Chapter 11
 Construction

Exercise 11.1

Question 1

In each of the following, give the justification of the construction also:
1 Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts.
Construction Producer:
A Line segment with a measure of 7.6 cm length is divided in the ratio of $5: 8$ as follows.

1. Draw line segment $A B$ with the length measure of 7.6 cm
2. Draw a ray $A X$ that makes an acute angle with line segment $A B$.
3. Locate the points i.e., $13(=5+8)$ points, such as $A_{1}, A_{2}, A_{3}, A_{4} \ldots A_{13}$, on the ray $A X$ such that it becomes $A A_{1}=A_{1} A_{2}=A_{2} A_{3}$ and so on.
4. Join the line segment and the ray, B_{13}.
5. Through the point A_{5}, draw a line parallel to $B A_{13}$ which makes an angle equal to $\angle A A_{13} B$
6. The point A_{5} which intersects the line $A B$ at point C.
7. C is the point divides line segment $A B$ of 7.6 cm in the required ratio of 5:8.
8. Now, measure the lengths of the line $A C$ and $C B$. It comes out to the measure of 2.9 cm and 4.7 cm respectively.

Solution:

The construction of the given problem can be justified by proving that
$\mathrm{AC} / \mathrm{CB}=5 / 8$
By construction, we have $A_{5} C \| A_{13} B$. From Basic proportionality theorem for the triangle $A A_{13} B$, we get $\mathrm{AC} / \mathrm{CB}=\mathrm{AA}_{5} / \mathrm{A}_{5} \mathrm{~A}_{13}$
From the figure constructed, it is observed that AA_{5} and $\mathrm{A}_{5} \mathrm{~A}_{13}$ contain 5 and 8 equal divisions of line segments respectively.
Therefore, it becomes
$\mathrm{AA}_{5} / \mathrm{A}_{5} \mathrm{~A}_{13}=5 / 8 \ldots$... (2)

Compare the equations (1) and (2), we obtain
$\mathrm{AC} / \mathrm{CB}=5 / 8$
Hence, Justified

Question 2

Construct a triangle of sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm and then a triangle similar to it whose sides are $2 / 3$ of the corresponding sides of the first triangle.
Construction Procedure:

1. Draw a line segment $A B$ which measures 4 cm , i.e., $\mathrm{AB}=4 \mathrm{~cm}$.
2. Take the point A as centre, and draw an arc of radius 5 cm .
3. Similarly, take the point B as its centre, and draw an arc of radius $\mathbf{6 c m}$.
4. The arcs drawn will intersect each other at point C.
5. Now, we obtained $A C=5 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$ and therefore $\triangle A B C$ is the required triangle.
6. Draw a ray $A X$ which makes an acute angle with the line segment $A B$ on the opposite side of vertex C.
7. Locate 3 points such as A_{1}, A_{2}, A_{3} (as 3 is greater between 2 and 3) on line $A X$ such that it becomes $\mathrm{AA}_{1}=\mathrm{A}_{1} \mathrm{~A}_{2}=\mathrm{A}_{2} \mathrm{~A}_{3}$.
8. Join the point $B A_{3}$ and draw a line through A_{2} which is parallel to the line $B A_{3}$ that intersect $A B$ at point B^{\prime}.
9. Through the point B^{\prime}, draw a line parallel to the line BC that intersect the line AC at C^{\prime}.

10 . Therefore, $\triangle A B^{\prime} C^{\prime}$ is the required triangle.

