Chapter 11 Three-Dimensional Geometry

Question 1

If a line makes angles $90^{\circ}, 135^{\circ}, 45^{\circ}$ with the x, y and z -axes respectively, find its direction cosines.

Solution:
Let the direction cosines of the line be l, m and n .
Here let $\alpha=90^{\circ}, \beta=135^{\circ}$ and $\gamma=45^{\circ}$
So,
$\mathrm{l}=\cos \alpha, \mathrm{m}=\cos \beta$ and $\mathrm{n}=\cos \gamma$
So, direction cosines are
$1=\cos 90^{\circ}=0$
$m=\cos 135^{\circ}=\cos \left(180^{\circ}-45^{\circ}\right)=-\cos 45^{\circ}=-1 / \sqrt{2}$
$\mathrm{n}=\cos 45^{\circ}=1 / \sqrt{2}$
\therefore The direction cosines of the line are $0,-1 / \sqrt{2}, 1 / \sqrt{2}$

Question 2

Find the direction cosines of a line which makes equal angles with the coordinate axes.

Solution:

Given:
Angles are equal.
So let the angles be α, β, γ
Let the direction cosines of the line be l, m and n
$\mathrm{l}=\cos \alpha, \mathrm{m}=\cos \beta$ and $\mathrm{n}=\cos \gamma$
Here given $\alpha=\beta=\gamma$ (Since, line makes equal angles with the coordinate axes)
The direction cosines are
$\mathrm{l}=\cos \alpha, \mathrm{m}=\cos \beta$ and $\mathrm{n}=\cos \gamma$
We have,
$\mathrm{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
From (1) we have,
$\cos ^{2} \alpha+\cos ^{2} \alpha+\cos ^{2} \alpha=1$
$3 \cos ^{2} \alpha=1$
$\operatorname{Cos} \alpha= \pm \sqrt{ }(1 / 3)$
\therefore The direction cosines are
$l= \pm \sqrt{ }(1 / 3), m= \pm \sqrt{ }(1 / 3), n= \pm \sqrt{ }(1 / 3)$

Question 3

If a line has the direction ratios $\mathbf{- 1 8}, 12,-4$, then what are its direction cosines?

Solution:

Given
Direction ratios as $-18,12,-4$
Where, $\mathrm{a}=-18, \mathrm{~b}=12, \mathrm{c}=-4$
Let us consider the direction ratios of the line as a, b and c
Then the direction cosines are

$$
\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

Were,

$$
\begin{aligned}
\sqrt{a^{2}+b^{2}+c^{2}} & =\sqrt{(-18)^{2}+12^{2}+(-4)^{2}} \\
& =\sqrt{324+144+16} \\
& =\sqrt{484} \\
& =22
\end{aligned}
$$

\therefore The direction cosines are
$-18 / 22,12 / 22,-4 / 22$ => $-9 / 11,6 / 11,-2 / 11$

Question 4

Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

Solution:

If the direction ratios of two lines segments are proportional, then the lines are collinear. Given:
A(2, 3, 4), B(-1, $-2,1), C(5,8,7)$
Direction ratio of line joining $A(2,3,4)$ and $B(-1,-2,1)$, are $(-1-2),(-2-3),(1-4)=(-3,-5,-3)$
Where, $a_{1}=-3, b_{1}=-5, c_{1}=-3$ Direction ratio of line joining B
$(-1,-2,1)$ and $C(5,8,7)$ are
(5-(-1)), (8- (-2)), (7-1) = $(6,10,6)$
Where, $a_{2}=6, b_{2}=10$ and $c_{2}=6$
Hence it is clear that the direction ratios of AB and BC are of same proportionsBy
$\frac{a_{1}}{a_{2}}=\frac{-3}{6}=-2$
$\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{-5}{10}=-2$
And
$\frac{c_{1}}{c_{2}}=\frac{-3}{6}=-2$
$\therefore \mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear.

Question 5

Find the direction cosines of the sides of the triangle whose vertices are (3,5,-4), (-1, 1, 2) and ($-5,-5,-2$).

Solution:

Given: The vertices are $(3,5,-4),(-1,1,2)$ and $(-5,-5,-2)$.
$A(3,5,-4)$,

B (-1, 1, 2)
C $(-5,-5-2)$
The direction cosines of the two points passing through $\mathrm{A}(\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1)$ and $\mathrm{B}(\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2)$ is given by (x 2 - x_{1}), ($\mathrm{y}_{2}-\mathrm{y}_{1}$), ($\mathrm{z}_{2}-\mathrm{z}_{1}$)

Firstly, let us find the direction ratios of AB
Where, $A=(3,5,-4)$ and $B=(-1,1,2)$
Ratio of $A B=\left[\left(x_{2}-x_{1}\right)^{2},\left(y_{2}-y_{1}\right) 2,\left(z^{2}-z^{1}\right)^{2}\right]$
$=(-1-3),(1-5),(2-(-4))=-4,-4,6$
Then by using the formula,
$\sqrt{ }\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right) 2\right]$
$\sqrt{ }\left[(-4)^{2}+(-4)^{2}+(6)^{2}\right]=\sqrt{ }(16+16+36)$
$=\sqrt{68}$
$=2 \sqrt{ } 17$
Now let us find the direction cosines of the line $A B$
By using the formula,
$\frac{\left(x_{2}-x_{1}\right)}{A B} \cdot \frac{\left(y_{2}-y_{1}\right)}{A B} \cdot \frac{\left(z_{2}-z_{1}\right)}{A B}$.
$-4 / 2 \sqrt{ } 17,-4 / 2 \sqrt{ } 17,6 / 2 \sqrt{ } 17$
Or $-2 / \sqrt{ } 17,-2 / \sqrt{ } 17,3 / \sqrt{ } 17$
Similarly,
Let us find the direction ratios of BC

Where, $\mathrm{B}=(-1,1,2)$ and $\mathrm{C}=(-5,-5,-2)$
Ratio of $A B=\left[\left(x_{2}-x_{1}\right)^{2},\left(y_{2}-y_{1}\right)^{2},\left(z_{2}-z_{1}\right)^{2}\right]$
$=(-5+1),(-5-1),(-2-2)=-4,-6,-4$
Then by using the formula,
$\sqrt{ }\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]$
$\sqrt{ }\left[(-4)^{2}+(-6)^{2}+(-4)^{2}\right]$
$=\sqrt{ }(16+36+16)$
$=\sqrt{68}$
$=2 \sqrt{ } 17$
Now let us find the direction cosines of the line $A B$
By using the formula,
$\frac{\left(X_{2}-x_{1}\right)}{A B} \cdot \frac{\left(y_{2}-y_{1}\right)}{A B} \cdot \frac{\left(z_{2}-z_{1}\right)}{A B}$.
$-4 / 2 \sqrt{ } 17,-6 / 2 \sqrt{ } 17,-4 / 2 \sqrt{ } 17$ Or
$-2 / \sqrt{ } 17,-3 / \sqrt{ } 17,-2 / \sqrt{ } 17$
Similarly,
Let us find the direction ratios of CA
Where, $\mathrm{C}=(-5,-5,-2)$ and $\mathrm{A}=(3,5,-4)$
Ratio of $A B=\left[\left(x_{2}-x_{1}\right)^{2},\left(y_{2}-y_{2}\right)^{2},\left(z_{2}-z_{1}\right)^{2}\right]$
$=(3+5),(5+5),(-4+2)=8,10,-2$

Then by using the formula,
$\sqrt{ }\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]$
$\sqrt{ }\left[(8)^{2}+(10)^{2}+(-2)^{2}\right]$
$=\sqrt{ }(64+100+4)$
$=\sqrt{ } 168=2 \sqrt{ } 42$
Now let us find the direction cosines of the line $A B$
By using the formula,
$\frac{\left(X_{2}-x_{1}\right)}{A B} \cdot \frac{\left(y_{2}-y_{1}\right)}{A B} \cdot \frac{\left(z_{2}-z_{1}\right)}{A B}$.
$8 / 2 \sqrt{ } 42,10 / 2 \sqrt{ } 42,-2 / 2 \sqrt{ } 42$
Or $4 / \sqrt{ } 42,5 / \sqrt{ } 42,-1 / \sqrt{ } 42$

Exercise 11.2

Question 1

Show that the three lines with direction cosines

$\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}, \frac{-4}{13}, \frac{12}{13}, \frac{3}{13}, \frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ Are mutually perpendicular.

Solution:

Let us consider the direction cosines of $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} be $\mathrm{l}_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1} ; \mathrm{l}_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$ and $\mathrm{l}_{3}, \mathrm{~m}_{3}, \mathrm{n}_{3}$.
We know that
If l_{1}, m_{1}, n_{1} and l_{2}, n_{2} are the direction cosines of two lines;
And θ is the acute angle between the two lines;
Then $\cos \theta=\left|\mathrm{l}_{1} \mathrm{l}_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right|$
If two lines are perpendicular, then the angle between the two is $\theta=90^{\circ}$ For perpendicular lines, $\mid l_{1}$ $\mathrm{l}_{2}+\mathrm{m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2} \mid=\cos 90^{\circ}=0$, i.e., $\left|\mathrm{l}_{1} \mathrm{l}_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right|=0$
So, in order to check if the three lines are mutually perpendicular, we compute $\left|l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right|$ for all the pairs of the three lines.
Firstly, let us compute, $\left|\mathrm{l}_{1} \mathrm{l}_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right|$

$$
\begin{align*}
\left|l_{1} l_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right| & =\left|\left(\frac{12}{13} \times \frac{4}{13}\right)+\left(\frac{-3}{13} \times \frac{12}{13}\right)+\left(\frac{-4}{13} \times \frac{3}{13}\right)\right|=\frac{48}{13}+\left(\frac{-36}{13}\right)+\left(\frac{-12}{13}\right) \\
& =\frac{48+(-48)}{13}=0 \tag{1}
\end{align*}
$$

So, $\mathrm{L}_{1} \perp \mathrm{~L}_{2}$
Similarly,
Let us compute, $\left|l_{2} l_{3}+m_{2} m_{3}+n_{2} n_{3}\right|$

$$
\begin{align*}
\left|l_{1} \mathrm{l}_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right| & =\left|\left(\frac{4}{13} \times \frac{3}{13}\right)+\left(\frac{12}{13} \times \frac{-4}{13}\right)+\left(\frac{3}{13} \times \frac{12}{13}\right)\right|=\frac{12}{13}+\left(\frac{-48}{13}\right)+\frac{36}{13} \\
& =\frac{(-48)+48}{13}=0 \tag{2}
\end{align*}
$$

So, $\mathrm{L}_{3} \perp \mathrm{~L}_{3}$
Similarly,
Let us compute, $\mid l_{3} l_{1}+m_{3} m_{1}+n_{3} n_{1}$
$\begin{aligned}\left|\mathrm{l}_{1} \mathrm{l}_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right| & =\left|\left(\frac{3}{13} \times \frac{12}{13}\right)+\left(\frac{-4}{13} \times \frac{-3}{13}\right)+\left(\frac{12}{13} \times \frac{-4}{13}\right)\right|=\frac{36}{13}+\frac{12}{13}+\left(\frac{-48}{13}\right) \\ & =\frac{48+(-48)}{13}=0\end{aligned}$
So, $L_{1} \perp L_{3}$
\therefore By (1), (2) and (3), the lines are perpendicular.
$\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} are mutually perpendicular.

Ouestion 2

Show that the line through the points $(1,-1,2),(3,4,-2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$.

Solution:

Given:
The points $(1,-1,2),(3,4,-2)$ and $(0,3,2),(3,5,6)$.
Let us consider $A B$ be the line joining the points, $(1,-1,2)$ and $(3,4,-2)$, and $C D$ be the line through the points $(0,3,2)$ and $(3,5,6)$.
Now,
the direction ratios, $\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}$ of AB are
$(3-1),(4-(-1)),(-2-2)=2,5,-4$.
Similarly,
the direction ratios, $\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}$ of CD are
(3-0), (5-3), (6-2) $=3,2,4$
Then, $A B$ and $C D$ will be perpendicular to each other, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=2(3)+5(2)+4(-4)$
$=6+10-16$
$=0$
$\therefore \mathrm{AB}$ and CD are perpendicular to each other

Question 3

Show that the line through the points $(4,7,8),(2,3,4)$ is parallel to the line through the points $(-1,-2,1),(1,2,5)$.

Solution:

Given:
The points $(4,7,8),(2,3,4)$ and $(-1,-2,1),(1,2,5)$.
Let us consider AB be the line joining the points, $(4,7,8),(2,3,4)$ and $C D$ be the line through the points $(-1,-2,1),(1,2,5)$.
Now,
The direction ratios, $\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}$ of AB are
(2-4), (3-7), (4-8) = -2, -4, -4.
The direction ratios, $\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}$ of CD are (1-(-1)), (2-(-2)), (5-1) $=2,4,4$.
Then $A B$ will be parallel to CD, if

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$

So, $a_{1} / a_{2}=-2 / 2=-1$
$\mathrm{b}_{1} / \mathrm{b}_{2}=-4 / 4=-1$
$c_{1} / c_{2}=-4 / 4=-1$
\therefore We can say that,

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$

$-1==-1=-1$
Hence, $A B$ is parallel to $C D$ where the line through the points $(4,7,8),(2,3,4)$ is parallel to the line through the points $(-1,-2,1),(1,2,5)$

Question 4

Find the equation of the line which passes through the point $(1,2,3)$ and is parallel to the vector $3 \mathbf{i}+2 \hat{\jmath}-2 \widehat{k}$.

Solution:

Given:
Line passes through the point ($1,2,3$,) and is parallel to the vector.
We know that.
Vector equation of a line that passes through given point whose position
Vector is \bar{a} and parallel to a given vector \bar{b} is
$\bar{r}=\bar{a}+\lambda \bar{b}$.
So, here the position vector of the point $(1,2,3$,$) is given by$
$\bar{a}=\hat{i}+2 \grave{j}+3 \grave{k}$ and the parallel vector is $3 i+2 \grave{j}-2 \grave{k}$
\therefore The vector equation of the required line is:
$\bar{r}=i ̀+2 \grave{j}+3 \grave{k}+\lambda(3 \hat{1}+2 \hat{j}-2 k)$.
Where λ is constant.

Question 5

Find the equation of the line in vector and in Cartesian form that passes through the point with position vector $2 \hat{i}-\hat{\jmath}+4 \widehat{k}$ and $\hat{i}+2 \hat{\jmath}-\widehat{k}$. is in the direction.

Solution:

It is given that
Vector equation of a line that passes through a given point whose position
Vector is \grave{a} and parallel to a given vector h is $\grave{r}=\grave{a}+\lambda \grave{\mathrm{b}}$
Here, let, $\grave{a}=2 \hat{\imath}-\hat{\jmath}+4 \hat{k}$ and $b=\hat{I}+2 \hat{\jmath}-\hat{k}$
So, the vector equation of the required line is:
$\vec{r}=2 i-\hat{\jmath}+4 \hat{k}+\lambda(\hat{I}+2 \hat{\jmath}-\hat{k})$
Now the Cartesian equation of a line through a point ($\mathrm{x}_{1}, \mathrm{y}_{2}, \mathrm{z}_{1}$) and having direction cosines $1, \mathrm{~m}, \mathrm{n}$, is given by
$\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$
We know that if the direction ratios of the line are a, b, c, then
$1=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \mathrm{~m}=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \mathrm{n}=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$.
The Cartesian equation of a line through a point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and having direction ratios $\mathrm{a}, \mathrm{b}, \mathrm{c}$, is:
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
Here, $\mathrm{x}_{1}=2 . \mathrm{y}_{1}=-1, \mathrm{z}_{1}=4$ and $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=-1$
\therefore The Cartesian equation of the required line is:
$\frac{x-2}{1}=\frac{y-(-1)}{2}=\frac{z-4}{-1} \Rightarrow \frac{x-2}{1}=\frac{y+1}{2}=\frac{z-4}{-1}$

Question 6

Find the Cartesian equation of the line which passes through the point ($-2,4,-5$) and parallel to the line given by
$\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$.

