2,3,4,4,5,6,8,10$ for this set odd data standard deviation would be
$8=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-x\right)^{2}}{n-1}}$
$8=\sqrt{\frac{(2-5.25)^{2}+(3-5.25)^{2}+\cdots+(10-5.25)^{2}}{8-1}}$
$8=2.65922$
If we were to add 5 to each value in this data set. The new set of values would be $7,8,9,9,10$, $11,13,15$
$8=\sqrt{\frac{(7-10.25)^{2}+(8-10.25)^{2}+\cdots+(15-10.25)^{2}}{8-1}}$
$8=2.65922$
As you can see the s.d. remains the same unless you multiply every value by a constant

## PAST EXAMINATION QUESTIONS:

## MAY 2018

## Question1

If the variables $x$ and $z$ are so related that $z=a x+b$ for each $x=x_{1}$ where $a$ and $b$ are constant, then $\overline{\mathrm{Z}}=\mathbf{a} \overline{\mathbf{X}}+\mathbf{b}$
(a) True
(b) False
(c) Both
(d) None

Answer: a

## Explanation:

If the variable ' X ' and ' Z ' are so related that $\mathrm{Z}=\mathrm{ax}+\mathrm{b}$ for each x
$=\mathrm{x}$; where and a and b are constant then $\mathrm{Z}=\mathrm{ax}+\mathrm{b}$ then it is true.

## Question2

Relation between mean, median and mode is:
(a) Mean-mode $=2($ mean - median $)$
(b) Mean-median $=3($ mean - mode $)$
(c) Mean-median $=2($ mean - mode)
(d) Mean-mode $=3$ (mean- median )
Answer: d
Explanation:
We know that
Mode $=3$ Median - 2 Mean
Mode - Mean $=3$ Median -2 Mean - Mean
Mode - Mean $=3$ (Median - Mean)
Mode - Mean $=3$ (Median - Mean)

Mean - Mode $=3($ Mean - Median $)$

## Question 3

$\frac{\left(Q_{3}-Q_{1}\right)}{\left(Q_{3}+Q_{1}\right)}$ is known as
(a) Coefficient of Range
(b) Coefficient of Q.D
(c) Coefficient of S.D
(d) Coefficient of M.D

Answer: b
Explanation:
Coefficient of Q.D $=\frac{\left(Q_{3}-Q_{1}\right)}{\left(Q_{3}+Q_{1}\right)}$

## Question4

If each item is reduced by $15 \mathrm{~A} . \mathrm{M}$ is
(a) Reduced by 15
(b) Increased by 15
(c) Reduced by 10
(d) None

Answer: a
Explanation:
If each item is reduced by 15 then new A.M. is reduced because the shifting of origin, the A.M. is changed.

## Question5

For $899,999,391,384,390,480,760,111,240$ Rank of $m$ is
(a) 2.75
(b) 8.25
(c) 5.5
(d) none

Answer: c
Explanation:
Write the terms in Ascending order 111, 240, 384, 391, 480, 590,760, 899, 999.
Here No of observations (N) = 10
Median $\left(m_{e}\right)=\left[\frac{n+1}{2}\right]^{\text {th }}$ term

$$
\begin{aligned}
& =\left[\frac{10+1}{2}\right]^{\text {th }} \text { term } \\
& =5.5^{\text {th }} \text { term }
\end{aligned}
$$

Rank of median $\left(m_{e}\right)=5.5$

## Question 6

The average of a series of overlapping averages, each of which is based on a certain number of item within a series is known as:
(a) Moving average
(b) Weighted average
(c) Simple average
(d) None

## Explanation:

The average of a series of over lapping averages, each of which based on a certain number of item within a series is known as Moving Average.

## Question 7

If the S.D. of the $1^{\text {st }} \mathbf{n}$ natural Nos. is $\sqrt{30}$. Then the value of $\mathbf{n}$ is
(a) 19
(b) 20
(c) 21
(d) None

Answer: a
Explanation:
S.D of first ' $n$ ' natural numbers
$=\sqrt{\frac{n^{2}-1}{12}}$
$=\sqrt{30}=\sqrt{\frac{n^{2}-1}{12}}$
On squaring both side $30=\frac{n^{2}-1}{12}$
$360=n^{2}-1$
$n^{2}=360+1$
$n^{2}=361$
$\mathrm{n}=\sqrt{361}$
$\mathrm{n}=19$

## Question 8

If the random variables $x$ and $v$ are related by $Y=2-3 x$, then the $S D$ of $v$ is given by
(a) $3 \times \operatorname{SD}$ of $x$
(b) $-3 \times$ SD of $x$
(c) $9 \times$ SD of $x$
(d) $2 \times$ SD of $x$

Answer: a
Explanation:
Given equation
$\mathrm{Y}=2-3 \mathrm{x}$
$3 x+y-2=0$
$\mathrm{b}=\frac{- \text { coefficient of } x}{\text { coefficient of } y}=\frac{-3}{1}=-3$
S.D of $y=|b|$ S.D of $x$
$=|-3|$. SD of $x$
3 x SD of x

## NOV 2018

## Question 1

The median of the data $5,6,7,7,8,9,10,11,11,12,15,18$ and 19 is
(a) 10.5
(b) 10
(c 11
(d) 11.5

Answer: a
Explanation:
Write the term is Ascending $5,6,7,7,8,9,10,11,11,12,15,18$ and 19
Here, No. of terms ( N ) = 14
Median $=\frac{1}{2}\left[\frac{N^{\text {th }}}{2}\right.$ term $+\left[\frac{n+1}{2}\right]^{\text {th }}$ term $]$
$\frac{1}{2}\left[\frac{14^{\text {th }}}{2}\right.$ term $+\left[\frac{14+1}{2}\right]^{\text {th }}$ term $]$
1
$\frac{1}{2}[7$ th term +8 th term $]$
$\frac{1}{2}[10+11]$
$\frac{1}{2} \times[21]$
10.5

## Question2

The mean of 20 items of a data is 5 and if each item is multiplied by 3 , then the new mean will be
(a) 5
(b) 10
(c) 15
(d) 20

Answer: c
Explanation:
By shifting the scale Mean is changed
New mean $=\mathrm{Kx}$ original mean $=5$
$\mathrm{K}=3$
New mean $=3 \times 5$
$=15$

## Question 3

The Geometric mean of $3,6,24$, and 48 is
(a) 8
(b) 12
(c) 24
(d) 6

Answer: b
Explanation:
G.M. $=\left(x_{1} x_{2 .} x_{3} x_{4}\right)^{\frac{1}{4}} \quad$ \{Here, $\left.n=4\right\}$
$(3 \times 6 \times 24 \times 48)^{\frac{1}{4}}$
$=4 \sqrt{3 \times 6 \times 24 \times 48}$
$=4^{2} \sqrt{3 \times 3 \times 2 \times 2 \times 2 \times 2 \times 3 \times 2 \times 2 \times 2 \times 2 \times 3}$
$=2 \times 2 \times 3$
$=12$

## Question 4

The Algebraic sum of the deviation of a set of values from their arithmetic mean is
(a) $>0$
(b) $=0$
(c) $<0$
(d) None

Answer: b

## Explanation:

The arithmetic sum of the deviation of a set of value from their A.M is always zero.

## Question 5

Which one of the following is not a central tendency?
(a) Mean Deviation
(b) Arithmetic mean
(c) Median
(d) Mode

Answer: a
Explanation:
M.D is not a central tendency.