Solution:

The construction of the given problem can be justified by proving that
$\mathrm{AB}^{\prime}=(2 / 3) \mathrm{AB}$
$\mathrm{B}^{\prime} \mathrm{C}^{\prime}=(2 / 3) \mathrm{BC}$
$A C^{\prime}=(2 / 3) A C$
From the construction, we get $\mathrm{B}^{\prime} \mathrm{C}^{\prime}| | B C$
$\therefore \angle \mathrm{AB}^{\prime} \mathrm{C}^{\prime}=\angle \mathrm{ABC}$ (Corresponding angles)
In $\triangle A B^{\prime} C^{\prime}$ and $\triangle A B C$,
$\angle A B C=\angle A B ' C$ (Proved above)
$\angle B A C=\angle B^{\prime} A^{\prime}$ (Common)
$\therefore \Delta \mathrm{AB}^{\prime} \mathrm{C}^{\prime} \sim \Delta \mathrm{ABC}$ (From AA similarity criterion)
Therefore, $\mathrm{AB}^{\prime} / \mathrm{AB}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} / \mathrm{BC}=\mathrm{AC}^{\prime} / \mathrm{AC} . . .$. (1)
In $\triangle A A B^{\prime}$ and $\triangle A A B$,
$\angle A_{2} A B^{\prime}=\angle A_{3} A B$ (Common)
From the corresponding angles, we get,
$\angle A_{2} A B^{\prime}=\angle A_{3} A B$
Therefore, from the AA similarity criterion, we obtain
\triangle AA2B ' and AA3B
So, $\mathrm{AB}^{\prime} / \mathrm{AB}=\mathrm{AA} 2 / \mathrm{AA} 3$
Therefore, $\mathrm{AB}^{\prime} / \mathrm{AB}=2 / 3$
From the equations (1) and (2), we get
$\mathrm{AB}^{\prime} / \mathrm{AB}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} / \mathrm{BC}=\mathrm{AC} \mathrm{C}^{\prime} / \mathrm{AC}=2 / 3$
This can be written as
$\mathrm{AB}^{\prime}=(2 / 3) \mathrm{AB}$
$\mathrm{B}^{\prime} \mathrm{C}^{\prime}=(2 / 3) \mathrm{BC}$
$A C^{\prime}=(2 / 3) A C$
Hence, justified.

Question 3

Construct a triangle with sides $5 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm and then another triangle whose sides are 7/5 of the corresponding sides of the first triangle Construction Procedure:

1. Draw a line segment $A B=5 \mathrm{~cm}$.
2. Take A and B as centre, and draw the arcs of radius 6 cm and 5 cm respectively.
3. These arcs will intersect each other at point C and therefore $\triangle A B C$ is the required triangle with the length of sides as $5 \mathrm{~cm}, 6 \mathrm{~cm}$, and 7 cm respectively.
4. Draw a ray $A X$ which makes an acute angle with the line segment $A B$ on the opposite side of vertex C
5. Locate the 7 points such as $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}$ (as 7 is greater between 5 and 7), on line $A X$ such that it becomes $A_{1}=A_{1} A_{2}=A_{2} A_{3}=A_{3} A_{4}=A_{4} A_{5}=A_{5} A_{6}=A_{6} A_{7}$
6. Join the points $B A_{5}$ and draw a line from A_{7} to $B A_{5}$ which is parallel to the line $B A_{5}$ where it intersects the extended line segment $A B$ at point B^{\prime}.
7. Now, draw a line from B^{\prime} the extended line segment $A C$ at C ' which is parallel to the line BC and it intersects to make a triangle.
8. Therefore, $\Delta \mathrm{AB} \mathrm{C}^{\prime}$ is the required triangle.

Solution:

The construction of the given problem can be justified by proving that
$\mathrm{AB}^{\prime}=(7 / 5) \mathrm{AB}$
$\mathrm{B}^{\prime} \mathrm{C}^{\prime}=(7 / 5) \mathrm{BC}$
$A C^{\prime}=(7 / 5) \mathrm{AC}$
From the construction, we get $\mathrm{B}^{\prime} \mathrm{C}^{\prime}| | \mathrm{BC}$
$\therefore \angle A B^{\prime} \mathrm{C}^{\prime}=\angle \mathrm{ABC}$ (Corresponding angles)
In $\triangle A B^{\prime} C^{\prime}$ and $\triangle A B C, \angle A B C=\angle A B^{\prime} C$ (Proved above)
$\angle B A C=\angle B^{\prime} A^{\prime}$ (Common)
$\therefore \Delta \mathrm{AB}^{\prime} \mathrm{C}^{\prime} \sim \Delta \mathrm{ABC}$ (From AA similarity criterion)
Therefore, $\mathrm{AB}^{\prime} / \mathrm{AB}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} / \mathrm{BC}=\mathrm{AC}^{\prime} / \mathrm{AC} . .$. . (1)
In $\triangle \mathrm{AA}_{7} \mathrm{~B}^{\prime}$ and $\triangle \mathrm{AA}_{5} \mathrm{~B}, \angle \mathrm{~A}_{7} \mathrm{AB}^{\prime}=\angle \mathrm{A}_{5} \mathrm{AB}$ (Common)
From the corresponding angles, we get,
$\angle \mathrm{A} \Delta \mathrm{A} \mathrm{A}_{7} \mathrm{~B}^{\prime}$ and $\triangle \mathrm{A} \mathrm{A}_{5} \mathrm{~B}$
Therefore, from the AA similarity criterion, we obtain
$\Delta \mathrm{A}_{2} \mathrm{~B}^{\prime}$ and $\mathrm{A}_{3} \mathrm{~B}$
So, $\mathrm{AB}^{\prime} / \mathrm{AB}=\mathrm{AA}_{5} / \mathrm{AA}_{7}$
Therefore, $A B / A B^{\prime}=5 / 7$

From the equations (1) and (2), we get
$\mathrm{AB}^{\prime} / \mathrm{AB}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} / \mathrm{BC}=\mathrm{AC}^{\prime} / \mathrm{AC}=7 / 5$
This can be written as
$\mathrm{AB}^{\prime}=(7 / 5) \mathrm{AB}$
$\mathrm{B}^{\prime} \mathrm{C}^{\prime}=(7 / 5) \mathrm{BC}$
$A C^{\prime}=(7 / 5) A C$
Hence, justified.

Question 4

Construct and isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are $1 \frac{1}{2}$ times the corresponding sides of the isosceles triangle
Construction Procedure:

1. Draw a line segment $B C$ with the measure of 8 cm .
2. Now draw the perpendicular bisector of the line segment $B C$ and intersect at the point D
3. Take the point D as centre and draw an arc with the radius of 4 cm which intersect the perpendicular bisector at the point A
4. Now join the lines $A B$ and $A C$ and the triangle is the required triangle.
5. Draw a ray $B X$ which makes an acute angle with the line $B C$ on the side opposite to the vertex A.
6. Locate the 3 points B_{1}, B_{2} and B_{3} on the ray $B X$ such that $B B_{1}=B_{1} B_{2}=B_{2} B_{3}$
7. Join the points $B_{2} C$ and draw a line from B_{3} which is parallel to the line $B_{2} C$ where it intersect the extended line segment $B C$ at point C^{\prime}.
8. Now, draw a line from C^{\prime} the extended line segment $A C$ at A ' which is parallel to the line AC and it intersects to make a triangle.
9. Therefore, $\Delta A^{\prime} B C^{\prime}$ is the required triangle.

Solution:

The construction of the given problem can be justified by proving that
$\mathrm{A}^{\prime} \mathrm{B}=(3 / 2) \mathrm{AB}$
$B C^{\prime}=(3 / 2) B C$
$A^{\prime} C^{\prime}=(3 / 2) A C$
From the construction, we get $\mathrm{A}^{\prime} \mathrm{C}^{\prime} \| \mathrm{AC}$
$\therefore \angle \mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{B}=\angle \mathrm{ACB}$ (Corresponding angles)
In $\triangle A^{\prime} B^{\prime}$ and $\triangle A B C$,
$\angle B=\angle B$ (common)
$\angle A^{\prime} B^{\prime}=\angle A C B$
$\therefore \triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \triangle \mathrm{ABC}$ (From AA similarity criterion)
Therefore, $\mathrm{A}^{\prime} \mathrm{B} / \mathrm{AB}=\mathrm{BC}^{\prime} / \mathrm{BC}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} / \mathrm{AC}$
Since the corresponding sides of the similar triangle are in the same ratio, it becomes $\mathrm{A}^{\prime} \mathrm{B} / \mathrm{AB}=\mathrm{BC}^{\prime} / \mathrm{BC}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} / \mathrm{AC}=3 / 2$
Hence, justified.