Solution:

Given:
The points ($-2,4,-5$)
We know that
The Cartesian equation of a line through a point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and having direction ratios $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
Here, the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{Z}_{1}\right)$ is $(-2,4,-5)$ and the direction ratio is given by:
$a=3, b=5, c=6$
\therefore The cartesian equation of the required line is:
$\frac{x-(-2)}{3}=\frac{y-4}{5}=\frac{z-(-5)}{6} \Rightarrow \frac{x+2}{3}=\frac{y-4}{5}=\frac{z+5}{6}$

Question 7

The Cartesian equation of a line is $\frac{x-5}{3}-\frac{y+4}{7}-\frac{z-6}{2}$. Write its vector form.
Solution:

Given

The Cartesian eq
$\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$ \qquad
We know that
The Cartesian equation of a line passing through a point ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) and having direction cosines l, m, n is
$\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$
So, when comparing this standard form with the given equation we get
$\mathrm{x}_{1}=5, \mathrm{y}_{1}=-4, \mathrm{z}_{1}=6$ and
$\mathrm{l}=3, \mathrm{~m}=7, \mathrm{n}=2$
The point through which the line passes have the position vector
$\bar{a}=5 \hat{\imath}-4 \hat{\jmath}+6 \hat{k}$ and
The vector parallel to the line is given by $\bar{b}=3 \hat{\imath}+7 \hat{\jmath}+2 \hat{k}$
Since, vector equation of a line that passes through a given point whose position vector is \bar{a} and
parallel to a given vector \bar{b} is $\bar{r}=\bar{a}+\lambda \bar{b}$
\therefore The required line in vector form is given as:
$\bar{r}=(5 \hat{\imath}-4 \hat{\jmath}+6 \hat{k})+\lambda(3 \hat{\imath}+7 \hat{\jmath}+2 \hat{k})$

Question 8

Find the vector and the Cartesian equations of the lines that passes through the origin and (5, $-2,3)$.

Solution:

Given:
The origin $(0,0,0)$ and the point $(5,-2,3)$
We know that
The vector equation of as line which passes through two points whose position vectors are \bar{a} and \bar{b} is $\bar{r}=\bar{a}+\lambda(\bar{b}+\overline{\bar{a}})$
Here, the position vectors of the two points $(0,0,0$,) and $(5,-2,3)$ are $\bar{a}=0 \mathrm{i}+0 \mathrm{j}+0 \mathrm{k}$ and $\bar{b}=5 \mathrm{i}-2 \mathrm{j}+$ 3 k , respectively.
\therefore The vector equation of the required line is given as:
$\bar{r}=0 \hat{\imath}+0 \hat{\jmath}+0 \hat{k}+\lambda[(5 \hat{\imath}-2 \hat{\jmath}+3 \hat{k})-(0 \hat{\imath}+0 \hat{\jmath}+0 \hat{k})]$
$\bar{r}=\lambda(5 \hat{\imath}-2 \hat{\jmath}+3 \hat{k})$
Now, by using the formula,
Cartesian equation of a line that passes through two points ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) and ($\mathrm{X}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}$) is given as $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
So, the Cartesian equation of the line that passes through the origin $(0,0,0$,$) and (5,-2,3)$ is
$\frac{x-0}{5-0}=\frac{y-0}{-2-0}=\frac{z-0}{3-0} \Rightarrow \frac{x}{5}=\frac{y}{-2}=\frac{z}{3}$
\therefore The vector equation is
$\bar{r}=\lambda(5 i-2 j+3 k$,
The Cartesian equation is
$\frac{x}{5}=\frac{\mathrm{y}}{-2}=\frac{\mathrm{z}}{3}$

Question 9

Find the vector and the Cartesian equations of the line that passes through the points (3,-2,5), $(3,-2,6)$

Solution:

Given
The points $(3,-2,-5)$ and $(3,-2,6)$
Firstly, let us calculate the vector form:
The vector equation of as line which passes through two points whose position
Vectors are \bar{a} and \bar{b} is $\bar{r}=\bar{a}+\lambda(\bar{b}-\bar{a})$
Here, the position vectors of the two points $(3 .-2,-5)$ and $(3,-2,6)$
are $\bar{a}=3 \hat{\imath}-2 \hat{\jmath}-5 \hat{k}$ and $\bar{b}=3 \hat{\imath}-2 \hat{\jmath}+6 \hat{k}$ respectively.
\therefore The vector equation of the required line is:
$\bar{r}=3 \hat{\imath}-2 \hat{\jmath}-5 \hat{k}+\lambda[(3 \mathrm{i}-2 \mathrm{j}+6 \mathrm{k})-(3 \mathrm{i}-2 \mathrm{j}-5 \mathrm{k})]$
$\bar{r}=3 \hat{\imath}-2 \hat{\jmath}-5 \hat{k}+\lambda(3 \mathrm{i}-2 \mathrm{j}+6 \mathrm{k})-(3 \mathrm{i}-2 \mathrm{j}-5 \mathrm{k})$
$\bar{r}=3 \hat{\imath}-2 \hat{\jmath}-5 \hat{k}+\lambda(11 \mathrm{k})$
Now,
By using equation of a line that passes through two points ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) and ($\mathrm{x} 2, \mathrm{y}_{2}, \mathrm{z}_{2}$) is.
$\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
So, the Cartesian equation of a line that passes through the origin $(3,-2,-5)$ and $(3,-2,6)$ is
For more Info Visit - www.KITest.in
$\frac{x-3}{3-3}=\frac{y-(-2)}{(-2)-(-2)}=\frac{z-(-5)}{6-(-5)}$
$\frac{x-3}{0}=\frac{y+2}{0}=\frac{z+5}{11}$
\therefore The vector equation is
$\bar{r}=3 \hat{\imath}-2 \hat{\jmath}-5 \hat{k}+\lambda(11 \mathrm{k})$
The Cartesian equation is
$\frac{x-3}{0}=\frac{y+2}{0}=\frac{z+5}{11}$

Question 10

Find the angle between the following pairs of lines
(i) $\bar{r}=2 i-5 j+k+\lambda(3 i+2 j+6 \widehat{k})$ and
$\bar{r}=7 \hat{\imath}-6 \widehat{k}+\mu(\hat{\imath}+2 \hat{\jmath}+2 \widehat{k})$
(ii) $\hat{r}=3 \hat{\imath}+\hat{\mathbf{j}}-2 \widehat{k}+\lambda(\hat{\imath}-\hat{\jmath}-2 \widehat{j k})$ and
$\vec{r}=2 \hat{\imath}-\vec{\jmath}-65 \widehat{k}+\mu(3 \hat{\imath}-5 \hat{\jmath}-4 \widehat{k})$

Solution:

Let us consider θ be the angle between the given lines.
If θ is the acute angle between $\vec{r}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}_{1}}$ and $\vec{r} \overrightarrow{\mathrm{a}_{2}}+\mu \overrightarrow{\mathrm{b}_{2}}$ then
$\operatorname{Cos} \theta=\left|\frac{\overrightarrow{\mathrm{b}_{1} \mathrm{~b}_{2}}}{\left|\overrightarrow{\mathrm{~b}_{1}}\right|\left|\overrightarrow{\mathrm{b}_{2}}\right|}\right|$
(i) $\bar{r}=2 \mathrm{i}-5 \mathrm{j}+\mathrm{k}+\lambda(3 \mathrm{i}+2 \mathrm{j}+6 \mathrm{k})$ and
$\bar{r}=7 \mathrm{i}-6 \mathrm{k}+\mu(\hat{\imath}+2 \hat{\jmath}+2 \hat{k})$
Here $\overrightarrow{\mathrm{b}_{1}}=3 \mathrm{i}+2 \mathrm{j}+6 \hat{k}$ and $\overrightarrow{\mathrm{b}_{2}}=\hat{\imath}+2 \vec{j}+2 \hat{k}$
SO, from equation (1), we have
$\operatorname{Cos} \theta=\left|\frac{(3 i+2 j+6 \hat{k}),(\hat{\imath}+2 \vec{j}+2 \hat{k})}{|3 i+2 j+6 \hat{k}||\hat{\imath}+2 \vec{j}+2 \hat{k}|}\right|$
We know that,
$|a \hat{\imath}+b \hat{\jmath}+c \hat{k}|=\sqrt{a^{2}+b^{2}+c^{2}}$
So,
$|3 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}|=\sqrt{3^{2}+2^{2}+6^{2}}=\sqrt{9+4+36}=\sqrt{49}=7$
And
$|\hat{\imath}+\hat{\jmath}+\hat{k}|=\sqrt{1^{2}+2^{2}+2^{2}}=\sqrt{1+4+4}=\sqrt{9}=3$
Now, we know that
$\left(a_{1} \hat{\imath}+b_{1} \overrightarrow{\mathrm{~J}}+c_{1} \hat{\mathrm{k}}\right),\left(a_{2} \hat{\imath}+b_{2} \overrightarrow{\mathrm{\jmath}}+c_{2} \hat{\mathrm{k}}\right)=\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}$
So,
$(3 \mathrm{i}+2 \mathrm{j}+6 \hat{k}) \cdot(\mathrm{i}+2 \mathrm{j}+2 \hat{k})=3 \times 1+2 \times 2+6 \times 2=3+4+12=19$
By (2), we have
$\operatorname{Cos} \theta=\frac{19}{7 \times 3}=\frac{19}{21}$
$\theta=\cos ^{-1} \frac{19}{21}$
(ii) $\vec{r}=3 \mathrm{i}+\mathrm{j}+2 \hat{k}+\lambda(\mathrm{i}-\mathrm{j}-2 \hat{k})$ and
$\vec{r}=2 \mathrm{i}-\mathrm{j}-56 \hat{k}+\mu(3 \mathrm{i}-5 \mathrm{j}-4 \hat{k})$
Here, $\widehat{b_{1}}=\mathrm{i}-\mathrm{j}-2 \widehat{k}$ and $\widehat{b_{2}}=3 \mathrm{i}-5 \mathrm{j}-4 \hat{k}$
So, from (1), we have
$\operatorname{Cos} \theta=\left|\frac{(i-j-2 k),(3 i-5 j-4 k)}{|i-j-2 k||3 i-5 j-4 k|}\right|$
We know that,
$|\hat{a} i+b \vec{j}+c \hat{k}|=\sqrt{a^{2}+b^{2}+c^{2}}$
So,
$|\mathrm{i}-\mathrm{j}-2 \hat{k}|=\sqrt{1^{2}+(-1)^{2}+2^{2}}=\sqrt{1+1+4}=\sqrt{6}=\sqrt{3} \times \sqrt{2}$
And
$|3 \mathrm{i}-5 \mathrm{j}-4 \hat{k}|=\sqrt{3^{2}+(-5)^{2}+(-4)^{2}}=\sqrt{9+25+16}=\sqrt{50}=\sqrt[5]{2}$
Now, we know that
$\left(a_{1} \hat{\imath}+b_{1} \vec{\jmath}+c_{1} \hat{k}\right),\left(a_{2} \hat{\imath}+b_{2} \vec{\jmath}+c_{2} \hat{k}\right)=a_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{C}_{1} \mathrm{C}_{2}$
$\therefore(\hat{\imath}-\hat{\jmath}-2 \hat{k}),(3 \hat{\imath}-5 \hat{\jmath}-4 \hat{k})=1 \times 3+(-1) \times(-5)+(-2) \times(-4)=3+5+8=16$
By (3), we have
$\operatorname{Cos} \theta=\frac{16}{\sqrt{3} \times \sqrt{2} \times \sqrt[5]{2}}=\frac{16}{5 \times 2 \sqrt{3}}=\frac{8}{5 \sqrt{3}}$
$\theta=\cos ^{-1}\left(\frac{8}{5 \sqrt{3}}\right)$

Question 11

Find the angle between the following pair of lines:
(i) $\frac{x-2}{2}=\frac{y-1}{5}-\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}-\frac{z-5}{4}$
(ii) $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$

Solution:

We know that
If
$\frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}}$ and $\frac{x-x_{2}}{l_{2}}=\frac{y-y_{2}}{m_{2}}=\frac{z-z_{1}}{n_{1}}$ are the equations of two lines, then the acute angle between the two lines is given by
$\cos \theta=\left|l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right|$
(i) $\frac{x-2}{2}=\frac{y-1}{5}-\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}-\frac{z-5}{4}$

Here, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=5, \mathrm{c}_{1}=-3$ and
$\mathrm{a}_{2}=-1, \mathrm{~b}_{2}=8, \mathrm{c}_{2}=4$
Now,
$\mathrm{l}=\frac{a}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}, \mathrm{~m}=\frac{b}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}, \mathrm{n}=\frac{c}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}}}$.
Here, we know that
$\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}}=\sqrt{2^{2}+5^{2}+(-3)^{2}}=\sqrt{4+25+9}=\sqrt{38}$
And
$\sqrt{\mathrm{a}_{2}{ }^{2}+\mathrm{b}_{2}{ }^{2}+\mathrm{c}_{2}{ }^{2}=\sqrt{(-1)^{2}+8^{2}+4^{2}}=\sqrt{1+64+16}=\sqrt{81}=9,9.9}$
So, from equation (2), we have
$\mathrm{l}_{1}=\frac{\mathrm{a}_{1}}{\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}+\mathrm{c}_{1}^{2}}}=\frac{2}{\sqrt{38}}, \mathrm{~m}_{1}=\frac{\mathrm{b}_{1}}{\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}+\mathrm{c}_{1}{ }^{2}}}=\frac{5}{\sqrt{38}} . \mathrm{n}_{1}=\frac{\mathrm{c}_{1}}{\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}+\mathrm{c}_{1}^{2}}}=\frac{-3}{\sqrt{38}}$
And
$\mathrm{L}_{2}=\frac{\mathrm{a}_{2}}{\sqrt{\mathrm{a}_{2}{ }^{2}+\mathrm{b}_{2}^{2}+\mathrm{c}_{2}{ }^{2}}}=\frac{-1}{9}, \mathrm{~m}_{2}=\frac{\mathrm{b}_{2}}{\sqrt{\mathrm{a}_{2}^{2}+\mathrm{b}_{2}{ }^{2}+\mathrm{c}_{2}{ }^{2}}}=\frac{8}{9} . \mathrm{n}_{2}=\frac{\mathrm{c}_{2}}{\sqrt{\mathrm{a}_{1}{ }^{2}+\mathrm{b}_{1}{ }^{2}+\mathrm{c}_{1}{ }^{2}}}=\frac{4}{9}$
\therefore From equation (1), we have
$\operatorname{Cos} \theta=\left|\left(\frac{3}{\sqrt{38}}\right) \times\left(\frac{-1}{9}\right)+\left(\frac{5}{\sqrt{38}}\right) \times\left(\frac{8}{9}\right)+\left(\frac{-3}{\sqrt{38}}\right) \times\left(\frac{4}{9}\right)\right|$
$=\left|\frac{-2+40-12}{9 \sqrt{38}}\right|=\left|\frac{40-12}{9 \sqrt{38}}\right|=\frac{26}{9 \sqrt{38}}$
$\theta=\cos ^{-1}\left(\frac{26}{9 \sqrt{38}}\right)$
(ii) $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$

Here, $\mathrm{a}_{1}=2, \mathrm{~b}_{1}=2, \mathrm{C}_{1}=1$ and
$\mathrm{a}_{2}=4, \mathrm{~b}_{2}=2, \mathrm{c}_{2}=8$
Here, we know that
$l_{1}=\sqrt{\mathrm{a}_{1}{ }^{2}+\mathrm{b}_{1}{ }^{2}+\mathrm{c}_{1}{ }^{2}}=\sqrt{2^{2}+2^{2}+1^{2}}=\sqrt{4+4+1}=\sqrt{9}=3$
And
$l_{1}=\sqrt{\mathrm{a}_{2}{ }^{2}+\mathrm{b}_{2}{ }^{2}+\mathrm{c}_{2}{ }^{2}}=\sqrt{(-1)^{2}+8^{2}+4^{2}}=\sqrt{1+64+16}=\sqrt{81}=9$
So, from equation (2), we have
$l_{1}=\frac{a_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}=\frac{2}{3}, m_{1}=\frac{b_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}=\frac{2}{3} . n_{1}=\frac{c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}=\frac{1}{3}$
And
$\mathrm{L}_{2}=\frac{\mathrm{a}_{2}}{\sqrt{\mathrm{a}_{2}{ }^{2}+\mathrm{b}_{2}{ }^{2}+\mathrm{c}_{2}{ }^{2}}}=\frac{4}{9}, \mathrm{~m}_{2}=\frac{\mathrm{b}_{2}}{\sqrt{\mathrm{a}_{2}{ }^{2}+\mathrm{b}_{2}{ }^{2}+\mathrm{c}_{2}{ }^{2}}}=\frac{1}{9} . \mathrm{n}_{2}=\frac{\mathrm{c}_{2}}{\sqrt{\mathrm{a}_{1}{ }^{2}+\mathrm{b}_{1}{ }^{2}+\mathrm{c}_{1}{ }^{2}}}=\frac{8}{9}$
\therefore From equation (1), we have
$\operatorname{Cos} \theta=\left|\left(\frac{2}{3} \times \frac{4}{9}\right)+\left(\frac{2}{3} \times \frac{1}{9}\right)+\left(\frac{1}{3} \times \frac{8}{9}\right)\right|=\left|\frac{8+2+8}{27}\right|=\frac{18}{27}=\frac{2}{3}$
$\theta=\cos ^{-1}\left(\frac{2}{3}\right)$

Question 12

Find the value of \mathbf{p} so that the lines
$\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.

