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PREFACE.

THIS work
,
intended as a text-book for colleges and scien

tific schools, is based on the method Of limits
, as the most

rigorous and most intelligible form o f presenting the first
principles Of the subj ect. The method of limits has also the
important advantage o f being a familiar method ; for it is

now so generally introduced in the study o f the more ele

mentary branches Of mathematics
,
that the student may be

assumed to be fully conversant with it on beginning the
Differential Calculus .

The rules o r formulae for differentiation in Chapter III.
differ in one respect from those in similar text-books

,
in being

expressed in terms Of u instead Of x
,
u being any function

o f x. They are thus directly applicable to all expressions
,

without the aid o f the usual theorem concerning a function o f

a function .

After acquiring the processes of differentiation, the student

in Chapter V. i s introduced to the differential notation
,
as a

convenient abbreviation o f the corresponding expressions by
differential coefficients . This notation has manifest advan

tages in the study Of the Integral Calculus and in its
applications .
In Chapter IX . and subsequent pages I have introduced for

Partial Differentiation the notation
6
—8

7
which has recently

a:

come into such general use .



The chapters On Maxima and Minima have been placed
after the applications to curves

,
as the consideration Of that

subj ect is much simplified by representing the function by

the ordinate Of a curve . Maxima and Minima may be taken,
if desired

,
with equal advantage immediately after Chapter

XIII.

In Chapter X .

,
Integral Calculus, I have taken the problem

o f finding the Moment of Inertia o f a plane area
,
as a better

illustration o f double integration than that Of finding the

area itself. The student more readily comprehends the inde
pendent variation Of a: and y in the double integral,

(x
2

yfidxdy, than in docdy.

A few pages o f Chapter XII ,
Integral Calculus, are d evoted

to a description o f the Hyperbolic Functions together with
their differentials

,
and a comparison is made with the cor

responding Circular Functions.
G. A . OSBORNE.

BOSTON, 1895.
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DIFFERENTIAL CALCULUS.

CHAPTER I.

FUNCTIONS .

1 . Definition of a Function . When the value Of one variable
quantity SO depends upon that o f another

,
that any change

in the latter produces a corresponding change in the former,
the fo rmer is said to be a function Of the latter.
Fo r example

,
the area Of a square is a function Of its Side ;

the volume of a sphere is a function of its radius ; the sine,
cosine

,
and tangent are functions Of the angle ; the expressions

x
2
,

log (53
2
4 x

/
x

are functions Of at .

A quantity may be a function o f two o r more variables .
Fo r example, the area o f a rectangle is a function o f two
adjacent sides ; either side Of a right triangle is a function of
the two other sides ; the volume o f a rectangular parallelo
piped is a function o f its three dimensions .
The expressions

x
2
+ xy + y

2
2

are functions Of a: and y.

The expressions

wy + yz + zn z
log (w

2
+ y—z).

are functions Of w
, y, and z.

2 . Dep endent and Indep endent Var iables . If y is a function
of at

,
as in the equations

y= tan 4 x,



2 DIFFERENTIAL CALCULUs .

x is called the indep endent variable, and y the dep endent
variable .
It is evident that whenever y is a function of x

,
x may be

also regarded as a function Of g, and the po sitions o f dependent
and independent variables reversed. Thus from the preceding
equations

,

x x/g, x 7} tan
—l
g, x log , y.

In equations involving more than two variables, as

x+ x — y= 0,

one must be regarded as the dependent variable
,
and the

others as independent variables .

3 . Exp licit and Imp licit Functions. When one quantity i s
expressed directly in terms o f another

,
the former is said to

be an exp licit function of the latter.
Fo r example, y is an explicit function of x in the equations,

g = fi + 2n

When the relation between y and x is given by an equation
containing these quantities, but no t so lved with reference to g,
y is said to be an imp licit function of x, as in the equations,

y + log g = x.