Question 5

Draw a triangle $A B C$ with side $B C=6 \mathrm{~cm}, A B=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$. Then construct a triangle whose sides are $3 / 4$ of the corresponding sides of the triangle $A B C$.
Construction Procedure:

1. Draw a $\triangle A B C$ with base side $B C=6 \mathrm{~cm}$, and $A B=5 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$.
2. Draw a ray $B X$ which makes an acute angle with $B C$ on the opposite side of vertex A.
3. Locate 4 points (as 4 is greater in 3 and 4), such as $B_{1}, B_{2}, B_{3}, B_{4}$, on line segment $B X$.
4. Join the points $B_{4} C$ and also draw a line through $B 3$, parallel to $B_{4} C$ intersecting the line segment $B C$ at C^{\prime}.
5. Draw a line through C^{\prime} parallel to the line $A C$ which intersects the line $A B$ at A^{\prime}.
6. Therefore, $\Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle

Solution:

The construction of the given problem can be justified by proving that
Since the scale factor is $3 / 4$, we need to prove
$A^{\prime} B=(3 / 4) A B$
$\mathrm{BC}^{\prime}=(3 / 4) \mathrm{BC}$
$A^{\prime} C^{\prime}=(3 / 4) A C$
From the construction, we get $\mathrm{A}^{\prime} \mathrm{C}^{\prime}| | \mathrm{AC}$
In $\triangle A^{\prime} B^{\prime}$ and $\triangle A B C$,
$\therefore \angle \mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{B}=\angle \mathrm{ACB}$ (Corresponding angles)
$\angle B=\angle B$ (common)
$\therefore \triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \triangle \mathrm{ABC}$ (From AA similarity criterion)
Since the corresponding sides of the similar triangle are in the same ratio, it becomes
Therefore, $\mathrm{A}^{\prime} \mathrm{B} / \mathrm{AB}=\mathrm{BC}^{\prime} / \mathrm{BC}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} / \mathrm{AC}$
So, it becomes $\mathrm{A}^{\prime} \mathrm{B} / \mathrm{AB}=\mathrm{BC}^{\prime} / \mathrm{BC}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} / \mathrm{AC}=3 / 4$
Hence, justified.

Question 6

Draw a triangle $A B C$ with side $B C=7 \mathrm{~cm}, \angle B=45^{\circ}, \angle A=105^{\circ}$. Then, construct a triangle whose sides are $4 / 3$ times the corresponding sides of $\triangle A B C$.
To find $\angle \mathrm{C}$:
Given:
$\angle B=45^{\circ}, \angle A=105^{\circ}$
We know that,
Sum of all interior angles in a triangle is 180°.
$\angle A+\angle B+\angle C=180^{\circ}$
$105^{\circ}+45^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{C}=180^{\circ}-150^{\circ}$
$\angle \mathrm{C}=30^{\circ}$
So, from the property of triangle, we get $\angle \mathrm{C}=30^{\circ}$
Construction Procedure:
The required triangle can be drawn as follows.

1. Draw a $\triangle A B C$ with side measures of base $B C=7 \mathrm{~cm}, \angle B=45^{\circ}$, and $\angle C=30^{\circ}$.
2. Draw a ray $B X$ makes an acute angle with $B C$ on the opposite side of vertex A.
3. Locate 4 points (as 4 is greater in 4 and 3), such as $B_{1}, B_{2}, B_{3}, B_{4}$, on the ray $B X$.
4. Join the points $B_{3} C$.
5. Draw a line through B_{4} parallel to $B_{3} C$ which intersects the extended line $B C$ at C^{\prime}.
6. Through C^{\prime}, draw a line parallel to the line $A C$ that intersects the extended line segment at C^{\prime}.
7. Therefore, $\Delta A^{\prime} B C^{\prime}$ is the required triangle.