Solution:

The standard form of a pair of Cartesian lines is:
$\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$.
So, the given equation can be written according to the standard form, i.e.
$\frac{-(x-1)}{3}=\frac{7(y-2)}{2 p}=\frac{Z-3}{2}$ and $\frac{-7(x-1)}{3 p}=\frac{y-5}{1}=\frac{-(z-6)}{5}$
$\frac{x-1}{-3}=\frac{y-2}{2 p / 7}=\frac{Z-3}{2}$ and $\frac{x-1}{-3 p / 7}=\frac{y-5}{1}=\frac{Z-6}{-5}$
Now, comparing equation (1) and (2), we get
$\mathrm{a}_{1}=-3, \mathrm{~b}_{1}=\frac{2 p}{7}, \mathrm{C}_{1}=2$ and $\mathrm{a}_{2}=\frac{-3 p}{7}, \mathrm{~b}_{2}=1, \mathrm{C}_{2}=-5$
So, the direction ratios of the lines are
$-3,2 p / 7,2$ and $-3 p / 7,1,-5$
Now, as both the lines are at right angles,

So, $\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0$
$(-3)(-3 p / 7)+(2 p / 7)(1)+2(-5)=0$
$9 p / 7+2 p / 7-10=0$
$(9 p+2 p) / 7=10$
$11 \mathrm{p} / 7=10$
$11 p=70$
$\mathrm{P}=70 / 11$
\therefore The value of p is $70 / 11$

Question 13

Show that the line
$\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.

Solution:

The equations of the given lines are
$\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$
Two lines with direction ratios is given as
$\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0$
So, the direction ratios of the given lines are 7, -5, 1 and $1,2,3$
i.e., $a_{1}=7, b_{2}=-5, c_{1}=1$ and
$\mathrm{a}_{2}=1, \mathrm{~b}_{2}=2, \mathrm{c}_{2}=3$
Now, considering
$a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=7 \times 1+(-5) \times 2+1 \times 3$

$$
\begin{aligned}
& =7-10+3 \\
& =-3+3 \\
& =0
\end{aligned}
$$

\therefore The two lines are perpendicular to each other.

Question 14

Find the shortest distance between the lines
$\vec{r}=(\mathbf{i}+2 \mathbf{j}+\mathrm{k})+\lambda(\mathbf{i}-\mathrm{j}+\mathrm{k})$ and
$\vec{r}=2 \mathbf{i}-\mathrm{j}-\mathrm{k}+\mu(2 \mathrm{i}+\mathrm{j}+2 \mathrm{k})$
Solution:

We know that the shortest distance between two
Lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ is given as:
$\mathrm{d}=\left|\frac{\left.\overrightarrow{\left(b_{1}\right.} \times \overrightarrow{b_{2}}\right),\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{\left|\overrightarrow{b_{1} \times \overrightarrow{b_{2}}}\right|}\right|$
Here by comparing the equations we get,
$\overrightarrow{a_{1}}=I+2 j+k, \overrightarrow{b_{1}}=I-j+k$ and
$\overrightarrow{\mathrm{a}_{2}}=2 \mathrm{i}-\mathrm{j}-\mathrm{k}, \overrightarrow{\mathrm{b}_{2}}=2 \mathrm{i}+\mathrm{j}+2 \mathrm{k}$
Now,
$\left(\mathrm{x}_{1} \hat{\imath}+\mathrm{y}_{1}+\mathrm{Z}_{1} \vec{k}\right)-\left(\mathrm{x}_{2} \hat{\imath}+\mathrm{y}_{2}+\mathrm{Z}_{2} \vec{k}\right)=\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right) \hat{\imath}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right) \hat{\jmath}+\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right) \hat{k}$
$\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{2}}=(2 \vec{\imath}-\vec{j}-k)-(I+2 j+k)=I-3 j-2 k$
Now,
$\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=(\mathrm{I}-\mathrm{j}+\mathrm{k}) \times(2 \mathrm{i}+\mathrm{j}+2 \mathrm{k})$
$=\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 1 \\ 2 & 1 & 2\end{array}\right|$
$=-3 \vec{\imath}+3 \mathrm{k}$
$\Rightarrow \overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=-3 \mathrm{i}+3 \mathrm{k}$
$\Rightarrow\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|=\sqrt{(-3)^{2}+3^{2}}=\sqrt{9+9}=\sqrt{18} \sqrt{2}$
Now,
$\left(a_{1} \hat{\imath}+b_{1} \vec{\jmath}+c_{1} \hat{k}\right),\left(a_{2} \hat{\imath}+b_{2} \vec{\jmath}+c_{2} \hat{k}\right)=a_{1} a_{2}+b_{1} b_{2}+C_{1} C_{2}$
$\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right),\left(\overrightarrow{a_{1}} \times \overrightarrow{a_{2}}\right)=(-3 \mathrm{i}+3 \mathrm{k}),(\mathrm{I}-3 \mathrm{j}-2 \mathrm{k})=-3-6=-9$

$=\frac{9}{3 \sqrt{2}}$ [From equation (4) and (5)]
$=\frac{3}{\sqrt{2}}$
Let us rationalizing the fraction by multiplying the numerator and denominator by $\sqrt{2}$, we get
$\mathrm{d}=\frac{3}{\sqrt{2}} \mathrm{x} \frac{\sqrt{2}}{\sqrt{2}}=\frac{3 \sqrt{2}}{2}$
\therefore The shortest distance is $3 \sqrt{ } 2 / 2$

Question 15

Find the shortest distance between the lines
$\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{-2}=\frac{y-5}{-2}=\frac{2-7}{1}$

Solution:

We know that the shortest distance between two lines
$\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{-2}=\frac{y-5}{-2}=\frac{2-7}{1}$ is given as:
$\mathrm{d}=\frac{\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|}{\sqrt{\left(\mathrm{b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}\right)^{2}+\left(\mathrm{c}_{1} \mathrm{a}_{2}-\mathrm{c}_{2} \mathrm{a}_{2}\right)^{2}}+\left(\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}\right)^{2}}$
the standard form of a pair of Cartesian lines is:
$\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$
And the given equations are:
$\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{-2}=\frac{y-5}{-2}=\frac{2-7}{1}$
Now let us compare the given equation with the standard form we get,
$X_{1}=-1, y_{1}=-1 . Z_{1}=-1$:
$\mathrm{X}_{2}=3, \mathrm{y}_{2}=5, \mathrm{Z}_{2}=7$
$a_{1}=7, b_{1}=-6, c_{1}=1$:
$\mathrm{a}_{2}=1, \mathrm{~b}_{2}=-2, \mathrm{c}_{2}=1$
Now, consider
$\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=\left|\begin{array}{ccc}3-(-1) & 5-(-1) & 7-(-1) \\ 7 & -6 & 1 \\ 1 & -2 & 1\end{array}\right|=\left|\begin{array}{ccc}3+1 & 5+1 & 7+1 \\ 7 & -6 & 1 \\ 1 & -2 & 1\end{array}\right|$
$=\left|\begin{array}{ccc}4 & 6 & 8 \\ 7 & -6 & 1 \\ 1 & -2 & 1\end{array}\right|$
$=4(-6+2)-6(7-1)+8(-14+6)$
$=4(4)-6(6)+8(-5)$
$=-16-36-64$
$=-116$
Now we shall consider
$=\sqrt{((-6 \times 1)-(-2 \times 1))^{2}+((1 \times 1)-(1 \times 7))^{2}+((7 x-2)-(1 x-6))^{2}}$
$=\sqrt{\left((-6 \times 2)^{2}+(1-7)^{2}+(-14+6)^{2}\right.}=\sqrt{(-4)^{2}+(-6)^{2}+(-8)^{2}}$
$=\sqrt{16+36+64}=\sqrt{116}$
By substituting all the values in equation (1), we get
the shortest distance between the two lines,
$d=\left|\frac{-116}{\sqrt{116}}\right|=\frac{116}{\sqrt{116}}=\sqrt{116}=2 \sqrt{29}$
\therefore The shortest distance is $2 \sqrt{29}$

Question 16

Find the shortest distance between the lines whose vector equations are $\vec{r}=\overrightarrow{a_{1}}+\lambda(\vec{i}-3 \vec{j}+2 \vec{k})$ and
$\vec{r}=4 \vec{i}+5 j-6 k+\mu(2 i+3 j+k)$

Solution:

We know that shortest distance between two lines
$\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{\mathrm{a}_{2}}+\mu \overrightarrow{b_{2}}$ is given as:
$\mathrm{d}=\left|\frac{\overrightarrow{\left(\overrightarrow{b_{1}} \times \overrightarrow{x_{2}}\right),\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}| | \overrightarrow{\mathrm{b}_{1} \times \overrightarrow{\mathrm{b}_{2}}} \mid}{}\right|$
Here by comparing the equation we get,
$\overrightarrow{a_{1}}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}, \overrightarrow{b_{1}}=\hat{\imath}-3 \hat{\jmath}+2 \hat{k}$ and
$\overrightarrow{\mathrm{a}_{2}}=4 \hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}_{2}}=2 \hat{\imath}-3 \hat{\jmath}+\hat{k}$
Now let us subtract the above equations we get,
$\left(x_{1} \hat{\imath}+y_{1} \hat{\jmath}+z_{1} \hat{k},\right)-\left(x_{2} \hat{1}+y_{2} \hat{\jmath}+z_{2} \hat{k},\right)=\left(x_{1}-x_{2}\right) \hat{\imath}+\left(y_{1}-y_{2}\right) \hat{\jmath}+\left(z_{1}+z_{2}\right) \hat{k}$
$\overrightarrow{a_{2}}-\overrightarrow{a_{1}}=(4 \hat{\imath}+5 \hat{\jmath}+6 \hat{k})-(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})=3 \hat{\imath}+3 \hat{\jmath}+3 \hat{k} \ldots(2)$
And,
$\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=(\hat{\imath}+3 \hat{\jmath}+2 \hat{\mathrm{k}}) \times(2 \hat{\imath}+3 \hat{\jmath}+\hat{\mathrm{k}})$
$=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 1 & -3 & 2 \\ 2 & 3 & 1\end{array}\right|$
$=-9 \hat{\imath}+3 \hat{\jmath}+9 \hat{k}$
$\Rightarrow \overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=-9 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+9 \hat{\mathrm{k}}$ \qquad
$\Rightarrow\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|=\sqrt{(-9)^{2}+3^{2}+9^{2}}=\sqrt{81+9+81}=\sqrt{171}=3 \sqrt{19}$

Now by multiply equation (2) and (3) we get,
$\left(a_{1} \hat{\imath}+b_{1} \hat{\jmath}+c_{1} \hat{k}\right),\left(a_{2} \hat{\imath}+b_{2} \hat{\jmath}+c_{2} \hat{k}\right)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}$ $\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right),\left(\overrightarrow{a_{1}}-\overrightarrow{a_{2}}\right)=(-9 \hat{\imath}+3 \hat{\jmath}+9 \hat{k}) \cdot(3 \hat{\imath}+3 \hat{\jmath}+3 \hat{k})=-27+9+27=9$
By substituting all the values in equation (1), we obtain
The shortest distance between the two lines.
$\mathrm{d}=\left|\frac{9}{3 \sqrt{19}}\right|=\frac{9}{3 \sqrt{19}}=\frac{3}{\sqrt{19}}$
\therefore The shortest distance is $3 \sqrt{19}$

Question 17

Find the shortest distance between the lines whose vector equation are
$\vec{r}=(1-t) i ̂+(t-2) \hat{j}+(3-2 t) \hat{k}$ and
$\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{\jmath}-(2 s+1) \hat{k}$

Solution:

Firstly, let us consider the given equations
$\Rightarrow \vec{r}=(1-t) \hat{\imath}+(\mathrm{t}-2) \hat{\mathrm{j}}+(3-2 \mathrm{t}) \hat{\mathrm{k}}$
$\vec{r}=\hat{\imath}-t \hat{\imath}+t \hat{\jmath}-2 \hat{\jmath}+3 \hat{k}-2 \hat{k}$
$\vec{r}=\hat{\mathrm{i}}-2 \hat{\mathrm{\jmath}}+3 \hat{\mathrm{k}}+\mathrm{t}(-\hat{\mathrm{i}}+\mathrm{j}-2 \mathrm{k})$
$\Rightarrow \vec{r}=(\mathrm{s}+1) \hat{\imath}+(2 \mathrm{~s}-1) \hat{\mathrm{\jmath}}-(2 \mathrm{~s}+1) \hat{\mathrm{k}}$
$\vec{r}=s \hat{\imath}+\hat{\imath}+2 \mathrm{~s} \hat{\jmath}-\hat{\jmath}-2 \mathrm{~s} \hat{k}-\hat{k}$
$\vec{r}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}+\mathrm{s}(\hat{\mathrm{i}}+2 \mathrm{j}-2 \mathrm{k})$
So now we need to find the shortest distance between
$\vec{r}=\hat{\imath}-2 \mathrm{j}+3 \mathrm{k}+\mathrm{t}(-\hat{\imath}+\hat{\jmath}-2 \hat{k})$ and $\hat{\mathrm{r}}=\hat{\mathrm{i}}-\hat{\jmath}-\hat{k}+\mathrm{s}(\hat{\mathrm{i}}+2 \mathrm{j}-2 \mathrm{k})$
We know that shortest distance between two lines
$\vec{r}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}_{1}}$ and $\vec{r}=\overrightarrow{\mathrm{a}_{2}}+\mu \overrightarrow{\mathrm{b}_{2}}$ is given as:

$d=\left|\frac{\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right),\left(\overrightarrow{a_{1}}-\overrightarrow{a_{2}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|$
Here by comparing the equations we get,
$\overrightarrow{a_{1}}=\hat{\imath}-2+3 k, \overrightarrow{b_{1}}=-\hat{\imath}+j-2 k$ and
$\overrightarrow{a_{1}}=\hat{i}-j-k, \overrightarrow{b_{2}}=\hat{i}+2 j-2 k$
Since,
$\left(x_{1} \hat{1}+y_{1} \hat{\jmath}+Z_{1} \hat{k}\right)-\left(x_{2} \hat{\imath}+y_{2} j+z_{2} \hat{k}\right)=\left(x_{1}-x_{2}\right) \hat{\imath}+\left(y_{1}-y_{2}\right) \hat{\jmath}+\left(z_{1}-z_{2}\right) \hat{k}$
So,
$\overrightarrow{a_{1}}-\overrightarrow{a_{2}}=(\hat{1}-\hat{\jmath}-\hat{k})-(\hat{\imath}-2 \hat{\jmath}+3 \hat{k})=\hat{\jmath}-4 \hat{k}$
And,
$\overrightarrow{\mathrm{b}_{1}} \mathrm{x} \overrightarrow{\mathrm{b}_{2}}=(-\hat{\imath}+\hat{\jmath}-2 \hat{\mathrm{k}}) \times(\hat{\mathrm{i}}+2 \hat{\jmath}-2 \hat{\mathrm{k}})$
$=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2\end{array}\right|$
$=2 \hat{\mathrm{I}}-4 \hat{\mathrm{~J}}-3 \hat{\mathrm{k}}$
$=>\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=2 \hat{\mathrm{I}}-4 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
$\Rightarrow\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|=\sqrt{2^{2}+(-4)^{2}+(-3)^{2}}=\sqrt{4+16+9}=\sqrt{29}$
Now, by multiplying equation (2) and (3) we get,
$\left(a_{1} \hat{\imath}+b_{1} \hat{\jmath}+c_{1} \hat{k}\right),\left(a_{2} \hat{\imath}+b_{2} \hat{\jmath}+c_{2} \hat{k}\right)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}$
$\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right),\left(\overrightarrow{\mathrm{a}_{1}}-\overrightarrow{\mathrm{a}_{2}}\right)=(2 \hat{\imath}-4 \hat{\jmath}-3 \hat{\mathrm{k}}),(\hat{\jmath}-4 \hat{\mathrm{k}})=-4+12=8$
By substituting all the values in equation (1), we obtain
The shortest distance between the two lines.
$\mathrm{d}=\left|\frac{8}{\sqrt{29}}\right|=\frac{8}{\sqrt{29}}$
\therefore The shortest distance is $8 \sqrt{29}$

