

UNIT I: MEASURES OF CENTRAL TENDENCY

FOR ENQUIRY – 626296	i 9604 626290	69699
Types of median	Calculation of Quartiles, Deciles and Decentiles• For Continuous Series• Formula to be used in continuous series:1. Q_1 =Size of N/4th item• Formula to be used in continuous series:2. Q_3 =Size of 3N/4th item• P_{3} =L1+N/4-c.f*i/f3. D_1 =Size of N/10th item2. Q_3 =L1+3N/4-c.f*i/f4. D_9 =Size of 9N/10 item3. D_1 =L1+N/10-c.f*i/f5. P_1 =Size of N/100th item4. D_9 =L1+9N/10-c.f*i/f6. P_{99} =Size of 99N/100th item6. P_{99} =L1+99N/100-c.f*i/f	
Mode	Formula of Mode : $Z = l_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i$ where, $Z = \text{value of Mode}$ $l_1 = \text{lower limit of modal class}$ $f_0 = \text{Frequency of the preceding modal class}$ $f_2 = \text{Frequency of the subsequent modal class or post modal class}$ $i = \text{Class interval of the modal class}$	
GEOMETRIC MEAN & HARMONIC MEAN& WEIGHTED MEAN	Geometric Mean: $GM = \sqrt[n]{\prod_{i=1}^{n} x_i} = \sqrt[n]{x_1 x_2 x_3 \dots x_n}$ Harmonic Mean: $HM = \frac{n}{\sum_{i=4}^{n} \frac{4}{w_i}} = \frac{n}{\frac{4}{x_1 + \frac{4}{x_2 + \frac{4}{x_3 + \dots + \frac{4}{x_n}}}}$ Weighted Mean: $WM = \frac{\sum_{i=4}^{n} w_i x_i}{\sum_{i=4}^{n} w_i} = \frac{w_4 x_2 + w_2 x_2 + w_5 x_5 + \dots + w_n x_n}{w_1 + w_2 + w_8 + \dots + w_n}$	
Relationship between Mean, Median and	Mean – Mode = 3(Mean– Median) Mode = 3 Median – 2 Mean	
Relation between AM, GM, and HM	AM >GM >HM	
	For more Info Visit - www.KITest.in	14. 3

6262969699

Question 1

Relationship between Mean, Median and Mode

(a) Mean - Mode = 3(Mean - Median)(c) Both (a & b)

(b) Mode = 3 Median - 2 Mean(d) None of these

Answer: C Explanation:

If a frequency distribution is positively skewed, the mean is greater than median and median is greater than mode.

20 30

Question 2

If median – 20 and mean-22.5 in a moderately skewed distribution then compute approximate value of mode

(a) 15	(b)
(c) 25	(d)
Answer: A	
Explanation:	
Mean – Mode = 3(Mean – Median)	
22.5 – Mode = 3(22.5 – 20)	
22.5 – Mode = 7.5	
Mode = 22.5 – 7.5	
Mode = 15	

<u>Question 3</u> A numerical value used as a summary measure for a sample, such as sample mean, is

known as a(a) Population parameter(c) Sample statistic

- (b) Sample parameter
- (d) population mean

Answer: C

Explanations:

If it pertains to sample it is called a statistic, if it pertains to population, it is called a parameter.

Question 4

<u>Question 4</u>	
Since the population size is always larger	than the sample size, then the sample statistic
(a) Can never be equal to the population parameter	(b) Can never be zero
(c) Can never be smaller than the population parameter	(d) None of the above answers is correct
Answer: D	
Explanation:	
Sample statistic will depend upon the sample population parameter. It can assume the value	e chosen. It can be less than, greater than, equal to ue of zero.

<u>Question5</u> Mu is an example of a

- (a) Population parameter
- (c) Population variance.
- **Answer:** A

Explanation:

M is a standard representation for population parameter.

Question 6

The mean of a sample is

- (a) Always equal to the mean of the population
- (c) Computed by summing the data values and dividing the sum by (n 1)

Answer: D

Explanation: Mean = Total of sample values/ sample size

Question 7

The sum of the percent frequencies for all classes will always equal

(a) One(b) The number of classes(c) The number of items in the study(d) 100Answer: D(d) 100Explanation: $n \times 100 = 100$

Question8

In a five number summary, which of the following is not used for data summarization?

(a) The smallest value
(c) The median
Answer: D
Explanation:
The 25th percentile

(b) The largest value (d) The 25th percentile

Ouestion 9

Since the mode is the most frequently occurring data value, it

- (a) Can never be larger than the mean(c) Is always larger than the mean
 - (b) Is always larger than the median
 - (d) None of the above answers is correct.

Answer: D

Explanation:

The mean, median and mode values will be distributed according to the skewness of the distribution. Accordingly, mode can be greater than or less than mean or mode.

Question 10

The following table gives the distribution of 100 accidents during seven days of the week of a given month. During a particular month there were 5 Fridays and Saturdays and four each of other days. Calculate the average number of accidents per day.

For more Info Visit - www.KITest.in

14. 5

6262969699

(b) Sample statistic (d) Mode lation parameter.

population

number of items

(b) Always smaller than the mean of the

(d) Computed by summing all the data

values and dividing the sum by the

6262969699

Days	Sun	Mon	Tue	Wed	Thru	Fri	Sat.	Total
Number of	20	22	10	9	11	8	20	100
accidents								

(a) 14 (c) 17 **Answer:** A

Explanation:

Calculation of number of Accidents per day

(b) 12 (d) 19

Day	No. of Accidents (x)	No. of days in Month (f)	Total fx
Sunday	20	4	80
Monday	22	4	88
Tuesday	10	4	40
Wednesday	9	4	36
Thursday	11	4	44
Friday	8	5	40
Saturday	20	5	100
Total	100	N =30	$\Sigma fx = 428$

 $\frac{1}{N} = \frac{1}{30} = 14.27$

14 accidents per day

Question 11

Following are the daily wages in Rupees of a sample of 9 workers: 58, 62, 48, 53, 70, 52, 60, 84, 75. Compute the mean wage.

(a) 62.44	(b) 62.04
(c) 60.44	(d) 31.22
Answer: a	

Explanation:

Let x denote the daily wage in rupees.

Then as given $x_1 = 58$, $x_2 = 62$, $x_3 = 48$, $x_4 = 53$, $x_5 = 70$, $x_6 = 52$, $X_7 = 60$, $x_8 = 84$ and $x_9 = 75$. Applying (15.1.1) the mean wage is Given hy

$$=\frac{\sum xi}{n}$$
58+62+48+53+70+52+60+84+75
9

 $\frac{562}{9} = 62.44$

Question 12

Find the AM for the following distribution:

class	350-369	370-389	390-409	410-429	430-449	450-469	470-489
interval							
Frequency	23	38	58	82	65	31	11

(a) 416

(b) 416.17

6262969699

(c) 416.71 Answer: C Explanation:

(d) 41.71

Computation of AM						
Class Interval	Frequency(f)	Mid-Value(x)	d= xi-A xi = -419.50	fx		
(1)	(2)	(3)	(4)	$(5) = (2) \times (4)$		
350 - 369	23	359.50	-3	-69		
370 - 389	38	379.50	-2	-76		
390 - 409	58	399.50	-1	-58		
410 - 429	82	419.50	0	0		
430 - 449	65	439.50	1	65		
450 - 469	31	459.50	2	62		
470 - 489	11	479.50	3	33		
Total	308	-	-	-43		

The required AM is given by

$$X=A + \frac{2ftdt}{N} \times C$$

= 419.50+ $\frac{(-43)}{308} \times 20$
= 419.50 - 2.79
= 416.71

Question 13

The mean salary for a group of 40 female workers is Rs. 5200 per month and that for a group of 60 male workers is Rs. 6800 per month. What is the combined mean salary? (a) 6160 (b) 616

(d) 61.6

(a) 6160 (c) 6.16

Answer: A

Explanation:

As given $n_1 = 40$, $n_2 = 60$, $x_1 = Rs$. 5200 and

 $X_2 = Rs.6800$

Hence, the combined mean salary per month is

 $X = \frac{n_1 x_1 + n_2 x_2}{n_1 + n_2}$ 40 ×Rs.5200+60 ×Rs.6800

40 + 60

= 6160

Question 14

The sum of the deviation of a given set of individual observations from the arithmetic mean is always infinite. The statement is True or not?

(b) Incorrect

(d) None

- (a) Correct
- (c) Error

Answer: B

Explanation:

According to Mathematical properties of the Arithmetic Mean: The sum of the deviation of a given set of individual observations from the arithmetic mean is always zero. Symbolically = 0. It is due to this property that property the arithmetic mean is characterized as the center as the center gravity i.e., the sum of positive deviations from the mean is equal to the sum of negative deviations.

Question 15

The mean age of a combined group of men and women is 30 years. If the mean age of the group of men is 32 and that of women group is 27. Find out the percentage of men and women in the group.

(a) 30%, 70% (c) 60%, 40% (b) 20%, 80% (d) 40%, 60%

Answer: C

Explanation:

Let us take group of men as first group and women as second group. Therefore = 32 years, = 27 years, and = 30 years. In the problem, we are not given the number of men and women. We can assume

N1 + N2 = 100 and therefore. N1 = 100 - N2 Apply = 30 = (Substitute N₁ = 100 - N₂) 30 × 100 = 32(100 - N₂) + 27N₂ or 5N₂ = 200 N₂ = $\frac{200}{5}$ = 40% N₁ = (100 - N₂) = (100 - 40) = 60%

Therefore, the percentage of men in the group is 60 and that of women is 40.

Question 16

Median and mode of the wage distribution are known to be Rs. 33.5 and 34 respectively. Find the third missing values.

Wages (Rs.)	No. of Workers
0-10	4
10—20	16
20-30	?
30-40	?
40-50	?
50-60	6
60-70	4
Total	230

(a) 6		(b) 10
(c) 9		(d) 40
	D	

Answer: D

Explanation:

We assume the missing frequencies as 20 - 30 as x, 30 - 40 as y, and 40 - 50 as 230 - (4 + 16 + x + y + 6 + 4) = 200 - x - y.

Wo now procood	further to	computo	miccing	fraguancias
We now proceed	iurther to	compute	iiiissiiig.	in equencies:

Wages (Rs.) x	No. of workers f	Cumulative frequencies cf
0-10	4	4
10-20	16	20
20-30	Х	20 + x
30-40	У	20 + x + y
40-50	200-х-у	220
50-60	6	226
60-70	4	230

NI		22	Δ
IN	=	23	U

Apply median = 33.5 = Y(33.5 - 30) = (115-20-x) 103.5y = 1150 - 200 - 10x $10x + 3.5y = 950 \dots (i)$ Apply mode = 34 = 4(3y - 200) = 10(y - x)10x + 2y = 800 (ii) Subtract equation (ii) from equation (i), 1.5y = 150, y = 100Substitute the value of y = 100 in equations (i0, we get 10x + 3.5(100) = 95010x = 950-350 $X = \frac{600}{10} = 60$ Third missing frequency = 200 - x - y = 200 - 60 - 100 = 40.

Question 17

Calculate mode from the following data:

Marks	Frequency			
Below 10	4			
"20	6			
"30	24			
"40	46			
"50	67			
"60	86			
"70	96			
"80	99			
"90	100			

(a) 41.3	(b) 40
(c) 40.13	(d) 89

Answer: A

Explanation:

Since we are given the cumulative frequency distribution of marks, first we shall convert it into the normal frequency distribution:

Marks	Frequencies
0-10	4
10-20	6-4=2
20-30	24-6=18
30-40	46-24=22
40-50	67-46=21
50-60	86-67=19
60-70	96-86=10
70-80	99-96=3
80-90	100-99=1

It is evident from the table that the distribution is irregular and maximum chances are that the distribution would be having more than one mode. You can verify by applying the grouping and analyzing table.

The formula to calculate the value of mode in cases of bio-modal distribution is:

Marks	Mid-Value x	Frequency f	Cumulative frequencies cf	(dx)	fdx
0-10	5	4	4	-4	-16
10-20	15	2	6	-3	-6
20-30	25	18	24	-2	-36
30-40	35	22	46	-1	-22
40-50	45	21	67	0	0
50-60	55	19	86	1	19
60-70	65	10	96	2	20
70-80	75	3	99	3	9
80-90	85	1	100	4	4
	405	$\Sigma f = 100$	528	0	$\Sigma f dx = -28$

Mode = 3 median – 2 mean. Computation of Mean and Median

Mean =?

Median = size of item = 50^{th} item Because 50 is similar to 67 in C.f. column, Median class is 40 - 50Apply Mode = 3 median - 2 Mean Mode = $3 \times 41.9 - 2 \times 42.2 = 125.7 - 84.6 = 41.3$

Question 18

Find the arithmetic mean of the first 7 natural numbers.

(a) 5	(b) 6
(c)7	(d) 4
Answer: D	
Explanation:	
The first 7 natural numbers are 1, 2, 3, 4, 5, 6 a	nd 7.
Let x denote their arithmetic mean.	
Then mean = Sum of first 7 natural numbers/r	number of natural numbers
X = (1 + 2 + 3 + 4 + 5 + 6 + 7)/7	
= 28/7	
= 4	
Hence, their mean is 4.	
Question 19	
The heights of five runners are 160cm, 137	cm, 149 cm, 153 cm, and 161 cm
respectively. Find the mean height per run	ner.
(a) 152	(b) 150
(c) 148	(d) 120
Answer: A	

Answer: A Explanation: Mean height = Sum of the heights of the runners/number of runners = $\frac{(160+137+149+153+161)}{12}$

5*cm*

 $=\frac{760}{5cm}$ = 152 cm. Hence the mean height is 152 cm.

Question 20

Find the mean of the first five prime numbers. (a) 4.6 (b) 6.5 (b) 78 (d) 5.6

Answer: D

Explanation:

The first five prime numbers are 2, 3, 5, 7 and 11. Mean = Sum of first five prime numbers/number of prime numbers $= \frac{(2+3+5+7+11)}{5}$ $= \frac{28}{5}$

= 5.6 Hence, their mean is 5.6

Question 21

Find the mean of the first six multiples of 4. (a) 12 (b) 13 (c) 14 (d) 15 Answer: C Explanation: The six multiples of 4 are 4, 8, 12, 16, 20, and 24. Mean = Sum of the first six multiples of $\frac{4}{No.of multiple}$ = $\frac{(4+8+12+16+20+24)}{6}$ = $\frac{84}{6}$ = 14. Hence, their mean is 14.