Question 6
If the range of a set of values is 65 and maximum value in the set is 83 , then the minimum value in the set is
(a) 74
(b) 9
(c) 18
(d) None of the above

Answer: c
Explanation:
Maximum Value (L) = 83
Range (R) = 65
Minimum Value ( S )=?
Range (R) = L - S
$65=83-S$
$\mathrm{S}=83-65$
$\mathrm{S}=18$

## Question 7

If total frequencies of three series are 50, 60 and 90 and their means are 12,15, and 20 respectively, then the mean of their composite series is
(a) 16
(b) 15.5
(c) 16.5
(d) 14.5

Answer: c
Explanation:

| $n_{1}=50$ |  |  |
| :--- | :--- | :--- |
| $n_{2}=60$ | and | $\bar{X}_{1}=12$ |
| $\bar{X}_{2}=15$ |  |  |

$n_{3}=90$

$$
\bar{X}_{3}=20
$$

Compared mean $\bar{X}=\frac{n_{1} \bar{X}_{1}+n_{2} \bar{X}_{2}+n_{3} \bar{X}_{3}}{n_{1}+n_{2}+n_{3}}$
$50 \times 12+60 \times 15+90 \times 12$

$$
50+60+90
$$

$600+900+1800$
200
$\frac{3300}{200}=16.5$

## Question 8

If the variance of $5,7,9$ and 11 is 4 , then the coefficient of variation is:
(a) 15
(b) 0.25
(c) 17
(d) 19

Answer: b
Explanation:
Variance of $5,7,9$ and 11 is 4 .
i.e. Variable $=4$
S.D $\left(O^{\prime}\right)=\sqrt{4}=2$

Mean $(\bar{X})=\frac{\sum x}{N}=\frac{5+7+9+11}{4}=\frac{32}{4}=8$
$\mathrm{CV}=\frac{\mathrm{SD}}{\mathrm{M}}=\frac{2}{8}=\frac{1}{4}=0.25$
Question9
Standard deviation for the marks obtained by a student in test in mathematic (out of 50 ) as $\mathbf{3 0}, \mathbf{3 5}, 25,20,15$ is
(a) 25
(b) $\sqrt{50}$
(c) $\sqrt{30}$
(d) 50

Answer: b
Explanation:
Given data's are
$15,20,25,30,35$
$\operatorname{Mean}(\bar{X})=\frac{\sum X}{N}=\frac{15+20+25+30+35}{5}=\frac{125}{5}=5$
For S.D

| $\mathbf{x}$ | $\overline{\boldsymbol{X}}$ | $\mathbf{d}=\mathbf{x}-\overline{\boldsymbol{X}}$ | $\boldsymbol{d}^{\mathbf{2}}$ |
| :--- | :--- | :--- | :--- |
| 15 | 25 | -10 | 100 |
| 20 | 25 | -5 | 25 |
| 25 | 25 | 0 | 0 |


| 30 | 25 | 5 | 25 |
| :--- | :--- | :--- | :--- |
| 35 | 25 | 10 | 100 |
| $\mathrm{~N}=\mathbf{5}$ |  |  | $\sum_{=250} d^{2}$ |

$\mathrm{SD}=\sqrt{\frac{\sum d^{2}}{N}}=\sqrt{\frac{250}{5}}=\sqrt{50}$

## Question10

If in a moderately skewed distribution, the values of mode and mean are 32.1 and 35.4 respectively, then the value of the median is
(a) 34.3
(b) 33.3
(c) 34
(d) 33

Answer: a
Explanation:
Given
Mode $=32.1$, Median $=$ ?
Mean $=35.4$
Mode $=3$ Median -2 Mean
$32.1=3$ Median $-2 \times 35.4$
$32.1=3$ Median -70.8
Median $=32.1+70.8$
Median $\frac{102.9}{3}=34.3$

## Question 11

If the standard deviation for the marks obtained by a student in monthly test is 36. Then the variance is:
(a) 7
(b) 5
(c) 8
(d) 11

| X | f | F. x |
| :---: | :---: | :---: |
| 2 | 3 | 6 |
| 4 | 2 | 8 |
| 6 | 3 | 18 |
| 10 | 1 | 10 |
| P+5 |  | $2 \mathrm{P}+10$ |
| $\mathrm{N}=11$ |  | $f x=2 P+52$ |

Answer: a
Explanation:
$\bar{X}=\frac{\sum f x}{N}=\frac{2 P+52}{11}$

> Given
> $\bar{X}=6$
> $\frac{6}{1}=\frac{2 P+52}{11}$
> $2 P+52=66$
> $2 P=14$
> $P=7$

## MAY 2019

Question 1
The AM of 15 observations is 9 and the AM of first 9 observations is 11 and the AM of remaining observation is
(a) 11
(b) 6
(c) 5
(d) 9

Answer: b
Explanation:
15 OBSERVATION = 9
9 OBSERVATION $=11$
$\overline{x_{1}}$ of $15=9=\frac{\Sigma_{x_{1}}}{9}=9$
$\overline{x_{2}}$ of $9=11=\frac{\Sigma_{x_{2}}}{9}=11$
$\sum x_{1}=15 \times 9=135$
$\sum x_{2}=11 \times 9=199$
Remaining $\sum x_{1}-\sum x_{2}=135-99=36$
$\bar{x}_{30}=\frac{36}{6}=6$

## Question 2

In a moderately skewed distribution, the values of mean \& median are 12 \& 18 respectively. The value of mode is
(a) 6
(b) 12
(c) 15
(d) 30

Answer: d
Explanation:
Mean - mode $=3($ Mean - Median $)$
Put the value in this equation
$=12-$ mode $=3(12-18)$
$=30$

## Question 3

Which of the following is positional average?
(a) Median
(b) GM
(c) HM
(d) AM

Answer: a

## Explanation:

There are two types of positional average: the median and the mode. The median is the average value of the series in which half values are less than the median and half the values are greater than the median. The mode, the second positional average, shows a higher frequency in the series 2.

## Question4

## For the distribution

| X | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| F | 6 | 9 | 10 | 14 | 12 | 8 |

The value of median is
(a) 3.5
(b) 3
(c) 4
(d) 5

Answer: c
Explanation:

| $x$ | f | cf |
| :--- | :--- | :--- |
| 1 | 6 | 6 |
| 2 | 9 | 15 |
| 3 | 10 | 25 |
| 4 | 14 | 39 |
| 5 | 12 | 51 |
| 6 | 8 | 59 |
| Total | 59 |  |

$\frac{N+1}{2}=30$
So Median be 4

## Question5

For a symmetric distribution
(a) Mean = Median = Mode
(b) Mode $=3$ Median -2 Mean
(c) Mode $=\frac{1}{3}$ median $=\frac{1}{2}$
(d) None

Answer: a
Explanation:
In a symmetric distribution, the mean, mode and median all fall at the same point. The mode is the most common number and it matches with the highest peak (the "mode" here is the different from the "mode" in bimodal or unimodal, which refers to the number of peaks).

## Question 6

If $=\left(0^{2}\right) \mathbf{1 0 0}$ and coefficient of variation $=\mathbf{2 0 \%}$ then $\overline{\boldsymbol{x}}=$
(a) 60
(b) 70
(c) 80
(d) 50

Answer: d
Explanation:
$0^{2}=$ Variance
To find $\mathrm{SD}=\mathrm{O}^{\prime}$
$\mathrm{SD}=\sqrt{100}=10$
Coef. Of V $=\frac{0}{x}$
$20=\frac{10}{x} \times 100$
$\bar{x}=\frac{10}{20} \times 100$
$\bar{x}=50$

## Question 7

Coefficient of quartile deviation is $\frac{1}{4}$ then $\frac{Q_{3}}{Q_{1}}$ is
(a) $\frac{5}{3}$
(b) $\frac{4}{3}$
(c) $\frac{3}{4}$
(d) $\frac{3}{5}$

Answer: a
Explanation:
$\frac{1}{4}=\frac{Q_{3}-Q_{1}}{Q_{3}+Q_{1}}$
Talking option a
$Q_{3}=5 \& Q_{1}=3$
$\frac{5-3}{5+3}=\frac{2}{8}=\frac{1}{4}$