Exercise 11.3

Question 1

In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
(a) $\mathrm{z}=2$
(b) $x+y+z=1$
(c) $2 x+3 y-z=5$
(d) $5 y+8=0$

Solution:
(a) $\mathrm{z}=2$

Given:
The equation of the plane, $\mathrm{z}=2$ or $0 \mathrm{x}+0 \mathrm{y}+\mathrm{z}=2$.... (1)
Direction ratio of the normal $(0,0,1)$
By using the formula,
$\sqrt{[(0)} 2+(0) 2+(1) 2]=\sqrt{ } 1$
$=1$
Now,
Divide both the sides of equation (1) by 1 , we get
$0 x /(1)+0 y /(1)+z / 1=2$
So, this is of the form $\mathrm{lx}+\mathrm{my}+\mathrm{nz}=\mathrm{d}$
Where, $\mathrm{l}, \mathrm{m}, \mathrm{n}$ are the direction cosines and d is the distance
\therefore The direction cosines are $0,0,1$
Distance (d) from the origin is 2 units
(b) $x+y+z=1$

Given:
The equation of the plane, $x+y+z=1 \ldots$.... (1)
Direction ratio of the normal $(1,1,1)$
By using the formula,
$\sqrt{[(1) 2+(1) 2+(1) 2]}=\sqrt{3}$
Now,
Divide both the sides of equation (1) by $\sqrt{ } 3$, we get
$x /(\sqrt{3})+y /(\sqrt{3})+z /(\sqrt{3})=1 / \sqrt{3}$
So, this is of the form $l x+m y+n z=d$
Where, $\mathrm{l}, \mathrm{m}, \mathrm{n}$ are the direction cosines and d are the distance
\therefore The direction cosines are $1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3}$
Distance (d) from the origin is $1 / \sqrt{ } 3$ units
(c) $2 x+3 y-z=5$

Given:
The equation of the plane, $2 x+3 y-z=5 \ldots$... (1)
Direction ratio of the normal $(2,3,-1)$
By using the formula,
$\sqrt{ }[(2) 2+(3) 2+(-1) 2]=\sqrt{ } 14$
Now,
Divide both the sides of equation (1) by $\sqrt{ } 14$, we get
$2 x /(\sqrt{14})+3 y /(\sqrt{14})-z /(\sqrt{14})=5 / \sqrt{14}$
So, this is of the form $l x+m y+n z=d$
Where, $\mathrm{l}, \mathrm{m}, \mathrm{n}$ are the direction cosines and d is the distance
\therefore The direction cosines are $2 / \sqrt{ } 14,3 / \sqrt{ } 14,-1 / \sqrt{ } 14$
Distance (d) from the origin is $5 / \sqrt{ } 14$ units
(d) $5 y+8=0$

Given:
The equation of the plane, $5 y+8=0$
$-5 y=8$ or
$0 x-5 y+0 z=8$
Direction ratio of the normal ($0,-5,0$)
By using the formula,
$\sqrt{ }[(0) 2+(-5) 2+(0) 2]=\sqrt{ } 25=5$
Now,
Divide both the sides of equation (1) by 5 , we get
$0 x /(5)-5 y /(5)-0 z /(5)=8 / 5$
So, this is of the form $\mathrm{lx}+\mathrm{my}+\mathrm{nz}=\mathrm{d}$
Where, $\mathrm{l}, \mathrm{m}, \mathrm{n}$ are the direction cosines and dare the distance
\therefore The direction cosines are $0,-1,0$
Distance (d) from the origin is $8 / 5$ units

Question 2

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector. $3 \hat{\mathbf{\imath}}+5 \hat{\mathbf{j}}-6 \hat{\mathbf{k}}$.

Solution:

Given:
The vector $3 \hat{\mathrm{I}}+5 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}$.
Vector eq. of the plane with position vector \vec{r} is
r. $. \hat{n}=\mathrm{d}$.

So,

$$
\begin{align*}
\hat{n} & =\frac{\vec{n}}{\vec{n}}=\frac{3 \hat{1}+5 \hat{\jmath}-6 k}{\sqrt{9+25+36}} \tag{1}\\
& =\frac{3 \hat{\uparrow}+5 \hat{\jmath}-6 k}{\sqrt{70}}
\end{align*}
$$

Substituting in equation (1), we get
$\vec{r} \cdot \frac{3 \hat{1}+5 \hat{\jmath}-6 k}{\sqrt{70}}=7 \sqrt{70}$
$\vec{r} \cdot 3 \hat{\mathrm{I}}+5 \overrightarrow{\mathrm{j}}-6 \mathrm{k}=7 \sqrt{70}$
\therefore The equation vector equation is $\vec{r}, 3 \hat{\mathrm{I}}+5 \overrightarrow{\mathrm{j}}-6 \mathrm{k}=7 \sqrt{70}$

Question 3

Find the Cartesian equation of the following planes:
(a) $\vec{r}(\hat{\mathbf{I}}+\overrightarrow{\mathbf{j}}-\mathbf{k})=\mathbf{2}$

Solution:

Given:
The equation of the plane.
Let \vec{r} be the position vector o8f $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is given by

$$
\vec{r}=x \hat{I}+y \hat{\jmath}+z \hat{k}
$$

So,
$\vec{r}(\hat{I}+\hat{\jmath}-\hat{k})=2$
Substituting the value of \vec{r}. we get
$(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot(\hat{\imath}+\hat{\jmath}-\hat{k})=2$
\therefore The Cartesian equation is
$x+y-z=2$
(b) $\vec{r} \cdot(2 \hat{\mathbf{I}}+\overrightarrow{3 \mathrm{j}}-4 \mathbf{k})=1$

Solution:

Let \vec{r} be the position vector of $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is given by
$\vec{r}=\mathrm{x} \hat{\imath}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{k}$
So,
$\vec{r}(2 \hat{I}+3 \hat{\jmath}-4 \hat{\mathrm{k}})=1$
Substituting the value of \vec{r}, we get
$(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot(2 \hat{\mathrm{I}}+3 \hat{\jmath}-4 \hat{k})=1$
\therefore The Cartesian equation is
$2 x+3 y-4 z=1$
(c) $\vec{r} \cdot[(s-2 t) \hat{I}+(3-t) \hat{\jmath}+(2 s+t) \hat{k}]=15$

Solution:
Let \vec{r} be the position vector of $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is given by
$\vec{r}=x \hat{\mathrm{I}}+y \hat{\jmath}+z \hat{k}$
So,
$\vec{r}[(s-2 t) \hat{i}+(3-t) \vec{j}+(2 s+t) k]=15$
Substituting the value of \vec{r}, we get
$(x \hat{\mathrm{I}}+\mathrm{y} \hat{\jmath}+\mathrm{z} \hat{k}) \cdot[(\mathrm{s}-2 \mathrm{t}) \hat{\imath}+(3-\mathrm{t}) \hat{\jmath}+(2 \mathrm{~s}+\mathrm{t}) \hat{k}]=15$
\therefore The Cartesian equation is
$(s-2 t) x+(3-t) y+(2 s+t) z=15$

Question 4

In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
(a) $2 x+3 y+4 z-12=0$
(b) $3 y+4 z-6=0$
(c) $x+y+z=1$
(d) $5 \mathrm{y}+8=0$

Solution:
(a) $2 x+3 y+4 z-12=0$

Let the coordinate of the foot of $\perp P$ from the origin to the given plane be $P(x, y, z) .2 x+3 y+4 z=12$ (1)
Direction ratio are $(2,3,4)$
$\sqrt{ }\left[(2)^{2}+(3)^{2}+(4)^{2}\right]=\sqrt{ }(4+9+16)$
$=\sqrt{29}$
Now,
Divide both the sides of equation (1) by $\sqrt{29}$, we get
$2 x /(\sqrt{29})+3 y /(\sqrt{29})+4 z /(\sqrt{29})=12 / \sqrt{29}$
So, this is of the form $\mathrm{lx}+\mathrm{my}+\mathrm{nz}=\mathrm{d}$
Where, $\mathrm{l}, \mathrm{m}, \mathrm{n}$ are the direction cosines and dare the distance
\therefore The direction cosines are $2 / \sqrt{ } 29,3 / \sqrt{ } 29,4 / \sqrt{ } 29$
Coordinate of the foot $(\mathrm{ld}, \mathrm{md}, \mathrm{nd})=$
$=[(2 / \sqrt{ } 29)(12 / \sqrt{ } 29),(3 / \sqrt{29})(12 / \sqrt{ } 29),(4 / \sqrt{ } 29)(12 / \sqrt{ } 29)]$
$=24 / 29,36 / 29,48 / 29$
(b) $3 y+4 z-6=0$

Let the coordinate of the foot of $\perp P$ from the origin to the given plane be $P(x, y, z) .0 x+3 y+4 z=6$ (1)
Direction ratio are ($0,3,4$)
$\sqrt{ }\left[(0)^{2}+(3)^{2}+(4)^{2}\right]=\sqrt{ }(0+9+16)$
$=\sqrt{25}$
$=5$
Now,
Divide both the sides of equation (1) by 5 , we get
$0 x /(5)+3 y /(5)+4 z /(5)=6 / 5$
So, this is of the form $\mathrm{lx}+\mathrm{my}+\mathrm{nz}=\mathrm{d}$
Where, $\mathrm{l}, \mathrm{m}, \mathrm{n}$ are the direction cosines and d is the distance
\therefore The direction cosines are $0 / 5,3 / 5,4 / 5$
Coordinate of the foot (ld, md, nd) =
$=[(0 / 5)(6 / 5),(3 / 5)(6 / 5),(4 / 5)(6 / 5)]$
$=0,18 / 25,24 / 25$
(c) $x+y+z=1$

Let the coordinate of the foot of $\perp P$ from the origin to the given plane be $P(x, y, z) . x+y+z=1$
Direction ratio are ($1,1,1$)
$\sqrt{ }\left[(1)^{2}+(1)^{2}+(1)^{2}\right]$
$=\sqrt{ }(1+1+1)$
$=\sqrt{3}$
Now,

Divide both the sides of equation (1) by $\sqrt{ } 3$, we get
$1 \mathrm{x} /(\sqrt{3})+1 \mathrm{y} /(\sqrt{3})+1 \mathrm{z} /(\sqrt{3})$
$=1 / \sqrt{3}$ So this is of the form $l x+m y+n z$
$=\mathrm{d}$ Where, $\mathrm{l}, \mathrm{m}, \mathrm{n}$ are the direction cosines and d are the distance
\therefore The direction cosines are $1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3}$
Coordinate of the foot (ld, md, nd) =
$=[(1 / \sqrt{3})(1 / \sqrt{3}),(1 / \sqrt{3})(1 / \sqrt{3}),(1 / \sqrt{3})(1 / \sqrt{3})]$
$=1 / 3,1 / 3,1 / 3$
(d) $5 y+8=0$

Let the coordinate of the foot of $\perp \mathrm{P}$ from the origin to the given plane be $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z}) .0 \mathrm{x}-5 \mathrm{y}+0 \mathrm{z}=8 \ldots$.
(1)

Direction ratio are ($0,-5,0$)
$\sqrt{ }[(0) 2+(-5) 2+(0) 2]=\sqrt{ }(0+25+0)$
$=\sqrt{ } 25$
$=5$
Now,
Divide both the sides of equation (1) by 5 , we get
$0 x /(5)-5 y /(5)+0 z /(5)=8 / 5$
So, this is of the form $\mathrm{lx}+\mathrm{my}+\mathrm{nz}=\mathrm{d}$
Where, $\mathrm{l}, \mathrm{m}, \mathrm{n}$ are the direction cosines and d is the distance
\therefore The direction cosines are $0,-1,0$
Coordinate of the foot $(\mathrm{ld}, \mathrm{md}, \mathrm{nd})=$

$$
\begin{aligned}
& =[(0 / 5)(8 / 5),(-5 / 5)(8 / 5),(0 / 5)(8 / 5)] \\
& =0,-8 / 5,0
\end{aligned}
$$

Question 5

Find the vector and Cartesian equations of the planes
(a) that passes through the point $(1,0,-2)$ and the normal to the plane is $\hat{i}+\hat{\jmath}-\widehat{\boldsymbol{k}}$,
(b) that passes through the point $(1,4,6)$ and the normal vector to the plane isî $-2 \hat{\mathbf{\jmath}}+\widehat{\boldsymbol{k}}$,

Solution:

(a) that passes through the point $(1,0,-2)$ and the normal to the plane is

$$
\hat{\imath}+\hat{\jmath}-\hat{k},
$$

Let the position vector of the point $(1,0,-2)$ be
$\vec{a}=(l i ̂-\widehat{0} j+2 k)$
We know that Normal $\mathrm{N} \perp$ to the plane is given as:
$\vec{N}=\hat{\imath}+\hat{\jmath}-\mathrm{k}$
Vector equation of the plane is given as:
$(\vec{r}-\vec{a}) \cdot \vec{N}=0$
Now,
$\mathrm{x}-1-2 \mathrm{y}+8+\mathrm{z}-6=0$
$x-2 y+z+1=0$
$x-2 y+z=-1$
\therefore The required Cartesian equation of the plane is $\mathrm{x}-2 \mathrm{y}+\mathrm{z}=-1$
$(\vec{r}-(\hat{\imath}-2 \mathrm{k})) \cdot \hat{\mathrm{i}}+\overrightarrow{\mathrm{j}}-\mathrm{k}=0$
Since,

$$
\vec{r}=x \hat{l}+y \vec{\jmath}+z k
$$

So, equation (1) becomes,
$(x \hat{l}+y \vec{j}+z k-\hat{\imath}+2 \hat{k}) \cdot \hat{\mathrm{l}}+\hat{\mathrm{j}}-\mathrm{k}=0$
$[(x-1)=\hat{\imath}+y \hat{\jmath}+(z+2) k] . \hat{i}+\hat{\jmath}-k=0$
$x-1+y-z-2=0$
$x+y-z-3=0$
\therefore The required Cartesian equation of the plane is $\mathrm{x}+\mathrm{y}-\mathrm{z}=3$
(b) That passes through the point $(1,4,6)$ and the normal vector to the plane is $\hat{\imath}-2 \hat{\jmath}+\hat{k}$
Let the position vector of the point $(1,0,-2)$ be
$\vec{a}=\left(\mathrm{li}^{\wedge}-(2 \mathrm{j})^{\wedge}+6 \mathrm{k}\right)$
We know that the normal $\overrightarrow{\mathrm{N}} \perp$ to the plane is given as:
$\vec{N}=\hat{i}-\widehat{2} \mathrm{j}+\mathrm{k}$
Vector equation of the plane is given as:
$(\vec{r}-\vec{a}) \cdot \vec{N}=0$

Now,
(1)
$(\vec{r}-(l \hat{\imath}+4 \hat{\jmath}+6 k)) \cdot \hat{\imath}-2 \hat{\jmath}+k=0$

$$
\begin{equation*}
\vec{r}=x \hat{\imath}+y \hat{\jmath}+\mathrm{zk} \tag{1}
\end{equation*}
$$

