6262969699

<u>Chapter 11</u> <u>Three-Dimensional Geometry</u>

Question 1

If a line makes angles 90°, 135°, 45° with the x, y and z-axes respectively, find its direction cosines.

Solution:

Let the direction cosines of the line be l, m and n. Here let $\alpha = 90^\circ$, $\beta = 135^\circ$ and $\gamma = 45^\circ$ So, l = cos α , m = cos β and n = cos γ So, direction cosines are l = cos $90^\circ = 0$ m = cos $135^\circ = \cos(180^\circ - 45^\circ) = -\cos 45^\circ = -1/\sqrt{2}$ n = cos $45^\circ = 1/\sqrt{2}$ \therefore The direction cosines of the line are $0, -1/\sqrt{2}, 1/\sqrt{2}$

Question 2

Find the direction cosines of a line which makes equal angles with the coordinate axes.

Solution:

Given:

Angles are equal. So let the angles be α , β , γ Let the direction cosines of the line be l, m and n $l = \cos \alpha$, $m = \cos \beta$ and $n = \cos \gamma$ Here given $\alpha = \beta = \gamma$ (Since, line makes equal angles with the coordinate axes)(1) The direction cosines are $l = \cos \alpha$, $m = \cos \beta$ and $n = \cos \gamma$ We have. $l^2 + m^2 + n^2 = 1$ $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ From (1) we have, $\cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha = 1$ $3\cos^2\alpha = 1$ $\cos \alpha = \pm \sqrt{(1/3)}$: The direction cosines are $l = \pm \sqrt{(1/3)}, m = \pm \sqrt{(1/3)}, n = \pm \sqrt{(1/3)}$

Question 3

If a line has the direction ratios -18, 12, -4, then what are its direction cosines?

6262969699

Solution:

Given Direction ratios as -18, 12, -4 Where, a = -18, b = 12, c = -4Let us consider the direction ratios of the line as a, b and c Then the direction cosines are

a b c
+ b² + c²,
$$\frac{b}{\sqrt{a^2 + b^2 + c^2}}, \frac{c}{\sqrt{a^2 + b^2 + c^2}}$$

Were,

 $\sqrt{a^2 + b^2 + c^2} = \sqrt{(-18)^2 + 12^2 + (-4)^2}$ = $\sqrt{324 + 144 + 16}$ = $\sqrt{484}$ = 22 ∴ The direction cosines are

-18/22, 12/22, -4/22 => -9/11, 6/11, -2/11

Question 4

Show that the points (2, 3, 4), (-1, -2, 1), (5, 8, 7) are collinear.

Solution:

If the direction ratios of two lines segments are proportional, then the lines are collinear. Given:

A(2, 3, 4), B(-1, -2, 1), C(5, 8, 7) Direction ratio of line joining A (2, 3, 4) and B (-1, -2, 1), are (-1-2), (-2-3), (1-4) = (-3, -5, -3)Where, $a_1 = -3, b_1 = -5, c_1 = -3$ Direction ratio of line joining B (-1, -2, 1) and C (5, 8, 7) are (5-(-1)), (8-(-2)), (7-1) = (6, 10, 6)Where, $a_2 = 6, b_2 = 10$ and $c_2 = 6$ Hence it is clear that the direction ratios of AB and BC are of same proportionsBy $\frac{a_1}{a_2} = \frac{-3}{6} = -2$ $\frac{b_1}{b_2} = \frac{-5}{10} = -2$ And $\frac{c_1}{c_2} = \frac{-3}{6} = -2$ \therefore A, B, C are collinear.

Question 5

Find the direction cosines of the sides of the triangle whose vertices are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).

Solution:

Given: The vertices are (3, 5, -4), (-1, 1, 2) and (-5, -5, -2).

6262969699

A(3,5,-4),

B(-1, 1, 2) C(-5, -5, -2)The direction cosines of the two points passing through A(x1, y1, z1) and B(x2, y2, z2) is given by (x_2, y_2, z_3) $-x_1$, (y_2-y_1) , (z_2-z_1) Firstly, let us find the direction ratios of AB Where, A = (3, 5, -4) and B = (-1, 1, 2)Ratio of AB = $[(x_2 - x_1)^2, (y_2 - y_1)^2, (z^2 - z^1)^2]$ = (-1-3), (1-5), (2-(-4)) = -4, -4, 6Then by using the formula, $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ $\sqrt{[(-4)^2 + (-4)^2 + (6)^2]} = \sqrt{(16+16+36)}$ = $\sqrt{68}$ $= 2\sqrt{17}$ Now let us find the direction cosines of the line AB By using the formula, $(X_2 - X_1) (y_2 - y_1) (z_2 - z_1)$ $AB - 4/2\sqrt{17}, -4/2\sqrt{17}, 6/2\sqrt{17}$ $Or - 2/\sqrt{17}, -2/\sqrt{17}, 3/\sqrt{17}$ Similarly. Let us find the direction ratios of BC Where, B = (-1, 1, 2) and C = (-5, -5, -2) Ratio of AB = $[(x_2 - x_1)^2, (y_2 - y_1)^2, (z_2 - z_1)^2]$ = (-5+1), (-5-1), (-2-2) = -4, -6, -4Then by using the formula, $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ $\sqrt{[(-4)^2 + (-6)^2 + (-4)^2]}$ $=\sqrt{(16+36+16)}$ $=\sqrt{68}$ $= 2\sqrt{17}$ Now let us find the direction cosines of the line AB By using the formula, $\frac{(X_2 - X_1)}{(X_2 - X_1)} \frac{(Y_2 - Y_1)}{(X_2 - X_1)}$ AB AB AB $-4/2\sqrt{17}, -6/2\sqrt{17}, -4/2\sqrt{17}$ Or $-2/\sqrt{17}, -3/\sqrt{17}, -2/\sqrt{17}$ Similarly, Let us find the direction ratios of CA Where, C = (-5, -5, -2) and A = (3, 5, -4)Ratio of AB = $[(x_2 - x_1)^2, (y_2 - y_2)^2, (z_2 - z_1)^2]$ = (3+5), (5+5), (-4+2) = 8, 10, -2

6262969699

Then by using the formula, $\sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2]}$ $\sqrt{[(8)^2 + (10)^2 + (-2)^2]}$ $= \sqrt{(64+100+4)}$ $= \sqrt{168} = 2\sqrt{42}$ Now let us find the direction cosines of the line AB By using the formula, $\frac{(x_2 - x_1)}{AB} \cdot \frac{(y_2 - y_1)}{AB} \cdot \frac{(z_2 - z_1)}{AB}$. $8/2\sqrt{42}, 10/2\sqrt{42}, -2/2\sqrt{42}$ Or $4/\sqrt{42}, 5/\sqrt{42}, -1/\sqrt{42}$

Exercise 11.2

Question 1

Show that the three lines with direction cosines $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}, \frac{-4}{13}, \frac{12}{13}, \frac{3}{13}, \frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ Are mutually perpendicular.

Solution:

Let us consider the direction cosines of L_1 , L_2 and L_3 be l_1 , m_1 , n_1 ; l_2 , m_2 , n_2 and l_3 , m_3 , n_3 . We know that

If l_1 , m_1 , n_1 and l_2 , n_2 are the direction cosines of two lines;

And θ is the acute angle between the two lines;

Then $\cos \theta = |l_1 l_2 + m_1 m_2 + n_1 n_2|$

If two lines are perpendicular, then the angle between the two is $\theta = 90^{\circ}$ For perpendicular lines, $|l_1 l_2 + 1m_2 + n_1n_2| = \cos 90^{\circ} = 0$, i.e., $|l_1l_2 + m_1m_2 + n_1n_2| = 0$

So, in order to check if the three lines are mutually perpendicular, we compute $|l_1 l_2 + m_1 m_2 + n_1 n_2|$ for all the pairs of the three lines.

Firstly, let us compute,
$$|1_{1}1_{2} + m_{1}m_{2} + n_{1}n_{2}|$$

 $|1_{1}1_{2} + m_{1}m_{2} + n_{1}n_{2}| = \left| \left(\frac{12}{13} \times \frac{4}{13} \right) + \left(\frac{-3}{13} \times \frac{12}{13} \right) + \left(\frac{-4}{13} \times \frac{3}{13} \right) \right| = \frac{48}{13} + \left(\frac{-36}{13} \right) + \left(\frac{-12}{13} \right)$
 $= \frac{48 + (-48)}{13} = 0$
So, $L_{1} \perp L_{2}$
Similarly,
Let us compute, $|1_{2}1_{3} + m_{2}m_{3} + n_{2}n_{3}|$
 $|1_{1}1_{2} + m_{1}m_{2} + n_{1}n_{2}| = \left| \left(\frac{4}{13} \times \frac{3}{13} \right) + \left(\frac{12}{13} \times \frac{-4}{13} \right) + \left(\frac{3}{13} \times \frac{12}{13} \right) \right| = \frac{12}{13} + \left(\frac{-48}{13} \right) + \frac{36}{13}$
 $= \frac{(-48) + 48}{13} = 0$
So, $L_{3} \perp L_{3}$(2)
Similarly,
Let us compute, $|1_{3}1_{1} + m_{3}m_{1} + n_{3}n_{1}$
 $|1_{1}1_{2} + m_{1}m_{2} + n_{1}n_{2}| = \left| \left(\frac{3}{13} \times \frac{12}{13} \right) + \left(\frac{-4}{13} \times \frac{-3}{13} \right) + \left(\frac{12}{13} \times \frac{-4}{13} \right) \right| = \frac{36}{13} + \frac{12}{13} + \left(\frac{-48}{13} \right)$
 $= \frac{48 + (-48)}{13} = 0$
So, $L_{1} \perp L_{3}$ (3)

6262969699

 \therefore By (1), (2) and (3), the lines are perpendicular. L₁, L₂ and L₃ are mutually perpendicular.

Question 2

Show that the line through the points (1, -1, 2), (3, 4, -2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).

Solution:

Given:

```
The points (1, -1, 2), (3, 4, -2) and (0, 3, 2), (3, 5, 6).
Let us consider AB be the line joining the points, (1, -1, 2) and (3, 4, -2), and CD be the line through the points (0, 3, 2) and (3, 5, 6).
Now,
the direction ratios, a_1, b_1, c_1 of AB are
(3 - 1), (4 - (-1)), (-2 - 2) = 2, 5, -4.
Similarly,
the direction ratios, a_2, b_2, c_2 of CD are
(3 - 0), (5 - 3), (6 - 2) = 3, 2, 4
Then, AB and CD will be perpendicular to each other, if a_1 a_2 + b_1 b_2 + c_1 c_2 = 0
a_1 a_2 + b_1 b_2 + c_1 c_2 = 2(3) + 5(2) + 4(-4)
= 6 + 10 - 16
= 0
\therefore AB and CD are perpendicular to each other
```

Question 3

Show that the line through the points (4, 7, 8), (2, 3, 4) is parallel to the line through the points (-1, -2, 1), (1, 2, 5).

Solution:

Given:

The points (4, 7, 8), (2, 3, 4) and (-1, -2, 1), (1, 2, 5). Let us consider AB be the line joining the points, (4, 7, 8), (2, 3, 4) and CD be the line through the points (-1, -2, 1), (1, 2, 5). Now, The direction ratios, a_1 , b_1 , c_1 of AB are (2 - 4), (3 - 7), (4 - 8) = -2, -4, -4. The direction ratios, a_2 , b_2 , c_2 of CD are (1 - (-1)), (2 - (-2)), (5 - 1) = 2, 4, 4. Then AB will be parallel to CD, if $\frac{a_1}{2} - \frac{b_1}{2} - \frac{c_1}{2}$

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

So, $a_1/a_2 = -2/2 = -1$ $b_1/b_2 = -4/4 = -1$ $c_1/c_2 = -4/4 = -1$ \therefore We can say that,

6262969699

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

-1 == -1 = -1

Hence, AB is parallel to CD where the line through the points (4, 7, 8), (2, 3, 4) is parallel to the line through the points (-1, -2, 1), (1, 2, 5)

Question 4

Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector $3i + 2\hat{j} - 2\hat{k}$.

Solution:

Given: Line passes through the point (1, 2, 3,) and is parallel to the vector. We know that. Vector equation of a line that passes through given point whose position Vector is \bar{a} and parallel to a given vector \bar{b} is $\bar{r} = \bar{a} + \lambda \bar{b}$. So, here the position vector of the point (1, 2, 3,) is given by $\bar{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and the parallel vector is $3\hat{i} + 2\hat{j} - 2\hat{k}$ \therefore The vector equation of the required line is: $\bar{r} = \hat{i} + 2\hat{j} + 3\hat{k} + \lambda (3\hat{1} + 2\hat{j} - 2\hat{k})$. Where λ is constant.

<u>Question 5</u>

Find the equation of the line in vector and in Cartesian form that passes through the point with position vector 2 $i - j + 4\hat{k}$ and $\hat{i} + 2j - \hat{k}$. is in the direction.