## Question 8

Standard deviation is $\qquad$ times of $\sqrt{M D \times Q D}$
(a) $\frac{2}{3}$
(b) $\frac{4}{5}$
(c) $\sqrt{\frac{15}{8}}$
(d) $\sqrt{\frac{8}{15}}$

Answer: c
Explanation:
$\mathrm{MD}=\frac{4}{5} \mathrm{SD}$
$4 S D=5 M D=6 Q D$
$\mathrm{SD}=\frac{5}{4} \mathrm{MD} \quad=\frac{6}{4} \mathrm{QD}$
$\mathrm{SD}=\sqrt{\frac{5}{4} \times \frac{6}{4}}=\sqrt{\frac{30}{16}}=\sqrt{\frac{15}{8}}$

## Question9

Standard Deviation of first five natural numbers.
(a) $\sqrt{\frac{n^{2}+1}{6}}$
(b) $\sqrt{\frac{n^{2}-1}{12}}$
(c) $\sqrt{\frac{n^{2}-1}{12}}$
(d) $\sqrt{\frac{n^{2}-1}{6}}$

Answer: b
Explanation:
Mean, $\mathrm{u}=\frac{(1+2+3 \ldots \ldots+n)}{n}$
$\therefore \mathrm{u}=\frac{1}{2}(n+1)$
Variance, $\sigma^{2}=\frac{\sum\left(x_{i}-\mathbf{u}\right)^{2}}{n}=\frac{\sum x_{i}^{2}}{n}-u^{2}$
$\therefore \sigma^{2} \frac{\sum n^{2}}{n}-\frac{1}{2}(n+1)^{2}$
$\therefore \sigma^{2} \frac{1}{n} \frac{n(n+1)(2 n+1)}{n}-\left(\frac{1}{2}(n+1)\right)^{2}$
$\therefore \sigma^{2}=\frac{n^{2}-1}{12}$
Standard Deviation, S.D $=\sqrt{\sigma^{2}}$
$\therefore$ S. $D=\backslash$ sqrt $\left\{\backslash \operatorname{dfrac}\left\{\mathrm{n}^{\wedge} 2-1\right\}\{12\}\right\}$

## Question 10

The Q.D. of 6 numbers $15,8,36,40,38,41$ is equal to
(a) 12.5
(b) 25
(c) 13.5
(d) 37

Answer: c
Explanation:

```
\(Q_{1}=\left(\frac{n+1}{2}\right)^{t h}\) of \(=\left(\frac{6+1}{4}\right)^{t h}\) of \(=\left(\frac{7}{4}\right)^{t h}\) of \(1.75^{t h}\)
\(8+0.75(15-8)\)
\(8+5.25\)
\(\mathrm{Q}_{1}=13.25\)
\(\mathrm{Q}_{3}=3\left(\frac{n+1}{2}\right)^{\text {th }}\) of \(=3\left(\frac{n+1}{2}\right)^{\text {th }}\) of \(3 \times \frac{7}{4}=3 \times 1.75=5.25\)
\(\mathrm{Q}_{3}=5^{\text {th }}\) of \(+0.25\left(6^{\text {th }}-5^{\text {th }}\right)\)
40+0.25(41-40)
\(\mathrm{Q}_{3}=40.25\)
```

$\mathrm{QD}=\frac{Q_{3}-Q_{1}}{2}=\frac{40.25-13.25}{2}$
13.5

## NOV 2019

## Question 1

The approximate ratio of $\mathrm{SD}, \mathrm{MD}, \mathrm{Q} \mathrm{D}$ is:
(a) $3: 4: 5$
(b) 2:3:4
(c) $15: 12: 10$
(d) $5: 6: 7$

Answer: c
Explanation:
(c) We know that
$4 S D=5 M D=6 Q D$
Net 4 SD $=5 M D=6 Q D=K$
So,
$\mathrm{SD}=\frac{K}{4}, \mathrm{MD}=\frac{K}{5} ; \mathrm{QD}=\frac{K}{6}$
Now, SD: MD: QD
=> $\frac{K}{4}: \frac{K}{5}: \frac{K}{6}$
$=>\frac{30 \mathrm{~K}}{120}: \frac{24 \mathrm{~K}}{120}: \frac{20 \mathrm{~K}}{120}[\therefore$ LCM OF $4,5,6$ is 120$]$
=> 30:24:20
=> 15:12:10 so,
SD:MD: QD = 15:12:10

## Question2

The deviations are minimum when taken from:
(a) Mean
(b) Median
(c) Mode
(d) None

Answer: b
Explanation:
(b) The sum of deviations are minimum when taken from median
$\sum \mid x-$ Mean
$\Sigma \mid x-$ Median $\mid$ Minimum $\}$
$\sum \mid x$ - Mode

## Question 3

If the AM \& GM of two numbers are 30 and 24 respectively. Find the no's
(a) 12 and 24
(b) 48 and 12
(c) 30 and 30
(d) 40 and 20

Answer: b
Explanation:
(b) Let the two no's be a and b

$$
\begin{array}{ll}
\mathrm{AM}=30 & \mathrm{GM}=24 \\
\frac{a+b}{2}=30 & \sqrt{a b}=24
\end{array}
$$

$a+b=60$
$a=60-b$
put eq 1 in eq 2
$\sqrt{(60-b) b}=24$
(on squaring both sides )
$(60-b) b=576$
$60 b-b^{2}=576$
$b^{2}-60 b+576=0$
$b^{2}-48 b-12 b+576=0$
$b(b-48)-12(b-48)=0$
$(b-12)(b-48)=0$
$b=12 \quad$ or $\quad b=48$
$a=60-b \quad a=60-48$
$a=48 \quad a=12$
$(12,48)$ or $(48,12)$
So the two no's are 48 and 12
\# After Method [Do by hit and trial]
i.e. try with the given options whether their AM is 30 and GM 24

## Question4

Origin is shifted by 5 , what will happen
(a) SD will increase by 5
(b) QD will increase by 5
(c) MD will increase by 5
(d) There will be no change

Answer: d

## Explanation:

(d) SD is not affected of remains in changed by shifting of origin. So here if the origin is shifted by 5 there will be no change in SD.

## Question5

Coefficient of variation is equal to:
(a) $\frac{S D}{\text { Mean }}$
(b) $\frac{S D}{M e a n} \times 100$
(c) $\frac{\text { Mean }}{S D} \times 100$
(d) $\frac{M \text { ean }}{S D}$

Answer: b
Explanation:
(b) In probability theory and statistics the coefficient of variation also known as relative standard deviation is a standardized measure of dispersion of frequency distribution.

It is expressed as a percentage and defined as the ratio of SD and mean.
SD so. Coefficient of variation $=\frac{S D}{\text { Mean }} \times 100$

## Question6

Find mode of the following date

| $3-6$ | $6-9$ | $9-12$ | $12-15$ | $15-18$ | $18-21$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 5 | 10 | 23 | 21 | 12 |

(a) 14
(b) 15
(c) 16.5
(d) 14.6

Answer: d
Explanation:
(c) CI
f
3-6
2
6-9 5
9-12 10
12-15 $23 \times$ Modal class
15-18 21
18-21 12

Since 23 is the highest frequency, so $12-15$ is the modal class.
So, $\mathrm{f}_{1}=23, \mathrm{f}_{0}=10, \mathrm{f}_{2}=21$
$\mathrm{L}_{1}=12 \quad \mathrm{i}=3$
Mode $=\mathrm{L}_{1}+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}$ xi
$=12+\frac{23-10}{2(23)-10-21} \times 3$
$=12+\frac{13}{15} \times 3$
$=12+2.599$
$=14.59$
$=14.6$ (approx)

## Question7

Find SD of the following
$1,2,3,4,5,6,7,8,9$
(a) 2.58
(b) $\frac{60}{9}$
(c) $\frac{60}{3}$
(d) 3.20