Ouestion 22

If the mean of 9, 8, 10, x, 12 is 15, find the value of x. (a) 30 (b) 41 (c) 36 (d) 63 Answer: C Explanation: Mean of the given numbers = $\frac{(9+8+10+x+12)}{5} = \frac{(39+x)}{5}$ According to the problem, mean = 15 (given). Therefore, $\frac{(39+x)}{5} = 15$ → 39 + x = 15 × 5 → 39 + x = 75 → 39 - 39 + x = 75 - 39 → x = 36 Hence x = 36.

FOR ENQUIRY - 6262969604 6262969699 **Question 23** If the mean of five observations x, x+4, x+6, x+8, and x+12 is 16, find the value of x. (a) 154 (b) 54 (c) 451 (d) 541 **Answer: C Explanation**: Mean of the given observations $-\frac{x + (x + 4) + (x + 6) + (x + 8) + (x + 12)}{(x + 6) + (x + 12)}$ 5 $=\frac{(5x+30)}{2}$ 5 According to the problem mean = 16 (given). Therefore, $\frac{(5x+30)}{5} = 16$ \rightarrow 5x + 30 = 16 × 5 $\rightarrow 5x + 30 = 80$ \rightarrow 5x + 30 - 30 = 80 - 30 \rightarrow 5x = 50 \rightarrow x = $\frac{50}{5}$ \rightarrow x = 10 Hence, x = 10. **Ouestion 24** The mean of 40 numbers was found to be 38. Later on, it was detected that a number 56

was misread as 36. Find the correct mean of given numbers. (a) 38 (b) 26 (d) 89 (c) 38.5 **Answer: C Explanation:** Calculated mean of 40 numbers = 38. Therefore, calculated sum of these numbers = $(38 \times 40) = 1520$. Correct sum of these numbers = [1520 - (wrong item) + (correct item)]=(1520 - 36 + 56)= 1540. Therefore, the correct mean = $\frac{1540}{40}$ = 38.5. **Ouestion 25** The mean of the heights of 6 boys is 152 cm. If the individual heights of five of them are 151 cm, 153 cm, 155 cm, 149 cm and 154 cm, find the height of the sixth boy.

(a) 157 (b) 159 (c) 150 (c) 150 (c) 89 Answer: C Explanation: Mean height of 6 boys = 152 cm. Sum of the heights of 6 boys = $(152 \times 6) = 912$ cm Sum of the heights of 5 boys = (151 + 153 + 155 + 149 + 154) cm = 762 cm. Height of the sixth boy = sum of the heights of 6 boys) – (sum of the heights of 5 boys)

6262969699

= (912-762) cm = 150 cm. Hence, the height of the sixth girl is 150 cm.

Question 26

Find the mod	e of the followi	ng set of marks.

Marks	1	2	3	4	5
Frequency	6	7	7	5	3

(a) 2 and 4	(b) 4 and 3
(c) 2 and 3	(d) 2 and 5

Answer: C

Explanation:

The marks 2 and 3 have the highest frequency. So, the modes are 2 and 3.

Note: The above example shows that a set of observation may have more than one mode.

Question 27

There are 8 number cards with values 0 – 7. Each time a card is drawn at random and the card value is recorded. The frequency refers to the number of times a value is shown.

Card values	0	1	2	3	4	5	6	7
Frequency	8	12	7	10	12	13	12	10

(b) 5, 79

(d) None

(a) 75,5

(c) 80, 89

Answer: A

Explanation:

(a) Mode: 75 kg (highest frequency of 12)

(b) Mode: 5 (highest frequency of 13)

Question 28

The following frequency table shows the marks obtained by students in a quiz. Given that 4 is the mode, what is the least value for x?

Marks	1	2	3	4	5	6
Number of students (frequency)	7	9	10	Х	9	11

(a) 12	(b) 10
(c) 3	(d) 6
Answer: A	

Explanation:

X is as least 12 (if x is less than 12 then 4 will not be the mode)

Question 29

The mean of the following frequency distribution is			
Class Interval Frequency			
0-10	4		
10-20	6		
20-30	10		
30-40	16		

40-50	14	
(a) 25	(b) 35	
(a) 25 (c) 30	(d) 31	

(c) 30

Answer: D

Explanation:

Class interval	Mid-point	Freq.	Diff, from	fd
			(A = 25)	
0-10	5	4	-20	-80
10-20	15	6	-10	-60
20-30	25	10	0	0
30-40	35	16	10	160
40-50	45	14	20	280
Total	Σf=50			$\Sigma fd = 300$

 $(x) = A + \frac{\Sigma FD}{\Sigma F} = 25 + \frac{300}{50} = 31$

Question 30

Mean of twenty observations is 15. If two observations 3 and 14 replaced by 8 and 9 respectively, then the new mean will be

(a) 14	(b) 15
(c) 16	(d) 17
Answer: D	
Explanation:	
Mean of 20 observ	ations = 15
∴ Sum of 20 obser	$vations = 15 \times 20 = 300$
Replacing 3 and 14	by 8 and 9 will mean that $3 + 14 = 17$ is replaced by $8 + 9 = 17$
11	

Hence there will be no effect on the sum. It will remain 300, so the mean will not change and will remain 15.

Ouestion 31

Factory A	Factory B
No. of wage of earners 250	200
Average daily wage Rs. 2.00	Rs. 2.50
The average of daily wages for the earn	ners of the two factories combined is
(a) Rs. 2.12	(b) Rs. 2.06
(c) Rs. 2.20	(d) Rs. 2.22
Answer: D	
Explanation:	
Required average = $\frac{250 \times 2.00 + \times 2.50 \times 200}{250 + 200}$	
_ 1000	
$=\frac{450}{20}$	
$=\frac{20}{9}$	
Rs. 2.22	
Question 32	
The height of 30 boys of a class are give	en in the following table:
Height in cm	Frequency

6262969699

120-129	2
130-139	8
140-149	10
150-159	7
160-169	3

If by joining of a boy of height 140 cm, the median of the heights is changed from M_1 to M_2 then M_1 - M_2 in cm is

(b) -0.1

(d) 0.2

(a) 0.1 (c) 0

Answer: C

Explanation:

Height in cms	Frequency	Cumulative frequency	Actual Class limit
120-129	2	2	119.5-129.5
130-139	8	10	129.5-139.5
140-149	10	20	139.5-149.5
150-159	7	27	149.5-159.5
160-169	3	30	159.5-169.5
n = 30			

Here n = 30

$$\therefore \frac{n}{2} + 1 = 15 + 1 = 16$$

 \therefore 16 is under cumulative frequency 20. So median class be 140-149 L1 = 139.5, L2 = 149.5, f = 10, n = 30, c = 10.

- Median M₁ = L₁+ $\frac{L_2-L_1}{f} \left(\frac{n}{2} c \right)$
- $= 139.5 + \frac{10}{10} (15 10)$

$$= 139.5 + \frac{10}{10} \times 5 = 144.5$$

If by joining f a boy of height 140 cms, the n=31, f=11

:. Median M₂ = 139.5 +
$$\frac{149.5 - 139.5}{11}$$
(15.5 - 10)

= $139.5 + \frac{10}{11} \times 5.5 = 144.5$ cms

Then $M_1 - M_2 = 144.5 - 144.5 = 0$

Question 33

The marks awarded to seven students in a school admission test were:

	Mathematics	English
А	55	35
В	45	32
С	75	44
D	15	50
Е	10	45
F	40	60
G	06	40

Which subject has the better median value?

(a) Mathematics

(c) Both (a) and (b) above

(b) English

(d) None of the above

Answer: B

Explanation:

The awarded makes in Mathematics and English were arranged in ascending in ascending order separately.

Maths	English
06	32
10	35
15	40
40	44
45	45
55	50
75	60

Hence, English has the better median value.

Question 34

Identify the mode of the given distribution.

Marks	4	5	6	7	8
Number of	3	5	10	6	1
students					

(a) 7 (b) 1 (c) 8 (d) 6 Answer: D Explanation:

Mode is 6 as it has the highest frequency

Question 35

The given data are the times (in minutes), it takes seven students to go to school from their homes.

11	6	22	7	10	6	15
Which state	Which statement about the data is false?					
(a) Their me	edian is 11.		(b) 1	Their mear	n is 15.	
(c) Their rar	nge is 16.		(d) 1	Their mod	e is 6.	
Answer: a						
Explanation	n:					
Arranging the given data in ascending order, we get 6, 6, 7, 10, 11, 15, 22						
$Mean = \frac{6+6+7+10+11+15+22}{7}$						
$\frac{77}{7} = 11$						
Mode = 6 Median = 4^{th} value = 10						
Question 36						

6262969699

The medians of the following two sets of numbers are equal, and the sets are arranged in ascending order $\{1, 4, x, 8\}$ and $\{2, 5, y, 9\}$. What is y - x?

	(, -, 5, -) 5
(a) -1	(b) 0
(c) -2	(d) 3
Answer: a	

Explanation:

Recall that the median of an even-numbered of numbers is the arithmetic mean of the pair of middle terms. Thus $\frac{(4+x)}{2}$ = median of the first set and $\frac{(5+y)}{2}$ -= median of the second set. Since both median are equal, we can set the equations equal to each other. $\frac{(4+x)}{2} = \frac{(5+y)}{2}$. Multiply both sides by 2 and we get 4 + x =5 + y. we also know that 4 < x < 8 and 5 < y < 9, since the sets are arranged in ascending order. This narrows our options for x and y down significantly. Plugging in various values will eventually get you to x = 7 and y = 6, since 7 + 4 = 11 and 5 + 6 =11, and thus the median in both cases would be 5.5. thus, y-x = -1

Question 37

What is the median in the following set of numbers 16, 19, 16, 7, 2, 20, 9, 5. (a) 2 (b) 16 (c) 4.5 (d) 12.5 Answer: d Explanation: 10, 16, 7, 2, 20, 0, 5

16, 19, 16, 7, 2, 20, 9, 5
Order the numbers from smallest to largest.
2, 5, 7, 9, 16, 19, 20
The median is the number in the middle.
In this case, there is a 9 and 16 in the middle.
When that happens, take the average of the two numbers.

Question 38

Find the median: 4	,4,4,4,6,7,9,9,12,1	2,12,12,12,12	,12,18,76,90.
(a)11.9		(b) 9	
(c) 76		(d) 12	
Answer: d			
Explanation:			
m (* 1.1 1)		C 11	

To find the median, arrange the numbers from smallest to largest: 4,4,4,4,6,7,9,9,12,12,12,12,12,18,76,90

There are 17 numbers in total. Since 17 is an odd number, the median will be the middle number of the set. In this case, it is the 9th number, which is 12.

Question 39

There are 3,500	neonle in groun	A and 5 000 neg	nle in groun B·
There are 5,500	people in group	A and 5,000 per	pie in group D.

Car type	% in group A who own	% in group B who own
Motorbike	4	9
Sedan	35	25
Minivan	22	15
Van	9	12
Coupe	3	6

What is the median of the number of people in group B who own either a minivan.Van or coupe?

mentioned. If we do each 0.06(5000), 0.12(50 that the median, or middle value, would have	estion asks for EITHER of 3 categories, so we can
 76, 82, 45, and 65 respectively. What was t (a) 73 (c) 70 Answer: b Explanation: To solve this problem, we must be aware of the second se	 (b) 76 (d) 89 a definition of a median for a set of numbers. The ddle of a set of numbers sorted from smallest to
56, 65, 70,76,76,87 65, 70, 76, 76 70, 76, 76 76 Then by slowly eliminations the smallest and score for this test is 76. Question 41	the largest numbers we find that the median
 Set A = [-10, 4, 2, -14, -2] Quantity A: The mean of Set A Quantity B: The median of set A (a) Quantity B is greater. (c) The relationship cannot be determined Answer: a Explanation: Begin by reordering the set in numerical orde Set A = [-10, 4, 2, -14, -2] 	(b) Quantity A is greater. (d) The two quantities are equal. r:
Then becomes Set A = [-14,-10,-2, 2, 4] Since there are an odd number of values, the r Quantity B: -2 Now, to find the arithmetic mean, take the sur	nedian is the middle value. n of values divided by the total number of values. /isit - www.KITest.in

14. 18

6262969699

 $\frac{-14 - 10 - 2 + 2 + 4}{5}$ Quantity A: -4 **Ouestion 42** The arithmetic mean of 2-x,3x2,7-15x,x2-8x+23 is -1 **Ouantity A: 3** Quantity B: The median of 2, x, 1, 4, 10, 8,, 2, x, 1, 4, 10, 8 (a) Quantity B is greater. (b) Quantity A is greater (c) The relationship cannot be (d) The two quantities are equal. determined Answer: a **Explanation**: X is an unknown value, but it can be found given what we know about the mean of the set 2x,3x2,7-15x,x2-8x+23: $\frac{(2-x) + (3x^2) + (7-15x) + (x^2 - 8x + 23)}{4x^2 - 24x + 32 = -4} = -1$ $x^2 - 6x + 8 = -1$ $x^2 - 6x + 9 = 0$ (X-3)(X-3)=0X=3 Now, Quantity B: is out of order; arrange in numerically: 1, 2, x=3, 4, 8, 10 Since, there is even number of values; the median is the mean of the two middle most values: Quantity B: $\frac{3+4}{2} = 3.5$ 3+42=3.5

Question 43

Bill runs for 30 minutes at 8 mph and then runs for 15 minutes at 13 mph. what was his average speed during his entire run? (b) $9\frac{2}{3}$ mph (d) $10\frac{1}{2}$ mph

(a) 10 mph

(c) 11 mph

Answer: b

Explanation:

Rate = distance/time.

Find the distance for each individual segment of the run (4 miles and 3.25 miles.). Then add total distance and divide by total time to get the average rate, while making sure the units are compatible (miles per hour not mils per minute), which means the total 45 minute run time needs to be converted to 0.75 of an hour; therefore (4 miles + 3.25 miles/0.75 hour) is the final answer.