Solution:

It is given that Vector equation of a line that passes through a given point whose position Vector is \dot{a} and parallel to a given vector h is $\dot{r} = \dot{a} + \lambda \dot{b}$ Here, let, $\dot{a} = 2\hat{i} - \hat{j} + 4\hat{k}$ and $b = \hat{l} + 2\hat{j} - \hat{k}$ So, the vector equation of the required line is: $\vec{r} = 2\hat{\imath} - \hat{\imath} + 4\hat{k} + \lambda(\hat{\imath} + 2\hat{\imath} - \hat{k})$ Now the Cartesian equation of a line through a point (x_1, y_2, z_1) and having direction cosines 1, m, n, is given by $\frac{\breve{x}-x_1}{v} = \frac{\breve{y}-y_1}{v} = \frac{z-z_1}{v}$ m We know that if the direction ratios of the line are a, b, c, then $1 = \frac{a}{\sqrt{a^2 + b^2 + c^2}}, m = \frac{b}{\sqrt{a^2 + b^2 + c^2}}, n = \frac{c}{\sqrt{a^2 + b^2 + c^2}}.$ The Cartesian equation of a line through a point (x_1, y_1, z_1) and having direction ratios a, b, c, is: $\frac{x-x_1}{z-z_1} = \frac{y-y_1}{z-z_1} = \frac{z-z_1}{z-z_1}$ b Here, $x_1 = 2$. $y_1 = -1$, $z_1 = 4$ and a = 1, b = 2, c = -1: The Cartesian equation of the required line is:

6262969699

$\frac{x-2}{1} = \frac{y-(-1)}{2} = \frac{z-4}{-1} \Rightarrow \frac{x-2}{1} = \frac{y+1}{2} = \frac{z-4}{-1}$

Question 6

Find the Cartesian equation of the line which passes through the point (-2, 4, -5) and parallel to the line given by $\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}.$

Solution:

Given: The points (-2, 4, -5) We know that The Cartesian equation of a line through a point (x₁, y₁, z₁) and having direction ratios a,b, c is $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$ Here, the point (x₁, y₁, z₁) is (-2, 4, -5) and the direction ratio is given by: a = 3, b = 5, c = 6 \therefore The cartesian equation of the required line is: $\frac{x-(-2)}{3} = \frac{y-4}{5} = \frac{z-(-5)}{6} \Rightarrow \frac{x+2}{3} = \frac{y-4}{5} = \frac{z+5}{6}$

Question 7

The Cartesian equation of a line is $\frac{x-5}{3} - \frac{y+4}{7} - \frac{z-6}{2}$. Write its vector form.

Solution:

Given The Cartesian equation is: $\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$(1) We know that The Cartesian equation of a line passing through a point (x1, y1, z1,) and having direction cosines l, m, n is $\frac{x - x_1}{l} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$ So, when comparing this standard form with the given equation we get $x_1 = 5, y_1 = -4, z_1 = 6$ and l = 3, m = 7, n = 2The point through which the line passes have the position vector $\overline{a} = 5\hat{i} - 4\hat{j} + 6\hat{k}$ and The vector parallel to the line is given by $\overline{b} = 3\hat{i} + 7\hat{j} + 2\hat{k}$ Since, vector equation of a line that passes through a given point whose position vector is \bar{a} and parallel to a given vector \overline{b} is $\overline{r} = \overline{a} + \lambda \overline{b}$: The required line in vector form is given as: $\bar{r} = (5\hat{\imath} - 4\hat{\imath} + 6\hat{k}) + \lambda(3\hat{\imath} + 7\hat{\imath} + 2\hat{k})$

Question 8

6262969699

Find the vector and the Cartesian equations of the lines that passes through the origin and (5, -2, 3).

Solution:

Given: The origin (0, 0, 0) and the point (5, -2, 3)We know that The vector equation of as line which passes through two points whose position vectors are \bar{a} and \bar{b} is $\bar{r} = \bar{a} + \lambda (\bar{b} + \bar{a})$ Here, the position vectors of the two points (0, 0, 0,) and (5, -2, 3) are $\bar{a} = 0i + 0j + 0k$ and $\bar{b} = 5i - 2j + 0k$ 3k, respectively. : The vector equation of the required line is given as: $\bar{r} = 0\hat{i} + 0\hat{j} + 0\hat{k} + \lambda [(5\hat{i} - 2\hat{j} + 3\hat{k}) - (0\hat{i} + 0\hat{j} + 0\hat{k})]$ $\bar{r} = \lambda (5\hat{\imath} - 2\hat{\jmath} + 3\hat{k})$ Now, by using the formula, Cartesian equation of a line that passes through two points (x_1, y_1, z_1) and (x_2, y_2, z_2) is given as $\frac{x-x_1}{z-z_1} = \frac{y-y_1}{z-z_1} = \frac{z-z_1}{z-z_1}$ $x_2 - x_1 y_2 - y_1 z_2 - z_1$ So, the Cartesian equation of the line that passes through the origin (0, 0, 0) and (5, -2, 3) is $\frac{x-0}{z-0} = \frac{y-0}{z-0} = \frac{z-0}{z-0}$ $=\frac{1}{3-0}$ -2 - 05 - 0: The vector equation is $\bar{r} = \lambda(5i - 2j + 3k)$ The Cartesian equation is $\frac{x}{5} = \frac{y}{-2} = \frac{z}{3}$

Question 9

Find the vector and the Cartesian equations of the line that passes through the points (3, -2, -5), (3, -2, 6)

Solution:

Given The points (3, -2, -5) and (3, -2, 6) Firstly, let us calculate the vector form: The vector equation of as line which passes through two points whose position Vectors are \bar{a} and \bar{b} is $\bar{r} = \bar{a} + \lambda$ ($\bar{b} - \bar{a}$) Here, the position vectors of the two points (3. -2, -5) and (3, -2, 6)

Vectors are \bar{a} and \bar{b} is $\bar{r} = \bar{a} + \lambda (\bar{b} - \bar{a})$ Here, the position vectors of the two points (3. -2, -5) and (3, -2, 6) are $\bar{a} = 3\hat{i} - 2\hat{j} - 5\hat{k}$ and $\bar{b} = 3\hat{i} - 2\hat{j} + 6\hat{k}$ respectively. \therefore The vector equation of the required line is: $\bar{r} = 3\hat{i} - 2\hat{j} - 5\hat{k} + \lambda[(3i - 2j + 6k) - (3i - 2j - 5k)]$ $\bar{r} = 3\hat{i} - 2\hat{j} - 5\hat{k} + \lambda (3i - 2j + 6k) - (3i - 2j - 5k)$ $\bar{r} = 3\hat{i} - 2\hat{j} - 5\hat{k} + \lambda (11k)$ Now, By using equation of a line that passes through two points (x₁, y₁, z₁) and (x₂, y₂, z₂) is. $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$ So, the Cartesian equation of a line that passes through the origin (3, -2, -5) and (3, -2, 6) is

For more Info Visit - www.KITest.in

11.8

6262969699

Question 10

Find the angle between the following pairs of lines (i) $\overline{r} = 2i - 5j + k + \lambda (3i + 2j + 6\hat{k})$ and $\overline{r} = 7\hat{\iota} - 6\hat{k} + \mu (\hat{\iota} + 2\hat{j} + 2\hat{k})$ (ii) $\hat{r} = 3\hat{\iota} + \hat{j} - 2\hat{k} + \lambda (\hat{\iota} - \hat{j} - 2\hat{j}\hat{k})$ and $\overline{r} = 2\hat{\iota} - \hat{j} - 65\hat{k} + \mu (3\hat{\iota} - 5\hat{j} - 4\hat{k})$

Solution:

Let us consider θ be the angle between the given lines. If θ is the acute angle between $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} \vec{a_2} + \mu \vec{b_2}$ then (i) $\bar{r} = 2i - 5j + k + \lambda (3i + 2j + 6k)$ and $\bar{r} = 7i - 6k + \mu(\hat{i} + 2\hat{j} + 2\hat{k})$ Here $\overrightarrow{\mathbf{b}_1} = 3\mathbf{i} + 2\mathbf{j} + 6\hat{k}$ and $\overrightarrow{\mathbf{b}_2} = \hat{\iota} + 2\vec{j} + 2\hat{k}$ SO, from equation (1), we have $\cos \theta = \left| \frac{(3i+2j+6\hat{k}), (\hat{i}+2j+2\hat{k})}{|3i+2j+6\hat{k}||\hat{i}+2j+2\hat{k}|} \right|$(2) We know that. $|a\hat{i} + b\hat{j} + c\hat{k}| = \sqrt{a^2 + b^2 + c^2}$ So, $|3\hat{i} + 2\hat{j} + 6\hat{k}| = \sqrt{3^2 + 2^2 + 6^2} = \sqrt{9 + 4 + 36} = \sqrt{49} = 7$ And $|\hat{\iota} + \hat{j} + \hat{k}| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3$ Now, we know that $(a_1\hat{i} + b_1\hat{j} + c_1\hat{k}), (a_2\hat{i} + b_2\hat{j} + c_2\hat{k}) = a_1a_2 + b_1b_2 + c_1c_2$ So, $(3i + 2j + 6\hat{k}).(i + 2j + 2\hat{k}) = 3 \times 1 + 2 \times 2 + 6 \times 2 = 3 + 4 + 12 = 19$ By (2), we have $\cos \theta = \frac{19}{7 \times 3} = \frac{19}{21}$ $\theta = \cos^{-1} \frac{19}{21}$ (ii) $\vec{r} = 3i + j + 2\hat{k} + \lambda (i - j - 2\hat{k})$ and $\vec{r} = 2i - j - 56\hat{k} + \mu(3i - 5j - 4\hat{k})$ Here, $\widehat{b_1} = i - j - 2\hat{k}$ and $\widehat{b_2} = 3i - 5j - 4\hat{k}$ So, from (1), we have

6262969699

Cos
$$\theta = \left| \frac{(i-j-2k)(3l-5j-4k)}{|t-j-2k|(3l-5j-4k)|} \right|$$
 ... (3)
We know that,
 $\left| \hat{a}i + bj + c\hat{k} \right| = \sqrt{a^2 + b^2 + c^2}$
So,
 $\left| i - j - 2\hat{k} \right| = \sqrt{1^2 + (-1)^2 + 2^2} = \sqrt{1 + 1 + 4} = \sqrt{6} = \sqrt{3} \times \sqrt{2}$
And
 $\left| 3i - 5j - 4\hat{k} \right| = \sqrt{3^2 + (-5)^2 + (-4)^2} = \sqrt{9 + 25 + 16} = \sqrt{50} = \sqrt[5]{2}$
Now, we know that
 $\left(a_1^{-1} + b_1^{-1} + c_1\hat{k} \right), \left(a_2^{-1} + b_2^{-1} + c_2\hat{k} \right) = a_{1a_2} + b_{1b_2} + C_1C_2$
 $:\left(i - j - 2\hat{k} \right), \left(3k - 5j - 4\hat{k} \right) = 1 \times 3 + (-1) \times (-5) + (-2) \times (-4) = 3 + 5 + 8 = 16$
By (3), we have
Cos $\theta = \frac{3i}{\sqrt{3} \sqrt{2x} \sqrt{2x}} = \frac{3i}{\sqrt{3}} = \frac{9}{\sqrt{3}}$
 $\theta = \cos^{-4}\left(\frac{8}{\sqrt{5\sqrt{3}}}\right)$
Question 11
Find the angle between the following pair of lines:
 $\left(j \frac{z-2}{2} = \frac{z-1}{5}, \frac{z+3}{-4} \text{ and } \frac{x+2}{4} = \frac{y-4}{5}, \frac{z-5}{4}$ are the equations of two lines, then the acute angle
between the two lines is given by
 $\cos \theta = |a_1^{12} + m_1m_2 + m_1n_2| - m_1m_2 + m_1^{-2} = \frac{y-4}{8}, \frac{z-5}{4}$
Solution:
We know that
If
 $\frac{x-x_1}{2} = \frac{y-3}{5}, \frac{z+3}{-3} \text{ and } \frac{x+2}{4} = \frac{y-4}{2}, \frac{z-5}{-3}$
 $= \frac{4}{7}$
Here, $a_1 = 2, b_1 = 5, c_1 = 4, 3 \text{ and } \frac{z-4}{4} = \frac{y-4}{\sqrt{a^2+b^2+c^2}}, n = \frac{c}{\sqrt{a^2+b^2+c^2}}$
Now,
 $1 = \frac{\theta}{\sqrt{a^2+b^2+c^2}}, m = \frac{\theta}{\sqrt{a^2+b^2+c^2}}, n = \frac{c}{\sqrt{a^2+b^2+c^2}}, n = \frac{c}{\sqrt{a^2+b^2+c^2}}, n = \frac{c}{\sqrt{a^2+b^2+c^2}}, n = \frac{c}{\sqrt{a^2+b^2+c^2}} = \sqrt{1+64+16} = \sqrt{81} = 9$
For four enversions (D) we have

So, from equation (2), we have $l_1 = \frac{a_1}{\sqrt{a_1^2 + b_1^2 + c_1^2}} = \frac{2}{\sqrt{38}}, m_1 = \frac{b_1}{\sqrt{a_1^2 + b_1^2 + c_1^2}} = \frac{5}{\sqrt{38}}, n_1 = \frac{c_1}{\sqrt{a_1^2 + b_1^2 + c_1^2}} = \frac{-3}{\sqrt{38}}$ And

6262969699

$$L_{2} = \frac{a_{2}}{\sqrt{a_{2}^{2} + b_{2}^{2} + c_{2}^{2}}} = \frac{a_{1}}{-9}, m_{2} = \frac{b_{2}}{\sqrt{a_{2}^{2} + b_{2}^{2} + c_{2}^{2}}} = \frac{a_{9}}{9}, n_{2} = \frac{c_{2}}{\sqrt{a_{1}^{2} + b_{1}^{2} + c_{1}^{2}}} = \frac{4}{9}$$

 \therefore From equation (1), we have

$$Cos \theta = \left| \left(\frac{3}{\sqrt{38}} \right) x \left(\frac{-1}{9} \right) + \left(\frac{5}{\sqrt{38}} \right) x \left(\frac{8}{9} \right) + \left(\frac{-3}{\sqrt{38}} \right) x \left(\frac{4}{9} \right) \right|$$

$$= \left| \frac{-2440 - 12}{9\sqrt{38}} \right| = \left| \frac{40 - 12}{9\sqrt{38}} \right| = \frac{26}{9\sqrt{38}}$$