So, equation (1) becomes,
$(x \hat{\imath}+y \hat{\jmath}+z \hat{k}-\hat{\imath}-4 \hat{\jmath}-6 \hat{k}) . \hat{\imath}-2 \hat{\jmath}+\mathrm{k}=0$
$[(x-1) \hat{\imath}+(y-4) \hat{\jmath}+(z-6) k] . \hat{\imath}-2 \hat{\jmath}+k=0$
$\mathrm{x}-1-2 \mathrm{y}+8+\mathrm{z}-6=0$
$\mathrm{x}-2 \mathrm{y}+\mathrm{z}+1=0$
$x-2 y+z=-1$
\therefore The required Cartesian equation of the plane is $\mathrm{x}-2 \mathrm{y}+\mathrm{z}=-1$

Question 6

Find the equations of the planes that passes through three points. 0
(a) $(1,1,-1),(6,4,-5),(-4,-2,3)$
(b) $(1,1,0),(1,2,1),(-2,2,-1)$

Solution:

Given:
The points are $(1,1,-1),(6,4,-5),(-4,-2,3)$
Let,
$=\left|\begin{array}{ccc}1 & 1 & -1 \\ 6 & 4 & -5 \\ -4 & -2 & 3\end{array}\right|$
$=1(12-10)-1(18-20)-1(-12+16)$
$=2+2-4$
$=0$
Since, the value of determinant is 0 .
\therefore The points are collinear as there will be infinite planes passing through the given 3 points.
(b) $(1,1,0),(1,2,1),(-2,2,-1)$

The given points are $(1,1,0),(1,2,1),(-2,2,-1)$.
Let,
$=\left|\begin{array}{ccc}1 & 1 & 0 \\ 1 & 2 & 1 \\ -2 & 2 & -1\end{array}\right|$
$=1(-2-2)-1(-1+2)$
$=-4-1$
$=-5 \neq 0$
Since, there passes a unique plane from the given 3 points.
Equation of the plane passing through the points, $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right)$, i.e.,
$=\left|\begin{array}{ccc}x-x_{1} & y-y_{1} & z-z_{1} \\ x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}\end{array}\right|$
Let us substitute the values and simplify
$=\left|\begin{array}{ccc}x-1 & y-1 & z \\ x_{2}-1 & y_{2}-1 & z_{2} \\ x_{3}-1 & y_{3}-1 & z_{3}\end{array}\right|$
$=\left|\begin{array}{ccc}x-1 & y-1 & z \\ 1-1 & 2-1 & 1 \\ -2-1 & 2-1 & -1\end{array}\right|$
$=\left|\begin{array}{ccc}x-1 & y-1 & z \\ 0 & 1 & 1 \\ -3 & 1 & -1\end{array}\right|$
$=>(x-1)(-2)-(y-1)(3)+3 z=0$
$=>-2 x+2-3 y+3+3 z=0$
$=2 x+3 y-3 z=5$
\therefore The required equation of the plane is $2 \mathrm{x}+\mathrm{y}-\mathrm{z}=5$.

Question 7

Find the intercepts cut off by the plane $2 x+y-z=5$.
Solution:
Given:
The plane $2 \mathrm{x}+\mathrm{y}-\mathrm{z}=5$
Let us express the equation of the plane in intercept form
$\mathrm{x} / \mathrm{a}+\mathrm{y} / \mathrm{b}+\mathrm{z} / \mathrm{c}=1$
Where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is the intercepts cut-off by the plane at x, y and z axes respectively.
$2 \mathrm{x}+\mathrm{y}-\mathrm{z}=5$
Now divide both the sides of equation (1) by 5 , we get
$2 \mathrm{x} / 5+\mathrm{y} / 5-\mathrm{z} / 5=5 / 5$
$2 \mathrm{x} / 5+\mathrm{y} / 5-\mathrm{z} / 5=1$
$x /(5 / 2)+y / 5+z /(-5)=1$
Here, $\mathrm{a}=5 / 2, \mathrm{~b}=5$ and $\mathrm{c}=-5$
\therefore The intercepts cut-off by the plane are $5 / 2,5$ and -5 .

Question 8

Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane. Solution:

We know that the equation of the plane ZOX is $\mathrm{y}=0$
So, the equation of plane parallel to ZOX is of the form, $y=a$
Since the y -intercept of the plane is $3, \mathrm{a}=3$
\therefore The required equation of the plane is $\mathrm{y}=3$

Question 9

Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+$ $y+z-2=0$ and the point $(2,2,1)$.

Solution:

Given:
Equation of the plane passes through the intersection of the plane is given by
$(3 x-y+2 z-4)+\lambda(x+y+z-2)=0$ and the plane passes through the points $(2,2,1)$.
So, $(3 \times 2-2+2 \times 1-4)+\lambda(2+2+1-2)=0$
$2+3 \lambda=0$
$3 \lambda=-2$
$\lambda=-2 / 3$
(1)

Upon simplification, the required equation of the plane is given as $(3 x-y+2 z-4)-2 / 3(x+y+z-2)$ $=0$
$(9 x-3 y+6 z-12-2 x-2 y-2 z+4) / 3=0$
$7 x-5 y+4 z-8=0$
\therefore The required equation of the plane is $7 \mathrm{x}-5 \mathrm{y}+4 \mathrm{z}-8=0$

Question 10

Find the vector equation of the plane passing through the intersection of the planes \vec{r}. ($2 \hat{\mathbf{I}}+$ $2 \overrightarrow{\mathbf{j}}-3 \mathrm{k})=7 \vec{r} \cdot(2 \hat{I}+5 \overrightarrow{\mathbf{j}}+3 \hat{k})=9$
And through the point $(2,1,3)$.
Solution:
Let the vector equation of the plane passing through the intersection of the plane are
$\vec{r} \cdot(2 \hat{\mathrm{I}}+2 \overrightarrow{\mathrm{j}}-3 \hat{k})=7$ and $\vec{r} \cdot(2 \hat{\mathrm{I}}+5 \overrightarrow{\mathrm{j}}+3 \hat{k})=9$
Here.
$\vec{r}(2 \hat{I}+2 \vec{\jmath}-3 \hat{k})-7=0$
$\vec{r}(2 \hat{\imath}+5 \vec{\jmath}+3 \hat{k})-9=0$
The equation of any plane through the intersection off the planes given in equations (1) and (2) is given by,
$[\vec{r}(2 \hat{I}+2 \vec{\jmath}-3 \hat{k})-7]+\lambda[\vec{r}(2 \hat{I}+5 \overrightarrow{\mathrm{j}}+3 \hat{k})-9]=0$
$\vec{r}[(2 \hat{I}+2 \vec{\jmath}-3 \mathrm{k})+(2 \lambda \hat{I}+5 \lambda \vec{\jmath}+3 \lambda \hat{k})]-7-9 \lambda=0$
$\vec{r}[(2+2 \lambda) \hat{I}+(2+5 \lambda) \vec{j}+(-3+3 \lambda) \mathrm{k}]-7-9 \lambda=0$
Since the plane passes through points $(2,1,3)$
$(2 \hat{I}+2 \hat{\jmath}-3 \hat{k}) \cdot[(2+2 \lambda) \hat{I}+(2+5 \lambda) \vec{\jmath}+(-3+3 \lambda) \hat{k}]-7-9 \lambda=0$
$4+4 \lambda+2+5 \lambda-9+9 \lambda-7-9 \lambda=0$
$9 \lambda=10$
$\lambda=10 / 9$
Sow, substituting $\lambda=10 / 9$ in equation (1) we get
$\vec{r} \cdot\left[\left(2+\frac{20}{9}\right) \hat{\imath}+\left(2+\frac{50}{9}\right) \hat{\jmath}+\left(-3+\frac{30}{9}\right) \hat{\mathrm{k}}\right]-7-9 \frac{10}{9}=0$
$\vec{r} \cdot\left[\left(2+\frac{20}{9}\right) \hat{\imath}+\left(2+\frac{50}{9}\right) \hat{\jmath}+\left(-3+\frac{30}{9}\right) \hat{k}\right]-17=0$
$\vec{r} \cdot\left[\left(2+\frac{20}{9}\right) \hat{\imath}+\left(2+\frac{50}{9}\right) \hat{\jmath}+\left(-3+\frac{30}{9}\right) \hat{k}\right]=17$
$\vec{r} \cdot\left\lceil\frac{38}{9} \hat{\imath}+\frac{68}{9} \hat{\jmath}+\frac{3}{9} \hat{k}\right\rceil=17$
$\vec{r} \cdot[38 \hat{\imath}+68 \hat{\jmath}+3 \hat{k}]=153$
\therefore The required equation of the plane is $\vec{r}[38 \hat{\imath}+68 \hat{\jmath}+3 \hat{k}]=153$

Question 11

Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $\mathbf{2 x}$ $+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$.

Solution:

Let the equation of the plane that passes through the two - given planes
$x+y+z=1$ and $2 x+3 y+4 z=5$ is
$(x+y+z-1)+\lambda(2 x+3 y+4 z-5)=0$
$(2 \lambda+) x+(3 \lambda+1) y+(4 \lambda+1) z-1-5 \lambda=0$
So, the direction ratio of the plane is $(2 \lambda+1,3 \lambda+1,4 \lambda+1)$
And direction ratio of another plane is ($1,-1,1$)
Since, both the planes are \perp
So, by substituting in $\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0$
$(2 \lambda+1-3 \lambda-1+4 \lambda+1=0$
$2 \lambda+1-3 \lambda-1+4 \lambda+1=0$
$3 \lambda+1=0$
$\Lambda=-1 / 3$
Substitute the value of λ in equation (1) we get,
$\left(2 \frac{(-1)}{3}+1\right) x+\left(3 \frac{(-1)}{3}+1\right) y+\left(4 \frac{(-1)}{3}+1\right) z-1-5 \frac{(-1)}{3}=0$
$\frac{1}{3} \mathrm{x}-\frac{1}{3} \mathrm{z}+\frac{2}{3}=0$
$x-z+2=0$
\therefore The required equation of the plane is $\mathrm{x}-\mathrm{z}+2=0$

Ouestion 12

Find the angle between the planes whose vector equations are
$\vec{r} .(2 \hat{\imath}+2 \vec{\jmath}-3 \widehat{k})=5, \vec{r}(3 \hat{\mathbf{I}}-3 \vec{\jmath}-5 \widehat{k})=3$.

Solution:

Given:
The equation of the given planes is
$\vec{r} \cdot(2 \hat{\imath}+2 \vec{\jmath}-3 \hat{k})=5$ and $\vec{r}(3 \hat{I}-3 \vec{\jmath}+5 \hat{k})=5$

If n_{1} and n_{2} are normal to the planes, then
$\overrightarrow{r_{1}}, \overrightarrow{n_{1}}=\mathrm{d}_{2}$ and $\overrightarrow{r_{2}} \cdot \overrightarrow{n_{2}}=\mathrm{d}_{2}$
Angle between two planes is given as
$\left.\operatorname{Cos} \theta=\left|\frac{\overrightarrow{n_{1}}}{\left|\overrightarrow{n_{1}}\right|}\right| \overrightarrow{n_{2}} \right\rvert\,$
$=\left|\frac{6-6-15}{\sqrt{4+4+9} \sqrt{9+9+25}}\right|$
$=\left|\frac{-15}{\sqrt{17} \sqrt{43}}\right|$
$\theta=\operatorname{Cos}^{-1}\left(\frac{15}{\sqrt{17} \sqrt{43}}\right)$
$=\cos ^{-1}\left(\frac{15}{\sqrt{731}}\right)$
\therefore The angle is $\cos ^{-1}(15 / \sqrt{731})$

Question 13

In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
(a) $7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$
(b) $2 x+y+3 z-2=0$ and $x-2 y+5=0$
(c) $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$
(d) $2 \mathrm{x}-2 \mathrm{y}+4 \mathrm{z}+5=0$ and $3 \mathrm{x}-3 \mathrm{y}+6 \mathrm{z}-1=0$
(e) $4 x+8 y+z-8=0$ and $y+z-4=0$

Solution:

(a) $7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$

Given:
The equation of the given planes are

$7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$
Two planes are \perp if the direction ratio of the normal to the plane is
a1a2 + b1b2 $+\mathrm{c} 1 \mathrm{c} 2=0$
21-5-60
$-44 \neq 0$
Both the planes are not \perp to each other.
Now, two planes are || to each other if the direction ratio of the normal to the plane is
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
$\frac{7}{3} \neq \frac{5}{-1} \neq \frac{6}{-10}$ [both the planes are not ||to each other]
Now, the angle between them is given by
$\operatorname{Cos} \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}{ }^{2} b_{1}{ }^{2} c_{1}{ }^{2} \sqrt{a_{2}{ }^{2} b_{2}{ }^{2} c_{2}{ }^{2}}}}\right|$
$\operatorname{Cos} \theta=\frac{-44}{\sqrt{49+25+36} \sqrt{9+1+100}}$
$=\frac{-44}{\sqrt{110} \sqrt{110}}$
$=\frac{-44}{110}$
$\theta=\cos ^{-1} \frac{2}{5}$
\therefore The angle is $\cos ^{-1}(2 / 5)$
(b) $2 x+y+3 z-2=0$ and $x-2 y+5=0$

Given:
The equation of the given planes are
$2 x+y+3 z-2=0$ and $x-2 y+5=0$
Two planes are \perp if the direction ratio of the normal to the plane is
$\mathrm{a} 1 \mathrm{a} 2+\mathrm{b} 1 \mathrm{~b} 2+\mathrm{c} 1 \mathrm{c} 2=0$
$2 \times 1+1 \times(-2)+3 \times 0=0$
\therefore The given planes are \perp to each other.
(c) $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$

Given:
The equation of the given planes are
$2 \mathrm{x}-2 \mathrm{y}+4 \mathrm{z}+5=0$ and $\mathrm{x}-2 \mathrm{y}+5=0$
We know that, two planes are \perp if the direction ratio of the normal to the plane is $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}$ $=0$
$6+6+2436 \neq 0$
\therefore Both the planes are not \perp to each other. Now let us check, both planes are \| to each other if the direction ratio of the normal to the plane is
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$\frac{2}{3}=\frac{-2}{-3}=\frac{4}{6}$
$\frac{2}{3}=\frac{2}{3}=\frac{2}{3}$
\therefore The given planes are \| to each other.
(d) $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$

Given:
The equation of the given planes are $2 x-y+3 z-1=0$ and $2 x-y+3 z+3=0$
We know that, two planes are \perp if the direction ratio of the normal to the plane is
$\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0$
$2 \times 2+(-1) \times(-1)+3 \times 3$
$14 \neq 0$
\therefore Both the planes are not \perp to each other. Now, let us check two planes are \| to each other if the direction ratio of the normal to the plane is
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
$\frac{2}{2}=\frac{-1}{-1}=\frac{3}{3}$
$\frac{1}{1}=\frac{1}{1}=\frac{1}{1}$
\therefore The given planes are \|| to each other.
(e) $4 x+8 y+z-8=0$ and $y+z-4=0$

Given:
The equation of the given planes are
$4 \mathrm{x}+8 \mathrm{y}+\mathrm{z}-8=0$ and $\mathrm{y}+\mathrm{z}-4=0$
We know that, two planes are \perp if the direction ratio of the normal to the plane is
$\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0$
$0+8+1$
$9 \neq 0$
\therefore Both the planes are not \perp to each other.
Now let us check, two planes are || to each other if the direction ratio of the normal to the plane is $\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$

$$
\frac{4}{0} \neq \frac{8}{1} \neq \frac{1}{1}
$$

\therefore Both the planes are not || to each other
Now let us find the angle between them which is given as
$\operatorname{Cos} \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}{ }^{2} b_{1}{ }^{2} c_{1}{ }^{2}} \sqrt{a_{2}{ }^{2} b_{2}{ }^{2} c_{2}{ }^{2}}}\right|$
$\operatorname{Cos} \theta=\frac{4 \times 0+8 \times 1+1+\times 1}{\sqrt{16+64+1} \sqrt{0+1+1}}$
$=\frac{9}{9 \sqrt{2}}$
$\Theta=\cos ^{-1} \frac{9}{9 \sqrt{2}}$
$=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
$=45^{0}$
\therefore The angle is 45°

Question 14

In the following cases, find the distance of each of the given points from the corresponding given plane.