Answer: a
Explanation:
(a) $\mathrm{SD}=\sqrt{\frac{\Sigma X 2}{N}-\left(\frac{\Sigma X}{N}\right)^{2}}$

Here $\mathrm{N}=9$
$x^{2}=1^{2}+2^{2}+3^{2}+4^{2}+\ldots \ldots . .9^{2}$
$=285$
$\frac{\sum X}{N}=\frac{1+2+3+4+5+6+7+8+9}{9}=5$
Put in above formula,
$\mathrm{SD}=\sqrt{\frac{285}{9}-\frac{25}{1}}$
$\mathrm{SD}=\frac{\sqrt{60}}{9}$
$\mathrm{SD}=\sqrt{6.67}$
$S D=2.58$

## Question 8

If mean $=\mathbf{2 0 0}$ and variance $\mathbf{= 8 0}$. Find coefficient of variation.
(a) 2.56
(b) 4.47
(c) 32
(d) 0.32

Answer: b
Explanation:
(b) We know
$C V=\frac{S D}{\text { Mean }} \times 100$
$\mathrm{CV}=\sqrt{\frac{\text { Variance }}{\text { Mean }}} \times 100$
$\mathrm{SD}=\sqrt{\text { Variance }}$
$\mathrm{CV}=\sqrt{\frac{80}{200}} \times 100$
$C V=\sqrt{\frac{80}{2}}$
$C V=4.47$ (approx.)

## Question9

Which of the following is affected by shifting of scale.
(a) SD
(b) MD
(c) QD
(d) None of these

Answer: a
Explanation:
(a) Since SD, MD, QD are measures of absolute dispersion, So, a change in scale neither affect SD nor MD and QD.

## Question 10

Histogram is used for to represent
(a) Mode
(b) Median
(c) Percentile
(d) Quartile

## Answer: a

## Explanation:

(a) Histogram is a graphical representation of grouped frequency distribution. It is used to locate mode. X - axis- class interval $y$-axis- frequency.

## Question11

Coefficient of variation is $\mathbf{8 0}$. Mean is $\mathbf{2 0}$. Find variance:
(a) 640
(b) 256
(c) 16
(d) 250

Answer: b
Explanation:
(b) We know,

Coefficient of variation $(C V)=\frac{S D}{\text { Mean }} \times 100$
Here mean $=20 ; C V=80$
$80=\frac{S . D}{\text { Mean }} \times 100$
S.D. $=16$

Variance $=(S . D .)^{2}$
Variance $=(16)^{2}=256$

## Question12

Find the median of the following.

| CI | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| f | 2 | 3 | 4 | 5 | 6 |

(a) 35
(b) 32
(c) 36
(d) 37.5

Answer: b
Explanation:

| CI | f | c.f |
| :---: | :---: | :---: |
| $0-10$ | 2 | 2 |
| $10-20$ | 3 | 5 |
| $20-30$ | 4 | 9 |
| $30-40$ | 5 | 14 |
| $40-50$ | 6 | 20 |

$\sum f=20$
$\mathrm{N}=20$
So 30-40 is the median class
$\mathrm{L},=30 \mathrm{C}=$ Pre. Cof. of median class
C $=>9 \mathrm{~F}=>5$
Median $=4+\frac{\left(\frac{N}{2}-c\right)}{f} \times i$
$=30+\left(\frac{10-9}{5}\right) \times 10$
$=30+2$
$=32$

## Question13

Difference between upper limit and lower limit of a class is known
(a) Range
(b) Class mark
(c) Class size
(d) Class boundary

Answer: c
Explanation:
(c) • Difference between upper limit and lower limit of class is class size.

- Range = Largest value - Smallest value
- Class mark $=\frac{(\text { Lowest Limit }+ \text { Upper Limit })}{2}$
- Class boundary = Class interval of exclusive data series.


## Question14

Find the made of the following:

| $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 14 | 22 | 34 | 20 | 19 |

(a) 32
(b) 34.61
(c) 25.42
(d) 35

Answer: b
Explanation:

| CI | f |
| :--- | :--- |
| $0-10$ | 7 |
| $10-20$ | 14 |
| $20-30$ | 22 |
| $30-40$ | 34 |
| $40-50$ | 20 |
| $50-60$ | 19 |

Since 34 is the highest frequency so, 30-40
$\mathrm{F}_{1}=34 \mathrm{f}_{0}=22 \mathrm{f}_{2}=20$
$\mathrm{i}=10$
Mode $=\mathrm{L}_{1}+\frac{f_{1}-f_{0} \times i}{2 f_{1}-f_{0}-f_{2}}$

$$
\begin{aligned}
& =30+\frac{(34-22)}{2 \times 34-22-20} \times 10 \\
& =30+\frac{12}{26} \times 10
\end{aligned}
$$

$$
=34.61
$$

## Question15

Find the median of the following:

| CI | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| f | 5 | 15 | 28 | 10 | 2 |

(a) 10.57
(b) 23.57
(c) 25
(d) None

Answer: b
Explanation:

| CI | f | c.f |
| :--- | :--- | :--- |
| $0-10$ | 5 | 5 |
| $10-20$ | 15 | 20 |
| $20-30$ | 28 | $48^{*}$ |
| $30-40$ | 10 | 58 |
| $40-50$ | 2 | 60 |

$\sum f=60$
$\frac{N}{2}=\frac{60}{2}=30$
So $20-30$ is the median class
$\mathrm{L}_{1}=20 \mathrm{~L}=30$
C-20f-28
Median $=\mathrm{L}_{1}+\frac{\left(\frac{N}{2}-C\right)}{f} \times \mathrm{i}$
$=20+\frac{(30-20)}{28} \times 10$
$=23.57$

## Question16

$\sum_{i=1}^{n}\left(x-x_{i}\right)$ is equal to
(a) $\mathrm{x} \sum_{i=1}^{n} \bar{x} \bar{l}$
(b) $\mathrm{n}\left(x \sum_{i=1}^{n} \bar{x} l\right)$
(c) $\bar{x}-n \bar{x}$
(d) zero

Answer: d
Explanation:
(d) $\sum_{i=1}^{n}\left(x-x_{i}\right)$

Since the sum of deviations about their AM is always zero.

## Question17

SD from numbers $1,4,5,7,8$ is 2.45 . If 10 is added to each them $S D$ will be:
(a) 12.45
(b) 24.5
(c) 12
(d) will not change

Answer: d
Explanation:
(d) We know a change in origin of SD causes no change in SD

So, New SD = Original SD when 10 will be added
So, SD will not change .

## DEC 2020

## Question 1

Given the weights for the numbers $1,2,3, \ldots . . . n$ are respectively $1^{2}, 2^{2}, 3^{2}, \ldots . . n^{2}$. Then weighted HM is $\qquad$
(a) $\frac{2 n+1}{4}$
(b) $\frac{2 n+1}{6}$
(c) $\frac{2 n+1}{3}$
(d) $\frac{2 n+1}{2}$

Answer: c

## Explanation:

Since the harmonic mean is the reciprocal of the average of reciprocals, the formula to define the harmonic mean "HM" is given as follows:
If $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ are the individual items up to $n$ terms, then,
Harmonic Mean, $\mathrm{HM}=\mathrm{n} /\left[\left(1 / \mathrm{x}_{1}\right)+\left(1 / \mathrm{x}_{2}\right)+\left(1 / \mathrm{x}_{3}\right)+\ldots+\left(1 / \mathrm{x}_{\mathrm{n}}\right)\right]$. Hence $=\frac{2 n+1}{3}$

## Question2

Which measure is suitable for open - end classification?
(a) Median
(b) Mean
(c) Mode
(d) GM

Answer: a

## Explanation:

For open end classification median is the best measure of central tendency. Median is the most suitable central tendency measure when there are some extreme scores in data distribution and also when there is a skewed data set.