Solution:

The construction of the given problem can be justified by proving that
Since the scale factor is $4 / 3$, we need to prove
$\mathrm{A}^{\prime} \mathrm{B}=(4 / 3) \mathrm{AB}$
$B C^{\prime}=(4 / 3) B C$
$A^{\prime} C^{\prime}=(4 / 3) \mathrm{AC}$
From the construction, we get $A^{\prime} \mathrm{C}^{\prime} \| A C$
In $\triangle A^{\prime} B^{\prime}$ and $\triangle A B C$,
$\therefore \angle \mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{B}=\angle \mathrm{ACB}$ (Corresponding angles)
$\angle \mathrm{B}=\angle \mathrm{B}$ (common)
$\therefore \triangle A^{\prime} \mathrm{BC}^{\prime} \sim \triangle \mathrm{ABC}$ (From AA similarity criterion)
Since the corresponding sides of the similar triangle are in the same ratio, it becomes
Therefore, $\mathrm{A}^{\prime} \mathrm{B} / \mathrm{AB}=\mathrm{BC}^{\prime} / \mathrm{BC}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} / \mathrm{AC}$
So, it becomes $A^{\prime} B / A B=B^{\prime} / B C=A^{\prime} C^{\prime} / A C=4 / 3$
Hence, justified.

Question 7

Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm .
Then construct another triangle whose sides are $5 / 3$ times the corresponding sides of the given triangle.
Given:
The sides other than hypotenuse are of lengths 4 cm and 3 cm . It defines that the sides are perpendicular to each other
Construction Procedure:
The required triangle can be drawn as follows.

1. Draw a line segment $B C=3 \mathrm{~cm}$.
2. Now measure and draw $\angle=90^{\circ}$
3. Take B as centre and draw an arc with the radius of 4 cm and intersects the ray at the point B.
4. Now, join the lines AC and the triangle ABC is the required triangle.
5. Draw a ray $B X$ makes an acute angle with $B C$ on the opposite side of vertex A.
6. Locate 5 such as $B_{1}, B_{2}, B_{3}, B_{4}$, on the ray $B X$ such that such that $B B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}=$ $\mathrm{B}_{4} \mathrm{~B}_{5}$
7. Join the points B3C.
8. Draw a line through B_{5} parallel to $B_{3} C$ which intersects the extended line $B C$ at C^{\prime}.
9. Through C^{\prime}, draw a line parallel to the line $A C$ that intersects the extended line $A B$ at A^{\prime}.

10 . Therefore, $\Delta A^{\prime} B^{\prime}$ is the required triangle.

Solution:

The construction of the given problem can be justified by proving that
Since the scale factor is $5 / 3$, we need to prove
$\mathrm{A}^{\prime} \mathrm{B}=(5 / 3) \mathrm{AB}$
$\mathrm{BC}^{\prime}=(5 / 3) \mathrm{BC}$
$A^{\prime} C^{\prime}=(5 / 3) A C$
From the construction, we get $\mathrm{A}^{\prime} \mathrm{C}^{\prime} \| \mathrm{AC}$
In $\triangle A^{\prime} B^{\prime}$ and $\triangle A B C$,
$\therefore \angle \mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{B}=\angle \mathrm{ACB}$ (Corresponding angles)
$\angle B=\angle B$ (common)
$\therefore \Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \Delta \mathrm{ABC}$ (From AA similarity criterion)
Since the corresponding sides of the similar triangle are in the same ratio, it becomes
Therefore, $\mathrm{A}^{\prime} \mathrm{B} / \mathrm{AB}=\mathrm{BC}^{\prime} / \mathrm{BC}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} / \mathrm{AC}$
So, it becomes $\mathrm{A}^{\prime} \mathrm{B} / \mathrm{AB}=\mathrm{BC}^{\prime} / \mathrm{BC}=\mathrm{A}^{\prime} \mathrm{C}^{\prime} / \mathrm{AC}=5 / 3$
Hence, justified.