 $\theta = \cos^{-1} \left(\frac{26}{9\sqrt{38}} \right)$
(i) $\frac{x}{2} = \frac{y}{2} = \frac{x}{4}$ and $\frac{x - 5}{4} = \frac{y - 2}{1} = \frac{z - 3}{8}$
Here, $a_{1} = 2, b_{1} = 2, c_{1} = 1$ and
 $a_{2} = 4, b_{2} = 2, c_{2} = 8$
Here, we know that
 $l_{1} = \sqrt{a_{1}^{2} + b_{1}^{2} + c_{1}^{2}} = \sqrt{2^{2} + 2^{2} + 1^{2}} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3$
And
 $l_{1} = \sqrt{a_{2}^{2} + b_{2}^{2} + c_{2}^{2}} = \sqrt{(-1)^{2} + 8^{2} + 4^{2}} = \sqrt{1 + 64 + 16} = \sqrt{81} = 9$
So, from equation (2), we have
 $l_{1} = \frac{a_{1}}{\sqrt{a_{1}^{2} + b_{1}^{2} + c_{1}^{2}}} = \frac{2}{3}, m_{1} = \frac{b_{1}}{\sqrt{a_{1}^{2} + b_{1}^{2} + c_{1}^{2}}} = \frac{2}{3}, m_{1} = \frac{c_{1}}{\sqrt{a_{1}^{2} + b_{1}^{2} + c_{1}^{2}}} = \frac{1}{3}$
And
 $L_{2} = \frac{a_{2}}{\sqrt{a_{2}^{2} + b_{2}^{2} + c_{2}^{2}}} = \frac{4}{9}, m_{2} = \frac{b_{2}}{\sqrt{a_{2}^{2} + b_{2}^{2} + c_{2}^{2}}} = \frac{1}{9}, n_{2} = \frac{c_{2}}{\sqrt{a_{1}^{2} + b_{1}^{2} + c_{1}^{2}}} = \frac{8}{9}$
 \therefore From equation (1), we have
 $Cos \theta = \left| \left(\frac{2}{3} \times \frac{4}{9} \right) + \left(\frac{2}{3} \times \frac{4}{9} \right) \right| = \left| \frac{8 + 2 + 8}{27} \right| = \frac{18}{23} = \frac{2}{3}$

Question 12

Find the value of p so that the lines $\frac{1-x}{3} = \frac{7y-14}{2p} = \frac{z-3}{2} \text{ and } \frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5} \text{ are at right angles.}$

Solution:

The standard form of a pair of Cartesian lines is: $\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1} \text{ and } \frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2} \dots (1)$ So, the given equation can be written according to the standard form, i.e. $\frac{-(x - 1)}{3} = \frac{7(y - 2)}{2p} = \frac{z - 3}{2} \text{ and } \frac{-7(x - 1)}{3p} = \frac{y - 5}{1} = \frac{-(z - 6)}{5}$ $\frac{x - 1}{-3} = \frac{y - 2}{2p/7} = \frac{z - 3}{2} \text{ and } \frac{x - 1}{-3p/7} = \frac{y - 5}{1} = \frac{z - 6}{-5} \dots (2)$ Now, comparing equation (1) and (2), we get $a_1 = -3, b_1 = \frac{2p}{7}, C_1 = 2 \text{ and } a_2 = \frac{-3p}{7}, b_2 = 1, C_2 = -5$ So, the direction ratios of the lines are -3, 2p/7, 2 and -3p/7, 1, -5Now, as both the lines are at right angles,

6262969699

So, $a_1a_2 + b_1b_2 + c_1c_2 = 0$ (-3) (-3p/7) + (2p/7) (1) + 2(-5) = 0 9p/7 + 2p/7 - 10 = 0 (9p+2p)/7 = 10 11p/7 = 10 11p = 70 P = 70/11 \therefore The value of p is 70 /11

Question 13

Show that the line $\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ are perpendicular to each other.

Solution:

The equations of the given lines are $\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1} \text{ and } \frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ Two lines with direction ratios is given as $a_1a_2 + b_1b_2 + c_1c_2 = 0$ So, the direction ratios of the given lines are 7, -5, 1 and 1,2,3 i.e., $a_1 = 7, b_2 = -5, c_1 = 1$ and $a_2 = 1, b_2 = 2, c_2 = 3$ Now, considering $a_1a_2 + b_1b_2 + c_1c_2 = 7 \times 1 + (-5) \times 2 + 1 \times 3$ = 7 - 10 + 3 = -3 + 3= 0

 \div The two lines are perpendicular to each other.

Question 14

Find the shortest distance between the lines $\vec{r} = (i + 2j + k) + \lambda(i - j + k)$ and $\vec{r} = 2i - j - k + \mu (2i + j + 2k)$

Solution:

We know that the shortest distance between two Lines $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ is given as:

 $d = \frac{\overrightarrow{(b_1 \times \overline{b_2}), (\overline{a_2} - \overline{a_1})}}{\left| \overline{b_1 \times \overline{b_2}} \right|}$

.....(1)

Here by comparing the equations we get, $\overrightarrow{a_1} = I + 2j + k, \overrightarrow{b_1} = I - j + k$ and $\overrightarrow{a_2} = 2i - j - k, \overrightarrow{b_2} = 2i + j + 2k$ Now, $(x_1\hat{\imath} + y_1 + Z_1\vec{k}) - (x_2\hat{\imath} + y_2 + Z_2\vec{k}) = (x_1 - x_2)\hat{\imath} + (y_1 - y_2)\hat{\jmath} + (z_1 - z_2)\hat{k}$

For more Info Visit - www.KITest.in

11. 12

6262969699

 $\overrightarrow{a_2} - \overrightarrow{a_2} = (2\vec{\iota} - \vec{j} - k) - (I + 2j + k) = I - 3j - 2k$(2) Now, $\overrightarrow{b_1} \times \overrightarrow{b_2} = (I - j + k) \times (2i + j + 2k)$ $= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 1 \end{vmatrix}$ 2 1 $= -3\vec{i} + 3k$ $\Rightarrow \overrightarrow{b_1} \times \overrightarrow{b_2} = -3i + 3k$(3) Now. $(a_1\hat{i} + b_1\hat{j} + c_1\hat{k}), (a_2\hat{i} + b_2\hat{j} + c_2\hat{k}) = a_1a_2 + b_1b_2 + C_1C_2$ $(\overrightarrow{b_1} \times \overrightarrow{b_2}), (\overrightarrow{a_1} \times \overrightarrow{a_2}) = (-3i+3k), (I-3j-2k) = -3 - 6 = -9$(5) Now, by substituting all the values in equation (1), we get The shortest distance between the two lines, $d = \left| \frac{-9}{3\sqrt{2}} \right|$ $=\frac{9}{3\sqrt{2}}$ [From equation (4) and (5)] $=\frac{3}{\sqrt{2}}$ Let us rationalizing the fraction by multiplying the numerator and denominator by $\sqrt{2}$, we get $d = \frac{3}{\sqrt{2}} x \frac{\sqrt{2}}{\sqrt{2}} = \frac{3\sqrt{2}}{2}$: The shortest distance is $3\sqrt{2}/2$ **Ouestion 15** Find the shortest distance between the lines $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and $\frac{x-3}{-2} = \frac{y-5}{-2} = \frac{2-7}{1}$ **Solution:** $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1} \text{ and } \frac{x-3}{-2} = \frac{y-5}{-2} = \frac{2-7}{1} \text{ is given as:}$ $d = \frac{\begin{vmatrix} x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \end{vmatrix}}{\sqrt{(b_{1}c_{2}-b_{2}c_{1})^{2} + (c_{1}a_{2}-c_{2}a_{2})^{2} + (a_{1}b_{2}-a_{2}b_{1})^{2}}} \qquad (1)$ the standard form of a pair of Center to Vthe standard form of a pair of Cartesian lines is: $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1} \text{ and } \frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2}$ And the given equations are: $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1} \text{ and } \frac{x-3}{-2} = \frac{y-5}{-2} = \frac{2-7}{1}$ Now let us compare the given equation with the standard form we get, $X_1 = -1, y_1 = -1. Z_1 = -1:$ $X_2 = 3, y_2 = 5, Z_2 = 7$ $a_1 = 7, b_1 = -6, c_1 = 1$: $a_2 = 1, b_2 = -2, c_2 = 1$ Now, consider

For Enquiry – 6262969604 6262969699 $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = \begin{vmatrix} 3 - (-1) & 5 - (-1) & 7 - (-1) \\ 7 & -6 & 1 \\ 1 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 3 + 1 & 5 + 1 & 7 + 1 \\ 7 & -6 & 1 \\ 1 & -2 & 1 \end{vmatrix}$ *c*₂ 6 8 14 = 7 -6 1 -2= 4(-6+2) - 6(7-1) + 8(-14+6)= 4 (4) - 6 (6) + 8 (-5)= -16 - 36 - 64 = - 116 Now we shall consider $\sqrt{(b_1c_2 - b_2c_1)^2 + (c_1a_2 - c_2a_2)^2} + (a_1b_2 - a_2b_1)^2$ $=\sqrt{((-6x1) - (-2x1))^2 + ((1x1) - (1x7))^2 + ((7x-2) - (1x-6))^2}$ $=\sqrt{((-6 x 2)^{2} + (1 - 7)^{2} + (-14 + 6)^{2}} = \sqrt{(-4)^{2} + (-6)^{2} + (-8)^{2}}$ $=\sqrt{16+36+64}=\sqrt{116}$ By substituting all the values in equation (1), we get the shortest distance between the two lines, $d = \left| \frac{-116}{\sqrt{116}} \right| = \frac{116}{\sqrt{116}} = \sqrt{116} = 2\sqrt{29}$ \therefore The shortest distance is $2\sqrt{29}$ **Ouestion 16** Find the shortest distance between the lines whose vector equations are $\vec{r} = \vec{a_1} + \lambda (\vec{\iota} - 3\vec{j} + 2\vec{k})$ and $\vec{r} = 4\vec{\iota} + 5\mathbf{j} - 6\mathbf{k} + \mu(2\mathbf{i} + 3\mathbf{j} + \mathbf{k})$ **Solution:** We know that shortest distance between two lines $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ is given as: $d = \left| \frac{\overrightarrow{(b_1 x \ \overline{b_2}), (\overline{a_2} - \overline{a_1})}}{\left| \overline{b_1 x \ \overline{b_2}} \right|} \right| \dots (1)$ Here by comparing the equation we get, $\overrightarrow{a_1} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\overrightarrow{b_1} = \hat{i} - 3\hat{j} + 2\hat{k}$ and $\vec{a_2} = 4\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b_2} = 2\hat{i} - 3\hat{j} + \hat{k}$ Now let us subtract the above equations we get, $(x_1\hat{i} + y_1\hat{j} + z_1\hat{k}) - (x_2\hat{i} + y_2\hat{j} + z_2\hat{k}) = (x_1 - x_2)\hat{i} + (y_1 - y_2)\hat{j} + (z_1 + z_2)\hat{k}$ $\vec{a_2} - \vec{a_1} = (4\hat{i} + 5\hat{j} + 6\hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) = 3\hat{i} + 3\hat{j} + 3\hat{k}$(2) And, $\overrightarrow{\mathbf{b}_1} \times \overrightarrow{\mathbf{b}_2} = (\mathbf{\hat{i}} + 3\mathbf{\hat{j}} + 2\mathbf{\hat{k}}) \times (2\mathbf{\hat{i}} + 3\mathbf{\hat{j}} + \mathbf{\hat{k}})$ $= \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & -3 & 2 \\ 2 & 3 & 1 \end{vmatrix}$ $= -9\hat{i} + 3\hat{j} + 9\hat{k}$ $\Rightarrow \overrightarrow{b_1} \times \overrightarrow{b_2} = -9\hat{i} + 3\hat{j} + 9\hat{k}....(3)$ For more Info Visit - www.KITest.in

11. 14

6262969699

Now by multiply equation (2) and (3) we get, $(a_1\hat{i} + b_1\hat{j} + c_1\hat{k}), (a_2\hat{i} + b_2\hat{j} + c_2\hat{k}) = a_1a_2 + b_1b_2 + c_1c_2$ $(\overrightarrow{b_1} \times \overrightarrow{b_2}), (\overrightarrow{a_1} - \overrightarrow{a_2}) = (-9\hat{i} + 3\hat{j} + 9\hat{k}).(3\hat{i} + 3\hat{j} + 3\hat{k}) = -27 + 9 + 27 = 9 \dots (5)$ By substituting all the values in equation (1), we obtain The shortest distance between the two lines. $d = \left|\frac{9}{3\sqrt{19}}\right| = \frac{9}{3\sqrt{19}} = \frac{3}{\sqrt{19}}$ \therefore The shortest distance is $3\sqrt{19}$

Question 17

Find the shortest distance between the lines whose vector equation are $\vec{r} = (1-t)\hat{i} + (t-2)\hat{j} + (3-2t)\hat{k}$ and $\vec{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k}$

Solution:

Firstly, let us consider the given equations $\Rightarrow \vec{r} = (1 - t)\hat{i} + (t - 2)\hat{j} + (3 - 2t)\hat{k}$ $\vec{r} = \hat{\imath} - t\hat{\imath} + t\hat{\jmath} - 2\hat{\imath} + 3\hat{k} - 2\hat{k}$ $\vec{r} = \hat{1} - 2\hat{1} + 3\hat{k} + t(-\hat{1} + j - 2k)$ $\Rightarrow \vec{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k}$ $\vec{r} = s\hat{\imath} + \hat{\imath} + 2s\hat{\jmath} - \hat{\jmath} - 2s\hat{k} - \hat{k}$ $\vec{r} = \hat{i} - \hat{j} + \hat{k} + s(\hat{i} + 2j - 2k)$ So now we need to find the shortest distance between $\vec{r} = \hat{i} - 2\hat{j} + 3\hat{k} + \hat{i} (-\hat{i} + \hat{j} - 2\hat{k})$ and $\hat{r} = \hat{i} - \hat{j} - \hat{k} + \hat{i} (\hat{i} + 2\hat{j} - 2\hat{k})$ We know that shortest distance between two lines $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ is given as: $d = \left| \frac{(\overrightarrow{b_1} \times \overrightarrow{b_2}), (\overrightarrow{a_1} - \overrightarrow{a_2})}{|\overrightarrow{b_1} \times \overrightarrow{b_2}|} \right|$(1) Here by comparing the equations we get, $\overrightarrow{a_1} = \hat{i} - 2 + 3k$, $\overrightarrow{b_1} = -\hat{i} + \hat{j} - 2k$ and $\overrightarrow{a_1} = \hat{i} - \hat{j} - k$, $\overrightarrow{b_2} = \hat{i} + 2\hat{j} - 2k$ Since. $(x_1\hat{i} + y_1\hat{j} + Z_1\hat{k}) - (x_2\hat{i} + y_2\hat{j} + Z_2\hat{k}) = (x_1 - x_2)\hat{i} + (y_1 - y_2)\hat{j} + (z_1 - z_2)\hat{k}$ So. $\overrightarrow{a_1} - \overrightarrow{a_2} = (\hat{1} - \hat{j} - \hat{k}) - (\hat{1} - 2\hat{j} + 3\hat{k}) = \hat{j} - 4\hat{k}$(2) And, $\overrightarrow{b_1} \times \overrightarrow{b_2} = (-\hat{i} + \hat{j} - 2\hat{k}) \times (\hat{i} + 2\hat{j} - 2\hat{k})$ îĵ ĥ -1 1 -2 1 2 $= 2\hat{I} - 4\hat{j} - 3\hat{k}$ $=>\overrightarrow{b_1}\times\overrightarrow{b_2}=2\hat{l}-4\hat{j}-3\hat{k}$(3) $=>|\overrightarrow{b_1} \times \overrightarrow{b_2}| = \sqrt{2^2 + (-4)^2 + (-3)^2} = \sqrt{4 + 16 + 9} = \sqrt{29}$ (4) Now, by multiplying equation (2) and (3) we get, $(a_1\hat{i} + b_1\hat{j} + c_1\hat{k}), (a_2\hat{i} + b_2\hat{j} + c_2\hat{k}) = a_1a_2 + b_1b_2 + c_1c_2$