Ouestion 44

	Find the mo	de for the	following data.	
--	-------------	------------	-----------------	--

Age	0-6	6-12	12-18	18-24	24-30	30-36	36-42
Frequency	6	11	25	35	18	12	6

6262969699

(a) 20.22	(b) 19.47
(c) 21.12	(d) 20.14
Answer: a	
Explanation:	
	is 35, so the mode class is 18-24.
Now, Mode = L + $\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$	
$18 + \left(\frac{35 - 25}{2 \times 35 - 25 - 18}\right) \times 6$	
= 18 + 2.22 = 20.22	

Question 45

Find the median for the following distribution of workers.

Daily wages	No. of workers	Daily wages	No. of workers
1-3	6	9-11	21
3-5	53	11-13	16
5-7	85	13-15	4
7-9	86	15-17	4

(a) 7.14	(b) 6.84
(c) 5.92	(d) 5.57
Answer: b	

Explanation:

Daily wages	No. of workers	Cumulative frequency (cf)
1-3	6	6
3-5	53	59
5-7	85	144
7-9	86	230
9-11	21	251
11-13	16	267
13-15	4	271
15-17	4	275

Here, n = 275
$$\frac{n}{2}$$
 = 137.5
Median class 5-7

Median =
$$l + {\frac{2}{c.f.}}{f} \times h$$

= $5 + {\frac{137.5 - 59}{85}} \times 2 = 5 + {\frac{78.5}{85}} \times 2$
= $5 + 1.84$
= 6.84

Question 46

In an examination of 675 candidates of maximum marks 100 the examiner supplied the following information.

Marks obtained	No. of candidates
Less than 10%	7
Less than 20%	39

Less than 30%		95
Less than 40%		201
Less than 50%		381
Less than 60%		545
Less than 70%		631
Less than 80%		675
Calculated median and mode	respectively of the perce	entage marks obtained.
(a) 47, 58, 46, 33	(b) 49, 12,	48, 22
(c) 45, 24, 46, 22	(d) 47. 58, 48.22	
Answer: d		
Explanation:		
Marks (fi)	cf	Frequency
0-10	7	7
10-20	39	32
20-30	95	56
30-40	201	106
40-50	381	180
50-60	545	164
60-70	631	86
70-80	675	44
Here $n = 675$		

Here, n = 675

$$\frac{n}{2}$$
 = 337.5
So, median class 40-50
Median = l + $\left(\frac{\frac{n}{2}-c.f.}{f}\right)$ × h
40 + 7.58 = 47.58
Now, maximum frequency is 180
So modal class is 40-50
Modes = l + $\left(\frac{f_1-f_0}{2f_1-f_0-f_2}\right)$ × h
40 + $\left(\frac{180-106}{2\times180-106-164}\right)$ × 10
40 + $\frac{74}{90}$ × 10 = 40 + 8.22 = 48.22

Question 47

Find the mean, median and mode of the following data.

Classes	0-20	20-40	40-60	60-80	80-100	100-120	120- 140
Frequency	6	8	10	12	6	5	3
(a) 88 (c) 65 Answer: C Explanatior	1:			(b) 60 (d) 100			
Class	(xi)		Frequency (fi)		xifi	Cumulat	
0-20	10		6		60	6	
20-40	30		8		240	14	

40-60	50	10	500	24
60-80	70	12	840	36
80-100	90	6	540	42
100-120	110	5	550	47
120-140	130	3	390	50
Total		Σfi = 50	Σfixi = 3120	

 $Mean = \frac{\Sigma fixi}{\Sigma fi}$

 Σfi $= \frac{3120}{50} = 62.4$ n = 50, $\frac{n}{2} = 25$ Median class is 60-80
Median = $1 + \frac{\left(\frac{n}{2} - c.f.\right)}{f} \times h$ $= 60 + \left(\frac{25 - 24}{12}\right) \times 20$ = 60 + 1.67Maximum frequency is 12, so modal class is 60-80
Mode = $1 + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$ $60 + \left(\frac{12 - 10}{2 \times 12 - 10 - 6}\right) \times 20$

60+5 = 65

Question 48

The mean of 1, 3, 4, 5, 7, 4 is m. The numbers 3,2,2,4,3,3, p have mean m⁻¹ **and median q. Then, p + q=**(a) 4
(b) 5

(c) 6 (d) 7 Answer: d Explanation: Mean of 1, 3, 4, 5, 7 and 4 is m. $\Rightarrow \frac{1+3+4+5+7+4}{6} = m$ M = 4 Now, mean of 3, 2, 2, 4, 3, 3 and p is m⁻¹ $\frac{3+2+2+4+3+3+p}{6} = 3$ (\therefore m = 4) \Rightarrow 17+p = 21 \Rightarrow p = 4

Arranging 3, 2, 2,4,3,3 and 4 in ascending order, we get 2,2,3,3,3,4,4

 $\therefore \text{Median } (q) = n \left(\frac{7+1}{2}\right)^m \text{term} - 4^{\text{th}} \text{term} = 3$ $\therefore p + q = 4 + 3 = 7$

Question 49

The mean of six numbers is 21. If one number is excluded, then their mean is 19, the excluded number is ____.

(a) 31	(b) 26
(c) 28	(d) 25
Answer: a	
Explanation:	

Let the excluded number be x and the sum of rest of numbers be y. then, $21 = \frac{x+y}{6}$

→ 126 = x + y $19 = \frac{y}{5}$ → y = 95 \therefore From (i) x = 31

Question 50

If 7, 2, 9, and 5 occur with frequencies 2, 3, 6 and 4 respectively, then the arithmetic mean is -____.
(a) 6.25 (b) 6.75

(a) 6.25	(b) 6.75
(c) 6.27	(d) 6.42
Answer: c	
Explanation:	
Arithmetic mean = $\frac{x_{1f1+x_{2f2}+\dots+x_{nfn}}}{x_{nfn}}$	

 $\frac{(7\times2)+(2\times3)+(9\times6)+(5\times4)}{2+3+6+4}$

 $\frac{14+6+54+20}{15} = \frac{94}{15} = 6.27$

Question 51

Find n such that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b:

(b) 1

(d) 0

(a) $\frac{1}{2}$ (c) $\frac{-1}{2}$

Answer: c

Explanation: We know that geometric mean between a & b is a & b = \sqrt{ab}

It is given that

G.M. between a & b =
$$\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$$

 $\sqrt{ab} = \frac{a^{n+1}+b^{n+1}}{a^n+b^n}$
 $ab^{\frac{1}{2}} = \frac{a^{n+1}+b^{n+1}}{a^n+b^n}$
 $(ab)^{\frac{1}{2}(a^n+b^n)=a^{n+1}}+b^{n+1}$
 $a^{\frac{1}{2}}b^{\frac{1}{2}}(a^n+b^n) = a^{n+1}+b^{n+1}$
 $\frac{1}{a^2}+n = \frac{b^n+\frac{1}{2}[\frac{1}{b^2}-\frac{1}{a^2}]}{\frac{1}{b^2}-\frac{1}{a^2}}$
 $\frac{1}{a^2}+n = 1$
 $\left(\frac{a}{b}\right)^{\frac{1}{2}+n} = \left(\frac{a}{b}\right)^0$
Comparing power
 $\frac{1}{2}+n = 0$
 $n = -\frac{1}{2}$

-

6262969699

Question 52 What is the mode of 10, 2, 8, 6, 7, 8, 9, 10, 10, 11 and 10? (a) 10 (b) 12 (c) 14 (d) 8 Answer: a **Explanation:** Mode = observation with the highest frequency = 10**Ouestion 52** The mean of the marks in statistics of 100 students in class x was 72. The mean of marks for boys was 75, while their number was 70. What is the mean of marks of girls in the class? (a) 35 (b) 65 (d) 86 (c) 68 Answer: b **Explanation**: Total marks of boys Total number of girls $\frac{100 \times 72 - 75 \times 70}{200} = \frac{7200 - 5250}{200}$ 30 30 1950 $\frac{1}{30} = 65$ **Ouestion 53** Which of the following is true about the mode of a given data? (a) It may or may not exist for a (b) It is always unique. Given data. (c) It is very difficult to compute (d) We cannot calculate mode without Mode. The empirical formula. Answer: a **Explanation**: Mode of a given data may or may not exist sometimes. Range = 22 - 6 = 16**Ouestion 54** The A.M. of 12 observations is 15. If an observation 20 is removed, what is the arithmetic mean of the remaining observations? (a) 14.5 (b) 13 (c) 15 (d) 13.5 Answer: a **Explanation**: he A.M. of 12 observations is 15. \rightarrow Sum of 12 observations = $12 \times 15 = 180$ An observation 20 is removed → Mean of the remaining observations $=\frac{180-20}{(12-1)}=\frac{160}{11}=14.5$

Question 55 If for a given data median is 125.6 and mean is 128, find mode. For more Info Visit - www.KITest.in

6262969699

(a) 120.8 (b) 128.0 (c) 108.2 (d) 180.2 **Answer: a Explanation:** Given median = 125.6 and mean = 128. Mode = 3 Median - 2 Mean = (3 × 125.6)-(2×128) = 376.8 - 256 = 120.8

Question 56 What is the arithmetic mean of a+2, a and a-2? (a) a+2 (b) a (c) a-2 (d) 3a Answer: b Explanation: $Mean = \frac{a+2+a+a-2}{3} = \frac{3a}{3} = a$

Question57Which of the following is not a measure of central tendency?(a) Mean(b) Median(c) Mode(d) Standard deviationAnswer: dExplanation:Mean, median and mode are the measures of central tendency.

6262969699

Question 1

Following are the wages of 8 workers expressed in rupees: 82, 96, 52, 75, 70, 65, 50, 70. Find the range and also its coefficient.

(a) 46,31.51 (c) 56, 76 (b) 64,32 (d) 90,33

Answer: a Explanation:

The largest and the smallest wages are L = Rs. 96 and S = Rs. 50 Thus range = Rs. 96 – Rs. 50 = Rs.46

Coefficient of range = $\frac{96-50}{96+50} \times 100$ = 31.51

Question 2

What is the coefficient of range for the following distribution of weights?

Weights in	50-54	55-59	60-64	65-69	70-74
kgs:					
No. of	12	18	23	10	3
students					

C >	20
121	20
(~)	

(c) 20.16

(b) 21 (d) 40.34

Answer: c

Explanation:

The lowest class boundary is 49.50 kgs. And the highest class boundary is 74.50 kgs. Thus we have

Range = 74.50 kgs, - 49.50 kgs.

=25 kgs.

Coefficient of range = $\frac{74.50-49.50}{74.50+49.50} \times 100$

 $=\frac{25}{124} \times 100$ = 20.16

Question 3

Anubhav scored 85, 91, 88, 78, 85 for a series of exams. Calculate the mean deviation for his test scores?

(b) 5.78

(d) None

(a) 3.28 (c) 6.89

Answer: a

Explanation:

Given test score; 85, 91, 88, 78, 85

Mean =
$$\frac{(85+91+88+78+85)}{5}$$
 = 85.4

Subtracting mean from each score:

x	Xi - X	$ x_i - x $
85	-0.4	0.4
91	5.6	5.6
88	2.6	2.6
78	-7.4	7.4
85	-0.4	0.4

Mean deviations = $\frac{16.4}{5}$ = 3.28

Question 4

The wheat production (in kg) of 220 acres is given as: 1120, 1240, 1320, 1040, 1080, 1200, 1440, 1360, 1680, 1730, 1785, 1342, 1960, 1880, 1755, 1720, 1600, 1470, 1750, and 1885. Find the quartile deviation

(a)	246.875
(c)	246.89

(d) 175	
(b) 246	

6262969699

Answer: a Explanation:

After arranging the observations in ascending order, we get 1040, 1080, 1120, 1200, 1240, 1320, 1342, 1360, 1440, 1470, 1600, 1680, 1720, 1730, 1750, 1755, 1785, 1880, 1885, 1960. Q1 = Value of $\left(\frac{n+1}{4}\right)$ th item = Value of $\left(\frac{20+1}{4}\right)$ th = Value of (5.25)th item = 5th item + 0.25(6th item - 5th item) = 1240+0.25(1320-1240) Q1 = 1240 + 20 = 1260 Q3 = value of $3\left(\frac{n+1}{4}\right)$ th item = value of $3\left(\frac{20+1}{4}\right)$ th item = value of $3\left(\frac{20+1}{4}\right)$ th item = 15th item + 0.75(16th item - 15th item) = 1750 Q3=1750+3.75=1753.75 Q. D. = $\frac{Q_3-Q_1}{2} = \frac{1753.75-1260}{2} = \frac{492.75}{2}$ = 246.875

Question 5

Compute coefficient of variation from the following data:

Age :	under	under	under	under	under	under
	10	20	30	40	50	60
No. of persons	10	18	30	45	60	80
dying:						

(b) 89.88

(d) None

(a) 48.83

(c) 756.34

Answer: a

Explanation:

Age in years class	No. of persons dying	Mid value (x _i)	$d_i = x_i - 25$ 10	f _i d _i	f _i d _i ²
interval	(f i)				
0-10	10	5	-2	-20	40
10-20	18-10=8	15	-1	-8	8
20-30	30-18=12	25	0	0	0
30-40	45-30=15	35	1	15	15
40-50	60-45=15	45	2	30	60
50-60	80-60=20	55	3	60	180
Total	80	-	-	77	303

The AM is given by:

$$\overline{\mathbf{x}} = \mathbf{A} + \frac{2f_i d_i}{N} \times \mathbf{C}$$
$$= 25 \left(\frac{77 \times 10}{80}\right) \text{ years}$$

The standard deviation is

 $\int \frac{\Sigma f_i d_i}{N} - \left[\frac{\Sigma f_i d}{N}\right]^2 \times C$

 $CV = \frac{s}{x} \times 100$

6262969699

 $\sqrt{\frac{303}{80} - \left[\frac{77}{80}\right]^2 \times 10 years}$ $\sqrt{3.79 - 0.93 \times 10} year$ = 16.91 years Thus the coefficient of variation is given by = $\frac{16.91}{34.63} \times 100$ = 48.83

Question 6

What is the mean deviation about mean for the following numbers? 5, 8, 10, 10, 12, 9.(a) 1.74(b) 1.67(c) 1.87(d) 1.47Answer: bExplanation:The mean is given by $\overline{X} = \frac{5+8+10+10+12+9}{6}$