Exercise 11.2

Question 1

In each of the following, give the justification of the construction also:

1. Draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.
Construction Procedure:
The construction to draw a pair of tangents to the given circle is as follows.

For more Info Visit - www.KITest.in

1. Draw a circle with radius $=\mathbf{6} \mathbf{c m}$ with centre 0 .
2. Locate a point P, which is 10 cm away from 0 .
3. Join the points 0 and P through line
4. Draw the perpendicular bisector of the line OP.
5. Let M be the mid-point of the line $P 0$.
6. Take M as centre and measure the length of MO
7. The length MO is taken as radius and draws a circle.
8. The circle drawn with the radius of $M O$, intersect the previous circle at point Q and R.
9. Join PQ and PR.
10. Therefore, $P Q$ and $P R$ are the required tangents.

Solution:
The construction of the given problem can be justified by proving that PQ and PR are the tangents to the circle of radius 6 cm with centre 0 .
To prove this, join OQ and OR represented in dotted lines.
From the construction,
$\angle \mathrm{PQO}$ is an angle in the semi-circle.
We know that angle in a semi-circle is a right angle, so it becomes,
$\therefore \angle \mathrm{PQO}=90^{\circ}$
Such that $\Rightarrow 0 \mathrm{Q} \perp \mathrm{PQ}$
Since $O Q$ is the radius of the circle with radius $6 \mathrm{~cm}, \mathrm{PQ}$ must be a tangent of the circle.
Similarly, we can prove that PR is a tangent of the circle.
Hence, justified

Question 2

Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length. Also verify the measurement by actual calculation. Construction Procedure:
For the given circle, the tangent can be drawn as follows.

1. Draw a circle of 4 cm radius with centre " 0 ".
2. Again, take $\mathbf{0}$ as centre draw a circle of radius $\mathbf{6 c m}$.
3. Locate a point P on this circle
4. Join the points \mathbf{O} and P through lines such that it becomes $O P$.
5. Draw the perpendicular bisector to the line OP
6. Let M be the mid-point of $P O$.
7. Draw a circle with M as its centre and $M O$ as its radius
8. The circle drawn with the radius $O M$, intersect the given circle at the points Q and R.
9. Join PQ and PR.
10. $P Q$ and $P R$ are the required tangents

From the construction, it is observed that $P Q$ and $P R$ are of length 4.47 cm each.
It can be calculated manually as follows
In $\triangle P Q O$,
Since $P Q$ is a tangent,
$\angle P Q O=90^{\circ} . \mathrm{PO}=6 \mathrm{~cm}$ and $\mathrm{QO}=4 \mathrm{~cm}$
Applying Pythagoras theorem in $\triangle \mathrm{PQO}$,
We obtain $\mathbf{P Q}^{2}+\mathbf{Q O}^{\mathbf{2}}=\mathbf{P Q}^{\mathbf{2}}$
$P Q^{2}+(4) 2=(6)^{2}$
$P^{2}+16=36$
$\mathrm{PQ}^{2}=36-16$
$P Q 2=20$
$P Q=2 \sqrt{5}$
$P Q=4.47 \mathrm{~cm}$
Therefore, the tangent length $P Q=4.47$

Solution:

The construction of the given problem can be justified by proving that $P Q$ and $P R$ are the tangents to the circle of radius 4 cm with centre 0 .
To prove this, join OQ and OR represented in dotted lines.
From the construction,
$\angle \mathrm{PQO}$ is an angle in the semi-circle.
We know that angle in a semi-circle is a right angle, so it becomes,
$\therefore \angle \mathrm{PQO}=90^{\circ}$
Such that
$\Rightarrow \mathrm{OQ} \perp \mathrm{PQ}$
Since $O Q$ is the radius of the circle with radius $4 \mathrm{~cm}, \mathrm{PQ}$ must be a tangent of the circle.
Similarly, we can prove that PR is a tangent of the circle.
Hence, justified.
Question 3

Draw a circle of radius 3 cm . Take two points P and Q on one of its extended diameter each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q Construction Procedure:
The tangent for the given circle can be constructed as follows.