## Question 3

$50^{\text {th }}$ percentile is equal to $\qquad$
(a) Median
(b) Mode
(c) Mean
(d) None

Answer: a
Explanation:
The 50th percentile is generally the median (if you're using the third definition-see below). The 75 th percentile is also called the third quartile. The difference between the third and first quartiles is the interquartile range.

Question4

For a distribution Mean, Median and Mode are 23, 24 and 25.5 respectively, then it is most likely $\qquad$ skewed distribution
(a) Positively
(b) Symmetrical
(c) Asymptotically
(d) Negatively

Answer: d

## Explanation:

For Negatively skewed means is likely to be less than mode and median

## Question5

If any two numbers are in AP, then $\mathbf{G M}^{2}=$ $\qquad$
(a) AM x HM
(b) $\mathrm{AM}+\mathrm{HM}$
(c) M X Z
(d) $A M \times M$

Answer: a
Explanation:
The relationship between $\mathrm{AM}, \mathrm{GM}$ and HM is given by:
$\mathrm{AM} \times \mathrm{HM}=\mathrm{GM}^{2}$

## Question 6

Two values yielded an arithmetic mean of 24 and a harmonic mean of 6 . The geometric mean of these values is $\qquad$
(a) 8
(b) 12
(c) 14
(d) 16

Answer: b
Explanation:
$\mathrm{GM}=\sqrt{A M \times H M}$
$G M=\sqrt{24 \times 6}$
$G M=\sqrt{144}$
$G M=12$

## Question 7

The HM of $A$ and $B$ is $1 / 3$ and HM of $C$ and $D$ is $1 / 5$. Then HM of $A, B, C$ and $D$ is
(a) $\frac{8}{15}$
(b) $\frac{1}{4}$
(c) $\frac{15}{8}$
(d) $\frac{4}{15}$

Answer: d
Explanation:
AB-1/3 \& CD-1/5
HM of $\mathrm{ABCD}=\mathrm{n} / 2$
$\frac{\frac{1}{3}+\frac{1}{5}}{2}\left(\frac{n}{2}\right)=\frac{8}{30}=\frac{4}{15}$

## Question 8

Which one of these is least affected by extreme values?
(a) Mean
(b) Median
(c) Mode
(d) None

Answer: b
Explanation:
Median is the middle most value of a given series that represents the whole class of the series. So since it is a positional average, it is calculated by observation of a series and not through the extreme values of the series which. Therefore, median is not affected by the extreme values of a series.

## Question9

Ten matches' data is given. Then which of the following cannot be found?
(a) Least Score
(b) Highest Score
(c) Best Score
(d) Median Score

Answer: c
Explanation:
From Best Score method we can do this

## Question10

If the AM and HM of two numbers are 6 and 9 respectively, then GM is $\qquad$
(a) 7.35
(b) 8.5
(c) 6.75
(d) None

Answer: a
Explanation:
We know the relation between Arithmetic Mean, Harmonic Mean, and Geometric Mean of Two Numbers:
A.M. $\times$ H.M. $=(\text { G.M. })^{2}$
$\Rightarrow$ G.M. $=7.35$

## Question11

Which of the following measure of dispersion is based on absolute deviations?
(a) Range
(b) SD
(c) Mean Deviation
(d) Quartile Deviation

Answer: c
Explanation:
The Mean Deviation gives more information than range or the Quartile Deviation as it is based on all the observed values. The Mean Deviation does not give undue weight to occasional large deviations, so it should likely to be used in situation where such deviations are likely to occur.

## IAN 2021

## Question1

From the records on sizes of shoes sold in a shop, one can compute the following to determine the most preferred shoe size.
(a) Mean
(b) Median
(c) Mode
(d) Range

Answer: c

## Explanation:

The number which appears most often in a set of numbers. Example: in $\{6,3,9,6,6,5$, $9,3\}$ the Mode is 6

## Question2

Which of the following measure does not possess mathematical properties?
(a) Arithmetic mean
(b) Geometric mean
(c) Harmonic mean
(d) Median

Answer: d
Explanation:
Median Properties - The median value is fixed by its position and is not reflected by the individual value. The distance between the median and the rest of the values is less than the distance from any other point. Every array has a single median. Median cannot be manipulated algebraically. Hence, Median does not possess mathematical properties

## Question 3

If $y=3+(4.5) x$ and the mode for $x$-value is 20 , then the mode for $y$-value is
(a) 3.225
(b) 12
(c) 24.5
(d) 93

Answer: d
Explanation:
$y=3+(4.5) x$
x is 20
$y=3+4.5 \times 20$
$y=93$
Because Mode is affected by change of origin \& scale both

## Question 4

If there are two groups with $\mathbf{n}_{1}$ and $\mathbf{n}_{2}$ observations and $H_{1}$ and $H_{2}$ are respective harmonic means, then the harmonic mean of combined observations is
(a) $\frac{n_{1} H_{1}+n_{2} H_{2}}{n_{1}+n_{2}}$
(b) $\frac{n_{1} H_{1}+n_{2} H_{2}}{H_{1}+H_{2}}$
(c) $\frac{n_{1}+n_{2}}{n_{1} H_{1}+n_{2} H_{2}}$
(d) $\frac{\left(n_{1}+n_{2}\right) H_{1} H_{2}}{n_{1} H_{2}+n_{2} H_{1}}$

Answer: d
Explanation:
$\frac{\left(n_{1}+n_{2}\right) H_{1} H_{2}}{n_{1} H_{2}+n_{2} H_{1}}$

## Question 5

The best statistical measure used for comparing two series is
(a) Mean absolute deviation
(b) Range
(c) Certificate of variation
(d) Standard deviation

Answer: c

## Explanation:

The coefficient of standard deviation is calculated by dividing the standard deviation of the series by its mean and then multiplying it by 100 . It is regarded as the best measure of dispersion to compare two different series because it is expressed in percentage.

## Question 6

The relationship between P-series and $Q$-series is given by $2 P-3 Q-10$. If the range of $P$ - series is 18 . What would be the range of $Q$ ?
(a) 10
(b) 15
(c) 9
(d) 12

Answer: d

## Question 7

It is given that the mean $(\bar{X})$ is 10 and standard deviation (s.d.) is 3.2. If the observations are increased by 4 , then the new mean and standard deviations are:
(a) $\bar{x}=10$, s.d. $=7.2$
(b) $\bar{x}=10$, s.d. $=3.2$
(c) $\bar{x}=14$, s.d. $=3.2$
(d) $\bar{x}=14$, s.d. $=7.2$

Answer: d
Explanation:
$\bar{x}+4=$ New Mean
$\bar{x}=10+4=14$
Mean is affect by change in origin
S.D. $=\sigma+4$
S.D. $=3.2+4=3.2$
as $S D$ is not affected by change of origin

## Question 8

Which one of the following is a relative measure of dispersion?
(a) Range
(b) Mean deviation
(c) Standard deviation
(d) Coefficient of quartile deviation

Answer: d
Explanation:
The relative Measures of dispersion are: Coefficient of Variation, Coefficient of Quartile Deviation, Coefficient of Mean Deviation

## Question 9

Find the coefficient of mean deviation about mean for the data: $5,7,8,10,11,13$, 19
(a) 17.28
(b) 28.57
(c) 32.12
(d) 18.56

Answer: c
Explanation:
$\operatorname{Mean}(\bar{x})=\frac{5+7+8+10+11+13+19}{7}=\frac{54}{7}=7.714$

|  | $\left\|x_{\boldsymbol{i}}-\overline{\boldsymbol{x}}\right\|$ |
| :--- | :--- |
| $\mathbf{5}$ | 2.271 |
| $\mathbf{7}$ | 0.714 |
| $\mathbf{8}$ | 0.29 |
| $\mathbf{1 0}$ | 2.29 |
| $\mathbf{1 1}$ | 3.29 |
| $\mathbf{1 3}$ |  |
| $\sum\left\|x_{\boldsymbol{i}}-\overline{\boldsymbol{x}}\right\|$ | 14.15 |