= 9

Computation of MD about AM

Xi	Xi - X
5	4
8	1
10	1
10	1
12	3
9	0
Total	10

Thus mean deviation about mean is given by

$$X_i - X = \frac{2^{10}}{6} = 1.67$$

Question 7

From the above data calculate coefficient of mean deviation (a) 12.45 (b) 123

(c) 989 (d) None Answer: a Explanation:

Coefficient of mean deviation = $\frac{MD \ about \ Median}{Median} \times 100$ $\frac{8714.28}{70000} \times 100$ = 12.4

Question 8

For a group of 60 boy5 students, the mean and SD of stats. Marks are 45 and 2respectively. The same figures for a group of 40 girl students are 55 and 3 respectively.What is the SD of marks if the two groups are pooled together?(a) 5.44(b) 5.48

(a) 5.44	(b) 5.48
(c) 49	(d) 3
Answer: c	

6262969699

Explanation:

 $\mathbf{X} = \frac{n_1 x_1 + n_2 x_2}{n_1 + n_2}$

 $\frac{60 \times 45 + 40 \times 55}{60 + 40} = 49$

Question 9

From the above questions and expression find standard deviation of marks (a) 5.44 (b) 5.48 (c) 30 (d) 3 Answer: b Explanation: $d_1 = X_1 - X = 45 - 49 = -4$ $S = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}}$ $d_1 = X_1 - X = 55 - 49 = 6$ $\sqrt{60 \times 2^2 + 40 \times 3^2 + 60 \times (-4)^2 + 40 + 6^2}$ 60 + 40

 $\sqrt{30} = 5.48$

Question10

Calculate the mean deviation about median for the following data

Class	0-10	10-20	20-30	30-40	40-50	50-60	
Frequency	6	7	15	$\frac{1}{6}$	4	2	
(a) 10.16 (b) 30.69 (c) 28 (d) 30 Answer: a Explanation:							
Class		Frequency Cumulative frequency		Frequency Cumulative frequency		Mid	– point _{Xi}
0-10		6		6	5		
10-20		7		7 +6 = 13		15	
20-30	20-30		1	3 + 15 = 28		25	
30-40	30-40		2	8 + 16 = 44		35	
40-50		4	4	4 + 4 = 48		45	
50-60		2	4	48 + 2 = 50		55	
		50					

$$N \Sigma f_i = 50$$

Median Class
$$\left(\frac{N}{2}\right)^{th}$$
 term $\left(\frac{50}{2}\right)^{th}$ term

In above data cumulative frequency of class 20-30 is 28 which is slightly greater than 25. \therefore Median class = 20 - 30

6262969699

Median = $1 + \frac{N}{2} - c}{f} \times h$ Where, L = Lower limits of median class N = Sum of frequencies F = frequency of median class C = Cumulative frequency of class before median class Here, l = 20, N = 50, C = 13, h = 10, f = 15 Median = $1 + \frac{N}{2} - c}{f} \times h$ $20 + \frac{50}{2} - 13}{15} \times 10$ $20 + \frac{12}{15} \times 10$ 20 + 8 = 28

Finding mean deviations about Median = $\frac{\sum f_{i|X_I - M|}}{\sum f_i}$

Class	Frequency	Cumulative	Mid – point	$ x_i - M $	$f_i x_i - M $
		frequency	Xi		
0-10	6	6	5	5 - 28 =23	6 × 23 = 138
10-20	7	7+6 = 13	15	15 - 28 =13	7 × 13 = 91
20-30	15	13+15 = 28	25	25 - 28 =3	15 × 3 = 45
30-40	16	28+16=44	35	35 - 28 =7	16 × 7 = 112
40-50	4	44+4=48	45	45 - 28 =17	4 × 17 = 68
50-60	2	48+2=50	55	55 - 28 =27	2 × 27 = 54
	$\Sigma f_i = 50$			$\Sigma f_i x_i - M $	508

 $\frac{\sum f_i = 50 \& |x_i - M| = 508}{\therefore \text{Mean deviation (M)} = \frac{\sum f_i |x_i - M|}{\sum f_i}}$ $\frac{508}{50} = 10.16$

Ouestion 11

5 students obtained following marks in statistics: 20, 35, 25, 30, 15 find out range and coefficient of range. (a) 20, 0.4 (b) 20, 0.5

(c) 30, 10 Answer: a Explanation: Here, Highest value (H) = 35 Lowest value (L) = 15 Range = Highest value -Lowest value i.e. R = H-L Substituting the given values in the formula R = 35 - 15 = 20 Coefficient of range is as follows: $CR = \frac{H-L}{H+L}$ Or, $CR = \frac{35-15}{35+15}$

 $=\frac{20}{50}$

CR = 0.4

Hence, the range (R) of the above data is 20 and coefficient of Range (CR) is 0.4

Question 12

Prices of shares of a company were not as under from Monday through Saturday. Find out range and the coefficient of range.

Day	Mon.	Tues.	Wed.	Thu.	Fri	Sat.
Price	200	210	208	160	220	250

(a) 20, 0.4 (b) 90, 0.22 (c) 30, 0.65 (d) 30, 5.69 **Answer: b Explanation: Here,** Highest value among the prices of shares = 250 Lowest value among the prices of shares = 160 Range (R) = Highest value (H) – Lowest value (L) or, R = 250-160 R = 90 Coefficient of Range 9CR) = $\frac{H-L}{H+L}$ Or, CR = $\frac{250-160}{250+160}$ = $\frac{90}{410}$ CR = 0.219 or 0.22 (Approx.)

Question13

You know share market is going bullish during the last several months. Collect weekly data on the share price of any two important industries during the past six months. Calculate the range of share prices. Comment on how volatile is the share prices.

- (a) Tata motors shares are more volatile as compared to the prices of Reliance shares.
- (c) Tata motors shares are equal as a To the prices of Reliance shares.
- (b) Tata motors shares are less volatile as compared to the prices of Reliance

shares. (d) None of these

Answer: b

Explanation:

Month	Price of shares Tata Motors	Price of shares Reliance
Oct.	325	913.35
Nov.	397	900.25
Dec.	405	750.90
Jan.	415	780.70
Feb.	420	799.25
Mar.	388	850.35

For TATA Motors Highest Value = 420 Lowest Value = 325 Range (R) = Highest Value (H) – Lowest Value (L) or, $R_1 = 420-325$ $R_1 = 95$

Coefficient of Range (CR) = $\frac{H-L}{H+L}$

6262969699

Or, $Cr = \frac{420-325}{420+325}$ $= \frac{95}{745} = 0.127$ For Reliance Highest Value = 913.35 Lowest value = 750.90 Range (R) = Highest Value (H) – lowest Value (L) or, R₂ = 913.25 – 750.90 R₂ = 162.45 Coefficient of Range (CR) = $\frac{H-L}{H+L}$ $CR = \frac{913.35-750.90}{913.35+750.90}$ $= \frac{162.45}{1664.25} = 0.097$

From the above results we can observe that the price of the Tata Motors shares is less volatile as compared to the prices of Reliance shares.

Question14

Calculate range and the coefficient of range of the following series:

Calculate range a	and the c	beincient	of range	of the lond	owing ser	les:	
Marks	10	20	30	40	50	60	70
No. of students	15	18	25	30	16	10	9
(a) 20,0.4				(b) 20,0.5			
(c) 60,0.75				(d) 30,5			
Answer: c							
Explanation :							
Here,							
Highest value = 7	0						
Lowest value = 10)						
Range (R) = Highe	est value ((H) – Lowe	est Value ((L)			
= 70	0 – 10						
= 6	0						
Coefficient of Ran	ge (CR) =	H-L					
$CR = \frac{70 - 10}{70 + 10} = \frac{60}{80} = 0$							
Hence, the Range	Hence, the Range (R) of the above series is 60 and coefficient of Range (CR) is 0.75						
Ouestion15							

Find the variance of the following data: 6, 8, 10, 12, 14, 16, 18, 20, 22, 24. (a) 33 (b) 15 (c) 10 (d) 14 Answer: a Explanation:

Xi	$d_i = \frac{x_i - 14}{2}$	<i>x</i> _i - x	$(x_i - x)^2$
6	$\frac{6-14}{2} = -4$	6 - 15 = -9	$(-9)^2 = 81$
8	$\frac{8-14}{2} = 3$	8 - 15 = -7	$(-7)^2 = 49$

6262969699

10	$\frac{10-14}{2} = -2$	10 -15 = -5	$(5)^2 = 25$
12	$\frac{12-14}{2} = -1$	12 -15 = -3	$(-3)^2 = 9$
14	$\frac{14-14}{2} = 0$	14 - 15 = -1	$(-1)^2 = 1$
16	$\frac{16-14}{2} = 1$	16 – 15 = 1	$(1)^2 = 1$
18	$\frac{18-14}{2} = 2$	18 – 15 = 3	$(3)^2 = 9$
20	$\frac{20-14}{2} = 3$	20 - 15 = 5	$(5)^2 = 25$
22	$\frac{22-14}{2} = 4$	22 – 15 = 7	$(7)^2 = 49$
24	$\frac{24-14}{2} = 5$	24 - 15 = 9	$(9)^2 = 81$
	$\sum \frac{1^0}{1} d_i = 5$		$\sum \frac{1^0}{1} (x_i - x)^2 = 330$

Mean \overline{X} = assumed mean $\frac{\sum_{i=1}^{10}}{n} \times h$ Where a = assumed mean = 14 $d_i = \frac{x_i - a}{h}$ h = class width = 8-6 = 2 n = number of observation = 10 Mean $\overline{X} = 14 + \frac{5}{10} \times 2 = 15$ Variance (O'²) = $\frac{1}{n} \Sigma (x_i - \overline{X})^2$ $\frac{1}{10} \times 330$ 33

Question16

Find the standard deviation of the following data:

Class	30-40	40-50	50-60	60-70	70-80	80-90	90- 100
Frequency	3	7	12	15	8	3	2

Class	Frequency	Mid – point	$f_i x_i$
	(f_i)	(x_i)	
30-40	3	35	35 × 3 = 105
40-50	7	45	45 × 7 = 315
50-60	12	55	55 × 12 = 660
60-70	15	65	65 × 15 = 975
70-80	8	75	75 × 8 = 600

6262969699

80-90	3	85	85 × 3 = 255
90-100	2	95	95 × 2 = 190
	$\sum f_i = 50$		$\sum f_i x_i = 3100$

 $\sum_{i=1}^{n} f_i x_i = 3100$ $\sum_{i=1}^{n} f_i = 50$ Mean $\overline{X} = \frac{\sum f_i x_i}{\sum f_i}$ $\frac{3100}{50} = 62$ Variance $(O'^2) = \frac{1}{n} \sum (x_i - \overline{X})^2$ $\frac{1}{50} \times 10050 = 201$ Standard deviation $(O') = \sqrt{201}$ (O') = 14.17

Questioin17

Estimate coefficient of quartile deviation of the following data:

Sr. No.	1	2	3	4	5	6	7	8	9	10	11	
Data	8	9	11	12	13	17	20	21	23	25	27	

(a) 3.53	(b) 0.353
(c) 0.689	(d) 0.591

Answer: b

Explanation:

In order to find the quartile deviation in case of individual series, we need to find out the values of third quartile and first quartile using the following equations:

Q₁ = size of
$$\left(\frac{N+1}{4}\right)^{th}$$
 item
Q₁ = size of $\left(\frac{11+1}{4}\right)^{th}$ item
Q₁ = size of 3th term
Q₁ = 11
Q₁ = size of 3 $\left(\frac{N+1}{4}\right)^{th}$ item
Q₁ = size of 3 $\left(\frac{11+1}{4}\right)^{th}$ item
Q₁ = size of 9th term
Or, Q₃ = size of 9th term
Or, Q₃ = 23
Calculating Quartile Deviation and Coefficient of Quartile Deviation:
Quartile Deviation (Q.D.) $\frac{Q_3 - Q_1}{2}$
Q.D. $\frac{23 - 11}{2}$
Q.D. $\frac{12}{2}$
Q.D. = 6
Coefficient of Quartile Deviation (Q.D.) $\frac{Q_3 - Q_1}{Q_3 + Q_2} = \frac{23 - 11}{23 + 11} = \frac{12}{34} = 0.353$

Question18

A measure of relative dispersion is given by the:

(a) Co-efficient of variance

(c) Quartile deviation

Answer: a

Explanation:

(b) Standard deviation(d) Variance

Co-efficient of variance: This term is used commonly to mean scatter, deviation, Fluctuation, Spread or variability of data. Relative Measures of Dispersion Relative measures of dispersion are also known as coefficient of dispersion are obtained as ratios or percentages.

Question19

The _____ is the easiest measure of dispersion to calculate.

Symbol	Symbol Name	Meaning / definitions
Var (X)	variance	variance of random variable X
O' ²	variance	variance of population values
std (X)	standard deviation	standard deviation of random variable X
O'_x	standard deviation	standard deviation value of random variable X

(b) Range

(d) Variance

(a) Standard Deviation

(c) Mean absolute deviation

Answer: b

Explanation:

Range is basically the difference between the lowest and highest values.

Question20

Which of the following symbols represents the standard deviation of the population? (a) O^2 (b) μ (c) O' (d) \overline{X} Answer: c Explanation: O'Question21 The variance can never be

(a) Larger than the standard deviation(c) Smaller than the standard deviation

(b) Negative (d) Zero

Answer: b Explanation:

Sometimes (negative or positive number) squared is always a positive number, except zero squared which is still zero. Because the squared deviations are all positive numbers or zeroes, their smallest possible mean is zero. It can't be negative. This average of the squared deviations is in fact variance. Hence the variance can be negative.

Question22

The numerical value of the standard deviation can never be

(a) Negative	(b) Larger than the variance
(c) Zero	(d) None
Answer: a	
Explanation:	

Standard deviation formula is computed using squares of the numbers. Square of a number cannot be negative. Hence standard deviation cannot be negative. Here (x-mean) is squared, so, this cannot be negative. N, number of terms cannot be negative, hence SD cannot be negative.

Question23

The description measure of dispersion that is based on the concept of a deviation about the mean is

(a) The absolute value of the range (c) Standard deviation

Answer: c

(b) Range(d) Inter quartile range

Explanation:

A measure of dispersion is a numerical value describing the amount of variability present in a data set. The standard deviation (SD) is the most commonly used measures of dispersion. With the SD you can measure dispersion relative to the scatter of the values about their mean.

Question24

When should measures of location and dispersion be computed from grouped data rather than from individual data values?