1. Draw a circle with a radius of 3 cm with centre " 0 ".
2. Draw a diameter of a circle and it extends 7 cm from the centre and mark it as P and Q.
3. Draw the perpendicular bisector of the line $P O$ and mark the midpoint as M.
4. Draw a circle with M as centre and $M O$ as radius
5. Now join the points PA and PB in which the circle with radius MO intersects the circle of circle 3 cm .
6. Now $P A$ and $P B$ are the required tangents.
7. Similarly, from the point Q, we can draw the tangents.
8. From that, QC and QD are the required tangents.

Solution:

The construction of the given problem can be justified by proving that $P Q$ and $P R$ are the tangents to the circle of radius 3 cm with centre 0 .
To prove this, join OA and OB.
From the construction,
$\angle P A O$ is an angle in the semi-circle.
We know that angle in a semi-circle is a right angle, so it becomes,
$\therefore \angle \mathrm{PAO}=90^{\circ}$
Such that $\Rightarrow \mathrm{OA} \perp \mathrm{PA}$
Since OA is the radius of the circle with radius 3 cm , PA must be a tangent of the circle.
Similarly, we can prove that PB, QC and QD are the tangent of the circle.
Hence, justified
Question 4
Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other at an angle of 60°
Construction Procedure:
The tangents can be constructed in the following manner:

1. Draw a circle of radius 5 cm and with centre as 0 .
2. Take a point Q on the circumference of the circle and join $O Q$.
3. Draw a perpendicular to $Q P$ at point Q.
4. Draw a radius OR , making an angle of 120° i.e. $\left(180^{\circ}-60^{\circ}\right)$ with OQ .
5. Draw a perpendicular to $R P$ at point R.
6. Now both the perpendiculars intersect at point P.
7. Therefore, $P Q$ and $P R$ are the required tangents at an angle of 60°

Solution:

The construction can be justified by proving that
$\angle Q P R=60^{\circ}$
By our construction
$\angle O Q P=90^{\circ}$
$\angle O R P=90^{\circ}$
And $\angle \mathrm{QOR}=120^{\circ}$
We know that the sum of all interior angles of a quadrilateral $=360^{\circ}$
$\angle O Q P+\angle Q O R+\angle O R P+\angle Q P R$
$=360^{\circ}$
$90^{\circ}+120^{\circ}+90^{\circ}+\angle \mathrm{QPR}=360^{\circ}$
Therefore, $\angle \mathrm{QPR}=60^{\circ}$
Hence Justified

Question 5

Draw a line segment $A B$ of length 8 cm . Taking A as centre, draw circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm . Construct tangents to each circle from the centre of the other circle.
Construction Procedure:
The tangent for the given circle can be constructed as follows.

1. Draw a line segment $A B=8 \mathrm{~cm}$.
2. Take A as centre and draw a circle of radius 4 cm
3. Take B as centre; draw a circle of radius 3 cm
4. Draw the perpendicular bisector of the line $A B$ and the midpoint is taken as M.
5. Now, take M as centre draw a circle with the radius of MA or MB which the intersects the circle at the points P, Q, R and S.
6. Now join AR, AS, BP and BQ
7. Therefore, the required tangents are $A R, A S, B P$ and $B Q$

Solution:

The construction can be justified by proving that AS and AR are the tangents of the circle (whose centre is B with radius is 3 cm) and BP and BQ are the tangents of the circle (whose centre is A and radius is 4 cm).
From the construction, to prove this, join AP, AQ, BS, and BR.
$\angle A S B$ is an angle in the semi-circle. We know that an angle in a semi-circle is a right angle.
$\therefore \angle \mathrm{ASB}=90^{\circ}$
$\Rightarrow \mathrm{BS} \perp \mathrm{AS}$
Since BS is the radius of the circle, AS must be a tangent of the circle.
Similarly, AR, BP, and BQ are the required tangents of the given circle.