6262969699

 $(b_1 x b_2), (\overrightarrow{a_1} - \overrightarrow{a_2}) = (2\hat{1} - 4\hat{j} - 3\hat{k}), (\hat{j} - 4\hat{k}) = -4 + 12 = 8$ By substituting all the values in equation (1), we obtain The shortest distance between the two lines.

$$d = \left| \frac{8}{\sqrt{29}} \right| = \frac{8}{\sqrt{29}}$$

 \therefore The shortest distance is $8\sqrt{29}$

Exercise 11.3

.....(5)

Ouestion 1

In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

(a) z = 2(b) x + y + z = 1(c) 2x + 3y - z = 5(d) 5y + 8 = 0

Solution:

(a) z = 2

Given: The equation of the plane, z = 2 or 0x + 0y + z = 2 (1) Direction ratio of the normal (0, 0, 1) By using the formula, $\sqrt{(0) 2 + (0) 2 + (1) 2} = \sqrt{1}$ = 1 Now.

Divide both the sides of equation (1) by 1, we get 0x/(1) + 0y/(1) + z/1 = 2So, this is of the form lx + my + nz = dWhere, l, m, n are the direction cosines and d is the distance ... The direction cosines are 0, 0, 1 ∴ The direction cosines are 0, 0, 1

(b) x + y + z = 1

Distance (d) from the origin is 2 units

Given: The equation of the plane, x + y + z = 1....(1)Direction ratio of the normal (1, 1, 1) By using the formula, $\sqrt{[(1) 2 + (1) 2 + (1) 2]} = \sqrt{3}$ Now, Divide both the sides of equation (1) by $\sqrt{3}$, we get $x/(\sqrt{3}) + y/(\sqrt{3}) + z/(\sqrt{3}) = 1/\sqrt{3}$ So, this is of the form lx + mv + nz = dWhere, l, m, n are the direction cosines and d are the distance : The direction cosines are $1/\sqrt{3}$, $1/\sqrt{3}$, $1/\sqrt{3}$ Distance (d) from the origin is $1/\sqrt{3}$ units

6262969699

(c) 2x + 3y - z = 5

Given: The equation of the plane, 2x + 3y - z = 5.... (1) Direction ratio of the normal (2, 3, -1) By using the formula, $\sqrt{[(2) 2 + (3)2 + (-1)2]} = \sqrt{14}$ Now, Divide both the sides of equation (1) by $\sqrt{14}$, we get $2x/(\sqrt{14}) + 3y/(\sqrt{14}) - z/(\sqrt{14}) = 5/\sqrt{14}$ So, this is of the form lx + my + nz = dWhere, l, m, n are the direction cosines and d is the distance \therefore The direction cosines are $2/\sqrt{14}$, $3/\sqrt{14}$, $-1/\sqrt{14}$ Distance (d) from the origin is $5/\sqrt{14}$ units

(d) 5y + 8 = 0

Given: The equation of the plane, 5y + 8 = 0 -5y = 8 or 0x - 5y + 0z = 8....(1)Direction ratio of the normal (0, -5, 0)By using the formula, $\sqrt{[(0) 2 + (-5)2 + (0)2]} = \sqrt{25} = 5$ Now, Divide both the sides of equation (1) by 5, we get 0x/(5) - 5y/(5) - 0z/(5) = 8/5So, this is of the form 1x + my + nz = dWhere, 1, m, n are the direction cosines and dare the distance \therefore The direction cosines are 0, -1, 0Distance (d) from the origin is 8/5 units

Question 2

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector. $3\hat{i} + 5\hat{j} - 6\hat{k}$.

Solution:

Given: The vector $3\hat{l} + 5\hat{j} - 6\hat{k}$. Vector eq. of the plane with position vector \vec{r} is $\vec{r}.\hat{n} = d$(1) So, $\hat{n} = \frac{\vec{n}}{\vec{n}} = \frac{3\hat{l}+5\hat{j}-6k}{\sqrt{9+25+36}}$ $= \frac{3\hat{l}+5\hat{j}-6k}{\sqrt{70}}$ Substituting in equation (1), we get $\vec{r} \cdot \frac{3\hat{l}+5\hat{j}-6k}{\sqrt{70}} = 7\sqrt{70}$ $\vec{r} \cdot 3\hat{l} + 5\hat{j} - 6k = 7\sqrt{70}$

For more Info Visit - www.KITest.in

11. 17

6262969699

: The equation vector equation is \vec{r} , $3\hat{l} + 5\vec{j} - 6k = 7\sqrt{70}$

Question 3

Find the Cartesian equation of the following planes:

(a) \vec{r} ($\hat{l} + \vec{j} - k$) = 2

Solution:

Given: The equation of the plane. Let \vec{r} be the position vector o8f P (x, y, z) is given by

So, $\vec{r} (\hat{1} + \hat{j} - \hat{k}) = 2$ Substituting the value of \vec{r} . we get $(x\hat{i} + y\hat{j} + z\hat{k})$. $(\hat{1} + \hat{j} - \hat{k}) = 2$ \therefore The Cartesian equation is x + y - z = 2

(b) $\vec{r} \cdot (2\hat{l} + \vec{3j} - 4k) = 1$

Solution:

Let \vec{r} be the position vector of P(x, y, z) is given by $\vec{r} = x \hat{i} + y\hat{j} + z\hat{k}$ So, $\vec{r} (2\hat{l} + 3\hat{j} - 4\hat{k}) = 1$ Substituting the value of \vec{r} , we get $(x \hat{i} + y\hat{j} + z\hat{k}).(2\hat{l} + 3\hat{j} - 4\hat{k}) = 1$ \therefore The Cartesian equation is 2x + 3y - 4z = 1

(c) $\vec{r}.[(s-2t)\hat{l} + (3-t)\hat{j} + (2s+t)\hat{k}] = 15$

Solution:

Let \vec{r} be the position vector of P (x, y, z) is given by $\vec{r} = x\hat{l} + y\hat{j} + z\hat{k}$ So, $\vec{r} [(s - 2t)\hat{i} + (3 - t)\vec{j} + (2s + t)k] = 15$ Substituting the value of \vec{r} , we get $(x\hat{l} + y\hat{j} + z\hat{k}).[(s - 2t)\hat{i} + (3 - t)\hat{j} + (2s + t)\hat{k}] = 15$ \therefore The Cartesian equation is (s - 2t)x + (3 - t)y + (2s + t)z = 15

Question 4

For more Info Visit - <u>www.KITest.in</u>

 $\vec{r} = x\hat{I} + y\hat{j} + z\hat{k}$

```
6262969699
```

In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

(a) 2x + 3y + 4z - 12 = 0
(b) 3y + 4z - 6 = 0
(c) x + y + z = 1
(d) 5y + 8 = 0

Solution:

(a) 2x + 3y + 4z - 12 = 0

Let the coordinate of the foot of \perp P from the origin to the given plane be P(x, y, z). 2x + 3y + 4z = 12 (1) Direction ratio are (2, 3, 4) $\sqrt{[(2)^2 + (3)^2 + (4)^2]} = \sqrt{(4 + 9 + 16)}$ $= \sqrt{29}$ Now, Divide both the sides of equation (1) by $\sqrt{29}$, we get

 $2x/(\sqrt{29}) + 3y/(\sqrt{29}) + 4z/(\sqrt{29}) = 12/\sqrt{29}$ So, this is of the form lx + my + nz = dWhere, l, m, n are the direction cosines and dare the distance \therefore The direction cosines are $2/\sqrt{29}$, $3/\sqrt{29}$, $4/\sqrt{29}$ Coordinate of the foot (ld, md, nd) = = [$(2/\sqrt{29})(12/\sqrt{29}), (3/\sqrt{29})(12/\sqrt{29}), (4/\sqrt{29})(12/\sqrt{29})$] = 24/29, 36/29, 48/29

(b) 3y + 4z - 6 = 0

Let the coordinate of the foot of \perp P from the origin to the given plane be P (x, y, z). 0x + 3y + 4z = 6 (1)

Direction ratio are (0, 3, 4) $\sqrt{[(0)^2 + (3)^2 + (4)^2]} = \sqrt{(0 + 9 + 16)}$ $= \sqrt{25}$

= 5 Now,

Divide both the sides of equation (1) by 5, we get 0x/(5) + 3y/(5) + 4z/(5) = 6/5So, this is of the form lx + my + nz = dWhere, l, m, n are the direction cosines and d is the distance \therefore The direction cosines are 0/5, 3/5, 4/5Coordinate of the foot (ld, md, nd) = = [(0/5) (6/5), (3/5) (6/5), (4/5) (6/5)] = 0, 18/25, 24/25

(c) x + y + z = 1

Let the coordinate of the foot of \perp P from the origin to the given plane be P(x, y, z). x + y + z = 1 (1) Direction ratio are (1, 1, 1) $\sqrt{[(1)^2 + (1)^2 + (1)^2]}$ = $\sqrt{(1 + 1 + 1)}$ = $\sqrt{3}$

= v 3 Now,

6262969699

Divide both the sides of equation (1) by $\sqrt{3}$, we get $1x/(\sqrt{3}) + 1y/(\sqrt{3}) + 1z/(\sqrt{3})$ = $1/\sqrt{3}$ So this is of the form lx + my + nz = d Where, l, m, n are the direction cosines and d are the distance : The direction cosines are $1/\sqrt{3}$, $1/\sqrt{3}$, $1/\sqrt{3}$ Coordinate of the foot (ld, md, nd) = $= [(1/\sqrt{3}), (1/\sqrt{3}), (1/\sqrt{3}), (1/\sqrt{3}), (1/\sqrt{3})]$ = 1/3, 1/3, 1/3 (d) 5v + 8 = 0Let the coordinate of the foot of \perp P from the origin to the given plane be P(x, y, z). 0x - 5y + 0z = 8 (1)Direction ratio are (0, -5, 0) $\sqrt{[(0)2 + (-5)2 + (0)2]} = \sqrt{(0 + 25 + 0)}$ $=\sqrt{25}$ = 5 Now. Divide both the sides of equation (1) by 5, we get 0x/(5) - 5y/(5) + 0z/(5) = 8/5So, this is of the form lx + my + nz = dWhere, l, m, n are the direction cosines and d is the distance ∴ The direction cosines are 0, -1, 0 Coordinate of the foot (ld, md, nd) = = [(0/5) (8/5), (-5/5) (8/5), (0/5) (8/5)]= 0, -8/5, 0**Ouestion 5** Find the vector and Cartesian equations of the planes (a) that passes through the point (1, 0, -2) and the normal to the plane is $\hat{i} + \hat{j} - \hat{k}$, (b) that passes through the point (1,4, 6) and the normal vector to the plane is $\hat{i} - 2\hat{j} + \hat{k}$, Solution: (a) that passes through the point (1, 0, -2) and the normal to the plane is $\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{k}$ Let the position vector of the point (1, 0, -2) be $\vec{a} = (\hat{l} - \hat{0} + 2k)$ We know that Normal N \perp to the plane is given as: $\vec{N} = \hat{1} + \hat{1} - \hat{k}$ Vector equation of the plane is given as: $(\vec{r} - \vec{a}). \vec{N} = 0$ Now. x - 1 - 2y + 8 + z - 6 = 0x - 2y + z + 1 = 0x - 2y + z = -1: The required Cartesian equation of the plane is x - 2y + z = -1 $(\vec{r} - (\hat{i} - 2k)) \cdot \hat{i} + \hat{j} - k = 0$(1) Since,

6262969699

Question 6

Find the equations of the planes that passes through three points.0 (a) (1, 1, -1), (6, 4, -5), (-4, -2, 3) (b) (1, 1, 0), (1, 2, 1), (-2, 2, -1)

Solution:

Given: The points are (1, 1, -1), (6, 4, -5), (-4, -2, 3) Let, $\begin{vmatrix} 1 & 1 & -1 \\ 6 & 4 & -5 \\ -4 & -2 & 3 \end{vmatrix}$ = 1(12 - 10) - 1 (18 - 20) -1 (-12 + 16) =2 + 2 - 4 = 0 Since, the value of determinant is 0. ∴ The points are collinear as there will be infinite planes passing through the given 3 points.

6262969699

(b) (1, 1, 0), (1, 2, 1), (-2, 2, -1) The given points are (1,1,0), (1, 2, 1), (-2, 2, -1). Let. 1 1 0 1 2 1 = -2 2 -1 = 1(-2 - 2) - 1(-1 + 2)= -4 - 1 $= -5 \neq 0$ Since, there passes a unique plane from the given 3 points. Equation of the plane passing through the points, (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3) , i.e., $y - y_1 - z - z_1$ $x - x_1$ $= x_2 - x_1 \quad y_2 - y_1 \quad z_2 - z_1$ $|x_3 - x_1 \quad y_3 - y_1 \quad z_3 - z_1|$ Let us substitute the values and simplify x-1y-1Z $= x_2 - 1 \quad y_2 - 1 \quad z_2$ $|x_3 - 1 \quad y_3 - 1 \quad z_3|$ x-1 y-1Z $1 - 1 \quad 2 - 1$ 1 = $-2 - 1 \quad 2 - 1 \quad -1$ $|x - 1 \quad y - 1|$ Z = 0 1 1 -3 1 -1 = (x - 1)(-2) - (y - 1)(3) + 3z = 0= -2x + 2 - 3y + 3 + 3z = 0= 2x + 3y - 3z = 5: The required equation of the plane is 2x + y - z = 5. **Ouestion 7**

Find the intercepts cut off by the plane 2x + y - z = 5.