Sometimes, as in the first o f these equations, we can solve
the equation with reference to y, and thus change the function
from implicit to explicit . Thu s we find from this equation

,

y

4 . A lgebra ic and Transcendental Functions . An a lgebra ic

function is one that involves only the Operations o f addition,
subtraction

,
multiplication, division, involution and evolution

with constant exponents . All other functions are called tran
scendenta l functions, including logarithmic, exp onential, trigo

nometric, and inverse trigonometric, functions .



FUNCTIONS. 3

5 . Notatio n of Functions . The symbols F (x) , f (x) ,
and the like

,
are used to deno te functions o f x. Thus

instead of y is a function of we may write

y=f (w) o r

A functional symbol occurring more than once in the same
problem o r discussion is understoo d to denote the same func
tion o r operation

,
although applied to different quantities .

Thus
,
if

(1)

5.

f <2> 22 4- 5 9. f (1) 6 .

In all these Cxpressions f ( ) denotes the same operation as

defined by that is
,
the Operation Of squaring the quantity

and adding 5 to the result.
The following examples will further illustrate the notation

o f functions .

EXAM PLES .

1 . If f (x)= 2 x3—x
2—7 x + 6, show that

f (3 )= 302 f (2) = 49 f (o)= 67 f (l )= o2

f ( f (w— 2 )= 2w
3 —13 x2 + 21w.

—2 h— 7 ) x + 2 h
3

h2— 7 h + 6 .

Given fl (y) 2 g
4—
y
3
+ 1, f2 (y) 7 y

2— 6 y+ 1 ; Show that

f1 ( 2)=f2 (

If f (a) 311, Show that

1 1 + ab
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4 . If —1) (m Show that

M2) 0
.

Mm)
,

m + 2 m—2

5 . If — d ) (x — b) (x— c) , show that

a + b + c

2

— L¢ T ” )

fig?
) lb

— 0 )

6 . If show that

1 x

,
Show that

1 x

FQ’) F (z)

8 . If f (x) lo g (x +M ) , show that

2f ("3) =f (2“7
2

3f (m) =f <4 n
~3 3 x) .

9 . Given d(x) co s x

—
1 Sin x ; show that

MCI/ “i“

10 . If f (x, g, z) x
3

g
3

z
3 3 xgz, Show that

f (x: y) Z)f (p , q, M N ) :

where L px gy rz
,

s y qz TIE
,

7 . If F (x)= lo g
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6 DIFFERENTIAL C ALCULUs .

A negative increment is a decrement ; that is, a decrease in
value .
Fo r example, calling x 10

, as before, in g x
2

if Ax —2
, then Ag

8 . Difi
‘

erentia l Co efiicient. In the equation g = x
3
,
if we

suppose x to vary, g will vary also . To fix the attention upon
a definite value o f x

,
let us suppose x = 10 and therefore

g : 100
,
and let us inquire what addition or increment will

be produced in g by a certain increment assigned to x. Cal

cul ating the values o f Ag co rresponding to different values o f
Ax

,
we find results as in the following table

The third column gives the value o f the ratio between the
increments of x and o f g .

It appears from the table that, as Ax diminishes and

approaches zero, Ag also diminishes and approaches zero .

The ratio 3 diminishes, but instead o f approaching zero, ap

proaches 20 as its limit.

This limit o fg is called the difi
‘

erentia l coefiicient Of g with



DIFFERENTIAL COEFFICIENT. 7

respect to x, and IS denoted by
d

dg In this case
,
when x 10

,

dx
da

dz
20 .

It is to be noticed that
dg

dx

but as a single symbol denoting the limit of the fraction
Ag

The student will find as he advances that
dg

Ax dx

Of the properties o f an ordinary fraction, and Chapter V. shows
how it may be regarded as such.

is not here defined as a fraction
,

has many

9 . Without restricting ourselves to any one numerical value
,

da

dx

Having g= x
2
, let Ax= h, and let the new value of g be

denoted by

we may obtain from the equation g x
2 thus

therefore

Dividing by Ax h
, gives

Ay

Ax
2 x h.