NOTE:The correct Ans is: 32.12

## UULY 2021

## Question 1

Expenditures of a company (in Million Rupees) per item in various Years

| Year | Item of Expenditures |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Salary | Fuel and <br> Transport | Bonus | Interest on <br> Loans | Taxes |
| 1998 | 288 | 98 | 3.00 | 23.4 | 83 |
| 1999 | 342 | 112 | 2.52 | 32.5 | 108 |
| 2000 | 324 | 101 | 3.84 | 41.6 | 74 |
| 2001 | 336 | 133 | 3.68 | 36.4 | 88 |
| 2002 | 420 | 142 | 3.96 | 49.4 | 98 |

What is average amount of interest per year which the company had to pay
For more Info Visit - www.KITest.in
during this period?
(a) 33.66
(b) 36.66
(c) 31.66
(d) 39.66

Answer: Options (b)

## Question 2

There are $n$ numbers. When 50 is subtracted from each of these numbers the sum of the numbers so obtained is -10 . When 46 is subtracted from each of the original $n$ numbers, then the sum of numbers, so obtained is 70 . What is the mean of the original $n$ numbers?
(a) 56.8
(b) 25.7
(c) 49.5
(d) 53.8

Answer: Options (c)

## Question 3

The mean of ' $n$ ' observation is ' $X$ '. If $k$ is added to each observation, then the new mean is
(a) X
(b) XK
(c) $\mathrm{X}-\mathrm{K}$
(d) $\mathrm{X}+\mathrm{K}$

Answer: Options (d)
Explanation:
Let us take n observation $\mathrm{X}_{1}$ $\qquad$ $\mathrm{X}_{\mathrm{n}}$
If $\bar{X}$ be the mean of the $n$ observation, then we have
$\overline{\mathrm{X}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}$

$$
\Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}=\mathrm{n} \overline{\mathrm{X}}
$$

Add a constant k to each of the observations. Then the observations becomes
$\mathrm{X}_{\mathrm{i}}+\mathrm{k}, \ldots . . ., X_{n}+\mathrm{K}$
If $\bar{Y}$ be the mean of the new observations. Then the observations becomes
$\bar{Y}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}+k\right)$
$=\frac{1}{n} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}+\frac{1}{n} \sum_{i=1}^{n} k$
$=\overline{\mathrm{X}}+\frac{1}{n} \cdot \mathrm{nk}$
$=\overline{\mathrm{X}}+\mathrm{k}$

## Question 4

If $y=3+1.9 x$, and mode of $x$ is 15 , then the mode of $y$ is:
(a) 15.9
(b) 27.8
(c) 35.7
(d) 31.5

Answer: Options (d)

## Question 5

The mean deviation of the numbers $3,10,6,11,14,17,9,8,12$ about the mean is (correct to one decimal place)
(a) 8.7
(b) 4.2
(c) 3.1
(d) 9.8

Answer: Options (c)

## Question 6

The standard deviation of 1 to 9 natural number is $\qquad$
(a) 6.65
(b) 2.58
(c) 6.75
(d) 5.62

Answer: Options (b)

## Question 7

The probable value of mean deviation when $Q_{3}=40$ and $Q_{1}=15$ is $\qquad$
(a) 15
(b) 18.75
(c) 17.50
(d) 0

Answer: Options (a)
Explanation:
Q3=40 Q1 $=15$
QD= Q3-Q1 / 2
$\mathrm{QD}=40-15 / 2$
$=25 / 2$
$=12.5$
WKT, 6 QD $=5 M D=4 S D$
MD= 6 * $12.5 / 5$
$\mathrm{MD}=15$

## Question 8

If the numbers are $5,1,8,7,2$, then the coefficient of variation is
(a) $56.13 \%$
(b) $59.13 \%$
(c) $48.13 \%$
(d) $44.13 \%$

Answer: Options (b)

## Question 9

If every observation is increased by 7 then
(a) Standard Deviation increases by 7
(b) Mean deviation increases by 7
(c) Not affected at all
(d) Quartile Deviation increases by 7

Answer: Options (c)

## Question 10 <br> If a school has 14 teachers, their heights (in cm ) are:

$172,173,164,178,168,169,173,172,173,164,178,168,169,173$, then average deviation of this data is
(a) 2.43 approx.
(b) 3.93 approx.
(c) 3.43 approx.
(d) 2.92 approx.
Answer: Options (c)

## Question 11

If the relationship between $x$ and $y$ is given by $2 x+3 y=10$ and the range of $y$ is 10 , then what is the range of $x$ ?
(a) 10
(b) 18
(c) 8
(d) 15

Answer: Options (d)

## DEC 2021

## Question 1

If there are 3 observations 15, 20, 25 then the sum of deviation of the observations from their AM is
(a) 0
(b) 5
(c) -5
(d) 10

Answer: a
Explanation:
Sum of deviations from their Arithmetic Mean is always zero.

## Question 2

If the AM and GM for 10 observations are both $\mathbf{1 5}$, then the value of HM is
(a) less than 15
(b) more than 15
(c) 15
(d) cannot be determined

Answer:
Explanation:
If both AM and GM are 15 , it means that all the observations are constant, i.e., 15.
Therefore, HM will also be 15 .

## Question 3

If average mark for a group of $\mathbf{3 0}$ girls is $\mathbf{8 0}$, a group of boys is $\mathbf{7 0}$ and combined average is $\mathbf{7 6}$, then how many are in the boy's group?
(a) 21
(b) 20
(c) 22
(d) 19

Answer: b
Explanation:
We have $\mathrm{n}_{1}=30 ; \overline{X_{1}}=80 ; \mathrm{n}_{2}=? ; \overline{X_{2}}=70 ;=\bar{X}=76$

We know that $\bar{X}=\frac{n_{1} \overline{X_{1}}+n_{2} \overline{X_{2}}}{n_{1}+n_{2}}$
Therefore, $76=\frac{(30 \times 80)+\left(n_{2} \times 70\right)}{30+n_{2}}$
Now, try the options.
Option (a) - 21
RHS $=\frac{(30 \times 80)+(21 \times 70)}{30+21}=75.88 \neq 76$
Option (b) - 20
$R H S=\frac{(30 \times 80)+(20 \times 70)}{30+20}=76=L H S$

## Question 4

If two variables $a \mathbf{b}$ and $\mathbf{b}$ are related by $C=\mathbf{a b}$ then G.M. of $\mathbf{c}$ is equal to
(a) G.M. of $a+$ G.M. of $b$
(b) G.M. of a x G.M. of b
(c) G.M. of a - G.M. of b
(d) G.M. of a / G.M. of b

Answer: b

## Explanation:

If two variables $a$ and $b$ are related by $c=a b b$ then $G M$ of $c=G M$ of $a \times G M$ of $b$

## Question 5

For a moderately skewed distribution the median is twice the mean, then the mode is $\qquad$ times the median.
(a) 3
(b) 2
(c) $2 / 3$
(d) $3 / 2$

Answer: b
Explanation:
We know that for a moderately skewed distribution,
Mode = 3 Median - 2Mean ... Eq. (1)
Given:
Median $=2$ Mean
Therefore, Mean $=$ Median/ 2
Putting
the value of Mean = Median/ 2
in Eq. (1), we get:
Mode= 3 Median - $2 \mid$ Median)
Mode $=3$ Median - Median $=2$ Median
Therefore, Mode is two times of Median.