- (a) Whenever computer packages for descriptive statistics are unavailable
- (c) Only when the data are from a population
- (b) As much as possible since computations are easier
- (d) Only when individual data values are unavailable

Answer: d

Explanation:

Only when individual data values are unavailable should measures of location and dispersion be computed from grouped data rather than from individual data values.

Question25

Which information is false regarding Lorenz curve

- (a) The Lorenz curve devised by Dr. Max O. is a graphic method of studying Dispersion.
- (c) The Lorenz curve always lies below the line of equal distribution, unless the distribution is uniform
- (b) Used this technique to show employment of a group of people
- (d) The area between the line of equal distribution and the plotted curve gives the extent of inequality in the items. The larger the area, more is the inequality

Answer: b

Explanation:

A graph on which the cumulative percentage of total national income (or some other variable) is plotted against the cumulative percentage of the corresponding population (ranked in increasing size of share). The extent to which the curve saqs below a straight diagonal line indicates the degree of inequality of distribution.

Question25

Adding a constant to each value in a data set does not change the distance between values so the standard deviations remains

(a) Constant (c) Vary with multiple of prime **Answer: a** (b) Vary (d) None of these

For more Info Visit - www.KITest.in

6262969699

Explanation:

For example, consider the following numbers 2,3,4,4,5,6,8,10 for this set odd data standard deviation would be

$$8 = \sqrt{\frac{\sum_{i=1}^{n} (x_i - x)^2}{n - 1}}$$
$$8 = \sqrt{\frac{(2 - 5.25)^2 + (3 - 5.25)^2 + \dots + (10 - 5.25)^2}{8 - 1}}$$

8 = 2.65922

If we were to add 5 to each value in this data set. The new set of values would be 7, 8, 9, 9, 10, 11, 13, 15

 $8 = \sqrt{\frac{(7-10.25)^2 + (8-10.25)^2 + \dots + (15-10.25)^2}{8-1}}$

8 = 2.65922

As you can see the s.d. remains the same unless you multiply every value by a constant

PAST EXAMINATION QUESTIONS:

<u>MAY 2018</u>

Question1

If the variables x and z are so related that z = ax + b for each $x = x_1$ where a and b are constant, then $\overline{Z} = a\overline{X} + b$

(b) False (d) None

(a) True	
(c) Both	
Answer: a	
Explanation :	

If the variable 'X' and 'Z' are so related that Z = ax + b for each x = x; where and a and b are constant then Z=ax + b then it is true.

Question2

Relation between mean, median and mode is:

(a) Mean-mode = 2 (mean - median)
(b) Mean-median = 3 (mean - mode)
(c) Mean-median = 2 (mean - mode)
(d) Mean-mode = 3 (mean-median)

Answer: d
Explanation:
We know that
Mode = 3 Median - 2 Mean
Mode - Mean = 3 (Median - Mean)
Mode - Mean = 3 (Median - Mean)
Mode - Mean = 3 (Median - Mean)

FOR ENQUIRY – 6262969604	6262969699	
Mean – Mode = 3 (Mean – Median)		
Question3 (Q_3-Q_1) (Q_3+Q_1) (Q_3+Q_1) (a) Coefficient of Range(c) Coefficient of S.DAnswer: bExplanation:Coefficient of Q.D =. $\frac{(Q_3-Q_1)}{(Q_3+Q_1)}$	(b) Coefficient of Q.D (d) Coefficient of M.D	
Question4		
If each item is reduced by 15 A. M is (a) Reduced by 15 (c) Reduced by 10 Answer: a Explanation:	(b) Increased by 15 (d) None	
-	A.M. is reduced because the shifting of origin,	
Question5 For 899, 999, 391, 384, 390, 480, 760 (a) 2.75 (c) 5.5 Answer: c Explanation:), 111, 240 Rank of m is (b) 8.25 (d) none	
-	, 240, 384, 391, 480, 590,760, 899, 999.	
Median $(m_e) = \left[\frac{n+1}{2}\right]^{th}$ term = $\left[\frac{10+1}{2}\right]^{th}$ term = 5.5 th term Rank of median $(m_e) = 5.5$		
Question 6The average of a series of overlapping averages, each of which is based on acertain number of item within a series is known as:(a) Moving average(b) Weighted average		
(c) Simple average Answer: a	(d) None	
For more In	fo Visit - www.KITest.in	

FOR ENQUIRY – 6262969604	6262969699
Explanation:	
The average of a series of over lapping aver	-
number of item within a series is known as	Moving Average.
Question 7	
If the S.D. of the 1 st n natural Nos. is $\sqrt{30}$	
) 20 D Norra
	l) None
Answer: a	
Explanation: S.D of first 'n' natural numbers	
$=\sqrt{\frac{n^2-1}{12}}$	
$= \sqrt{\frac{n^2 - 1}{12}} = \sqrt{30} = \sqrt{\frac{n^2 - 1}{12}}$	
On squaring both side $30 = \frac{n^2 - 1}{12}$	
$360 = n^2 - 1$	
$n^2 = 360 + 1$	
$n^2 = 361$	
$n = \sqrt{361}$	
n = 19	
Question 8	
If the random variables x and v are relat	ted by Y=2-3x, then the SD of v is given by
(a) $3 \times SD$ of x (b)	$() -3 \times SD \text{ of } x$
(c) $9 \times SD$ of x (c)	l) 2 × SD of x
Answer: a	
Explanation:	
Given equation	
Y = 2-3x	
3x+y-2=0	
b = $\frac{-coefficient of x}{coefficient of y} = \frac{-3}{1} = -3$	
S.D of $y = b $ S.D of x	
= -3 . SD of x	
3 x SD of x	
NOV	2018
$\frac{\text{Question 1}}{\text{The model of the date 5}} = \frac{1}{2} = \frac{1}{2}$	
The median of the data 5, 6, 7, 7, 8, 9, 10	
(a) 10.5 (b	o) 10

6262969699

(d) 11.5

(c 11 Answer: a

Explanation:

Write the term is Ascending 5, 6, 7, 7, 8, 9, 10, 11, 11, 12, 15, 18 and 19

Here, No. of terms (N) = 14

$$\begin{aligned} \text{Median} &= \frac{1}{2} \left[\frac{N^{th}}{2} term + \left[\frac{n+1}{2} \right]^{th} term \right] \\ &\frac{1}{2} \left[\frac{14^{th}}{2} term + \left[\frac{14+1}{2} \right]^{th} term \right] \\ &\frac{1}{2} [7th term + 8th term] \\ &\frac{1}{2} [10+11] \end{aligned}$$

 $\frac{1}{2} \times [21]$ 10.5

1010

Question2

The mean of 20 items of a data is 5 and if each item is multiplied by 3, then the new mean will be

new mean win be	
(a) 5	(b) 10
(c) 15	(d) 20
Answer: c	

Explanation:

By shifting the scale Mean is changed New mean = K x original mean = 5 K = 3 New mean= 3×5 = 15

Question 3

FOR ENQUIRY – 6262969604	6262969699
_	of a set of values from their arithmetic mean
is	(b) = 0
(a) >0 (c) <0	(b) =0 (d) None
Answer: b	(u) None
Explanation:	
-	a set of value from their A.M is always zero.
Question 5	
Which one of the following is not a d	-
(a) Mean Deviation	(b) Arithmetic mean
(c) Median Answer: a	(d) Mode
Explanation:	
M.D is not a central tendency.	
Question 6	
_	nd maximum value in the set is 83, then the
minimum value in the set is	
(a) 74	(b) 9
(c) 18	(d) None of the above
Answer: c Explanation:	
Maximum Value (L) = 83	
Range (R) = 65	
Minimum Value (S) =?	
Range (R) = $L - S$	
65 = 83 – S	
S = 83 – 65	
S = 18	
Question 7	
-	re 50, 60 and 90 and their means are 12, 15,
and 20 respectively, then the mean	
(a) 16 (c) 16.5	(b) 15.5 (d) 14.5
Answer: c	(u) 11.0
Explanation:	
$n_1 = 50$	$\bar{X}_{1} = 12$
$n_2 = 60$ and	$\bar{X}_{2}^{1} = 15$
	nfo Visit - www.KITest.in

$n_3 = 90$				$\overline{X}_3 = 20$
Compared	mean $\overline{X} = \overline{X}$	$\frac{n_1 \bar{X}_1 + n_2 \bar{X}_2 + n_1}{n_1 + n_2 + n_3}$	$_3\overline{X}_3$	
1		$n_1 + n_2 + n_3$		
50 × 12 +	60 × 15 +	90 x 12		
	+60+90			
50				
600 + 900	+ 1800			
200)			
$\frac{3300}{200} = 16.5$	5			
200				
Question	8			
		7, 9 and 1 1	l is 4, then	the coefficient of variation is:
(a) 15	· · · · · ·	•		o) 0.25
(c) 17			(d	d) 19
Answer: b				
Explanati	on:			
Variance o		d 11 is 4.		
i.e. Variabl				
S.D (O') = v				
Mean (\overline{X}) :	$=\frac{\sum x}{N}=\frac{5+7+7}{4}$	$\frac{9+11}{4} = \frac{32}{4} = 3$	8	
$CV = \frac{SD}{M} =$	1 1	т т		
UV – M	8 4	20		
Question)			
-		for the ma	rks obtair	ned by a student in test in mathematic
		, 25, 20, 1		
(a) 25	,,	,,,		o) √50
(c) $\sqrt{30}$				d) 50
Answer: b			C C	
Explanati				
Given data	's are			
15, 20, 25,				
Mean (\overline{X}) =	$=\frac{\sum X}{N}=\frac{15+20}{15+20}$	$\frac{0+25+30+35}{5}$:	$=\frac{125}{5}=5$	
For S.D	Ν	5	5	
X	\overline{X}	$\mathbf{d} = \mathbf{x} - \overline{X}$	d ²]
15	25	-10	100	
20	25	-5	25	
25	25	0	0	
		Eo	r mara Infa Vi	sit - www. KITost in

6262969699

30 35	25 25	5 10	25 100
N=5			$\sum_{n=250}^{\infty} d^2$
$\sum d^2$	250		

$$SD = \sqrt{\frac{\Sigma d^2}{N}} = \sqrt{\frac{250}{5}} = \sqrt{50}$$

Question10

If in a moderately skewed distribution, the values of mode and mean are 32.1 and 35.4 respectively, then the value of the median is

1	
(a) 34.3	(b) 33.3
(c) 34	(d) 33
Answer: a	

Explanation:

Given Mode = 32.1, Median =? Mean = 35.4 Mode = 3 Median - 2 Mean 32.1 = 3 Median - 2 × 35.4 32.1 = 3 Median - 70.8 Median = 32.1 + 70.8 Median $\frac{102.9}{3}$ = 34.3

Question11

If the standard deviation for the marks obtained by a student in monthly test is 36. Then the variance is:

50. Inch	i the varian			
(a) 7			(b) 5	5
(c) 8			(d) 1	
Х	f	F. x		
2	3	6		
4	2	8		
6	3	18		
10	1	10		
P+5		2P + 10		
N = 11	Σ	fx = 2P + 52		
Answer:	a			
Explanat	tion:			

 $\bar{X} = \frac{\sum fx}{\sum fx} = \frac{2P+52}{2}$

 $X = \frac{1}{N} = \frac{1}{11}$

Given	
$\overline{X} = 6$	
$\frac{6}{1} = \frac{2P+52}{11}$	
1 11 2D 52 66	
2P + 52 = 66	
2P = 14	
P = 7	
	<u>MAY 2019</u>
Question1	
The AM of 15 observations	is 9 and the AM of first 9 observations is 11 and the
AM of remaining observati	on is
(a) 11	(b) 6
(c) 5	(d) 9
Answer: b	
Explanation:	
15 OBSERVATION = 9	
9 OBSERVATION = 11	
$\overline{x_1} \ of \ 15 = 9 = \frac{\Sigma_{x_1}}{9} = 9$	
Σ	
$\overline{x_2} of 9 = 11 = \frac{\Sigma_{x_2}}{9} = 11$	
$\sum x_1 = 15 \times 9 = 135$	
$\sum x_1 = 13 \times 9 = 133$ $\sum x_2 = 11 \times 9 = 199$	
	(-00 - 26)
Remaining $\sum x_1 - \sum x_2 = 135$	6 - 99 = 30
$\bar{x}_{30} = \frac{36}{6} = 6$	
Question2	
-	stribution, the values of mean & median are 12 & 18
respectively. The value of r	
(a) 6	(b) 12
(c) 15	(d) 30
Answer: d	
Explanation:	
Mean – mode = 3(Mean – Me	dian)
Put the value in this equation	
= 12 - mode = 3(12-18)	*
= 30	
- 50	
Question?	
Question3	acitional average?
Which of the following is p	ositional average?

FOI	R ENQ	UIRY -	- 62629	969604	Ļ			6262969699
(a) Median (b) GM (c) HM (d) AM Answer: a Explanation: There are two types of positional average: the median and the mode. The median is the average value of the series in which half values are less than the median and half the values are greater than the median. The mode, the second positional average, shows a								
higher frequency in the series 2. Question4 For the distribution								
X	1	2	3	4	5	6	-	
F	6	9	10	14	12	8		
(a) 3 (c) 4 Answ Expla	.5 / er: c	:	1edi ai	11 13			(b) 3 (d) 5	
X					f		c f	
1					6		6	
2					9		15	
3					10		25	
4					14		39	
5					12		51	
6 Tota	1				8 59		59	
$\frac{N+1}{2} = \frac{1}{50 \text{ Mo}}$ So Mo $\frac{\text{Ques}}{\text{For a}}$ (a) M	= 30 ediar tion! sym Iean Iode /er: a	$\frac{5}{metr} = Me$ $= \frac{1}{3} m$	4 r ic dis edian = nediar	= Mod	ition		(b) Mode = 3 Media (d) None	ın – 2 Mean

In a symmetric distribution, the mean, mode and median all fall at the same point. The mode is the most common number and it matches with the highest peak (the "mode" here is the different from the "mode" in bimodal or unimodal, which refers to the number of peaks).