Solution:

Given: The plane 2x + y - z = 5Let us express the equation of the plane in intercept form x/a + y/b + z/c = 1Where a, b, c is the intercepts cut-off by the plane at x, y and z axes respectively. 2x + y - z = 5(1) Now divide both the sides of equation (1) by 5, we get 2x/5 + y/5 - z/5 = 5/5 2x/5 + y/5 - z/5 = 1 x/(5/2) + y/5 + z/(-5) = 1Here, a = 5/2, b = 5 and c = -5 \therefore The intercepts cut-off by the plane are 5/2, 5 and -5.

Question 8

6262969699

Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane. Solution:

We know that the equation of the plane ZOX is y = 0So, the equation of plane parallel to ZOX is of the form, y = aSince the y-intercept of the plane is 3, a = 3 \therefore The required equation of the plane is y = 3

Question 9

Find the equation of the plane through the intersection of the planes 3x - y + 2z - 4 = 0 and x + y + z - 2 = 0 and the point (2, 2, 1).

Solution:

Given: Equation of the plane passes through the intersection of the plane is given by $(3x - y + 2z - 4) + \lambda (x + y + z - 2) = 0$ and the plane passes through the points (2, 2, 1). So, $(3 \times 2 - 2 + 2 \times 1 - 4) + \lambda (2 + 2 + 1 - 2) = 0$ $2 + 3\lambda = 0$ $3\lambda = -2$ $\lambda = -2/3$ (1) Upon simplification, the required equation of the plane is given as (3x - y + 2z - 4) - 2/3 (x + y + z - 2) = 0 (9x - 3y + 6z - 12 - 2x - 2y - 2z + 4)/3 = 0 7x - 5y + 4z - 8 = 0 \therefore The required equation of the plane is 7x - 5y + 4z - 8 = 0

Question 10

Find the vector equation of the plane passing through the intersection of the planes $\vec{r} \cdot (2\hat{l} + 2\tilde{j} - 3k) = 7 \vec{r} \cdot (2\hat{l} + 5\tilde{j} + 3\hat{k}) = 9$ And through the point (2, 1, 3).

Solution:

Let the vector equation of the plane passing through the intersection of the plane are $\vec{r} \cdot (2\hat{l} + 2\hat{j} - 3\hat{k}) = 7$ and $\vec{r} \cdot (2\hat{l} + 5\hat{j} + 3\hat{k}) = 9$ Here. $\vec{r}(2\hat{l} + 2\hat{j} - 3\hat{k}) - 7 = 0$ (1) $\vec{r}(2\hat{l} + 5\hat{j} + 3\hat{k}) - 9 = 0$ (2) The equation of any plane through the intersection off the planes given in equations (1) and (2) is given by, $[\vec{r}(2\hat{l} + 2\hat{j} - 3\hat{k}) - 7] + \lambda [\vec{r}(2\hat{l} + 5\hat{j} + 3\hat{k}) - 9] = 0$ $\vec{r}[(2\hat{l} + 2\hat{j} - 3\hat{k}) + (2\lambda\hat{l} + 5\lambda\hat{j} + 3\lambda\hat{k})] - 7 - 9\lambda = 0$ $\vec{r}[(2 + 2\lambda)\hat{l} + (2 + 5\lambda)\hat{j} + (-3 + 3\lambda)\hat{k}] - 7 - 9\lambda = 0$ (3) Since the plane passes through points (2, 1, 3) $(2\hat{l} + 2\hat{j} - 3\hat{k}) \cdot [(2 + 2\lambda)\hat{l} + (2 + 5\lambda)\hat{j} + (-3 + 3\lambda)\hat{k}] - 7 - 9\lambda = 0$

4 + 4λ + 2 + 5λ - 9 + 9λ - 7 - 9λ = 0 9λ = 10 λ = 10/9 Sow, substitutingλ = 10/9 in equation (1) we get. $\vec{r} \cdot \left[\left(2 + \frac{20}{9}\right)\hat{i} + \left(2 + \frac{50}{9}\right)\hat{j} + \left(-3 + \frac{30}{9}\right)\hat{k}\right] - 7 - 9\frac{10}{9} = 0$ $\vec{r} \cdot \left[\left(2 + \frac{20}{9}\right)\hat{i} + \left(2 + \frac{50}{9}\right)\hat{j} + \left(-3 + \frac{30}{9}\right)\hat{k}\right] - 17 = 0$ $\vec{r} \cdot \left[\left(2 + \frac{20}{9}\right)\hat{i} + \left(2 + \frac{50}{9}\right)\hat{j} + \left(-3 + \frac{30}{9}\right)\hat{k}\right] = 17$ $\vec{r} \cdot \left[\frac{38}{9}\hat{i} + \frac{68}{9}\hat{j} + \frac{3}{9}\hat{k}\right] = 17$ $\vec{r} \cdot \left[\frac{38}{9}\hat{i} + \frac{68}{9}\hat{j} + 3\hat{k}\right] = 153$ ∴ The required equation of the plane is $\vec{r}[38\hat{i} + 68\hat{j} + 3\hat{k}] = 153$

Question 11

Find the equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x - y + z = 0.

Solution:

Let the equation of the plane that passes through the two – given planes X + y + z = 1 and 2x + 3y + 4z = 5 is $(x + y + z - 1) + \lambda (2x + 3y + 4z - 5) = 0$ $(2\lambda +) x + (3\lambda + 1) y + (4\lambda + 1) z - 1 - 5\lambda = 0$(1) So, the direction ratio of the plane is $(2\lambda + 1, 3\lambda + 1, 4\lambda + 1)$ And direction ratio of another plane is (1, -1, 1)Since, both the planes are \perp So, by substituting in $a_1a_2 + b_1b_2 + c_1c_2 = 0$ $(2\lambda + 1 - 3\lambda - 1 + 4\lambda + 1 = 0)$ $2\lambda + 1 - 3\lambda - 1 + 4\lambda + 1 = 0$ $3\lambda + 1 = 0$ $\left(2\frac{(-1)}{3}+1\right)x + \left(3\frac{(-1)}{3}+1\right)y + \left(4\frac{(-1)}{3}+1\right)z - 1 - 5\frac{(-1)}{3} = 0$ $\frac{1}{2}x - \frac{1}{2}z + \frac{2}{3} = 0$ Substitute the value of λ in equation (1) we get, $\frac{1}{3}x - \frac{1}{3}z + \frac{2}{3} = 0$ x - z + 2 = 0: The required equation of the plane is x - z + 2 = 0

Question 12

Find the angle between the planes whose vector equations are $\vec{r} \cdot (2\hat{i} + 2\hat{j} - 3\hat{k}) = 5$, $\vec{r} \cdot (3\hat{i} - 3\hat{j} - 5\hat{k}) = 3$.

Solution:

Given: The equation of the given planes is $\vec{r} \cdot (2\hat{i} + 2\vec{j} - 3\hat{k}) = 5$ and $\vec{r} \cdot (3\hat{l} - 3\vec{j} + 5\hat{k}) = 5$

6262969699

If n_1 and n_2 are normal to the planes, then $\vec{r_1}$, $\vec{n_1} = d_2$ and $\vec{r_2}$. $\vec{n_2} = d_2$ Angle between two planes is given as $\cos\theta = \left|\frac{\vec{n_1}}{|\vec{n_1}|} \frac{\vec{n_2}}{|\vec{n_2}|}\right|$ $= \left|\frac{6-6-15}{\sqrt{4+4+9}\sqrt{9+9+25}}\right|$ $- \left|\frac{-15}{|\vec{n_1}|}\right|$

$$\theta = \cos^{-1}\left(\frac{15}{\sqrt{17}\sqrt{43}}\right)$$
$$= \cos^{-1}\left(\frac{15}{\sqrt{731}}\right)$$
$$\therefore \text{ The angle is } \cos^{-1}\left(\frac{15}{\sqrt{731}}\right)$$

Question 13

In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

(a) 7x + 5y + 6z + 30 = 0 and 3x - y - 10z + 4 = 0(b) 2x + y + 3z - 2 = 0 and x - 2y + 5 = 0(c) 2x - 2y + 4z + 5 = 0 and 3x - 3y + 6z - 1 = 0(d) 2x - 2y + 4z + 5 = 0 and 3x - 3y + 6z - 1 = 0(e) 4x + 8y + z - 8 = 0 and y + z - 4 = 0

Solution:

(a) 7x + 5y + 6z + 30 = 0 and 3x - y - 10z + 4 = 0

Given:

The equation of the given planes are 7x + 5y + 6z + 30 = 0 and 3x - y - 10z + 4 = 0Two planes are \perp if the direction ratio of the normal to the plane is a1a2 + b1b2 + c1c2 = 0 21 - 5 - 60 $-44 \neq 0$ Both the planes are not \perp to each other. Now, two planes are || to each other if the direction ratio of the normal to the plane is $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ $\frac{7}{3} \neq \frac{5}{-1} \neq \frac{6}{-10}$ [both the planes are not ||to each other]

Now, the angle between them is given by

$$Cos\theta = \left| \frac{a_{1}a_{2} + b_{1}b_{2} + c_{1}c_{2}}{\sqrt{a_{1}^{2}b_{1}^{2}c_{1}^{2}}\sqrt{a_{2}^{2}b_{2}^{2}c_{2}^{2}}} \right|$$

$$Cos\theta = \frac{-44}{\sqrt{49 + 25 + 36}\sqrt{9 + 1 + 100}}$$

$$= \frac{-44}{\sqrt{110}\sqrt{110}}$$

$$= \frac{-44}{110}$$

$$\theta = \cos^{-1}\frac{2}{5}$$

For more Info Visit - <u>www.KITest.in</u>

11. 25

6262969699

 \therefore The angle is cos⁻¹ (2/5)

(b) 2x + y + 3z - 2 = 0 and x - 2y + 5 = 0

Given:

The equation of the given planes are 2x + y + 3z - 2 = 0 and x - 2y + 5 = 0Two planes are \perp if the direction ratio of the normal to the plane is a1a2 + b1b2 + c1c2 = 0 $2 \times 1 + 1 \times (-2) + 3 \times 0 = 0$ \therefore The given planes are \perp to each other.

(c) 2x - 2y + 4z + 5 = 0 and 3x - 3y + 6z - 1 = 0

Given: The equation of the given planes are 2x - 2y + 4z + 5 = 0 and x - 2y + 5 = 0We know that, two planes are \perp if the direction ratio of the normal to the plane is $a_1 a_2 + b_1 b_2 + c_1 c_2$ = 0 $6 + 6 + 2436 \neq 0$

 \therefore Both the planes are not \perp to each other. Now let us check, both planes are || to each other if the direction ratio of the normal to the plane is

 $=\frac{b_1}{c_1}=\frac{c_1}{c_1}$ a_1 $a_2 = b_2 = c_2$ $\frac{2}{2} = \frac{-2}{2} = \frac{4}{6}$ $=\frac{-3}{2}=\frac{-3}{3}=\frac{2}{3}$ 32 3

∴ The given planes are || to each other.

(d) 2x - 2y + 4z + 5 = 0 and 3x - 3y + 6z - 1 = 0

Given:

The equation of the given planes are 2x - y + 3z - 1 = 0 and 2x - y + 3z + 3 = 0We know that, two planes are \perp if the direction ratio of the normal to the plane is $a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$

 $2 \times 2 + (-1) \times (-1) + 3 \times 3$

 $14 \neq 0$

∴ Both the planes are not ⊥ to each other. Now, let us check two planes are || to each other if the direction ratio of the normal to the plane is

 $\frac{a_1}{a_1} = \frac{b_1}{a_1} = \frac{c_1}{a_1}$ $\frac{-}{a_2} = \frac{-}{b_2} = \frac{-1}{c_2}$ $\frac{2}{2} = \frac{-1}{-1} = \frac{3}{3}$ $\frac{1}{1} = \frac{1}{1} = \frac{1}{3}$ 3 1 $=\frac{1}{1}=\frac{1}{1}$

 \therefore The given planes are || to each other.

(e) 4x + 8y + z - 8 = 0 and y + z - 4 = 0

```
Given:
The equation of the given planes are
4x + 8y + z - 8 = 0 and y + z - 4 = 0
We know that, two planes are \perp if the direction ratio of the normal to the plane is
a_1a_2 + b_1b_2 + c_1c_2 = 0
0 + 8 + 1
```

6262969699

For more Info Visit - <u>www.KITest.in</u>

11. 27

6262969699

 $d = \int \frac{Ax_1 + By_1 + Cz_1 - D}{2}$ $\sqrt{A^2 + B^2 + C^2}$ Given point is (3, -2, 1) and the plane is 2x - y + 2z + 3 = 06+2+2+3d = $\sqrt{4+1+4}$ $= |13/\sqrt{9}|$ = 13/3 \therefore The distance is 13/3. (c) Point Plane x + 2y - 2z = 9(2, 3, -5) We know that, distance of point P (x_1 , y_1 , Z_1) from the plane Ax + By + Cz – D = 0 isgiven as: $Ax_1+By_1+Cz_1-D$ d = $\sqrt{A^2 + B^2 + C^2}$ Given point is (2, 3, -5) and the plane is x + 2y - 2z = 92+6+10-9d = $\sqrt{1+4+4}$ $= |9/\sqrt{9}|$ = 9/3= 3 \therefore The distance is 3. (d) Point Plane 2x - 3y + 6z - 2 = 0(-6, 0, 0)We know that, distance of point $P(x_1, y_1, z_1)$ from the plane Ax + By + Cz - D = 0 is given as: $Ax_1 + By_1 + Cz_1 - D$ d = $\sqrt{A^2 + B^2 + C^2}$ Given point is (-6, 0, 0) and the plane is 2x - 3y + 6z - 2 = 0-12 - 0 + 0 - 2d = $\sqrt{4+9+36}$ $= |14/\sqrt{49}|$ = 14/7= 2 \therefore The distance is 2.