## Question 6

The median value of the set of observations $48,36,72,87,19,66,56,91$ is
(a) 53
(b) 87
(c) 61
(d) 19

Answer: c
Explanation:
First, arrange the terms in ascending order:
$19,36,48,56,66,72,87,91$
Since the number of terms is even, i.e., 8 , the median will be obtained by the average of the two middle terms, i.e., 56 , and 66.
Therefore,
Median $=56+66 / 2=61$

## Question 7

The marks secured by 5 students in a subject are $82,73,69,84,66$. What is the coefficient of Range
(a) 0.12
(b) 12
(c) 120
(d) 0.012

Answer: b
Explanation:
Coefficient of Range $=\frac{\text { Largest observation }- \text { Small }}{\text { Largest observation }+ \text { Small }}$
Coefficient of Range $=\frac{84-66}{84+66} \times 100=12$

## Question 8

For a data having odd number of values, the difference between the first and the middle value is equal to the difference between the last and the middle value; similarly the difference between the second and middle values is equal to that of second last and middle value so on. Therefore, the middle value is equal to
(a) Half of the range
(b) Half of standard deviation
(c) Mode
(d) Mean

Answer: d
Explanation:
Here No. of data's = odd (let 3)
i.e. a, b, c

Difference $b / w$ the $1^{\text {st }}$ and the middle value
Diff. b/w the last and the middle value
$b-a=c-b$
$2 \mathrm{~b}=\mathrm{a}+\mathrm{b}$
$\mathrm{b}=\frac{a+c}{2}$
The middle value is known as mean and similarly other case is also satisfied.

## Question 9

One hundred participants expressed their opinion on recommending a new
product to their friends using the attributes: most unlikely, not sure, likely, most likely. The appropriate measure of central tendency that can be used here is
(a) Mean
(b) Mode
(c) Geometric mean
(d) Harmonic mean

Answer: b

## Explanation:

One hundred participants expressed their opinion on recommending a new product to their friends using the Attributes; most unlikely, not sure, likely, most likely. The appropriate measure of central tendency that can be used here is Mode.

## Question 10

A long a road there are 5 buildings of apartments, marked as $1,2,3,4,5$. Number of people residing in each building is available. A bus stop is to be setup near one of the buildings so that the total distance walked by the residents to the bus stop from their buildings must be kept minimum. One must consider involving
$\qquad$ to find the position of the bus stop.
(a) Mean
(b) Mode
(c) Median
(d) Weighted mean

Answer:
Explanation:
'Median' The total distance walked by the residents to the bus stop from their building must DO kept minimum.

## Question 11

Given that Mean $=\mathbf{7 0 . 2 0}$ and Mode $=\mathbf{7 0 . 5 0}$, the Median is expected to be.
(a) 70.15
(b) 70.20
(c) 70.30
(d) 70.35

## Answer:

Explanation:
Since Mean and Mode are different, this data is clearly not symmetric.
For moderately skewed data, we know that Mode= 3Median -2 Mean.
Therefore, Median $=\frac{\text { Mode }+2 \text { Mean }}{3}$
Median $=\frac{70.50+(2 \times 70.20)}{3}=70.30$

## 【UNE 2022

## Question 1

Which is not a measure of central tendency
(a) Mean
(b) Median
(c) Quartile deviation
(d) Mode

Answer: c

## Explanation:

Quartile deviation is not a measure of central tendency.

## Question 2

Mean Deviation of data $3,10,10,4,7,18,5$ from mode is
(a) 4.39
(b) 4.14
(c) 4.70
(d) 5.24

Answer: b

## Explanation:

Mean deviation from mode of following data 3, 10, 10, 4, 7, 18, 5
Here mode (Mo) = 10
Table =

| x | Mode $(\mathbf{M o})$ | $\|\mathrm{d}\|=\|\mathrm{x}-\mathrm{Mo}\|$ |
| :--- | :--- | :--- |
| $\mathbf{3}$ | 10 | 7 |
| $\mathbf{1 0}$ | 10 | 0 |
| $\mathbf{1 0}$ | 10 | 0 |
| $\mathbf{4}$ | 10 | 6 |
| $\mathbf{7}$ | 10 | 3 |
| $\mathbf{1 8}$ | 10 | 8 |
| $\mathbf{5}$ | 10 | 5 |
| $\mathrm{~N}=\mathbf{7}$ |  | $\sum\|\mathrm{d}\|=29$ |

M.D- $\frac{\sum|d|}{N}=\frac{29}{7}=4.14$

## Question 3

$A M$ and Coefficient of variation of $x$ is 10 and 40 . What is the variance $\mathbf{3 0 - 2 x}$
(a) 64
(b) 56
(c) 49
(d) 81

Answer: a
Explanation:
A.M of $x=10$
C.v. of $x=40 \%$
$\mathrm{CV}=\frac{S . D .}{10} \times 100$
$40=\frac{S . D .}{10} \times 100$
S.D. $=\frac{40 \times 10}{100}$
S. $D=4$
i.e. S.D of $x=4$

Here Let $y=30-2 x$
$2 x+y-30=0$
$\mathrm{B}=\frac{\text { Coeff of } x}{\text { Coeff of } y}=\frac{-2}{1}=-2$
S.D of $y=|b|$ of S.D of $x$
$=|-2| \times 4=2 \times 4=8$
$=$ Variance of $y=(8)^{2}=64$

## Question 4

Which of the following is based on absolute deviation?
(a) Standard deviation
(b) Mean deviation
(c) Range
(d) Quartile deviation

Answer: b
Explanation:
M. D is known as absolute deviation

## Question 5

When each value does not have equal importance then
(a) A M
(b) G M
(c) H M
(d) Weighted Average

Answer: d
Explanation:
When each value does not have equal importance then we used weighted Average.

## Question 6

Following are the wages of 8 workers $82,96,52,75,70,65,50,70$. Find range and coefficient of range?
(a) $46,32.70$
(b) $43,31.50$
(c) $46,31.50$
(d) $43,32.70$

Answer: c
Explanation:
Here Smallest No (S) = 50
Largest No (L) = 96
Range $=\mathrm{L}$ - S
= 96-50
$=46$
Coeff. of Range $=\frac{\mathrm{L}-\mathrm{S}}{\mathrm{L}+\mathrm{S}} \times 100$
$\frac{96-50}{960+50} \times 100$
$=\frac{46}{146} \times 100$
$=31.50$

## Question 7

The mean of 20 observation is 38 . If two observation are taken as $\mathbf{8 4}$ and 36 instead of 48 and 63 find new means.
(a) 38.45
(b) 41.15
(c) 37.55
(d) 40.05

Answer: c
Explanation:
$\bar{X}=38$
No of observation ( N ) $=20$
RightValues (R.V) $=48+63=111$
Wrong Values (W.V) $=84+36=120$
New (correct) mean $=$ original mean $+\frac{R . V-W \cdot V}{N}$
$=38+\frac{(111-120)}{20}$
$=38+\frac{(-9)}{20}$
$=38+0.45$
$=37.55$

## Question 8

The $3^{\text {rd }}$ decile for the numbers
$15,10,20,25,18,11,9,12$ is
(a) 13
(b) 10.70
(c) 11.00
(d) 11.50

Answer: b
Explanation:
Write the terms in Ascending order 9, 10, 11, 12, 15, 18, 20, 25
Here $\mathrm{N}=8$
$\mathrm{D}_{3}=\left[\frac{3(N+1)}{10}\right]^{t h}$
$\left[\frac{3(8+1)}{10}\right]^{t h}$
$\left[\frac{27}{10}\right]^{\text {th }}$
$2.70^{\text {th }}$ term
$=2^{\text {th }}$ term +0.70 (3th term -2 th term $)$
$=10+0.70(11-10)$
$=10+0.70 \times 1$
$=10+0.70$
$=10.70$

## Question 9

Find the standard deviation and coefficient of variation for 1, 9, 8, 5, 7
(a) $2.828,49.32$
(b) $2.828,47.13$
(c) $2.828,48.13$
(d) $2.828,50.13$