Question6 If = (O^2) 100 and coefficient of variation = 20% then \overline{x} = (b) 70 (a) 60 (c) 80 (d) 50Answer: d **Explanation:** O^2 = Variance To find SD = O' $SD = \sqrt{100} = 10$ Coef. Of V = $\frac{o}{x}$ $20 = \frac{10}{x} \times 100$ $\bar{x} = \frac{10}{20} \times 100$ $\bar{x} = 50$ **Question7** Coefficient of quartile deviation is $\frac{1}{4}$ then $\frac{Q_3}{Q_1}$ is (a) $\frac{5}{3}$ (b) $\frac{4}{3}$ (c) $\frac{3}{4}$ (d) $\frac{3}{5}$ (c) $\frac{3}{4}$ Answer: a **Explanation**: $\frac{1}{4} = \frac{Q_3 - Q_1}{Q_3 + Q_1}$ Talking option a $Q_3 = 5 \& Q_1 = 3$ $\frac{5-3}{5+3} = \frac{2}{8} = \frac{1}{4}$ **Question8** Standard deviation is _____ times of $\sqrt{MD \times QD}$ (b) $\frac{4}{5}$ (a) $\frac{2}{3}$ (d) $\sqrt{\frac{8}{15}}$ (c) $\sqrt{\frac{15}{8}}$ **Answer: c Explanation**: $MD = \frac{4}{5}SD$ 4SD = 5MD = 6QD

6262969699

 $SD = \frac{5}{4}MD = \frac{6}{4}QD$ $SD = \sqrt{\frac{5}{4} \times \frac{6}{4}} = \sqrt{\frac{30}{16}} = \sqrt{\frac{15}{8}}$ <u>Question9</u> Standard Deviation of first five natural numbers. (b) $\sqrt{\frac{n^2-1}{12}}$ (a) $\sqrt{\frac{n^2+1}{6}}$ (d) $\sqrt{\frac{n^2-1}{6}}$ (c) $\sqrt{\frac{n^2-1}{12}}$ Answer: b **Explanation**: Mean, $u = \frac{(1+2+3.....+n)}{n}$ $\therefore \mathbf{u} = \frac{1}{2}(n + 1)$ Variance, $\sigma^2 = \frac{\sum (x_i - \mathbf{u})^2}{n} = \frac{\sum x_i^2}{n} - u^2$ $:: \sigma^2 \frac{\sum n^2}{n} - \frac{1}{2}(n+1)^2$ $\therefore \sigma^2 \frac{1}{n} \frac{n(n+1)(2n+1)}{n} - \left(\frac{1}{2}(n+1)\right)^2$ $\therefore \sigma^2 = \frac{n^2 - 1}{12}$ Standard Deviation, S.D = $\sqrt{\sigma^2}$ \therefore S.D=\sqrt{\dfrac{n^2-1}{12}} **Question10** The Q.D. of 6 numbers 15, 8, 36, 40, 38, 41 is equal to (a) 12.5 (b) 25 (c) 13.5 (d) 37 Answer: c **Explanation:** $Q_1 = \left(\frac{n+1}{2}\right)^{th}$ of $= \left(\frac{6+1}{4}\right)^{th}$ of $= \left(\frac{7}{4}\right)^{th}$ of 1.75th 8+0.75(15-8)8+5.25 $0_1 = 13.25$ $Q_3 = 3\left(\frac{n+1}{2}\right)^{th}$ of $= 3\left(\frac{n+1}{2}\right)^{th}$ of $3 \times \frac{7}{4} = 3 \times 1.75 = 5.25$ $Q_3 = 5^{\text{th}} \text{ of } + 0.25(6^{\text{th}} - 5^{\text{th}})$ 40+0.25(41-40) $Q_3 = 40.25$ For more Info Visit - www.KITest.in

14.49

FOR ENQUIRY - 6262969604 6262969699 $QD = \frac{Q_3 - Q_1}{2} = \frac{40.25 - 13.25}{2}$ 13.5 **NOV 2019 Ouestion1** The approximate ratio of SD, MD, Q D is: (a) 3:4:5 (b) 2:3:4 (c) 15:12:10 (d) 5:6:7 **Answer: c Explanation**: (c) We know that 4SD = 5MD = 6QDNet 4SD = 5MD = 6QD = KSo, $SD = \frac{K}{4}, MD = \frac{K}{5}; QD = \frac{K}{6}$ Now, SD: MD: QD $= > \frac{K}{4} : \frac{K}{5} : \frac{K}{6} \\= > \frac{30K}{120} : \frac{24K}{120} : \frac{20K}{120} [:: \text{ LCM } OF \text{ 4, 5,6 is 120}]$ => 30:24:20 => 15:12:10 so, SD:MD: QD = 15:12:10 **Ouestion2** The deviations are minimum when taken from: (b) Median (a) Mean (d) None (c) Mode **Answer: b Explanation:** (b) The sum of deviations are minimum when taken from median $\sum |x - Mean|$ $\sum |x - Median| \{Minimum\}$ $\sum |x - Mode|$ **Ouestion3** If the AM & GM of two numbers are 30 and 24 respectively. Find the no's (a) 12 and 24 (b) 48 and 12 (c) 30 and 30 (d) 40 and 20 **Answer: b Explanation**: For more Info Visit - www.KITest.in

(b) Let the two no's be a and		
AM = 30	GM = 24	
$\frac{a+b}{2} = 30$	$\sqrt{ab} = 24$	(-2)
a + b = 60		
a = 60 - b	(-1)	
put eq 1 in eq 2	(-)	
$\int \frac{1}{\sqrt{(60-b)b}} = 24$		
(on squaring both sides)		
(60 - b)b = 576 $60b - b^2 = 576$		
$b^{2} - 60 b + 576 = 0$		
$b^2 - 48b - 12b + 576 = 0$		
b(b-48) - 12(b-48) = 0		
(b-12)(b-48) = 0	0	
b = 12 or $b = 4$	8	
a = 60 - b $a = 60 - 48$	2	
a = 48 a = 1	2	
(12, 48) or (48, 12)		
So the two no's are 48 and 12		
# After Method [Do by hit and	-	
i.e. try with the given options	whether the	eir AM is 30 and GM 24
Question4		
Origin is shifted by 5, what		
(a) SD will increase by 5		(b) QD will increase by 5
(c) MD will increase by 5		(d) There will be no change
Answer: d		
Explanation:		
	-	ed by shifting of origin. So here if the origin is
shifted by 5 there will be no c	hange in SD).
Question5		
Coefficient of variation is e		20
(a) $\frac{SD}{Mean}$		(b) $\frac{SD}{Mean} \times 100$
(c) $\frac{Mean}{SD} \times 100$		(d) $\frac{Mean}{SD}$
52		(u) _{SD}
Answer: b		
Explanation:	ababieti - ul	
		e coefficient of variation also known as
	a standardi	ized measure of dispersion of frequency
distribution.		
	For more Info	Visit - www.KITest.in
		14.51

FOR ENQUIRY - 6262969604 6262969699 It is expressed as a percentage and defined as the ratio of SD and mean. SD so. Coefficient of variation = $\frac{SD}{Mean} \times 100$ **Question6** Find mode of the following date 6 - 9 12 - 15 3 - 6 9 - 12 15 - 18 18 - 21 2 5 10 21 12 23 (a) 14 (b) 15 (c) 16.5 (d) 14.6 Answer: d **Explanation:** (c) CI f 3 - 6 2 6 - 9 5 9 – 12 10 12 – 15 23×Modal class 15 - 18 21 18 - 21 12 Since 23 is the highest frequency, so 12 – 15 is the modal class. So, $f_1 = 23$, $f_0 = 10$, $f_2 = 21$ i = 3 $L_1 = 12$ Mode = $L_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2}$ xi $= 12 + \frac{23 - 10}{2(23) - 10 - 21} \times 3$ $= 12 + \frac{13}{15} \times 3$ = 12 + 2.599= 14.59 = 14.6 (approx) **Question7** Find SD of the following 1, 2, 3, 4, 5, 6, 7, 8, 9 (b) $\frac{60}{9}$ (a) 2.58 (d) 3.20 (c) $\frac{60}{3}$ Answer: a **Explanation:** $-\left(\frac{\Sigma X}{\Sigma}\right)$ *Σ*X2 (a) SD =For more Info Visit - www.KITest.in

14. 52

6262969699

Here N = 9 $x^2 = 1^2 + 2^2 + 3^2 + 4^2 + \dots 9^2$ = 285 $\frac{\sum X}{N} = \frac{1+2+3+4+5+6+7+8+9}{9} = 5$ Put in above formula, $SD = \sqrt{\frac{285}{9} - \frac{25}{1}}$ $SD = \frac{\sqrt{60}}{9}$ $SD = \sqrt{6.67}$ SD = 2.58

Question8

If mean = 200 and variance = 80. Find coefficient of variation.

If mean $= 200$ and variance $= 00$. I mu cocincie
(a) 2.56	(b) 4.47
(c) 32	(d) 0.32
Answer: b	
Explanation:	
(b) We know	
$CV = \frac{SD}{Mean} \times 100$	
$CV = \sqrt{\frac{Variance}{Mean}} \times 100$	$SD = \sqrt{Variar}$
$CV = \sqrt{\frac{80}{200}} \times 100$	
$CV = \sqrt{\frac{80}{2}}$	
CV = 4.47 (approx.)	

Ouestion9

(a) SD

(c) QD

Which of the following is affected by shifting of scale.

(b) MD (d) None of these

Answer: a

Explanation:

(a) Since SD, MD, QD are measures of absolute dispersion, So, a change in scale neither affect SD nor MD and QD.

 $\sqrt{Variance}$

<u>Question10</u> Histogram is used for to	represent				
(a) Mode	(b) Median				
(c) Percentile	(d) Quartile				
For more Info Visit - www.KITest.in					

6262969699

Answer: a

Explanation:

(a) Histogram is a graphical representation of grouped frequency distribution. It is used to locate mode. X – axis- class interval y-axis- frequency.

Question11

Coefficient of variation is 80. Mean is 20. Find variance:

(a) 640 (b) 256 (c) 16 (d) 250 **Answer: b Explanation:** (b) We know, Coefficient of variation (CV) = $\frac{SD}{Mean} \times 100$ Here mean = 20 ; CV = 80 $80 = \frac{S.D}{Mean} \times 100$ S.D. = 16 Variance = $(S.D.)^2$ Variance = $(16)^2 = 256$

Question12

Find the median of the following.

CI	0 -10	10 - 20	20 - 30	30 - 40	40 - 50			
f	2	3	4	5	6			
(a) 35			(b)	32				
(c) 36			(d)	37.5				
Answer: b								
Explanatio	on:							
	CI		f			c.f		
	0-10		2		2			
-	10-20		3		5			
-	20-30		4		9			
	30-40		5			14		
	40-50		6			20		
$\sum f = 20$	$\sum f = 20$							
N = 20								
So 30 – 40 is the median class								
L, = 30 C =Pre. Cof. of median class								
C => 9 F => 5								
Median = 4	$r + \frac{\left(\frac{N}{2} - c\right)}{f} \times i$							

$= 30 + \left(\frac{10-9}{5}\right) \times 10$ = 30+2 = 32

Question13

Difference between upper limit and lower limit of a class is known

- (a) Range
- (c) Class size

(b) Class mark(d) Class boundary

Answer: c

Explanation:

- (c) Difference between upper limit and lower limit of class is class size.
- Range = Largest value Smallest value
- Class mark = $\frac{(Lowest Limit+Upper Limit)}{(Lowest Limit+Upper Limit)}$
- Class boundary = Class interval of exclusive data series.

Question14

Find the made of the following:

rinu ule i	naue or u	ie iuliuwi	ng:				
0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60		
7	14	22	34	20	19		
(a) 32				(b) 34.61			
(c) 25.42				(d) 35			
Answer: b)						
Explanati	on:						
CI				f			
0 - 10				7			
10 - 20				14			
20 - 30				22			
30 - 40				34			
40 - 50				20			
50 - 60				19			
Since 34 is	s the highe	est frequer	ncy so, 30 -	- 40			
$F_1 = 34 f_0 =$	$= 22 f_2 = 20$	0					
i=10							
Mode = $L_1 + \frac{f_1 - f_0 \times i}{2f_1 - f_0 - f_2}$							
= 30	$+\frac{(34-22)}{2\times 34-22}$	$\frac{2}{-20} \times 10$					

$$= 30 + \frac{12}{26} \times 10$$

= 34.61

Question:	<u>15</u> nedian of t	the followi	nσ·		
CI	0 - 10	10 – 20	20 - 30	30 - 40	40 - 50
f	5	15	28	10	2
(a) 10.57				b) 23.57	
(c) 25				d) None	
Answer: b)				
Explanati	on:				
CI		f			c.f
0 - 10		5			5
10 - 20		15			20
20 - 30		28			48*
30 - 40		10			58
40 - 50		2			60
$\int f = 60$)				
$\frac{40 - 50}{\sum_{n=1}^{\infty} f = 60} = \frac{60}{2} = \frac{1}{2}$	30				
2^{-2}	is the mod	ion close			
	is the med	lan class			
$L_1 = 20 L = C - 20 f - 2$					
Median = 1	$L_1 + \frac{\left(\frac{N}{2} - C\right)}{f} \times$	i			
$= 20 + \frac{(30)}{2}$	$\frac{-20)}{2} \times 10$				
= 23.57	28				
Question	<u>16</u>				
	(<i>r_i) is equa</i>	l to			
(a) $x \sum_{i=1}^{n}$	\overline{xl}		(b) n ($x \sum_{i=1}^{n} \sum_{i=1}^$	$(1, \overline{xl})$
(c) $\bar{x} - n$	\bar{x}		(d) zero	
Answer: d					
Explanati	on:				
(d) $\sum_{i=1}^{n} (x)$	-				
Since the s	sum of devi	ations abou	ut their AN	I is always	zero.
0					
Question:		4 5 7 0 3	- 7 4 F IC		d to opph theme CD 11 h
	umbers 1,	, 4, 5, /, 81			d to each them SD will be:
(a) 12.45			-	b) 24.5	change
(c) 12				d) will not	Challge
		Fo	r more Info V	isit - www.KIT	est.in

Answer: d Explanation:

(d) We know a change in origin of SD causes no change in SDSo, New SD = Original SD when 10 will be addedSo, SD will not change .