Question 6

Let $A B C$ be a right triangle in which $A B=6 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\angle \mathrm{B}=90^{\circ}$. BD is the perpendicular from B on $A C$. The circle through B, C, D is drawn. Construct the tangents from A to this circle. Construction Procedure:
The tangent for the given circle can be constructed as follows

1. Draw the line segment with base $B C=8 \mathrm{~cm}$
2. Measure the angle 90° at the point B, such that $\angle B=90^{\circ}$.
3. Take B as centre and draw an arc with a measure of 6 cm .
4. Let the point be A where the arc intersects the ray.
5. Join the line AC.
6. Therefore, ABC be the required triangle.
7. Now, draw the perpendicular bisector to the line BC and the midpoint is marked as E .
8. Take E as centre and BE or EC measure as radius draw a circle.
9. Join A to the midpoint E of the circle
10. Now, again draw the perpendicular bisector to the line $A E$ and the midpoint is taken as M
11. Take M as Centre and AM or ME measure as radius, draw a circle
12. This circle intersects the previous circle at the points B and Q
13. Join the points A and Q
14. Therefore, $A B$ and $A Q$ are the required tangents.

Solution:

The construction can be justified by proving that $A G$ and $A B$ are the tangents to the circle. From the construction, join EQ.
$\angle A Q E$ is an angle in the semi-circle. We know that an angle in a semi-circle is a right angle.
$\therefore \angle \mathrm{AQE}=90^{\circ}$
$\Rightarrow \mathrm{EQ} \perp \mathrm{AQ}$
Since EQ is the radius of the circle, $A Q$ has to be a tangent of the circle.
Similarly, $\angle B=90^{\circ} \Rightarrow A B \perp B E$
Since BE is the radius of the circle, AB has to be a tangent of the circle.
Hence, justified

Question 7

Draw a circle with the help of a bangle. Take a point outside the circle. Construct the pair of tangents from this point to the circle.
Construction Procedure:
The required tangents can be constructed on the given circle as follows.

1. Draw a circle with the help of a bangle.
2. Draw two non-parallel chords such as $A B$ and $C D$
3. Draw the perpendicular bisector of $A B$ and $C D$
4. Take the centre as 0 where the perpendicular bisector intersects.
5. To draw the tangents, take a point P outside the circle.
6. Join the points 0 and P.
7. Now draw the perpendicular bisector of the line $P O$ and midpoint is taken as M
8. Take M as centre and $M O$ as radius draw a circle.
9. Let the circle intersects intersect the circle at the points \mathbf{Q} and R
10. Now join $P Q$ and $P R$
11. Therefore, $P Q$ and $P R$ are the required tangents.

Solution:

The construction can be justified by proving that PQ and PR are the tangents to the circle.
Since, O is the centre of a circle; we know that the perpendicular bisector of the chords passes through the centre. Now, join the points $O Q$ and $O R$.
We know that perpendicular bisector of a chord passes through the centre.
It is clear that the intersection point of these perpendicular bisectors is the centre of the circle.
Since, $\angle P Q O$ is an angle in the semi-circle. We know that an angle in a semi-circle is a right angle.
$\therefore \angle \mathrm{PQO}=90^{\circ}$
$\Rightarrow \mathrm{OQ} \perp \mathrm{PQ}$
Since $O Q$ is the radius of the circle, $P Q$ has to be a tangent of the circle. Similarly,
$\therefore \angle \mathrm{PRO}=90^{\circ}$
$\Rightarrow \mathrm{OR} \perp \mathrm{PO}$
Since OR is the radius of the circle, $P R$ has to be a tangent of the circle Therefore, PQ and PR are the required tangents of a circle.