Miscellaneous Exercise

Question 1

Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, -1), (4, 3, -1).

Solution:

Let us consider OA be the line joining the origin (0, 0, 0) and the point A (2, 1, 1). And let BC be the line joining the points B (3, 5, -1) and C (4, 3, -1)So, the direction ratios of OA = $(a1, b1, c1) \equiv [(2 - 0), (1 - 0), (1 - 0)] \equiv (2, 1, 1)$ And the direction ratios of BC = $(a2, b2, c2) \equiv [(4 - 3), (3 - 5), (-1 + 1)] \equiv (1, -2, 0)$ Given: OA is \perp to BC Now we have to prove that:

6262969699

 $a_{1}a_{2} + b_{1}b_{2} + c_{1}c_{2} = 0$ Let us consider LHS: $a_{1}a_{2} + b_{1}b_{2} + c_{1}c_{2}$ $a_{1}a_{2} + b_{1}b_{1} + c_{1}c_{2} = 2 \times 1 + 1 \times (-2) + 1 \times 0$ = 2 - 2= 0We know that R.H.S is 0 So LHS = RHS \therefore OA is \perp to BC Hence proved.

Question 2

If l_1 , m_1 , n_1 and l_2 , m_2 , n_2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are $(m_1n_2 - m_2n_1)$, $(n_1l_1 - n_2l_1)$, $(l_1m_2 - l_2m_1)$

Solution:

Let us consider l, m, n be the direction cosines of the line perpendicular to each of the given lines. Then, 11 + mm1 + nn1 = 0.....(1) And ll2 + mm2 + nn2 = 0.....(2) Upon solving (1) and (2) by using cross - multiplication, we get m $\overline{\mathbf{m}_1\mathbf{n}_2 - \mathbf{m}_2\mathbf{n}_1} = \overline{\mathbf{n}_1\mathbf{l}_2 - \mathbf{n}_2\mathbf{l}_1} = \overline{\mathbf{l}_1\mathbf{m}_2 - \mathbf{l}_2\mathbf{m}_1}$ Thus, the direction cosines of the given line are proportional to $(m_1n_1 - m_2n_1), (n_1l_2 - n_2l_1), (l_1m_2 - l_2m_1)$ So, its direction cosines are $\frac{m_1n_2 - m_2n_1}{2} \frac{n_1l_2 - n_2l_1}{2} \frac{l_1m_2 - l_2m_1}{2}$ Were $\lambda = \sqrt{(m_1n_2 - m_2n_1)^2 + (n_1l_2 - n_2l_1)^2 + (l_1m_2 - l_2m_1)^2}$ We know that $(l_1^2 + m_1^2 + n_1^2) (l_2^2 + m_2^2 + n_2^2) - (l_1 l_2 + m_1 m_2 + n_1 n_2)^2$ $=(m_1n_2 - m_2n_1)^2 + (n_1l_2 - n_2l_1)^2 + (l_1m_2 - l_2m_1)^2 \dots (3)$ It is given that the given lines are perpendicular to each other. So, $l_1l_2 + m_1m_2 + n_1n_2 = 0$ Also, we have $l_1^2 + m_1^2 + n_1^2 = 1$ And, $l_2^2 + m_2^2 + n_2^2 = 1$ Substituting these values in equation (3), we get $(m_1n_2 - m_2n_1)^2 + (n_1l_2 - n_2l_1)^2 + (l_1m_2 - l_2m_1)^2 = 1$ $\lambda = 1$ Hence, the direction cosines of the given line are $(m_1n_2 - m_2n_1)$, $(n_1l_2 - n_2l_1)$, $(l_1m_2 - l_2m_1)$

Question 3

Find the angle between the lines whose direction ratios are a, b, c and b - c, c - a, a - b.

Solution:

6262969699

Angle between the lines with direction ratios a1, b1, c1 and a2, b2, c2 is given by

 $Cos \theta = \left| \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 b_1^2 c_1^2} \sqrt{a_2^2 b_2^2 c_2^2}} \right|$ Given: $a_1 = a, b_1 = b, c_1 = c$ $a_2 = b - c, b_2 = c - a, c_2 = a - b$ Let us substituting the values in the above equation we get. $Cos \theta = \left| \frac{a(b-c) + b(c-a) + c(a-b)}{\sqrt{a^2 + b^2 + c^2} \sqrt{(b-c)^2 + (c-a)^2 + (a-b)^2}} \right|$ = 0 $Cos \theta = 0$ So, $\theta = 90^\circ$ [Since, cos 90 = 0] Hence, Angle between the given pair of lines is 90°.

Question 4

Find the equation of a line parallel to x - axis and passing through the origin.

Solution:

We know that, equation of a line passing through (x1, y1, z1) and parallel to a line with direction ratios a, b, c is $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$ Given: the line passes through origin i.e. (0, 0, 0) $x_1 = 0, y_1 = 0, z_1 = 0$ Since line is parallel to x - axis, a = 1, b = 0, c = 0 \therefore Equation of Line is given by $\frac{x-0}{1} = \frac{y-0}{0} = \frac{z-0}{0}$ $\frac{x}{1} = \frac{y}{0} = 0$

<u>Question 5</u>

If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (-4, 3, -6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.

Solution:

We know that the angle between the lines with direction ratios a1, b1, c1 and a2, b2, c2 is given by

 $Cos\theta = \left| \frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2b_1^2c_1^2}\sqrt{a_2^2b_2^2c_2^2}} \right|$ So, now, a line passing through A (x₁, y₁, z₁) and B (x₂, y₂, z₂) has direction ratios (x₁ - x₂), (y₁ - y₂), (z₁ - z₂) The direction ratios of line joining the points A (1, 2, 3) and B (4, 5, 7) = (4 - 1), (5 - 2), (7 - 3) = (3, 3, 4) For more Info Visit - www.KITest.in

6262969699

 $\therefore a_1 = 3, b_1 = 3, c_1 = 4$ The direction ratios of line joining the points C (-4, 3, -6) and B (2, 9, 2) = (2 - (-4)), (9 - 3), (2 - (-6))= (6, 6, 8) \therefore a₂ = 6, b₂ = 6, c₂ = 8 Now let us substitute the values in the above equation we get, $\frac{a_1a_2+b_1b_2+c_1c_2}{\sqrt{a_1^2b_1^2c_1^2}\sqrt{a_2^2b_2^2c_2^2}}$ $\cos\theta =$ $3 \times 6 \times 3 \times 6 + 4 \times 8$ $Cos\theta = \begin{vmatrix} \frac{3 \times 6 \times 5 \times 6}{\sqrt{3^2 + 3^2 + 4^2}\sqrt{6^2 + 6^2 + 8^2}} \\ 18 + 18 + 32 \end{vmatrix}$ = $\sqrt{9+9+16}\sqrt{36+36+64}$ 68 $\sqrt{34}\sqrt{136}$ $\sqrt{34}\sqrt{4\times 34}$ = 34×2 $\cos \theta = 1$ So, $\theta = 0^{\circ}$ [since, cos 0 is 1] Hence, Angle between the lines AB and CD is 0°. **Question 6** If the lines $\frac{x-1}{3k} = \frac{y-2}{1} = \frac{z-3}{-5}$ and $\frac{x-1}{3k} = \frac{y-2}{1} = \frac{z-3}{-5}$ are perpendicular, find the value of k. **Solution:** We know that the two lines $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}$ and $\frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2}$ which are perpendicular to each other if $a_1a_2 + b_1b_2 + c_1c_2 = 0$ $\frac{x-1}{-3} = \frac{y-2}{2^{k}} = \frac{z-3}{2^{k}}$ It is given that: Let us compare with $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}$ We get – $x_1 = 1, y_1 = 2, z_1 = 3$ And $a_1 = -3$, $b_1 = 2k$, $c_1 = 2$ Similarly, We have $\frac{x-1}{3k} = \frac{y-2}{1} = \frac{z-3}{-5}$ Let us compare with $\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$ We get $x_2 = 1, y_2 = 2, z_2 = 3$ For more Info Visit - www.KITest.in

11. 31

6262969699

And $a_2 = 3k$, $b_2 = 1$, $c_2 = -5$ Since the two lines are perpendicular, $a_1a_2 + b_1b_2 + c_1c_2 = 0$ $(-3) \times 3k + 2k \times 1 + 2 \times (-5) = 0$ -9k + 2k - 10 = 0-7k = 10K = -10/77 \therefore The value of k is - 10/7.

Question 7

Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \vec{r} . $(\hat{i}+2\hat{j}-5\hat{k})+9=0$

Solution:

The vector equation of a line passing through a point with position vector \vec{a} and parallel to vector \vec{b} is given as $\vec{r} = \vec{a} + \lambda \vec{b}$ It is given that the line passes through (1, 2, 3)So, $\vec{a} = l\hat{i} + 2\hat{j} + 3\hat{k}$ Let us find the normal of plane $\vec{r} = (\hat{i} + 2\hat{j} - 5\hat{k}) + 9 = 0$ $\vec{r} = (\hat{i} + 2\hat{j} - 5\hat{k}) = -9$ $-\vec{r} = (\hat{i} + 2\hat{j} - 5\hat{k}) = 9$ \vec{r} . (- $l\hat{i}$ - $2\hat{j}$ + $5\hat{k}$) + 9 = 0 Now compare it with $\vec{r} \cdot \vec{n} = d$ $\vec{n} = -\hat{i} - 2\hat{j} + 5\hat{k}$ Since line is perpendicular to plane, the line will be parallel of the plane $\therefore \vec{b} = \vec{n} = -\hat{i} - 2\hat{j} + 5\hat{k}$ Hence. $\vec{r} = (\hat{i} + 2\hat{i} + 3\hat{k}) + \lambda(-\hat{i} - 2\hat{i} + 5\hat{k})$ $\vec{r} = (l\hat{i} + 2\hat{j} + 3\hat{k}) - \lambda (\hat{i} + 2\hat{j} - 5\hat{k})$: The required vector equation of line is $\vec{r} = (l\hat{i} + 2\hat{j} + 3\hat{k}) - \lambda (\hat{i} + 2\hat{i} - 5\hat{k})$

Question 8

Find the equation of the plane passing through (a, b, c) and parallel to the plane \vec{r} . $(\hat{i} + \hat{j} + \hat{k}) = 2$

Solution:

The equation of a plane passing through (x_1, y_1, z_1) and perpendicular to a line with direction ratios A, B, C is given as A (x - x₁) + B (y - y₁) + C (z - z₁) = 0 It is given that, the plane passes through (a, b, c) So, x₁ = a, y₁ = b, z₁ = c

6262969699

Since both planes are parallel to each other, their normal will be parallel \therefore Direction ratio of normal of \overline{r} . $(\hat{i} + \hat{j} + \hat{k})$ Direction ratios of normal = (1, 1, 1) So, A = 1, B = 1, C = 1 The Equation of plane in Cartesian form is given as A (x - x₁) + B (y - y₁) + C (z - z₁) = 01(x - a) + 1(y - b) + 1(z - c) = 0 x + y + z - (a + b + c) = 0 x + y + z = a + b + c \therefore The required equation of plane is x + y + z = a + b + c

Question 9

Find the shortest distance between lines $\vec{r} = (6\hat{i} + 2\hat{j} + 2\hat{k}) + \lambda (l\hat{i} - 2\hat{j} + \hat{2})$ and $\vec{r} = (-l\hat{i} - \hat{k}) + \mu (3\hat{i} - 2\hat{j} - 2\hat{k})$

Solution:

We know that the shortest distance between lines with vector equations $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \lambda \vec{b_2}$ is given as $\frac{(b_1 x b_2).(a_2 - a_1)}{|b_1 x b_2|}$ It is given that: $\vec{r} = (6\hat{i} + 2\hat{j} + 2\hat{k}) + \lambda (l\hat{i} - 2\hat{j} + \hat{2})$ Now let us compare it with $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$, we get $\vec{a_1} = (-4\hat{i} - \hat{k})$ and $\vec{b_1} = (1\hat{i} - 2\hat{j} - \hat{2})$ Similarly, $\vec{r} = (-4\hat{i} - \hat{k}) + (3\hat{i} - 2\hat{j} - \hat{2})$ Let us compare it with $\vec{r} = \overline{a_2} + \lambda \overline{b_2}$, we get $\vec{a_2}$ = (-4î - \hat{k}) and $\vec{b_2}$ (3î - 2ĵ-2 \hat{k}) Now, $(\vec{a_2} - \vec{a_1}) = (-4\hat{i} - \hat{k}) - (6\hat{i} + 2\hat{j} + 2\hat{k})$ $= ((-4 - 6)\hat{i} + (0 - 2)\hat{j} + (-1 - 2)\hat{k})$ $= (-10\hat{i} - 2\hat{j} - 3\hat{k})$ And, $(\overrightarrow{b_1} \times \overrightarrow{b_2}) = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 2 & -2 & -2 \end{vmatrix}$ $= \hat{1} [(-2 \times -2) - (-2 \times 2)] - \hat{1} [(1 \times -2) - (3 \times 2) - (3 \times 2)] + \hat{k} [(1 \times -2) - (3 \times -2)]$ $=\hat{1}[4+4]-\hat{1}[-2-6]+\hat{k}[-2+6]$ $= 8\hat{i} + 8\hat{j} + 4\hat{k}$ So, magnitude of $\overrightarrow{b_1} \times \overrightarrow{b_2} = |\overrightarrow{b_1} \times \overrightarrow{b_2}| = \sqrt{8^2 + 8^2 + 4^2} = \sqrt{64 + 64 + 16}$ $=\sqrt{144}$ = 12Also, $(\overrightarrow{b_1} \times \overrightarrow{b_2})$. $(\overrightarrow{a_2} - \overrightarrow{a_1}) = (8\hat{i} + 8\hat{j} + 4\hat{k})$. $(-10\hat{i} - 2\hat{j} - 3\hat{k})$ = -80 + (-16) + (-12)= -108For more Info Visit - www.KITest.in

6262969699

Hence the shortest distance is given as = $\left|\frac{(b_1 \times b_2).(a_2-a_1)}{|b_1 \times b_2|}\right| = \left|\frac{-108}{12}\right| = |-9|$

$$|D_1 \times D_2|$$
 | | 12 |
= 9

 \therefore The shortest distance between the given two lines is 9.