Point
(a) $(0,0,0)$
(b) $(3,2,1)$
(c) $(2,3,-5)$
(d) $(-6,0,0)$

Plane
$3 x-4 y+12 x=3$
$2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}+3=0$
$\mathrm{X}+2 \mathrm{y}-2 \mathrm{z}=9$
$2 \mathrm{x}-3 \mathrm{y}+6 \mathrm{z}-2=0$

Solution:
(a) point
plane
(0, 0, 0)
$3 x-4 y+2 z=3$

We know that, distance of point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ from the plane $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}-\mathrm{D}=0$ is
Given as:
$d=\left|\frac{A X_{1}+\mathrm{By}_{1}+C Z_{1}-D}{\sqrt{\mathrm{~A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}}}\right|$
Given point is $(0,0,0)$ and the plane Is $3 x-4 y+12 z=3$
$\mathrm{d}=\left|\frac{0+0+0+3}{\sqrt{9+16+144}}\right|$
$=|3 / \sqrt{169}|$
$=3 / 13$
\therefore The distance is $3 / 13$.
(b) Point
(3, -2, 1)

Plane
$2 x-y+2 z+3=0$

We know that, distance of point $P\left(x_{1}, y_{1}, z_{1}\right)$ from the plane $A x+B y+C z-D=0$ is given as:
$d=\left|\frac{A x_{1}+B y_{1}+C z_{1}-D}{\sqrt{A^{2}+B^{2}+C^{2}}}\right|$
Given point is $(3,-2,1)$ and the plane is $2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}+3=0$
$\mathrm{d}=\left|\frac{6+2+2+3}{\sqrt{4+1+4}}\right|$
$=|13 / \sqrt{ } 9|$
$=13 / 3$
\therefore The distance is $13 / 3$.
(c) Point
(2, 3, -5)

Plane
$x+2 y-2 z=9$

We know that, distance of point $P\left(x_{1}, y_{1}, Z_{1}\right)$ from the plane $A x+B y+C z-D=0$ isgiven as:
$\mathrm{d}=\left|\frac{\mathrm{Ax}_{1}+\mathrm{By}_{1}+\mathrm{Cz}_{1}-\mathrm{D}}{\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}}}\right|$
Given point is $(2,3,-5)$ and the plane is $x+2 y-2 z=9$
$\mathrm{d}=\left|\frac{2+6+10-9}{\sqrt{1+4+4}}\right|$
$=|9 / \sqrt{ } 9|$
$=9 / 3$
= 3
\therefore The distance is 3 .
(d) Point

$(-6,0,0)$
Plane
$2 x-3 y+6 z-2=0$
We know that, distance of point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ from the plane $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}-\mathrm{D}=0$ is given as:
$d=\left|\frac{A x_{1}+\mathrm{By}_{1}+\mathrm{Cz}_{1}-\mathrm{D}}{\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}}}\right|$
Given point is $(-6,0,0)$ and the plane is $2 x-3 y+6 z-2=0$
$d=\left|\frac{-12-0+0-2}{\sqrt{4+9+36}}\right|$
$=|14 / \sqrt{ } 49|$
$=14 / 7$
$=2$
\therefore The distance is 2 .

Miscellaneous Exercise

Question 1

Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1),(4,3,-1)$.

Solution:

Let us consider $O A$ be the line joining the origin $(0,0,0)$ and the point $A(2,1,1)$.
And let BC be the line joining the points $\mathrm{B}(3,5,-1)$ and $C(4,3,-1)$
So, the direction ratios of $\mathrm{OA}=(\mathrm{a} 1, \mathrm{~b} 1, \mathrm{c} 1) \equiv[(2-0),(1-0),(1-0)] \equiv(2,1,1)$
And the direction ratios of $\mathrm{BC}=(\mathrm{a} 2, \mathrm{~b} 2, \mathrm{c} 2) \equiv[(4-3),(3-5),(-1+1)] \equiv(1,-2,0)$
Given:
OA is \perp to BC
Now we have to prove that:
For more Info Visit - www.KITest.in
$\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0$
Let us consider LHS: $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}$
$\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{1}+\mathrm{c}_{1} \mathrm{c}_{2}=2 \times 1+1 \times(-2)+1 \times 0$
$=2-2$
$=0$
We know that R.H.S is 0
So LHS = RHS
$\therefore \mathrm{OA}$ is \perp to BC
Hence proved.

Question 2

If $\mathbf{l}_{1}, m_{1}, \mathbf{n}_{1}$ and $\mathbf{l}_{2}, m_{2}, \mathbf{n}_{2}$ are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are ($\left.m_{1} \mathbf{n}_{2}-m_{2} n_{1}\right),\left(n_{1} l_{1-}\right.$ $\mathbf{n}_{2} \mathbf{l}_{1}$), ($\mathbf{l}_{1} \mathrm{~m}_{2}-\mathbf{l}_{2} \mathrm{~m}_{1}$)

Solution:

Let us consider $\mathrm{l}, \mathrm{m}, \mathrm{n}$ be the direction cosines of the line perpendicular to each of the given lines.
Then, $\mathrm{ll} 1+\mathrm{mm} 1+\mathrm{nn} 1=0$
And $\mathrm{ll} 2+\mathrm{mm} 2+\mathrm{nn} 2=0$
Upon solving (1) and (2) by using cross - multiplication, we get

$$
\frac{l}{m_{1} n_{2}-m_{2} n_{1}}=\frac{m}{n_{1} l_{2}-n_{2} l_{1}}=\frac{n}{l_{1} m_{2}-l_{2} m_{1}}
$$

Thus, the direction cosines of the given line are proportional to $\left(m_{1} n_{1}-m_{2} n_{1}\right),\left(n_{1} l_{2}-n_{2} l_{1}\right),\left(l_{1} m_{2}-l_{2} m_{1}\right)$
So, its direction cosines are

$$
\frac{\mathrm{m}_{1} \mathrm{n}_{2}-\mathrm{m}_{2} \mathrm{n}_{1}}{\lambda} \frac{\mathrm{n}_{1} \mathrm{l}_{2}-\mathrm{n}_{2} \mathrm{l}_{1} \mathrm{l}_{1} \mathrm{~m}_{2}-\mathrm{l}_{2} \mathrm{~m}_{1}}{\lambda}
$$

Were
$\lambda=\sqrt{\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}}$
We know that
$\begin{aligned}\left(l_{1}{ }^{2}+m_{1}{ }^{2}+n_{1}{ }^{2}\right) & \left(l_{2}{ }^{2}+m_{2}{ }^{2}+n_{2}{ }^{2}\right)-\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right)^{2} \\ = & \left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}\end{aligned}$
It is given that the given lines are perpendicular to each other.
So, $\mathrm{l}_{1} \mathrm{l}_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}=0$
Also, we have
$\mathrm{l}_{1}^{2}+\mathrm{m}_{1}{ }^{2}+\mathrm{n}_{1}^{2}=1$
And, $\mathrm{l}_{2}{ }^{2}+\mathrm{m}_{2}{ }^{2}+\mathrm{n}_{2}{ }^{2}=1$
Substituting these values in equation (3), we get
$\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}=1$
$\lambda=1$
Hence, the direction cosines of the given line are $\left(m_{1} n_{2}-m_{2} n_{1}\right),\left(n_{1} l_{2}-n_{2} l_{1}\right),\left(l_{1} m_{2}-l_{2} m_{1}\right)$

Question 3

Find the angle between the lines whose direction ratios are $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and $\mathbf{b - c}, \mathbf{c}-\mathrm{a}, \mathrm{a}-\mathrm{b}$.
Solution:

Angle between the lines with direction ratios a1, b1, c1 and a2, b2, c2 is given by
$\operatorname{Cos} \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}{ }^{2} b_{1}{ }^{2} c_{1}{ }^{2}} \sqrt{a_{2}{ }^{2} b_{2}{ }^{2}} c_{2}{ }^{2}}\right|$
Given:
$\mathrm{a}_{1}=\mathrm{a}, \mathrm{b}_{1}=\mathrm{b}, \mathrm{c}_{1}=\mathrm{c}$
$\mathrm{a}_{2}=\mathrm{b}-\mathrm{c}, \mathrm{b}_{2}=\mathrm{c}-\mathrm{a}, \mathrm{c}_{2}=\mathrm{a}-\mathrm{b}$
Let us substituting the values in the above equation we get.
$\operatorname{Cos} \theta=\left|\frac{a(b-c)+b(c-a)+c(a-b)}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}}\right|$
$=0$
$\operatorname{Cos} \theta=0$
So, $\theta=90^{\circ}$ [Since, $\left.\cos 90=0\right]$
Hence, Angle between the given pair of lines is 90°.

Question 4

Find the equation of a line parallel to x - axis and passing through the origin.

Solution:

We know that, equation of a line passing through ($\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1$) and parallel to a line with direction ratios $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
Given: the line passes through origin i.e. ($0,0,0$)
$\mathrm{x}_{1}=0, \mathrm{y}_{1}=0, \mathrm{z}_{1}=0$
Since line is parallel to x - axis,
$a=1, b=0, c=0$
\therefore Equation of Line is given by
$\frac{x-0}{1}=\frac{y-0}{0}=\frac{z-0}{0}$
$\frac{x}{1}=\frac{y}{0}=0$

Question 5

If the coordinates of the points A, B, C, D be $(1,2,3),(4,5,7),(-4,3,-6)$ and $(2,9,2)$ respectively, then find the angle between the lines $A B$ and $C D$.

Solution:

We know that the angle between the lines with direction ratios $\mathrm{a} 1, \mathrm{~b} 1, \mathrm{c} 1$ and $\mathrm{a} 2, \mathrm{~b} 2, \mathrm{c} 2$ is given by $\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}{ }^{2} b_{1}{ }^{2} c_{1}{ }^{2}} \sqrt{a_{2}{ }^{2} b_{2}{ }^{2} c_{2}{ }^{2}}}\right|$
So, now, a line passing through $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ has direction ratios $\left(x_{1}-x_{2}\right)$,
$\left(y_{1}-y_{2}\right),\left(z_{1}-z_{2}\right)$
The direction ratios of line joining the points $\mathrm{A}(1,2,3)$ and $\mathrm{B}(4,5,7)$

$$
\begin{aligned}
& =(4-1),(5-2),(7-3) \\
& =(3,3,4)
\end{aligned}
$$

For more Info Visit - www.KITest.in
$\therefore \mathrm{a}_{1}=3, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=4$
The direction ratios of line joining the points $C(-4,3,-6)$ and $B(2,9,2)$

$$
\begin{aligned}
& =(2-(-4)),(9-3),(2-(-6)) \\
& =(6,6,8)
\end{aligned}
$$

$\therefore \mathrm{a}_{2}=6, \mathrm{~b}_{2}=6, \mathrm{c}_{2}=8$
Now let us substitute the values in the above equation we get,
$\operatorname{Cos} \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}{ }^{2} b_{1}{ }^{2} c_{1}{ }^{2}} \sqrt{a_{2}{ }^{2} b_{2}{ }^{2} c_{2}{ }^{2}}}\right|$
$\operatorname{Cos} \theta=\left|\frac{3 \times 6 \times 3 \times 6+4 \times 8}{\sqrt{3^{2}+3^{2}+4^{2}} \sqrt{6^{2}+6^{2}+8^{2}}}\right|$
$=\left|\frac{18+18+32}{\sqrt{9+9+16} \sqrt{36+36+64}}\right|$
$=\left|\frac{68}{\sqrt{34} \sqrt{136}}\right|$
$=\left|\frac{68}{\sqrt{34} \sqrt{4 \times 34}}\right|$
$=\left|\frac{68}{34 \times 2}\right|$
$\operatorname{Cos} \theta=1$
So, $\theta=0^{\circ}$ [since, $\cos 0$ is 1]
Hence, Angle between the lines AB and CD is 0°.

Question 6

If the lines
$\frac{x-1}{3 k}=\frac{y-2}{1}=\frac{z-3}{-5}$ and $\frac{x-1}{3 k}=\frac{y-2}{1}=\frac{z-3}{-5}$ are perpendicular, find the value of k.

Solution:

We know that the two lines
$\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$ which are
perpendicular to each other if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
It is given that:

$$
\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}
$$

Let us compare with
$\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$
We get -
$\mathrm{x}_{1}=1, \mathrm{y}_{1}=2, \mathrm{z}_{1}=3$
And $\mathrm{a}_{1}=-3, \mathrm{~b}_{1}=2 \mathrm{k}, \mathrm{c}_{1}=2$
Similarly,
We have

$$
\frac{x-1}{3 k}=\frac{y-2}{1}=\frac{z-3}{-5}
$$

Let us compare with
$\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$
We get -
$\mathrm{x}_{2}=1, \mathrm{y}_{2}=2, \mathrm{z}_{2}=3$

And $\mathrm{a}_{2}=3 \mathrm{k}, \mathrm{b}_{2}=1, \mathrm{c}_{2}=-5$
Since the two lines are perpendicular,
$\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0$
$(-3) \times 3 \mathrm{k}+2 \mathrm{k} \times 1+2 \times(-5)=0$
$-9 \mathrm{k}+2 \mathrm{k}-10=0$
-7k = 10
$\mathrm{K}=-10 / 7$
7
\therefore The value of k is $-10 / 7$.

Question 7

Find the vector equation of the line passing through $(1,2,3)$ and perpendicular to the plane $\overrightarrow{\mathrm{r}} .(\hat{\mathbf{1}}+2 \mathbf{j}-5 \hat{\mathbf{k}})+\mathbf{9}=\mathbf{0}$

Solution:

The vector equation of a line passing through a point with position vector \vec{a} and parallel to vector \vec{b} is given as
$\vec{r}=\vec{a}+\lambda \vec{b}$
It is given that the line passes through $(1,2,3)$
So, $\vec{a}=1 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$
Let us find the normal of plane
$\overrightarrow{\mathrm{r}}=(\hat{\imath}+2 \hat{\jmath}-5 \hat{k})+9=0$
$\overrightarrow{\mathrm{r}}=(\hat{\imath}+2 \hat{\jmath}-5 \overrightarrow{\mathrm{k}})=-9$
$-\vec{r}=(\hat{\imath}+2 \hat{\jmath}-5 \hat{k})=9$
r. $(-1 \hat{\imath}-2 \hat{\jmath}+5 \hat{k})+9=0$

Now compare it with $\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{n}}=\mathrm{d}$
$\overrightarrow{\mathrm{n}}=-\hat{1}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$
Since line is perpendicular to plane, the line will be parallel of the plane
$\therefore \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{n}}=-\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$
Hence,
$\vec{r}=(l \hat{\imath}+2 \hat{\jmath}+3 \hat{k})+\lambda(-\hat{\imath}-2 \hat{\jmath}+5 \hat{k})$
$\vec{r}=(l \hat{\imath}+2 \hat{\jmath}+3 \hat{k})-\lambda(\hat{\imath}+2 \hat{\jmath}-5 \hat{k})$
\therefore The required vector equation of line is $\vec{r}=(l \hat{i}+2 \hat{\jmath}+3 \hat{k})-\lambda(\hat{i}+2 \hat{\jmath}-5 \hat{k})$

Question 8

Find the equation of the plane passing through (a, b, c) and parallel to the plane
$\overrightarrow{\mathbf{r}} .(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})=\mathbf{2}$

Solution:

The equation of a plane passing through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and perpendicular to a line with direction ratios $\mathrm{A}, \mathrm{B}, \mathrm{C}$ is given as
$A\left(x-x_{1}\right)+B\left(y-y_{1}\right)+C\left(z-z_{1}\right)=0$
It is given that, the plane passes through ($\mathrm{a}, \mathrm{b}, \mathrm{c}$)
So, $\mathrm{x}_{1}=\mathrm{a}, \mathrm{y}_{1}=\mathrm{b}, \mathrm{z}_{1}=\mathrm{c}$

Since both planes are parallel to each other, their normal will be parallel
\therefore Direction ratio of normal of $\bar{r} \cdot(\hat{\imath}+\hat{\jmath}+\hat{k})$
Direction ratios of normal $=(1,1,1)$
So, $A=1, B=1, C=1$
The Equation of plane in Cartesian form is given as
$A\left(x-x_{1}\right)+B\left(y-y_{1}\right)+C\left(z-z_{1}\right)=01(x-a)+1(y-b)+1(z-c)=0$
$x+y+z-(a+b+c)=0$
$x+y+z=a+b+c$
\therefore The required equation of plane is $\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{a}+\mathrm{b}+\mathrm{c}$