DEC 2020

Question1

Given the weights for the numbers 1, 2, 3,.....n are respectively 1^2 , 2^2 , 3^2 ,.... n^2 . Then weighted HM is ____

(a) $\frac{2n+1}{4}$ (c) $\frac{2n+1}{3}$

Answer: c

Explanation:

Since the harmonic mean is the reciprocal of the average of reciprocals, the formula to define the harmonic mean "HM" is given as follows:

If x₁, x₂, x₃,..., x_n are the individual items up to n terms, then,

Harmonic Mean, HM = n / $[(1/x_1)+(1/x_2)+(1/x_3)+...+(1/x_n)]$. Hence = $\frac{2n+1}{3}$

Question2

Which measure is suitable for open - end classification?

(a) Median	
(c) Mode	

(c) Mode

Answer: a

Explanation:

For open end classification median is the best measure of central tendency. Median is the most suitable central tendency measure when there are some extreme scores in data distribution and also when there is a skewed data set.

(b) Mean (d) GM

Question3

50th	percenti	le is ec	ual to

(a) Median

(c) Mean Answer: a

(b) Mode (d) None

Explanation:

The 50th percentile is generally the median (if you're using the third definition—see below). The 75th percentile is also called the third quartile. The difference between the third and first quartiles is the interquartile range.

Question4

FOR ENQUIRY – 6262969604		6262969699
	ian and Mode are 23, 24 and 25.5 re	espectively, then
it is most likely skewed di (a) Positively (c) Asymptotically Answer: d Explanation:	(b) Symmetrical (d) Negatively	
-	s likely to be less than mode and medi	ian
Question5 If any two numbers are in AP,	then $CM^2 =$	
(a) AM x HM (c) M x Z Answer: a	(b) AM + HM (d) AM x M	
Explanation: The relationship between AM, G AM x HM = GM ²	GM and HM is given by:	
Question6 Two values yielded an arithm geometric mean of these valu		ean of 6. The
(a) 8 (c) 14 Answer: b	(b) 12 (d) 16	
Explanation: $GM = \sqrt{AM \times HM}$ $GM = \sqrt{24 \times 6}$		
$GM = \sqrt{144}$ $GM = 12$		
Question 7 The HM of A and B is 1/3 and	HM of C and D is 1/5. Then HM of A	A, B, C and D is
(a) $\frac{\frac{8}{15}}{(c) \frac{15}{8}}$	(b) $\frac{1}{4}$ (d) $\frac{4}{15}$	
Answer: d Explanation: AB-1/3 & CD-1/5 HM of ABCD = n/2		
$\frac{\frac{1}{3} + \frac{1}{5}}{2} \left(\frac{n}{2}\right) = \frac{8}{30} = \frac{4}{15}$		
Fc	or more Info Visit - www.KITest.in	14. 58

FOR ENQUIRY – 6262969604	6262969699
Question 8	
Which one of these is least affected	by extreme values?
(a) Mean	(b) Median
(c) Mode	(d) None
Answer: b	
Explanation:	
	given series that represents the whole class of the
	ge, it is calculated by observation of a series and
	e series which. Therefore, median is not affected
by the extreme values of a series.	, ,
Question9	
Ten matches' data is given. Then w	hich of the following cannot be found?
(a) Least Score	(b) Highest Score
(c) Best Score	(d) Median Score
Answer: c	
Explanation:	
From Best Score method we can do th	nis
Question10	
	re 6 and 9 respectively, then GM is
(a) 7.35	(b) 8.5
(c) 6.75	(d) None
Answer: a	
Explanation:	
	netic Mean, Harmonic Mean, and Geometric Mean
of Two Numbers:	
A.M. × H.M. = $(G.M.)^2$	
\Rightarrow G.M. = 7.35 .	
Question11	
_	dispersion is based on absolute deviations?
(a) Range	(b) SD
(c) Mean Deviation	(d) Quartile Deviation
Answer: c	
Explanation:	
	mation than range or the Quartile Deviation as it
	he Mean Deviation does not give undue weight to
-	ld likely to be used in situation where such
deviations are likely to occur.	
For more	Info Visit - www.KITest in

<u>JAN 2021</u>

Question1	
From the records on sizes of shoes sold in a shop, one can	compute the following
to determine the most preferred shoe size.	
(a) Mean (b) Median	
(c) Mode (d) Range	
Answer: c	
Explanation:	
The number which appears most often in a set of numbers. Ex	ample: in {6, 3, 9, 6, 6, 5,
9, 3} the Mode is 6	
Question2	
Which of the following measure does not possess mathem	atical properties?
(a) Arithmetic mean (b) Geometric mean	acted properties.
(c) Harmonic mean (d) Median	
Answer: d	
Explanation:	
Median Properties - The median value is fixed by its position a	
individual value. The distance between the median and the res	
than the distance from any other point. Every array has a sing	
be manipulated algebraically. Hence, Median does not posse	ess mathematical
properties	
Question 3	
If $y = 3 + (4.5) x$ and the mode for x-value is 20, then the m	ode for y-value is
(a) 3.225 (b) 12	
(c) 24.5 (d) 93	
Answer: d	
Explanation:	
y = 3 + (4.5)x	
x is 20	
$y = 3 + 4.5 \times 20$	
y = 93	
Because Mode is affected by change of origin & scale both	
Question 4	
If there are two groups with n_1 and n_2 observations and H	$_1$ and H ₂ are respective
harmonic means, then the harmonic mean of combined of	
	Jour valiono 15
(a) $\frac{n_1H_1+n_2H_2}{n_1+n_2}$ (b) $\frac{n_1H_1+n_2H_2}{H_1+H_2}$	

FOR ENQUIRY – 6262969604	6262969699
(c) $\frac{n_1 + n_2}{n_1 H_1 + n_2 H_2}$	$(d) \frac{(n_1+n_2)H_1H_2}{n_1H_2+n_2H_1}$
Answer: d	$n_1H_2 + n_2H_1$
Explanation:	
$\frac{(n_1 + n_2)H_1H_2}{n_1H_2 + n_2H_1}$	
Question 5	
The best statistical measure used for	comparing two series is
(a) Mean absolute deviation	(b) Range
	(d) Standard deviation
Answer: c	
Explanation:	
	calculated by dividing the standard deviation of
	ving it by 100. It is regarded as the best measure
of dispersion to compare two differents	series because it is expressed in percentage.
Question 6	
-	nd Q-series is given by 2P – 3Q – 10. If the
range of P – series is 18. What would	
(a) 10	(b) 15
(c) 9	(d) 12
Answer: d	
Question 7	
	l standard deviation (s.d.) is 3.2. If the
	n the new mean and standard deviations
are:	
(a) $\bar{x} = 10$, s.d. = 7.2	(b) $\bar{x} = 10$, s.d. = 3.2
(c) $\bar{x} = 14$, s.d. = 3.2 Answer: d	(d) $\bar{x} = 14$, s.d. = 7.2
Explanation:	
$\bar{x} + 4 = New Mean$	
$\bar{x} = 10 + 4 = 14$	
Mean is affect by change in origin	
S.D. = σ + 4	
S.D. = 3.2 + 4 = 3.2	
as SD is not affected by change of origin	
Question 8	
Which one of the following is a relati	-
(a) Range	(b) Mean deviation
For more Inf	o Visit - www.KITest.in
	14.61

FOR ENQUIRY - 6262969604 6262969699 (d) Coefficient of quartile deviation (c) Standard deviation Answer: d **Explanation**: The relative Measures of dispersion are: Coefficient of Variation, Coefficient of Quartile Deviation, Coefficient of Mean Deviation **Question 9** Find the coefficient of mean deviation about mean for the data: 5, 7, 8, 10, 11, 13, 19 (b) 28.57 (a) 17.28 (c) 32.12 (d) 18.56 **Answer: c Explanation**: Mean $(\bar{x}) = \frac{5+7+8+10+11+13+19}{7} = \frac{54}{7} = 7.714$ $|x_i - \overline{x}|$ 2.271 5 0.714 7 8 0.29 2.29 10 3.29 11 13 5.29 14.15 $|x_i - \overline{x}|$ **NOTE:**The correct Ans is: 32.12

<u>JULY 2021</u>

Question 1

Expenditures of a company (in Million Rupees) per item in various Years

Year	Item of Expenditures				
	Salary	Fuel and Transport	Bonus	Interest on Loans	Taxes
1998	288	98	3.00	23.4	83
1999	342	112	2.52	32.5	108
2000	324	101	3.84	41.6	74
2001	336	133	3.68	36.4	88
2002	420	142	3.96	49.4	98
What is average amount of interest per year which the company had to pay					

FOR ENQUIRY – 6262969604	6262969699
during this period?	
(a) 33.66	(b) 36.66
(c) 31.66	(d) 39.66
Answer: Options (b)	
<u>Question 2</u> There are n numbers. When 50 is sul	otracted from each of these numbers the
sum of the numbers so obtained is -1	0. When 46 is subtracted from each of the numbers, so obtained is 70. What is the
mean of the original n numbers?	
(a) 56.8	(b) 25.7
(c) 49.5	(d) 53.8
Answer: Options (c)	
Question 3	
The mean of 'n' observation is 'X'. If k mean is	is added to each observation, then the new
(a) X	(b) XK
(c) X - K	(d) $X + K$
Answer: Options (d)	
Explanation:	
Let us take n observation X ₁ X _n	
If \overline{X} be the mean of the n observation, the	ien we have
$\overline{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$	
$\stackrel{n}{\rightarrow} \sum_{i=1}^{n} X_{i} = n\overline{X}$	
Add a constant k to each of the observation $X \rightarrow K$	tions. Then the observations becomes
$X_i + k$,, $X_n + K$ If \overline{Y} be the mean of the new observation	ns. Then the observations becomes
$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} (X_i + k)$	
$=\frac{1}{n}\sum_{i=1}^{n}X_{i} + \frac{1}{n}\sum_{i=1}^{n}k$	
$=\overline{X} + \frac{1}{n}$. nk	
$=\overline{X} + k^{n}$	
Question 4	
If $y = 3 + 1.9 x$, and mode of x is 15, th	en the mode of y is:
(a) 15.9	(b) 27.8
(c) 35.7	(d) 31.5
Answer: Options (d)	
Question 5	
	o Vicit, www. KIToct in

FOR ENQUIRY – 6262969604	6262969699
The mean deviation of the numbers 3, 10), 6, 11, 14,17,9,8,12 about the mean is
(correct to one decimal place) (a) 8.7	(b) 4.2
(c) 3.1	(d) 9.8
Answer: Options (c)	
Question 6	
The standard deviation of 1 to 9 natural	
(a) 6.65	(b) 2.58 (d) 5 (2)
(c) 6.75 Answer: Options (b)	(d) 5.62
Question 7	
The probable value of mean deviation w (a) 15	hen $Q_3 = 40$ and $Q_1 = 15$ is (b) 18.75
(c) 17.50	(d) 0
Answer: Options (a)	
Explanation:	
Q3=40 Q1=15	
QD= Q3-Q1 / 2 QD= 40-15 / 2	
=25 / 2	
=12.5	
WKT, 6QD=5MD=4SD	
MD= 6 * 12.5 /5 MD=15	
Question 8	
If the numbers are 5, 1, 8, 7, 2, then the control (a) 56.13%	(b) 59.13%
(c) 48.13%	(d) 44.13%
Answer: Options (b)	
Question 9	
If every observation is increased by 7 the	en
(a) Standard Deviation increases by 7	(b) Mean deviation increases by 7
(c) Not affected at all	(d) Quartile Deviation increases by 7
Answer: Options (c)	
Question 10	
If a school has 14 teachers, their heights	(in cm) are:
For more Info Visi	it - www.KITest.in

172, 173, 164, 178, 168, 169, 173, 172, 173, 164, 178, 168, 169, 173, then average deviation of this data is (a) 2.43 approx. (b) 3.93 approx. (d) 2.92 approx. (c) 3.43 approx. **Answer: Options (c) Ouestion 11** If the relationship between x and y is given by 2x + 3y = 10 and the range of y is **10**, then what is the range of x? (a) 10 (b)18 (c) 8 (d) 15 **Answer: Options (d) DEC 2021 Question 1** If there are 3 observations 15, 20, 25 then the sum of deviation of the observations from their AM is (a) 0 (b) 5(c) -5 (d) 10 Answer: a **Explanation:** Sum of deviations from their Arithmetic Mean is always zero. **Ouestion 2** If the AM and GM for 10 observations are both 15, then the value of HM is (a) less than 15 (b) more than 15 (c) 15 (d) cannot be determined **Answer**: **Explanation:** If both AM and GM are 15, it means that all the observations are constant, i.e., 15. Therefore, HM will also be 15. **Ouestion 3** If average mark for a group of 30 girls is 80, a group of boys is 70 and combined average is 76, then how many are in the boy's group? (a) 21 (b) 20 (c) 22 (d) 19 Answer: b **Explanation**: We have $n_1 = 30$; $\overline{X_1} = 80$; $n_2 = ?$; $\overline{X_2} = 70$; $=\overline{X} = 76$