Question 10

Find thee coordinate of the point where the line through (5, 1,6) and (3, 4, 1) Crosses the YZ – plane.

Solution:

We know that the vector equation of a passing through two points with position vectors \vec{a} and \vec{b} is given as

```
\vec{r} = \vec{a} + \lambda (\vec{b} - \vec{a})
So, the position vector of point A (5, 1, 6) is given as
\vec{a} = 5\hat{i} + \hat{i} + 6\hat{k}
                                                                   .....(1)
And the position vector of points B (3, 4, 1) is given as
\vec{b} = 3\hat{i} + 4\hat{j} + \hat{k}.....(2)
So, subtract equation (2) and (1) we get
(\vec{b} - \vec{a}) = (3\hat{i} + 4\hat{j} + \hat{k}) - (5\hat{i} + \hat{j} + 6\hat{k})
           = (3-5)\hat{i} + (4-1)\hat{j} + (1-6)\hat{k}
           = (-2\hat{i} + 3\hat{j} - 5\hat{k})
\vec{r} = (5\hat{i} + \hat{j} + 6\hat{k}) + \lambda (-2\hat{i} + 3\hat{j} - 5\hat{k})
                                                                        ......(3)
Let the coordinates of the point where the line crosses the YZ plane be (0, y, z)
So,
\vec{r} = (0\hat{i} + y\hat{j} + z\hat{k})....(4)
Since the point lies in line, it satisfies its equation,
Now substituting equation (4) in equation (3) we get,
(0\hat{i} + y\hat{j} + z\hat{k}) = (5\hat{i} + \hat{j} + 6\hat{k}) + \lambda (-2\hat{i} + 3\hat{j} - 5\hat{k})
          = (5 - 2\lambda)\hat{i} + (1 + 3\lambda)\hat{j} + (6 - 5\lambda)\hat{k}
We know that, two vectors are equal if their corresponding components are equal So,
0 = 5 - 2\lambda
5 = 2\lambda
\lambda = 5/2
y = 1 + 3\lambda ... (5)
And,
z = 6 - 5\lambda \dots (6)
Substitute the value of \lambda in equation (5) and (6), we get –
y = 1 + 3\lambda
= 1 + 3 \times (5/2)
= 1 + (15/2)
= 17/2
And
Z = 6 - 5\lambda
= 6 - 5 \times (5/2)
= 6 - (25/2)
                                        For more Info Visit - www.KITest.in
```

= - 13/2

 \therefore The coordinates of the required point are (0, 17/2, -13/2).

Question 11

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the ZX - plane.

Solution:

We know that the vector equation of a line passing through two points with position vectors \vec{a} and \vec{b} is given as

```
\vec{r} = \vec{a} + \lambda (\vec{b} - \vec{a})
So, the position vector of point A (5, 1, 6) is given as
\vec{a} = 5\hat{i} + \hat{i} + 6\hat{k}
                                                                      .....(1)
And the position vector of point A (5,1,6) is given as
\vec{a} = 3\hat{i} + 4\hat{j} + \hat{k}
                                                                       So, subtract equation (2) and (1) we get
(\vec{b} - \vec{a}) = (3\hat{i} + 4\hat{j} + \hat{k}) - (5\hat{i} + \hat{j} + 6\hat{k})
         = (3-5)\hat{i} + (4-1)\hat{j} + (1-6)\hat{k}
          = (-2\hat{i} + 3\hat{j} - 5k)
\vec{r} = (5\hat{i} + \hat{j} + 6\hat{k}) + \lambda (-2\hat{i} + 3\hat{j} - 5\hat{k}) \dots (3)
Let the coordinates of the point where the line crosses the ZX plane be (0, y)
So,
\hat{\mathbf{r}} = (x\hat{\mathbf{i}} + 0\hat{\mathbf{j}} + z\hat{\mathbf{k}}).....(4)
Since the point lies, satisfies its equation,
Now substituting equation (4) in equation (3) we get,
(x\hat{i} + 0\hat{j} + z\hat{k}) = (5\hat{i} + \hat{j} + 6\hat{k}) + \lambda(-2\hat{i} + 3\hat{j} + 5\hat{k})
                    = (5 - 2\lambda) \hat{i} + (1 + 3\lambda) \hat{j} + (6 - 5\lambda)\hat{k}
We know that, two vectors are equal if their corresponding components are equal
So,
x = 5 - 2\lambda.....(5)
0 = 1 + 3\lambda
-1 = 3\lambda
\lambda = -1/3
And.
z = 6 - 5\lambda
                                                                        Substitute the value of \lambda in equation (5) and (6), we get –
x = 5 - 2\lambda
= 5 - 2 \times (-1/3)
= 5 + (2/3)
= 17/3
And
z = 6 - 5\lambda
= 6 - 5 \times (-1/3)
= 6 + (5/3)
= 23/3
                                       For more Info Visit - www.KITest.in
```

 \therefore The coordinates of the required point is (17/3, 0, 23/3). **Ouestion 12**

Find the coordinates of the point where the line through (3, -4, -5) and (2, -3, 1) crosses the plane 2x + y + z = 7.

Solution:

We know that the equation of a line passing through two points A (x_1, y_1, z_1) and B (x_2, y_2, z_2) is given as

 $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$ It is given that the line passes through the points A (3, -4, -5) and B (2, -3, 1)So, x₁ = 3, y₁ = -4, z₁ = -5 And, $x_2 = 2$, $y_2 = -3$, $z_2 = 1$ Then the equation of line is $\frac{x-3}{z-(-4)} = \frac{z-(-5)}{z-(-5)}$ -3 - (-4)2 – 3 1 - (-5) $\frac{x-3}{-1} = \frac{y+4}{1} = \frac{z+5}{6} = k$ x - 3So, x = -k + 3 |, y = k - 4 |, z = 6k - 5Now let (x, y, z) be the coordinates of the point where the line crosses the given plane 2x + y + z + 7 = 0By substituting the value of x, y, z in equation (1) in the equation of plane, we get 2x + y + z + 7 = 02(-k+3) + (k-4) + (6k-5) = 75k - 3 = 75k = 10 k = 2 Now substitute the value of k in x, y, z we get, x = -k + 3 = -2 + 3 = 1y = k - 4 = 2 - 4 = -2z = 6k - 5 = 12 - 5 = 7 \therefore The coordinates of the required point are (1, -2, 7). z = 6k - 5 = 12 - 5 = 7

Ouestion 13

Find the equation of the plane passing through the point (-1, 3, 2) and perpendicular to each of the plane's x + 2y + 3z = 5 and 3x + 3y + z = 0.

Solution:

We know that the equation of a plane passing through (x_1, y_1, z_1) is given by $A(x - x_1) + B(y - y_1) + C(z - z_1) = 0$ Where, A, B, C are the direction ratios of normal to the plane. It is given that the plane passes through (-1, 3, 2)So, equation of plane is given by A(x + 1) + B(y - 3) + C(z - 2) = 0(1) Since this plane is perpendicular to the given two planes. So, their normal to the plane would be perpendicular to normal of both planes.

For more Info Visit - www.KITest.in

11.36

6262969699

We know that $\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b} So, required normal is cross product of normal of planes x + 2y + 3z = 5 and 3x + 3y + z = 0ĥ î Required Normal = 1 3 2 13 3 1 $= \hat{i}[2(1) - 3(3)] - \hat{j}[1(1) - 3(3)] + k[1(3) - 3(2)]$ $= \hat{1} [2 - 9] - \hat{1} [1 - 9] + k [3 - 6]$ $= -7\hat{i} + 8\hat{j} - 3\hat{k}$ Hence, the direction ratios are = -7, 8, -3 \therefore A = -7, B = 8, C = -3 Substituting the obtained values in equation (1), we get A(x + 1) + B(y - 3) + C(z - 2) = 0-7(x + 1) + 8(y - 3) + (-3)(z - 2) = 0-7x - 7 + 8y - 24 - 3z + 6 = 0-7x + 8y - 3z - 25 = 07x - 8y + 3z + 25 = 0: The equation of the required plane is 7x - 8y + 3z + 25 = 0.

Question 14

If the points (1, 1, p) and (-3, 0, 1) be equidistant from the plane \vec{r} . (3 \hat{i} + 4 \hat{j} - 12 \hat{k}) + 13 = 0, then find the value of p.

Solution:

We know that the distance of a point with position vector \vec{a} from the plane \vec{r} . $\vec{n} = d$ is given as

$$\frac{\vec{a}.\vec{n}-\vec{d}}{|\vec{n}|}$$

Now, the position vector of point (1, 1, p) is given as

$$\vec{a_1} = 1 \hat{i} + 1\hat{j} + p \hat{k}$$

And the position vector of point (-3, 0, 1) is given as
 $\vec{a_2} = -3 \hat{i} + 0 \hat{j} + 1 \hat{k}$
It is given the points (1, 1, p) and (-3, 0, 1) are equidistant from the plane
 \vec{r} . $(3 \hat{i} + 4 \hat{j} - 12 \hat{k}) = 13 = 0$
So,
 $\left| \frac{(1 \hat{i} + 1 \hat{j} + p \hat{k}) \cdot (3 \hat{i} + 4 \hat{j} - 12 \hat{k}) + 13}{\sqrt{3^2 + 4^2 + (-12)^2}} \right| = \left| \frac{(-3 \hat{i} + 0 \hat{j} + 1 \hat{k}) \cdot (3 \hat{i} + 4 \hat{j} - 12 \hat{k}) + 13}{\sqrt{3^2 + 4^2 + (-12)^2}} \right|$
 $\left| \frac{3 + 4 - 12 p + 13}{\sqrt{9 + 16 + 144}} \right| = \left| \frac{-9 + 0 - 12 + 13}{\sqrt{9 + 16 + 144}} \right|$
 $\left| \frac{20 - 12 p}{\sqrt{169}} \right| = \left| \frac{-8}{\sqrt{169}} \right|$
 $\left| 20 - 12 p \right| = 8$
 $20 - 12 p = \pm 8$
 $20 - 12 p = 8 \text{ or, } 20 - 12 p = -8$
 $12p = 12 \text{ or, } 12p = 28p = 1 \text{ or, } p 7/3$

6262969699

∴ The possible values of p are 1 and 7/3 Question 15

Find the equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1$ and $\vec{r} \cdot (\hat{2}\hat{i} + 3\hat{j} - \hat{k}) + 4 = 0$ and parallel to x – axis.

Solution:

We know that,

The equation of any plane through the line of intersection of the planes $\vec{r} \cdot \vec{n_1} = d_1$ and $\vec{r} \cdot \vec{n_2} = d_2$ is given by $(\vec{r} \cdot \vec{n_2} = d_1) + \lambda(\vec{r} \cdot \vec{n_2} = d_2) = 0$ So, the equation of any plane through the line of intersection of the given planes is $\left[\vec{r} \cdot (\hat{\iota} + \hat{j} + \hat{k}) - 1\right] + \lambda \left[\vec{r} \cdot (-2\hat{\iota} + -3\hat{j} + \hat{k}) - 4\right] = 0$ $\vec{r} \cdot \left((1-2\lambda)\hat{\iota} + (1-3\lambda)\hat{\jmath} + (1-\lambda)\hat{k} \right) - 1 - 4\lambda = 0$ $\vec{r} \cdot \left((1 - 2\lambda)\hat{\imath} + (1 - 3\lambda)\hat{\jmath} + (1 + \lambda)\hat{k} \right) = 1 + 4\lambda$(1) Since this plane is parallel to x - axis. So, the normal vector of the plane (i) will be perpendicular to x - axis. The direction ratio of Normal $(a_1, b_1, c_1) = [(1 - 2\lambda), (1 - 3\lambda), (1 +)]$ Since the two lines are perpendicular, $a_1a_2 + b_1b_2 + cc_2 = 0$ $(1-2\lambda) \times 1 + (1-3\lambda) \times 0 + (1+\lambda) \times 0 = 0$ $(1-2\lambda)=0$ $\lambda = 1/2$ Substituting the value of λ in equation (1), we get $\vec{r} \cdot \left((1-2\lambda)\hat{\iota} + (1-3\lambda)\hat{\jmath} + (1+\lambda)\hat{k} \right) = 1 + 4\lambda$ $\vec{r} \cdot \left(\left(1 - 2 \left(\frac{1}{2} \right) \right) \hat{\iota} + \left(1 - 3 \left(\frac{1}{2} \right) \right) \hat{\jmath} + \left(1 + \frac{1}{2} \right) \hat{k} \right) = 1 + 4 \left(\frac{1}{2} \right)$ $\vec{r} \cdot (0\hat{\imath} - \hat{\jmath} + 3\hat{k}) = 6$: The equation of the required plane is $\vec{r} \cdot (0\hat{\iota} - \hat{\jmath} + 3\hat{k}) = 6$

Question 16

If O be the origin and the coordinate of P be (1, 2, -3), then find the equation of the passing through P and perpendicular to OP.