Question 9

Find the shortest distance between lines
$\overrightarrow{\mathbf{r}}=(6 \hat{i}+2 \hat{\jmath}+2 \hat{\mathbf{k}})+\lambda(1 \hat{\imath}-2 \hat{\jmath}+\widehat{2})$ and $\overrightarrow{\mathbf{r}}=(-1 \hat{\imath}-\hat{k})+\mu(3 \hat{i}-2 \hat{\jmath}-2 \hat{k})$

Solution:

We know that the shortest distance between lines with vector equations $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}_{1}}$ and $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{2}}+\lambda \overrightarrow{\mathrm{b}_{2}}$ is given as

$$
\left|\frac{\left(\mathrm{b}_{1} \times \mathrm{b}_{2}\right) \cdot\left(\mathrm{a}_{2}-\mathrm{a}_{1}\right)}{\left|\mathrm{b}_{1} \times \mathrm{b}_{2}\right|}\right|
$$

It is given that:
$\vec{r}=(6 \hat{\imath}+2 \hat{\jmath}+2 \hat{k})+\lambda(1 \hat{i}-2 \hat{\jmath}+\hat{2})$
Now let us compare it with $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}_{1}}$, we get
$\overrightarrow{\mathrm{a}_{1}}=(-4 \hat{\imath}-\hat{k})$ and $\overrightarrow{\mathrm{b}_{1}}=(1 \hat{\imath}-2 \hat{\jmath}-\hat{2})$
Similarly,
$\overrightarrow{\mathrm{r}}=(-4 \hat{\imath}-\hat{\mathrm{k}})+(3 \hat{\imath}-2 \hat{\jmath}-2 \hat{2})$
Let us compare it with $\vec{r}=\overline{\mathrm{a}_{2}}+\lambda \overrightarrow{\mathrm{b}_{2}}$, we get

$\overrightarrow{a_{2}}=(-4 \hat{\imath}-\hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{b}_{2}}(3 \hat{\imath}-2 \hat{\jmath}-2 \hat{\mathrm{k}})$
Now,

$$
\begin{aligned}
\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) & =(-4 \hat{\imath}-\hat{k})-(6 \hat{\imath}+2 \hat{\jmath}+2 \hat{k} \\
& =((-4-6) \hat{\imath}+(0-2) \hat{\jmath}+(-1-2) \hat{k}) \\
& =(-10 \hat{\imath}-2 \hat{\jmath}-3 \hat{k})
\end{aligned}
$$

And,
$\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right)=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\ 1 & -2 & 2 \\ 3 & -2 & -2\end{array}\right|$
$=\hat{\imath}[(-2 \times-2)-(-2 \times 2)]-\hat{\jmath}[(1 \times-2)-(3 \times 2)-(3 \times 2)]+\hat{k}[(1 \times-2)-(3 \times-2)]$
$=\hat{i}[4+4]-\hat{\mathrm{h}}[-2-6]+\hat{\mathrm{k}}[-2+6]$
$=8 \hat{\imath}+8 \hat{\jmath}+4 \hat{k}$
So, magnitude of $\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|=\sqrt{8^{2}+8^{2}+4^{2}}=\sqrt{64+64+16}$

$$
=\sqrt{ } 144
$$

$$
=12
$$

Also,

$$
\begin{aligned}
&\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)=(8 \hat{\imath}+8 \hat{\jmath}+4 \hat{\mathrm{k}}) \cdot(-10 \hat{\imath}-2 \hat{\jmath}-3 \hat{\mathrm{k}}) \\
&=-80+(-16)+(-12) \\
&=-108
\end{aligned}
$$

Hence the shortest distance is given as
$=\left|\frac{\left(b_{1} \times b_{2}\right) \cdot\left(a_{2}-a_{1}\right)}{\left|b_{1} \times b_{2}\right|}\right|=\left|\frac{-108}{12}\right|=|-9|$
\therefore The shortest distance between the given two lines is 9 .

Question 10

Find thee coordinate of the point where the line through $(5,1,6)$ and $(3,4,1)$ Crosses the YZ - plane.

Solution:

We know that the vector equation of a passing through two points with position vectors \vec{a} and \vec{b} is given as
$\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$
So, the position vector of point $A(5,1,6)$ is given as
$\vec{a}=5 \hat{\imath}+\hat{\jmath}+6 \hat{k}$
And the position vector of points $B(3,4,1)$ is given as
$\overrightarrow{\mathrm{b}}=3 \hat{\imath}+4 \hat{\jmath}+\hat{k}$
So, subtract equation (2) and (1) we get
$(\vec{b}-\vec{a})=(3 \hat{\imath}+4 \hat{\jmath}+\hat{k})-(5 \hat{\imath}+\hat{\jmath}+6 \hat{k})$

$$
\begin{align*}
& =(3-5) \hat{\imath}+(4-1) \hat{\jmath}+(1-6) \hat{k} \\
& =(-2 \hat{\imath}+3 \hat{\jmath}-5 \hat{k}) \tag{3}
\end{align*}
$$

$\vec{r}=(5 \hat{\imath}+\hat{\jmath}+6 \hat{k})+\lambda(-2 \hat{\imath}+3 \hat{\jmath}-5 \hat{k})$
Let the coordinates of the point where the line crosses the YZ plane be $(0, y, z)$
So,
$\vec{r}=(0 \hat{\imath}+y \hat{\jmath}+z \hat{k})$
Since the point lies in line, it satisfies its equation,
Now substituting equation (4) in equation (3) we get,
$(0 \hat{\imath}+y \hat{\jmath}+z \hat{k})=(5 \hat{\imath}+\hat{\jmath}+6 \hat{k})+\lambda(-2 \hat{\imath}+3 \hat{\jmath}-5 \hat{k})$

$$
=(5-2 \lambda) \hat{\imath}+(1+3 \lambda) \hat{\jmath}+(6-5 \lambda) \hat{k}
$$

We know that, two vectors are equal if their corresponding components are equal So,
$0=5-2 \lambda$
$5=2 \lambda$
$\lambda=5 / 2$
$y=1+3 \lambda$
And,
$\mathrm{z}=6-5 \lambda$
Substitute the value of λ in equation (5) and (6), we get -
$\mathrm{y}=1+3 \lambda$
$=1+3 \times(5 / 2)$
$=1+(15 / 2)$
$=17 / 2$
And
$\mathrm{Z}=6-5 \lambda$
$=6-5 \times(5 / 2)$
$=6-(25 / 2)$
$=-13 / 2$
\therefore The coordinates of the required point are $(0,17 / 2,-13 / 2)$.

Question 11

Find the coordinates of the point where the line through $(5,1,6)$ and $(3,4,1)$ crosses the ZX plane.

Solution:

We know that the vector equation of a line passing through two points with position vectors \vec{a} and \vec{b} is given as
$\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$
So, the position vector of point $A(5,1,6)$ is given as
$\vec{a}=5 \hat{i}+\hat{\jmath}+6 \hat{k}$
And the position vector of point $A(5,1,6)$ is given as
$\vec{a}=3 \hat{\imath}+4 \hat{\jmath}+\hat{k}$
(2)

So, subtract equation (2) and (1) we get
$(\vec{b}-\vec{a})=(3 \hat{\imath}+4 \hat{\jmath}+\hat{k})-(5 \hat{\imath}+\hat{\jmath}+6 \hat{k})$

$$
=(3-5) \hat{\imath}+(4-1) \hat{\jmath}+(1-6) \hat{k}
$$

$$
\begin{equation*}
=(-2 \hat{\imath}+3 \hat{\jmath}-5 k) \tag{3}
\end{equation*}
$$

$\vec{r}=(5 \hat{\imath}+\hat{\jmath}+6 \hat{k})+\lambda(-2 \hat{\imath}+3 \hat{\jmath}-5 \hat{k})$
Let the coordinates of the point where the line crosses the ZX plane be $(0, y)$ So,
$\hat{r}=(x \hat{\imath}+0 \hat{\jmath}+z \hat{k})$
Since the point lies, satisfies its equation,
Now substituting equation (4) in equation (3) we get,

\therefore The coordinates of the required point is $(17 / 3,0,23 / 3)$.
Question 12
Find the coordinates of the point where the line through $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane $2 \mathrm{x}+\mathrm{y}+\mathrm{z}=7$.

Solution:

We know that the equation of a line passing through two points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ is given as
$\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
It is given that the line passes through the points $\mathrm{A}(3,-4,-5)$ and $\mathrm{B}(2,-3,1)$
So, $\mathrm{x}_{1}=3, \mathrm{y}_{1}=-4, \mathrm{z}_{1}=-5$
And, $x_{2}=2, y_{2}=-3, z_{2}=1$
Then the equation of line is
$\frac{x-3}{2-3}=\frac{y-(-4)}{-3-(-4)}=\frac{z-(-5)}{1-(-5)}$
$\frac{x-3}{-1}=\frac{y+4}{1}=\frac{z+5}{6}=\mathrm{k}$
So, $\mathrm{x}=-\mathrm{k}+3|, \mathrm{y}=\mathrm{k}-4|, \mathrm{z}=6 \mathrm{k}-5$
Now let ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) be the coordinates of the point where the line crosses the given plane $2 x+y+z+7=0$
By substituting the value of x, y, z in equation (1) in the equation of plane, we get
$2 x+y+z+7=0$
$2(-k+3)+(k-4)+(6 k-5)=7$
$5 \mathrm{k}-3=7$
$5 \mathrm{k}=10$
$\mathrm{k}=2$
Now substitute the value of k in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ we get,
$\mathrm{x}=-\mathrm{k}+3=-2+3=1$
$\mathrm{y}=\mathrm{k}-4=2-4=-2$
$\mathrm{z}=6 \mathrm{k}-5=12-5=7$
\therefore The coordinates of the required point are ($1,-2,7$).

Question 13

Find the equation of the plane passing through the point $(-1,3,2)$ and perpendicular to each of the plane's $x+2 y+3 z=5$ and $3 x+3 y+z=0$.

Solution:

We know
that the equation of a plane passing through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ is given by
$A\left(x-x_{1}\right)+B\left(y-y_{1}\right)+C\left(z-z_{1}\right)=0$
Where, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the direction ratios of normal to the plane.
It is given that the plane passes through $(-1,3,2)$
So, equation of plane is given by
$A(x+1)+B(y-3)+C(z-2)=0$ \qquad
Since this plane is perpendicular to the given two planes.So, their normal to the plane would be perpendicular to normal of both planes.

We know that
$\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b}
So, required normal is cross product of normal of planes
$x+2 y+3 z=5$ and $3 x+3 y+z=0$
Required Normal $=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 1 & 2 & 3 \\ 3 & 3 & 1\end{array}\right|$
$=\hat{i}[2(1)-3(3)]-\hat{\mathrm{s}}[1(1)-3(3)]+\mathrm{k}[1(3)-3(2)]$
$=\hat{i}[2-9]-\hat{\jmath}[1-9]+k[3-6]$
$=-7 \hat{\imath}+8 \hat{\jmath}-3 \hat{k}$
Hence, the direction ratios are $=-7,8,-3$
$\therefore \mathrm{A}=-7, \mathrm{~B}=8, \mathrm{C}=-3$
Substituting the obtained values in equation (1), we get
$A(x+1)+B(y-3)+C(z-2)=0$
$-7(x+1)+8(y-3)+(-3)(z-2)=0$
$-7 \mathrm{x}-7+8 \mathrm{y}-24-3 \mathrm{z}+6=0$
$-7 x+8 y-3 z-25=0$
$7 x-8 y+3 z+25=0$
\therefore The equation of the required plane is $7 \mathrm{x}-8 \mathrm{y}+3 \mathrm{z}+25=0$.

Question 14

If the points $(1,1, p)$ and $(-3,0,1)$ be equidistant from the plane
$\overrightarrow{\mathbf{r}} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$, then find the value of p.

Solution:

We know that the distance of a point with position vector \vec{a} from the plane $\vec{r} \cdot \vec{n}=d$ is given as

$$
\left|\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{n}}-d}{|\overrightarrow{\mathrm{n}}|}\right|
$$

Now, the position vector of point $(1,1, p)$ is given as
$\overrightarrow{\mathrm{a}_{1}}=1 \hat{\mathrm{I}}+1 \hat{\jmath}+\mathrm{p} \hat{k}$
And the position vector of point $(-3,0,1)$ is given as
$\overrightarrow{\mathrm{a}_{2}}=-3 \hat{\imath}+0 \hat{\jmath}+1 \hat{k}$
It is given the points $(1,1, p)$ and $(-3,0,1)$ are equidistant from the plane
$\vec{r} \cdot(3 \hat{\imath}+4 \hat{\jmath}-12 \hat{k})=13=0$
So,
$\left|\frac{(1 \hat{\imath}+1 \hat{\jmath}+p \hat{k}) \cdot(3 \hat{\imath}+4 \hat{\jmath}-12 \hat{k})+13}{\sqrt{3^{2}+4^{2}+(-12)^{2}}}\right|=\left|\frac{(-3 \hat{\imath}+0 \hat{\jmath}+1 \hat{k}) \cdot(3 \hat{\imath}+4 \hat{\jmath}-12 \hat{k})+13}{\sqrt{3^{2}+4^{2}+(-12)^{2}}}\right|$
$\left|\frac{3+4-12 p+13}{\sqrt{9+16+144}}\right|=\left|\frac{-9+0-12+13}{\sqrt{9+16+144}}\right|$
$\left|\frac{20-12 p}{\sqrt{169}}\right|=\left|\frac{-8}{\sqrt{169}}\right|$
$|20-12 p|=8$
$20-12 \mathrm{p}= \pm 8$
$20-12 p=8$ or, $20-12 p=-8$
$12 p=12$ or, $12 p=28 p=1$ or, $p 7 / 3$
\therefore The possible values of p are 1 and $7 / 3$
Question 15
Find the equation of the plane passing through the line of intersection of the planes $\vec{r} .(\hat{\imath}+\hat{\jmath}+\widehat{k})=1$ and $\vec{r} .(\widehat{2 i}+3 \hat{\jmath}-\widehat{k})+4=0$ and parallel to $\mathrm{x}-$ axis.

Solution:

We know that,
The equation of any plane through the line of intersection of the planes
$\vec{r} \cdot \overrightarrow{\mathrm{n}_{1}}=d_{1}$ and $\vec{r} \cdot \overrightarrow{\mathrm{n}_{2}}=d_{2}$ is given by $\left(\vec{r} \cdot \overrightarrow{\mathrm{n}_{2}}=d_{1}\right)+\lambda\left(\vec{r} \cdot \overrightarrow{\mathrm{n}_{2}}=d_{2}\right)=0$
So, the equation of any plane through the line of intersection of the given planes is

$$
[\vec{r} \cdot(\hat{\imath}+\hat{\jmath}+\hat{k})-1]+\lambda[\vec{r} \cdot(-2 \hat{\imath}+-3 \hat{\jmath}+\hat{k})-4]=0
$$

$\vec{r} \cdot((1-2 \lambda) \hat{\imath}+(1-3 \lambda) \hat{\jmath}+(1-\lambda) \hat{k})-1-4 \lambda=0$
$\vec{r} \cdot((1-2 \lambda) \hat{\imath}+(1-3 \lambda) \hat{\jmath}+(1+\lambda) \hat{k})=1+4 \lambda$
Since this plane is parallel to x - axis.
So, the normal vector of the plane (i) will be perpendicular to x - axis.
The direction ratio of Normal $\left(a_{1}, b_{1}, c_{1}\right)=[(1-2 \lambda),(1-3 \lambda),(1+)]$
Since the two lines are perpendicular,
$a_{1} a_{2}+b_{1} b_{2}+c c_{2}=0$
$(1-2 \lambda) \times 1+(1-3 \lambda) \times 0+(1+\lambda) \times 0=0$
$(1-2 \lambda)=0$

$$
\lambda=1 / 2
$$

Substituting the value of λ in equation (1), we get
$\vec{r} \cdot((1-2 \lambda) \hat{\imath}+(1-3 \lambda) \hat{\jmath}+(1+\lambda) \hat{k})=1+4 \lambda$
$\vec{r} \cdot\left(\left(1-2\left(\frac{1}{2}\right)\right) \hat{\imath}+\left(1-3\left(\frac{1}{2}\right)\right) \hat{\jmath}+\left(1+\frac{1}{2}\right) \hat{k}\right)=1+4\left(\frac{1}{2}\right)$
$\vec{r} \cdot(0 \hat{\imath}-\hat{\jmath}+3 \hat{k})=6$
\therefore The equation of the required plane is $\vec{r} \cdot(0 \hat{\imath}-\hat{\jmath}+3 \hat{k})=6$

Question 16

If \mathbf{O} be the origin and the coordinate of P be $(1,2,-3)$, then find the equation of the passing through P and perpendicular to $O P$.