Answer: c
Explanation:
Given data
1, 9, 8, 5, 7
Mean $(\bar{x})=\frac{\sum d^{2}}{N}=\sqrt{\frac{40}{5}}=\sqrt{8}$
$=2 \sqrt{2}$
$=.828$
C. $V=\frac{S . D}{A M} \times 100$
$\frac{2.828}{6} \times 100=47.13 \%$

## DEC 2022

Question 1
If Mean $(X)$ is $=\mathbf{1 0}$ and mode $(Z)$ is $=7$, then find out the value of median (M)
a) 9
b) 17
c) 3
d) 4.33

Answer: Options (a)
Explanation:
Applying the relation between mean, median and mode formula,
Mode =3 Median - 2 Mean
Therefore, Median $=\frac{\text { Mode }+2 \text { Mean }}{3}$
$=\frac{7+2 \times 10}{3}$
$=27$
Median $=9$

## Question 2

If the coefficient of variation and standard deviation are 30 and 12 respectively, then the arithmetic mean of the distribution is
a) 40
b) 36
c) 25
d) 19

Answer: Options (a)
Explanation:
C.V. -30, S.D - 12

$$
\begin{aligned}
& \text { CV }=100 \times \frac{\text { SD }}{\text { Mean }} \\
& 30=\frac{100 \times 12}{\text { Mean }} \\
& \text { Mean }=\frac{1200}{30}=40
\end{aligned}
$$

## Question 3

The relationship between two variables $x$ and $y$ is given by $4 x-10 y=20$. If the median value of the variable $x$ is 10 then what is median value of variable $y$ ?
a) 1.0
b) 2.0
c) 3.0
d) 4.0

Answer: Options (b)
Explanation:
$4 x-10 y=20$
By Option b
$4 \times 10=-10 \times 2=20$
$40-20=20$
$=20=2.0$

## Question 4

Which one of the following is not a method of measures of dispersion?
a) Quartile
b) Mean deviation
c) Range
d) Standard Deviation

Answer: Options (a)
Explanation:
In statistics, Quartile is not a measure of dispersion because it is the measure of central tendency. 2nd quartile is equal to median. Only range, mean deviation, standard deviation are the measure of dispersion.

## Question 5

Mean deviation is minimum when deviation are taken from:
a) Mean
b) Median
c) Mode
d) Range

Answer: Options (b)
Explanation:
The mean deviation is least when it is taken from median (A standard result).

## Question 6

If the first quartile is $\mathbf{5 6 . 5 0}$ and the third quartile is 77.50 , then the coefficient of quartile deviation is
a) 638.09
b) 15.67
c) 63.80
d) 156.71

Answer: Options (b)
Explanation:
$\mathrm{Q}_{1}=56.5$
$\mathrm{Q}_{3}=77.5$
Coef. of $\mathbf{Q D}=\frac{Q_{3}-Q_{1}}{Q_{3}+Q_{1}} \times 100$
$77.5-56.5$
$\frac{77.5+56.5}{77.50}$
$\frac{21}{134} \times 100=15.67$

## Question 7

The median of the observation $42,72,35,92,67,85,72,81,51,56$ is
a) 69.5
b) 72
c) 64
d) 61.5

Answer: Options (a)
Explanation:
$42,72,35,92,67,85,72,81,51,56$
No' of observations ( n ) $=10$
first of all we arrange the observations in an ascending order
$35,42,51,56,67,72,72,81,85,92$
Here observe that No' of observations (n) is even so
Median is average of $\frac{n}{2}$ th term and $\left(\frac{n}{2}+1\right)$ th term
Median $\frac{\frac{n}{2} \text { th term }+\left(\frac{n}{2}+1\right) \text { th term }}{2}$
$\frac{\frac{10}{2} \text { th term }+\left(\frac{10}{2}+1\right) \text { th term }}{2}$
5 th term +6 th term
$=\frac{67+72^{2}}{2}$
$=\frac{139}{2}$
$=69.5$

## Question 8

If the sum of square of the values equals to 3390. Number of observation are 30 and Standard deviation is 7, what is th mean value of the above observations?
a) 14
b) 11
c) 8
d) 5

Answer: Options (c)

Explanation:
$\Sigma \sqrt{\frac{\Sigma \mathrm{x}^{2}}{n}}-\left(\frac{\Sigma \mathrm{x}}{n}\right)^{2}$
$\Sigma \sqrt{\frac{\sum \mathrm{x}^{2}}{n}-(x)^{2}}$
$72 \frac{3390}{30}-(\bar{X})^{2}$
$49=113-(\bar{X})^{2}$
$=(\bar{X})^{2}=113-49$
$(\bar{X}) 2=64$
$(\bar{X})=8$

## Question 9

The mean of 50 observations is 36 . If two observations 30 and 42 are to be excluded, then the mean of the remaining observation will be:
a) 36
b) 38
c) 48
d) 50

Answer: Options (a)
Explanation:
Sum of the 50 observations $=36 \times 50=1800$
Two observations 30 and 42 are excluded
then sum of the remaining 48 observations $=1800-[30+42]=1728$ Therefore req.
mean $=481728=36$

## Question 10

The average age of 15 students in a class is 9 years. Out of them, the average age of 5 students is 13 years and that of 8 students is 5 years. What is the average of remaining 2 students?
a) 5 years
b) 9 years
c) 10 years
d) 15 years

Answer: Options (b)
Explanation:
with option b applying combined AM method
$5 \times 13+8 \times 5+2 \times 15$ 15
Mean of 15 Student is 9

## Question 11

If Arithmetic Mean and Geometric Mean between Two numbers are 5 and 4 respectively, then these numbers are
a) $2 \& 3$
b) $2 \& 8$
c) $4 \& 6$
d) $1 \& 16$

Answer: Options (b)
Explanation:
If the arithmetic mean is 5 , therefore the sum of the two numbers is 10 .
Let the two numbers be x and $10-\mathrm{x}$
The geometric mean is 4
So, $\sqrt[2]{x(10-x)}=4$
On squaring both sides, we get
$\mathrm{X}(10-\mathrm{x})=16$
$\Rightarrow 10 \mathrm{x}-x^{2}=16$
$\Rightarrow x^{2}-10 \mathrm{x}+16=0$
$\Rightarrow x^{2}-8 \mathrm{x}-2 \mathrm{x}+16=0$
$\Rightarrow x(x-8)-2(\mathrm{x}-8)=0$
$\Rightarrow(x-2)(\mathrm{x}-8)=0$
$\Rightarrow x=2$ or $x=8$
So, the required numbers are 2 and 8

## Question 12

If Arithmetic mean between two numbers is 5 and Geometric mean is 4 then what is the value of Harmonic mean?
a) 3.2
b) 3.4
c) 3.5
d) 3.6

Answer: Options (a)
Explanation:
We know If $a$ and $b$ are two positive numbers then,
Therefore, we can conclude the relationship between A.M., G.M. \& H.M. is:
G.M. $=\sqrt{\text { A.M. } \times \text { H.M. }}$

Now, substituting A.M. $=5$ \& G.M. $=4$, we get
$4=\sqrt{5 \times H . M}$.
Squaring both sides
$\Longrightarrow(4)^{2}=(\sqrt{5 \times H . M .})^{2}$
$\Longrightarrow 16=5 \times H . M$.
$\Longrightarrow$ H.M. $=\frac{16}{5}$
$\Longrightarrow$ H.M. $=3.2$
Thus, the Harmonic mean between the two numbers is 3.2.
Question 13
If the variance of given data is 12 , and their mean value is 40 , what is coefficient variation (CV)?
a) $5.66 \%$
b) $6.66 \%$
c) $7.50 \%$
d) $8.65 \%$

Answer: Options (d)
Explanation:
Coef. of $\sigma^{2}=\frac{\sigma}{x} \times 100$
$=\frac{\sqrt{12}}{40} \times 100$
$=8.65 \%$