Solution:

We know that the equation of a plane passing through (x_1, y_1, z_1) and perpendicular to a line with direction ratio A, B, C is given as A $(x - x_1) + B(y - y_1) + C(z - z_1) = 0$ It is given that the plane passes through P (1,2,3) So, $x_1 = 1$, $y_1 = 2$, $z_1 = -3$ Normal vector to plane is $= \overrightarrow{OP}$ Where O (0, 0,0), p (1,2, -3) So, direction ratio of \overrightarrow{OP} is = (1 - 0), (2-0), (-3,0) = (1, 2, 3)

6262969699

Where, A = 1, B = 2, C = -3Equation of plane in Cartain form is given as 1 (x - 1) + 2 (y - 2) - 3 (z - (-3)) = 0x - 1 + 2y - 4 - 3z - 9 = 0x - 2y - 3z - 14 = 0 \therefore The equation of the required plane is x + 2y - 3z - 14 = 0

Question 17

Find the equation of the plane which contain the line of intersection of the planes $\vec{r} \cdot (\hat{\imath} + 2\hat{\jmath} + 3k-4=0 \text{ and } r \cdot 2\hat{\imath} + \hat{\jmath} + k+5 = 0$ and which is perpendicular to the $r \cdot 5\hat{\imath} + 3\hat{\jmath} - 6\hat{k} + 8 = 0$

Solution:

We know. The equation of any plane through the line of intersection of the planes $\vec{r} \cdot \vec{n_1} = d_1$ and $\vec{r} \cdot \vec{n_2} = d_2$ is given by $(\vec{r} \cdot \vec{n_1} - d_1) + \lambda (\vec{r} \cdot \vec{n_2} = d_2) = 0$ So, the equation of any plane through the line of intersection of the planes is $\left[\vec{r}(\hat{\imath}+2\hat{\jmath}+3\hat{k})-4\right]+\lambda\left[\vec{r}\cdot(-2\hat{\imath}-\hat{\jmath}+\hat{k})-5\right]=0$ $\vec{r}.\left((1-2\lambda)\hat{\imath}+(2-\lambda)\hat{\jmath}(3+\lambda)\hat{k}\right)-4-5\,\lambda=0$ $\vec{r}.\left((1-2\lambda)\hat{\imath}+(2-\lambda)\hat{\jmath}(3+\lambda)\hat{k}\right)-4-5\lambda$ Since this plane is perpendicular to the plane $\vec{r}.(5\hat{\imath}+3\hat{\jmath}+\hat{k})+8=0$ $\vec{r}.(5\hat{\imath}+3\hat{\jmath}+\hat{k})=-8$ $\vec{r}.(5\,\hat{\imath}+3\,\hat{\jmath}+\,\hat{k})=8.....2$ So, the normal vector of the plane (1) will be perpendicular to the normal vector of plane (2) Direction ratios of normal plane (1) = $(a_1, b_1, c_1) = [(1 - 2\lambda), (2 - \lambda), (3 + \lambda)]$ Direction ratios of normal plane (2) = $(a_2, b_2, c_2) = (-5, -3, 6)$ Since the two lines are perpendicular, $a_1 a_2 + b_2 b + c_2 c_2 = 0$ (1 - 2 λ) × (-5) + (2 - λ) × (-3) + (3 + λ) × 6 = 0 $-5 + 10 \lambda - 6 + 3 \lambda + 18 + 6 \lambda = 0$ $19 \lambda + 7 = 0$ $\lambda = -7/19$ By substituting the value of λ in equation (1), we get $\vec{r}.((1-2\lambda)\hat{i}+(2-\lambda)\hat{j}+(3+\lambda)\hat{k})=4+5\lambda$ $\vec{r} \cdot \left(\left(1 - 2 \, \left(\frac{-17}{19} \right) \right) \hat{\iota} + \left(2 - \left(\frac{-7}{19} \right) \right) \hat{\jmath} + \left(\frac{-7}{19} \right) \hat{k} \right) = 4 + 5 \, \left(\frac{-7}{19} \right)$ $\vec{r} \cdot \left(\frac{33}{19}\hat{\iota} + \frac{45}{19}\hat{\jmath} + \frac{50}{19}\hat{k}\right) = \frac{41}{19}$ $\vec{r} \cdot (33\,\hat{\imath} + 45\hat{\jmath} + 50\,\hat{k}) = 41$: The equation of the required plane is \hat{r} . $(33 \hat{i} + 45 \hat{j} + 50 \hat{k}) = 41$

 \therefore The equation of the required plane is $r_{1}(33 l + 45) + 5$

Question18

6262969699

Find the distance of the point (-1, -5, -10) from the point of intersection of the line $\bar{r} = (2\hat{\imath} - \hat{\jmath} + 2\hat{k}) + \lambda(3\hat{\imath} + 4\hat{\jmath} + 2\hat{k})$ and the plane $\bar{r}(\hat{\imath} - \hat{\jmath} + \hat{k}) = 5$

Solution:

Given: The equation of line is $\bar{r} = (2\hat{i} - \hat{j} + 2\hat{k}) + \lambda(3\hat{i} + 4\hat{j} + 2\hat{k})$ (1) And the equation of the plane is given by $\bar{r}.(\hat{i}-\hat{j}+\hat{k})=5$ (2) Now to find the intersection of line and plane, substituting the value of \bar{r} from equation (1) of line into equation of plane (2), we get $\left[\left(2\hat{\imath}-\hat{\jmath}+2\hat{k}\right)+\lambda\left(3\hat{\imath}+4\hat{\jmath}+2\hat{k}\right)\right].\left(\hat{\imath}-\hat{\jmath}+\hat{k}\right)=5$ $[(2+3\lambda)\hat{i} + (-1+4\lambda)\hat{j} + (2+2\lambda)\hat{k}].(\hat{i} - \hat{j} + \hat{k}) = 5$ $(2+3\lambda) \times 1 + (-1+4\lambda) \times (-1) + (2+2\lambda) \times 1=5$ $2 + 3\lambda + 1 - 4\lambda + 2 + 2\lambda = 5$ So, the equation of line is $\overline{\mathbf{r}} = (2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\widehat{\mathbf{k}})$ Let the point of intersection be (x, y, z)So, $\overline{\mathbf{r}} = \mathbf{x}\mathbf{\hat{i}} + \mathbf{y}\mathbf{\hat{j}} + \mathbf{z}\mathbf{\hat{k}}$ $x\hat{i} + y\hat{j} + z\hat{k} = 2\hat{i} - \hat{j} + 2\hat{k}$ Were x = 2, y = -1, z = 2So, the point of intersection is (2, -1, 2). Now, the distance between points (x_1, y_1, z_1) and x_2, y_2, z_2 is given by $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$ Units Distance between the points A (2, -1 2) and B (-1, -5, -10) is given by $AB = \sqrt{(2 - (-1))^2 + (-1 - (-5))^2 + (2 - (-10))^2}$ $=\sqrt{(3)^2 + (4)^2 + (12)^2}$ $=\sqrt{9+6+144}$ $=\sqrt{169}$ = 13 units \therefore The distance is 13 units.

Question19

Find the vector equation of the line passing through (1, 2, 3) and parallel of the planes $\overline{r}.(\hat{i} - \hat{j} + 2\hat{k}) = 5$ and $\overline{r}.(3\hat{i} + \hat{j} + \hat{k}) = 6$

Solution:

The vector equation of a line passing through a point with position vector \overline{a} and parallel to a vector \overline{b} is

 $\bar{r}=\bar{a}+\lambda\bar{b}$

It is given that line passes through (1, 2,3) So,

For Enquiry – 6262969604 6262969699 $\bar{a} = 1\hat{i} + 2\hat{j} + 3\hat{k}$ It is also given that the is line is parallel to both planes. So, line is perpendicular to normal of both planes i.e., $\overline{\mathbf{b}}$ is perpendicular to normal of both planes. We know that $\overline{a} \times \overline{b}$ is perpendicular to both \overline{a} and \overline{b} So, \overline{b} is cross product of normal of plane $\overline{r}(\hat{1} - \hat{j} + 2\hat{k}) = 5$ and $\overline{r}(3\hat{1} - \hat{j} + \hat{k}) = 6$ ĥΙ Required Normal = $\begin{vmatrix} 1 & -1 & 2 \end{vmatrix}$ 3 1 1 $= \hat{i}[(-1)(1-1(2))] - \hat{j}[1(1) - 3(-1)]$ $= \hat{i}[-1-2] - \hat{j}[1-6] + \hat{k}[1+3]$ $= -3\hat{i} + 5\hat{j} + 4\hat{k}$ So, \bar{b} = -3î + 5î + 4k Now, substitute the value of $\bar{a}\&\bar{b}$ in the formula, we get $\bar{r} = \bar{a} + \lambda \bar{b}$ $= (1\mathbf{\hat{i}} + 2\mathbf{\hat{j}} + 3\mathbf{\hat{k}}) + \lambda(-3\mathbf{\hat{i}} + 5\mathbf{\hat{j}} + 4\mathbf{\hat{k}})$ ∴ The equation of the line is $\bar{r} = (1\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(-3\hat{i} + 5\hat{j} + 4\hat{k})$

Question20

Find the vector equation of the line passing through the point (1, 2, -4) and perpendicular to the two lines:

$$\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$$
 and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$

Solution:

The vector equation of a line passing through a point with position vector \bar{a} and parallel to a vector \bar{b} is $\bar{r} = \bar{a} + \lambda \bar{b}$ It is given that, the line passes through (1, 2, 4) So,

$$\overline{a} = 1\hat{i} + 2\hat{j} + 4\hat{k}$$

It is also given that; line is parallel to both planes. We know that $\overline{a} \times \overline{b}$ is perpendicular to both $\overline{a} \& \overline{b}$ So, \overline{b} is cross product of normal planes $\frac{x-8}{\overline{a}} = \frac{y+19}{\overline{b}} = \frac{z-10}{\overline{a}}$ and $\frac{x-15}{\overline{a}} = \frac{y-29}{\overline{a}} = \frac{z-5}{\overline{a}}$

$$\frac{-3}{3} = \frac{-16}{-16} = \frac{-7}{7} \text{ and } \frac{-3}{3} = \frac{-5}{8} = \frac{-5}{-5}$$
Required Normal = $\begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 3 & 16 & 7 \\ 3 & 8 & 5 \end{vmatrix}$
= $\hat{1}[(-16)(-5) - 8(7)] - \hat{j}[3(-5 - 3(7)] + \hat{k}[3(8) - 3(-16)]]$
= $\hat{1}[80 - 56] - \hat{j}[-15 - 21] + \hat{k}[24 + 48]$
= $24\hat{1} + 36\hat{j} + 72\hat{k}$

So,

6262969699

 $\overline{b} = 24\hat{i} + 36\hat{j} + 72\hat{k}$ Now, by substituting the value of $\overline{a} \& \overline{b}$ in the formula, we get

$$\bar{\mathbf{r}} = \bar{\mathbf{a}} + \lambda \mathbf{b}$$

= $(1\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 4\hat{\mathbf{k}}) + \lambda (24\hat{\mathbf{i}} + 36\hat{\mathbf{j}} + 72\hat{\mathbf{k}})$
= $(= (1\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 4\hat{\mathbf{k}}) + 12\lambda(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 6\hat{\mathbf{k}}))$
= $(1\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 4\hat{\mathbf{k}}) + \lambda (2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 6\hat{\mathbf{k}})$

 \therefore The equation of the line is

 $\bar{\mathbf{r}} = (1\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 4\hat{\mathbf{k}}) + \lambda(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 6\hat{\mathbf{k}})$

Question21

Prove that if a plane has the intercepts a, b, c and is at a distance of p units from the origin, then $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{n^2}$

Solution:

We know that the distance of the point (x_1, y_1, z_1) from plane Ax +By +Cz =D is given as

$$\frac{Ax_1 + By_1 + Cz_1 - D}{\sqrt{A^2 + B^2 + C^2}}$$

The equation of a plane having intercepts a, b, c on the x-, y- z axis respectively is given us

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Let us compare it with Ax + By +Cz = D, we get A = 1/a, B = 1/b, C = 1/c, D=1 It is given that; the plane is at a distance of 'p' units from the origin. So, the origin point is o (0, 0, 0,) Were, x₁ = 0, y₁ = 0, z₁ = 0 Now, Distance = $\left|\frac{Ax_1+By_1+Cz_1-D}{\sqrt{A^2+B^2+C^2}}\right|$

By substituting values in above equation, we get

$$p = \begin{vmatrix} \frac{1}{a} \times 0 + \frac{1}{b} \times 0 + \frac{1}{c} \times 0 - 1 \\ \sqrt{\left(\frac{1}{a}\right)^2} + \left(\frac{1}{b}\right)^2 + \left(\frac{1}{c}\right)^2} \end{vmatrix}$$
$$p = \begin{vmatrix} \frac{0 + 0 + 0 - 1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}} \end{vmatrix}$$
$$p = \begin{vmatrix} \frac{-1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}} \\ \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}} \end{vmatrix}$$
$$p = \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}}$$

6262969699

$$\frac{1}{p} = \sqrt{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}$$
$$\frac{1}{a^2} = \frac{1}{a^2} + \frac{1}{a^2} + \frac{1}{a^2} + \frac{1}{a^2}$$

Now let us square on both sides, we get

$$\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$$

Hence proved.

Question22

Distance between the two planes: 2x + 3y + 4z = 4 and 4x + 6y + 8z = 112 is

- A. 2 units
- B. 4 units
- C. 8 units
- **D.** $2/\sqrt{29}$ units

Solution:

We know that the distance two parallel planes $Ax + By + Cz = d_1$ and $Ax + By + Cz = d_2$ is given as

 $d_1 - d_2$ $\sqrt{A^2 + B^2 + c^2}$ It is given that First plane: 2x + 3y 4z = 4Let us compare with $Ax + By + Cz = d_1$ we get $A = 2, B = 3, C = 4, d_1 = 4$ Second plane: 2x + 6y + 8z = 12 [Divide the equation by 2] We get 2x + 3y + 4z = 6Now comparing with $Ax + By + Cz = d_1$ we get $A = 2, B = 3, C = 4 d_2 = 6$ & KIT of Education So, Distance between two planes is given as 4 – 6 **3**2 ⊥ =

 $1\sqrt{4} + 9 +$ = 2 / $\sqrt{29}$

 \therefore Option (D) is the correct option

Question 23

The planes: 2x - y + 4z = 4 am=nd 5x - 2.5y + 10z = 6are

- A. Perpendicular
- **B.** Parallel
- C. Intersect y axis
- **D.** Passes through

For Enquiry - 6262969604 6262969699 Solution: It is given that: First plane: 2x - 2.5y + 10z = 12.5.....(1) Given second plane: So, $\frac{a_1}{a_2} = \frac{2}{5} \\ \frac{b_1}{b_2} = \frac{2}{5}$ $\frac{C_1}{C_2} = \frac{4}{10} = \frac{2}{5}$ $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ It is clear that the direction ratio of normal of both the plane (1) and (2) are same. ∴ Both the given planes are parallel.

A Complete KIT of Education