Solution:

We know that the equation of a plane passing through $\left(x_{1}, y_{1}, z_{1}\right)$ and perpendicular to a line with direction ratio $\mathrm{A}, \mathrm{B}, \mathrm{C}$ is given as
$\mathrm{A}\left(\mathrm{x}-x_{1}\right)+\mathrm{B}\left(\mathrm{y}-\mathrm{y}_{1}\right)+\mathrm{C}\left(\mathrm{z}-z_{1}\right)=0$
It is given that the plane passes through $\mathrm{P}(1,2,3)$
So, $x_{1}=1, y_{1}=2, z_{1}=-3$
Normal vector to plane is $=\overrightarrow{\mathrm{OP}}$
Where $0(0,0,0), p(1,2,-3)$
So, direction ratio of $\overrightarrow{\mathrm{OP}}$ is $=(1-0),(2-0),(-3,0)$
$=(1,2,3)$

Where, $A=1, B=2, C=-3$
Equation of plane in Cartain form is given as
$1(x-1)+2(y-2)-3(z-(-3))=0$
$x-1+2 y-4-3 z-9=0$
$x-2 y-3 z-14=0$
\therefore The equation of the required plane is $x+2 y-3 z-14=0$

Question 17

Find the equation of the plane which contain the line of intersection of the planes \vec{r}. $(\hat{\imath}+2 \hat{\jmath}+$ $3 k-4=0$ and $r .2 i+j+k+5=0$ and which is perpendicular to the $r .5 i+3 j-6 k+8=0$

Solution:

We know,
The equation of any plane through the line of intersection of the planes
$\vec{r} \cdot \overrightarrow{\mathrm{n}_{1}}=d_{1}$ and $\vec{r} \cdot \overrightarrow{\mathrm{n}_{2}}=d_{2}$ is given by $\left(\vec{r} \cdot \overrightarrow{\mathrm{n}_{1}}-d_{1}\right)+\lambda\left(\vec{r} \cdot \overrightarrow{\mathrm{n}_{2}}=d_{2}\right)=0$
So, the equation of any plane through the line of intersection of the planes is
$[\vec{r}(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})-4]+\lambda[\vec{r} \cdot(-2 \hat{\imath}-\hat{\jmath}+\hat{k})-5]=0$

$$
\vec{r} \cdot((1-2 \lambda) \hat{\imath}+(2-\lambda) \hat{\jmath}(3+\lambda) \hat{k})-4-5 \lambda=0
$$

$\vec{r} \cdot((1-2 \lambda) \hat{\imath}+(2-\lambda) \hat{\jmath}(3+\lambda) \hat{k})-4-5 \lambda$
Since this plane is perpendicular to the plane
$\vec{r} \cdot(5 \hat{\imath}+3 \hat{\jmath}+\hat{k})+8=0$
$\vec{r} .(5 \hat{\imath}+3 \hat{\jmath}+\hat{k})=-8$
$\vec{r} \cdot(5 \hat{\imath}+3 \hat{\jmath}+\hat{k})=8$
So, the normal vector of the plane (1) will be perpendicular to the normal vector of plane (2)
Direction ratios of normal plane $(1)=\left(a_{1}, b_{1}, c_{1}\right)=[(1-2 \lambda),(2-\lambda),(3+\lambda)]$
Direction ratios of normal plane $(2)=\left(a_{2}, b_{2}, c_{2}\right)=(-5,-3,6)$
Since the two lines are perpendicular,
$a_{1} a_{2}+b_{2} b+c_{2} c_{2}=0$
$(1-2 \lambda) \times(-5)+(2-\lambda) \times(-3)+(3+\lambda) \times 6=0$
$-5+10 \lambda-6+3 \lambda+18+6 \lambda=0$
$19 \lambda+7=0$
$\lambda=-7 / 19$
By substituting the value of λ in equation (1), we get
$\vec{r} .((1-2 \lambda) \hat{\imath}+(2-\lambda) \hat{\jmath}+(3+\lambda) \hat{k})=4+5 \lambda$
$\vec{r} \cdot\left(\left(1-2\left(\frac{-17}{19}\right)\right) \hat{\imath}+\left(2-\left(\frac{-7}{19}\right)\right) \hat{\jmath}+\left(\frac{-7}{19}\right) \hat{k}\right)=4+5\left(\frac{-7}{19}\right)$
$\vec{r} \cdot\left(\frac{33}{19} \hat{\imath}+\frac{45}{19} \hat{\jmath}+\frac{50}{19} \hat{k}\right)=\frac{41}{19}$
$\vec{r} \cdot(33 \hat{\imath}+45 \hat{\jmath}+50 \hat{k})=41$
\therefore The equation of the required plane is $\hat{r} \cdot(33 \hat{\imath}+45 \hat{\jmath}+50 \hat{k})=41$

Question18

Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\stackrel{r}{r}=(2 \hat{\imath}-\hat{\jmath}+2 \widehat{k})+\lambda(3 \hat{\imath}+4 \hat{\jmath}+2 \hat{k})$ and the plane $\bar{r}(\hat{\imath}-\hat{\jmath}+\widehat{k})=5$

Solution:

Given:
The equation of line is
$\bar{r}=(2 \hat{\imath}-\hat{\jmath}+2 \widehat{k})+\lambda(3 \hat{\imath}+4 \hat{\jmath}+2 \hat{k})$
And the equation of the plane is given by
$\overline{\mathrm{r}} .(\hat{\imath}-\hat{\jmath}+\hat{k})=5$ \qquad
Now to find the intersection of line and plane, substituting the value of \bar{r} from equation (1) of line into equation of plane (2), we get

$$
[(2 \hat{\imath}-\hat{\jmath}+2 \hat{k})+\lambda(3 \hat{\imath}+4 \hat{\jmath}+2 \hat{k})] \cdot(\hat{\imath}-\hat{\jmath}+\hat{k})=5
$$

$$
[(2+3 \lambda) \hat{\imath}+(-1+4 \lambda) \hat{\jmath}+(2+2 \lambda) \hat{k}] \cdot(\hat{\imath}-\hat{\jmath}+\hat{k})=5
$$

$(2+3 \lambda) \times 1+(-1+4 \lambda) \times(-1)+(2+2 \lambda) \times 1=5$
$2+3 \lambda+1-4 \lambda+2+2 \lambda=5$
So, the equation of line is

$$
\overline{\mathrm{r}}=(2 \hat{\imath}-\hat{\jmath}+2 \widehat{k})
$$

Let the point of intersection be ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
So,

$$
\begin{gathered}
\bar{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k} \\
x \hat{\imath}+y \hat{\jmath}+z \hat{k}=2 \hat{i}-\hat{\jmath}+2 \hat{k}
\end{gathered}
$$

Were
$\mathrm{x}=2, \mathrm{y}=-1, \mathrm{z}=2$
So, the point of intersection is $(2,-1,2)$.
Now, the distance between points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}$ is given by
$\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}$ Units
Distance between the points $A(2,-12)$ and $B(-1,-5,-10)$ is given by
$\mathrm{AB}=\sqrt{(2-(-1))^{2}+(-1-(-5))^{2}+(2-(-10))^{2}}$
$=\sqrt{(3)^{2}+(4)^{2}+(12)^{2}}$
$=\sqrt{9+6+144}$
$=\sqrt{169}$
= 13 units
\therefore The distance is 13 units.

Question19

Find the vector equation of the line passing through $(1,2,3)$ and parallel of the planes
$\overline{\mathbf{r}} \cdot(\hat{\mathbf{i}}-\hat{\mathbf{j}}+2 \hat{\mathbf{k}})=5$ and $\overline{\mathbf{r}} \cdot(3 \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})=6$

Solution:

The vector equation of a line passing through a point with position vector \bar{a} and parallel to a vector \bar{b} is

$$
\overline{\mathrm{r}}=\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}
$$

It is given that line passes through (1, 2,3)
So,

$$
\overline{\mathrm{a}}=1 \hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}}
$$

It is also given that the is line is parallel to both planes.
So, line is perpendicular to normal of both planes
i.e., b is perpendicular to normal of both planes.

We know that
$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is perpendicular to both \bar{a} and \bar{b}
So, $\overline{\mathrm{b}}$ is cross product of normal of plane $\overline{\mathrm{r}}(\hat{\imath}-\hat{\jmath}+2 \hat{\mathrm{k}})=5$ and $\overline{\mathrm{r}}(3 \hat{\imath}-\hat{\jmath}+\hat{\mathrm{k}})=6$
Required Normal $=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 1 & -1 & 2 \\ 3 & 1 & 1\end{array}\right|$
$=\hat{i}[(-1)(1-1(2)]-\hat{\jmath}[1(1)-3(-1)$
$=\hat{\imath}[-1-2]-\hat{\jmath}[1-6]+\hat{\mathrm{k}}[1+3]$
$=-3 \hat{\imath}+5 \hat{\jmath}+4 \hat{k}$
So,
$\bar{b}=-3 \hat{\imath}+5 \hat{\jmath}+4 \hat{k}$
Now, substitute the value of $\bar{a} \& \bar{b}$ in the formula, we get

$$
\overline{\mathrm{r}}=\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}
$$

$$
=(1 \hat{\imath}+2 \hat{\jmath}+3 \hat{k})+\lambda(-3 \hat{\imath}+5 \hat{\jmath}+4 \widehat{k})
$$

\therefore The equation of the line is

$$
\overline{\mathrm{r}}=(1 \hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}})+\lambda(-3 \hat{\imath}+5 \hat{\jmath}+4 \widehat{\mathrm{k}})
$$

Question20

Find the vector equation of the line passing through the point $(1,2,-4)$ and perpendicular to the two lines:

$$
\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} \text { and } \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}
$$

Solution:

The vector equation of a line passing through a point with position vector
\bar{a} and parallel to a vector \bar{b} is $\bar{r}=\bar{a}+\lambda \bar{b}$
It is given that, the line passes through $(1,2,4)$
So,

$$
\overline{\mathrm{a}}=1 \hat{\imath}+2 \hat{\jmath}+4 \hat{\mathrm{k}}
$$

It is also given that; line is parallel to both planes.
We know that
$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is perpendicular to both $\bar{a} \& \bar{b}$
So, \bar{b} is cross product of normal planes

$$
\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} \text { and } \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}
$$

Required Normal $=\left|\begin{array}{ccc}\hat{1} & \hat{\jmath} & \hat{k} \\ 3 & 16 & 7 \\ 3 & 8 & 5\end{array}\right|$

$$
\begin{gathered}
=\hat{\mathrm{i}}[(-16)(-5)-8(7)]-\hat{\jmath}[3(-5-3(7)]+\hat{\mathrm{k}}[3(8)-3(-16)] \\
=\hat{\mathrm{\imath}}[80-56]-\hat{\mathrm{\jmath}}[-15-21]+\hat{\mathrm{k}}[24+48] \\
=24 \hat{\mathrm{\imath}}+36 \hat{\jmath}+72 \hat{\mathrm{k}}
\end{gathered}
$$

So,

$$
\overline{\mathrm{b}}=24 \hat{\imath}+36 \hat{\jmath}+72 \hat{\mathrm{k}}
$$

Now, by substituting the value of $\bar{a} \& \bar{b}$ in the formula, we get

$$
\overline{\mathrm{r}}=\overline{\mathrm{a}}+\lambda \overline{\mathrm{b}}
$$

$$
\begin{gathered}
=(1 \hat{\imath}+2 \hat{\jmath}-4 \hat{k})+\lambda(24 \hat{\imath}+36 \hat{\jmath}+72 \hat{k} \\
=(=(1 \hat{\imath}+2 \hat{\jmath}-4 \hat{k})+12 \lambda(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}) \\
=(1 \hat{\imath}+2 \hat{\jmath}-4 \hat{k})+\lambda(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})
\end{gathered}
$$

\therefore The equation of the line is

$$
\overline{\mathrm{r}}=(1 \hat{\imath}+2 \hat{\jmath}-4 \hat{\mathrm{k}})+\lambda(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{\mathrm{k}})
$$

Question21

Prove that if a plane has the intercepts a, b, c and is at a distance of p units from the origin, then $\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}}=\frac{1}{\mathrm{p}^{2}}$

Solution:

We know that the distance of the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ from plane $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}=\mathrm{D}$ is given as

$$
\left|\frac{A x_{1}+B y_{1}+C z_{1}-D}{\sqrt{A^{2}+B^{2}+C^{2}}}\right|
$$

The equation of a plane having intercepts a, b, c on the $x-, y-z$ axis respectively is given us

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}-=1
$$

Let us compare it with $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}=\mathrm{D}$, we get
$A=1 / a, B=1 / b, C=1 / c, D=1$
It is given that; the plane is at a distance of ' p ' units from the origin.
So, the origin point is o $(0,0,0$,
Were, $\mathrm{x}_{1}=0, \mathrm{y}_{1}=0, \mathrm{z}_{1}=0$
Now,
Distance $=\left|\frac{A x_{1}+B y_{1}+C z_{1}-D}{\sqrt{A^{2}+B^{2}+C^{2}}}\right|$
By substituting values in above equation, we get

$$
\begin{gathered}
p=\left|\frac{\frac{1}{a} \times 0+\frac{1}{b} \times 0+\frac{1}{c} \times 0-1}{\sqrt{\left(\frac{1}{a}\right)^{2}}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}}\right| \\
p=\left|\frac{0+0+0-1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}\right| \\
p=\left|\frac{-1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}\right| \\
p=\frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}
\end{gathered}
$$

$$
\frac{1}{\mathrm{p}}=\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}}}
$$

Now let us square on both sides, we get

$$
\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}}
$$

Hence proved.

Question22

Distance between the two planes: $2 x+3 y+4 z=4$ and $4 x+6 y+8 z=112$ is
A. 2 units
B. 4 units
C. 8 units
D. $2 / \sqrt{ } 29$ units

Solution:

We know that the distance two parallel planes $A x+B y+C z=d_{1}$ and $A x+B y+C z=d_{2}$ is given as $\left|\frac{d_{1}-d_{2}}{\sqrt{A^{2}+B^{2}+c^{2}}}\right|$
It is given that
First plane:
$2 x+3 y 4 z=4$
Let us compare with $A x+B y+C z=d_{1}$ we get
$A=2, B=3, C=4, d_{1}=4$
Second plane:
$2 x+6 y+8 z=12$ [Divide the equation by 2]
We get
$2 x+3 y+4 z=6$
Now comparing with $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}=\mathrm{d}_{1}$ we get
$A=2, B=3, C=4 d_{2}=6$
So,
Distance between two planes is given as
$=\left|\frac{4-6}{\sqrt{2^{2}+3^{2}+4^{2}}}\right|$
$=\left|\frac{-2}{\sqrt{4+9+16}}\right|$
$=2 / \sqrt{29}$
\therefore Option (D) is the correct option

Question 23

The planes: $2 \mathrm{x}-\mathrm{y}+4 \mathrm{z}=4$ am=nd $5 \mathrm{x}-2.5 \mathrm{y}+10 \mathrm{z}=6$ are
A. Perpendicular
B. Parallel
C. Intersect y-axis
D. Passes through

Solution:

It is given that:
First plane:
$2 x-2.5 y+10 z=12.5$
Given second plane:
So,
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{2}{5}$
$\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{2}{5}$

$$
\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}=\frac{4}{10}=\frac{2}{5}
$$

$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
It is clear that the direction ratio of normal of both the plane (1) and (2) are same.
\therefore Both the given planes are parallel.