FOR ENQUIRY - 6262969604

We know that $\bar{X} = \frac{n_1 \overline{X_1} + n_2 \overline{X_2}}{n_1 + n_2}$ <i>Therefore</i> , 76 = $\frac{(30 \times 80) + (n_2 \times 70)}{30 + n_2}$	
$\binom{n_1+n_2}{(30\times 80)} + (n_2\times 70)$	
Therefore, $76 = \frac{30 + n_2}{30 + n_2}$	
Now, try the options.	
Option (a) -21	
$RHS = \frac{(30 \times 80) + (21 \times 70)}{30 + 21} = 75.88 \neq 76$	
Option (b) - 20	
$RHS = \frac{(30 \times 80) + (20 \times 70)}{30 + 20} = 76 = LHS$	
$RHS = \frac{1}{30+20} \equiv 76 \equiv LHS$	
Oraction 4	
Question 4 If two variables a h and h are related by C	- ab than C M of a is aqual to
If two variables a b and b are related by C (a) G.M. of a + G.M. of b	(b) G.M. of a x G.M. of b
(a) G.M. of a + G.M. of b (c) G.M. of a - G.M. of b	(d) G.M. of a / G.M. of b
Answer: b	
Explanation:	
If two variables a and b are related by c = ab l	o then GM of c = GM of a × GM of b
Question 5	
For a moderately skewed distribution the	median is twice the mean, then the
mode is times the median.	
(a) 3 (c) 2/3	(b) 2 (d) 3/2
Answer: b	(u) 3/2
Explanation:	
We know that for a moderately skewed distri	bution,
Mode = 3 Median - 2Mean Eq. (1)	
Given:	
Median = 2 Mean	
Therefore, Mean = Median/ 2	
Putting	
the value of Mean = Median/ 2	
in Eq. (1), we get:	
Mode= 3 Median - 2 Median) Mode= 3 Median - Median = 2 Median	
Therefore, Mode is two times of Median.	
Question 6	
The median value of the set of observation	18 48, 36, 72, 87, 19, 66, 56, 91 is
(a) 53	(b) 87

e

6262969699

(c) 61	(d) 19	
Answer: c		
Explanation:		
First, arrange the terms in ascending order:		
19, 36,48, 56, 66, 72, 87, 91		
Since the number of terms is even, i.e., 8, the n	nedian will be obtained by the average of	
the two middle terms, i.e., 56, and 66.		
Therefore,		
Median =56 + 66/ 2 = 61		
Question 7		
The marks secured by 5 students in a subje	ect are 82, 73, 69, 84, 66. What is the	
coefficient of Range		
(a) 0.12	(b) 12	
(c) 120	(d) 0.012	
Answer: b		
Explanation:		
Coefficient of Range = $\frac{Largest \ Observation - Small}{Largest \ Observation + Small}$		
$Coefficient of Dengo = \frac{84 - 66}{100} \times 100 = 12$		
Coefficient of Range = $\frac{84 - 66}{84 + 66} \times 100 = 12$		
Question 8		
For a data having odd number of values, th		
middle value is equal to the difference betw		
similarly the difference between the secon	-	
second last and middle value so on. Theref		
	(b) Half of standard deviation	
(c) Mode	(d) Mean	
Answer: d		
Explanation:		
Here No. of data's = odd (let 3)		
i.e. a, b, c Difference b (w the 1st and the middle value		
Difference b/w the 1 st and the middle value		
Diff. b/w the last and the middle value b-a=c-b		
2b = a + b		
$b = \frac{a+c}{2}$		
The middle value is known as mean and simila	arly other case is also satisfied.	
Question 9		
One hundred participants expressed their opinion on recommending a new		
For more Info Visit - www.KITest.in		

FOR ENQUIRY – 6262969604		6262969699
product to their friends using the a	ttributes: most unlikely,	not sure, likely, most
likely. The appropriate measure of	• • • • • • • • • • • • • • • • • • •	
(a) Mean	(b) Mode	
(c) Geometric mean	(d) Harmonic mea	an
Answer: b		
Explanation:		1
One hundred participants expressed t	-	
their friends using the Attributes; mos		-
appropriate measure of central tende	ncy that can be used here i	s mode.
Question 10		
A long a road there are 5 buildings of people residing in each building of the buildings so that the total dis from their buildings must be kept r	is available. A bus stop is stance walked by the resi	s to be setup near one dents to the bus stop
to find the position of the h	-	
(a) Mean	(b) Mode	
(c) Median	(d) Weighted mea	n
Answer:		
Explanation:		
'Median' The total distance walked by must DO kept minimum.	the residents to the bus st	cop from their building
<u>Ouestion 11</u>		
Given that Mean = 70.20 and Mode	= 70.50, the Median is ex	pected to be.
(a) 70.15	(b) 70.20	
(c) 70.30	(d) 70.35	
Answer:		
Explanation:		
Since Mean and Mode are different, th		
For moderately skewed data, we know	w that Mode= 3Median -2 N	lean.
Therefore, Median = $\frac{Mode+2 Mean}{3}$		
Median = $\frac{70.50 + (2 \times 70.20)}{3} = 70.30$		
П	<u>JNE 2022</u>	
Question 1		
Which is not a measure of central to	endency	
(a) Mean	(b) Median	
(c) Quartile deviation	(d) Mode	
For more	Info Visit - www.KITest.in	14 69

Answer: c

Explanation:

Quartile deviation is not a measure of central tendency.

Question 2

Mean Deviation of data 3, 10, 10, 4, 7, 18, 5 from mode is

(a) 4.39	(b) 4.14
(c) 4.70	(d) 5.24

Answer: b

Explanation:

Mean deviation from mode of following data 3, 10, 10, 4, 7, 18, 5 Here mode (Mo) = 10

Table =

X	Mode (Mo)	d = x-Mo
3	10	7
10	10	0
10	10	0
4	10	6
7	10	3
18	10	8
5	10	5
N= 7		Σ d = 29

M.D- $\frac{\sum |d|}{N} = \frac{29}{7} = 4.14$

Question 3

<u>Question 3</u>	
A M and Coefficient of variation of x is 1	0 and 40. What is the variance 30-2x
(a) 64	(b) 56
(c) 49	(d) 81
Answer: a	
Explanation:	
A.M of x = 10	
C.v. of $x = 40\%$	
$CV = \frac{S.D.}{10} \times 100$	
$CV = \frac{S.D.}{10} \times 100$ $40 = \frac{S.D.}{10} \times 100$	
S.D. = $\frac{40 \times 10}{100}$	
S.D = 4	
i.e. S.D of x=4	
Here Let $y = 30-2x$	
2x+y-30= 0	

$B = \frac{Coeff \ of \ x}{Coeff \ of \ y} = \frac{-2}{1} = -2$ S.D of y = |b| of S.D of x $= |-2| \times 4 = 2 \times 4 = 8$ = Variance of $y = (8)^2 = 64$ **Question 4** Which of the following is based on absolute deviation? (a) Standard deviation (b) Mean deviation (c) Range (d) Quartile deviation **Answer: b Explanation**: M. D is known as absolute deviation **Ouestion 5** When each value does not have equal importance then (a) A M (b) G M (c) H M (d) Weighted Average Answer: d **Explanation:** When each value does not have equal importance then we used weighted Average. **Question 6** Following are the wages of 8 workers 82, 96, 52, 75, 70, 65, 50, 70. Find range and coefficient of range? (a) 46, 32.70 (b) 43, 31.50 (c) 46, 31.50 (d) 43, 32.70 **Answer: c Explanation**: Here Smallest No (S) = 50Largest No (L) = 96Range = L - S= 96-50= 46 Coeff. of Range = $\frac{L-S}{L+S} \times 100$ $\frac{96-50}{960+50}$ × 100 $=\frac{46}{146} \times 100$ = 31.50For more Info Visit - www.KITest.in

FOR ENQUIRY - 6262969604

6262969699

Question 7	
The mean of 20 observation is 38. If two ol	bservation are taken as 84 and 36
instead of 48 and 63 find new means.	
(a) 38.45	(b) 41.15
(c) 37.55	(d) 40.05
Answer: c	
Explanation:	
$\overline{X} = 38$	
No of observation $(N) = 20$	
RightValues (R.V) = $48 + 63 = 111$	
Wrong Values (W.V) = $84 + 36 = 120$	
	V
New (correct) mean = original mean + $\frac{R.V-W.T}{N}$	-
$= 38 + \frac{(111 - 120)}{20}$ = 38 + $\frac{(-9)}{20}$	
$\begin{pmatrix} 20 \\ (0) \end{pmatrix}$	
$= 38 + \frac{(-9)}{28}$	
= 38 + 0.45	
= 37.55	
Question 8	
The 3 rd decile for the numbers	
15, 10, 20, 25, 18, 11, 9, 12 is	
(a) 13	(b) 10.70
(c) 11.00	(d) 11.50
Answer: b	
Explanation:	
Write the terms in Ascending order 9, 10, 11,	12, 15, 18, 20, 25
Here $N = 8$	
$D_3 = \left[\frac{3(N+1)}{10}\right]^{th}$	
$D_3 = \begin{bmatrix} 10 \end{bmatrix}$	
$[3(8+1)]^{th}$	
$\begin{bmatrix} 10 \\ 27 \end{bmatrix}$	
$\left[\frac{27}{10}\right]^{th}$	
2.70 th term	
$= 2^{\text{th}} \text{term} + 0.70 \text{ (3th term - 2th term)}$	
=10 + 0.70 (11 - 10)	
$= 10 + 0.70 \times 1$	
= 10 + 0.70	
= 10.70	

Question 9	
Find the standard deviation and coefficien	
(a) 2.828, 49.32	(b) 2.828, 47.13
(c) 2.828, 48.13	(d) 2.828, 50.13
Answer: c	
Explanation:	
Given data	
1, 9, 8, 5, 7	
Mean $(\bar{x}) = \frac{\sum d^2}{N} = \sqrt{\frac{40}{5}} = \sqrt{8}$	
$=2\sqrt{2}$	
= .828	
$C.V = \frac{S.D}{AM} \times 100$ $\frac{2.828}{6} \times 100 = 47.13\%$	
$2.828 \times 100 - 471206$	
$\frac{-6}{6} \times 100 = 47.13\%$	
DEC 2	2022
Question 1	
If Mean (X) is = 10 and mode (Z) is = 7, the	en find out the value of median (M)
a) 9 ł	o) 17
c) 3	d) 4.33
Answer: Options (a)	
Explanation:	
Applying the relation between mean, median	and mode formula,
Mode =3 Median –2 Mean	
Therefore, Median = $\frac{Mode+2Mean}{2}$	
$=\frac{7+2\times10}{3}$	
= 27	
Median =9	
Question 2	
If the coefficient of variation and standard	l deviation are 30 and 12 respectively,
then the arithmetic mean of the distributi	on is
	o) 36
c) 25	d) 19
Answer: Options (a)	
Explanation:	
C.V. – 30, S.D – 12	

E.					
	$CV = 100 \times \frac{SD}{Mean}$				
	Mean 100×12				
	$30 = \frac{100 \times 12}{\text{Mean}}$				
	1200				
	Mean $=\frac{1200}{30}=40$				
	50				
	Question 3				
	The relationship between two variables x	and y is given by $4x-10y = 20$. If the			
	median value of the variable x is 10 then				
	a) 1.0	b) 2.0			
	c) 3.0	d) 4.0			
	Answer: Options (b)				
	Explanation:				
	4x - 10y = 20				
	By Option b				
	$4 \times 10 = -10 \times 2 = 20$				
	40 - 20 = 20				
	= 20 = 2.0				
	Question 4				
	Which one of the following is not a metho	-			
		b) Mean deviation			
		d) Standard Deviation			
	Answer: Options (a)				
	Explanation:	orgion because it is the measure of control			
	In statistics, Quartile is not a measure of disp				
	tendency. 2nd quartile is equal to median. Or deviation are the measure of dispersion.	iny range, mean deviation, standard			
	deviation are the measure of dispersion.				
	Question 5				
	Mean deviation is minimum when deviation	on are taken from:			
		b) Median			
		d) Range			
	Answer: Options (b)				
	Explanation:				
	The mean deviation is least when it is taken	from median (A standard result).			
	Question 6				
	If the first quartile is 56.50 and the third quartile is 77.50, then the coefficient of				
	quartile deviation is				
	-	b) 15.67			
For more Info Visit - www.KITest.in					
		14. 73			

Explanation :
$\Sigma \sqrt{\frac{\Sigma x^2}{n} - \left(\frac{\Sigma x}{n}\right)^2}$
$\sum \sqrt{\frac{\sum x^2}{n} - (x)^2}$
$72\frac{3390}{30} - (\bar{X})^2$
$49 = 113 - (\bar{X})^2$
$=(\bar{X})^2=113-49$
$(\bar{X})2 = 64$
$(\overline{X}) = 8$

Question 9

The mean of 50 observations is 36. If two observations 30 and 42 are to be excluded, then the mean of the remaining observation will be:

· · · · · · · · · · · · · · · · · · ·	U			
a) 36	b) 38			
c) 48	d) 50			
Answer: Options (a)				
Explanation:				

Sum of the 50 observations =36×50=1800 Two observations 30 and 42 are excluded then sum of the remaining 48 observations =1800–[30+42]=1728 Therefore req. mean = 48 1728 =36

Question 10

The average age of 15 students in a class is 9 years. Out of them, the average age of 5 students is 13 years and that of 8 students is 5 years. What is the average of remaining 2 students?

a)	5 years	b)	9 years
c)	10 years	d)	15 years

Answer: Options (b)

Explanation:

with option b applying combined AM method $5 \times 13 + 8 \times 5 + 2 \times 15$

15 Mean of 15 Student is 9

Question 11

If Arithmetic Mean and Geometric Mean between Two numbers are 5 and 4 respectively, then these numbers are

a) 2 & 3	b) 2 & 8
c) 4 & 6	d) 1 & 16

Answer: Options (b) Explanation: If the arithmetic mean is 5, therefore the sum of the two numbers is 10. Let the two numbers be x and 10 - xThe geometric mean is 4 So, $\sqrt[2]{x(10-x)} = 4$ On squaring both sides, we get X(10 - x) = 16 $\Rightarrow 10x - x^2 = 16$ $\Rightarrow x^2 - 10x + 16 = 0$ $\Rightarrow x^2 - 8x - 2x + 16 = 0$ $\Rightarrow x(x-8)-2(x-8)=0$ \Rightarrow (x-2)(x-8) = 0 $\Rightarrow x = 2 \text{ or } x = 8$ So, the required numbers are 2 and 8 **Ouestion 12** If Arithmetic mean between two numbers is 5 and Geometric mean is 4 then what is the value of Harmonic mean? b) 3.4 a) 3.2 c) 3.5 d) 3.6 **Answer: Options (a) Explanation**: We know If a and b are two positive numbers then, Therefore, we can conclude the relationship between A.M., G.M. & H.M. is: $G.M. = \sqrt{A.M. \times H.M.}$ Now, substituting A.M. = 5 & G.M. = 4, we get $4 = \sqrt{5 \times H.M.}$ Squaring both sides $\implies (4)^2 = (\sqrt{5 \times H.M.})^2$ $\implies 16 = 5 \times H.M.$ $\implies H.M. = \frac{16}{5}$ \implies H.M. = 3.2 Thus, the Harmonic mean between the two numbers is 3.2. **Ouestion 13** If the variance of given data is 12, and their mean value is 40, what is coefficient variation (CV)?

FOR ENQUIRY – 6262969604		6262969699
a) 5.66% c) 7.50%	b) 6.66% d) 8.65%	
Answer: Options (d) Explanation: Coef. of $\sigma^2 = \frac{\sigma}{x} \times 100$ $= \frac{\sqrt{12}}{40} \times 100$ = 8.65%		