The limit o f this, when it approaches zero, is 2 x. Hence

da

dx
2 x.

In the same way the differential coefficients o f other given
functions may be found .

For example
,
find 31from the equation,

A9) h
,

g : 2 (x 70
8
+ 1.

Ag g
’

g : 2 (x h)
3 2 x3 : 2 (3 x

2h + 3 xh
2 lf h

3
) .
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Dividing by Ax it gives
Ay

Ax
2 (3 x

2
+ 3 xh W) .

The limit o f IS 6 x2
,
as h approaches zero .

31— 6 5 2.

Take fo r another example

Ax= h.

\/x

9g \/x + h

Ax h

The limit o f this takes the indeterminate form But by

rationalizing the numerator, we have

Ag 1

Ax

The limit o f 53—9 1

Aw 2\/x

dg 1that Is
,

div 2xfi

10 . Genera l Definition of Difierential Co efiicient.

In general, if g

y
'=TO! h).

M y
' y <MM h) <Mm).

Ax
'

h

g?! limit o f (I) x h

h

_ (I) x
as h approaches zero .

x

The difierential co efficient o f a function may then be defined
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as the limiting value of the ratio of the increment of the function

to the increment of the variable, as these increments app roach

zero . That is
,
the differential coefficient o f the function ¢ (x)

with respect to x
,
is

the limit o i 9 “W h

iz
—
ih

as h is indefinitely diminished .

The differential coefficient is sometimes called the derivative.

NOTE .
—In Art . 94 will be found a geometrical illustration

o f the differential coefficient.

EXAM PLES.

Following the process o f Art . 9, derive the following
ferential coefficients

dvJ 1. g 3 x2 2 x.

dx
6 x 2 .

d
73 g = (x di

— 4x + 1 .

1 dg 1“4 ° if 5 dx 52

a dg 2 aJ 5 ' y “

? dx x
3

x —a dg 2 a
J G’ y

x + a

dg SxI
W7

dx 2

dg x

dx \/x
2—2

dg 1

dx

dg 1



CHAPTER III.

DIFFERENTIA TION.

11 . The process of finding the differential coefficient Of a
given function is called difierentiation. The examples in the
preceding chapter are introduced to illustrate the mean ing
o f the differential coefficient

,
but this elementary method of

differentiation is too tedious for general use .

Diflerentiatio n IS more readily performed by the application
Of certain general rules, which may be expressed by fo rmulae.
In these formulae u and v will deno te variable quantities, func
tions of x ; and c and n

,
constant quantities .

It is frequently convenient to write the difierential co

efficient o f a quantity
d
d

u
,
instead of

x

Thu s the differential co efficient o f (u + v) is more con

veniently written

al
l
(u v) , rather than

x

12 . Fo rmulae for Difierentiat
-ion of A lgebraic Functions.

dx

dx

dc

dx

d da dv

dxw

d du dv

21
Q

d
u

dx



DIFFERENTIA TION.

These formulae express the following general rules o f dif
ferentiation

I . The difierential co efiicient of a variable with resp ect to itself
is unity.

II . The difi
’
erential co efficient of a constant i s

.

zero .

III. The difierential co efiicient of the sum of two variables is

the sum of their difierentia l coefiicients.

IV. The difi
‘

erential co efiicient of the p roduct of two variables

is the sum of the p roducts of each variable by the difierentia l

co efiicient of the o ther .

V. The difi
’

erential co efficient of the p roduct of a constant and

a variable i s the p roduct of the constant and the d izferentia l co

efiicient of the variable.

VI. The difi
‘

erential co efiicient of a fraction is the difi
'

erential

co efiicient of the numerato r multip lied by the denomina to r minus
the difi

'

erential co efiicient of the denominator multip lied by the

numerato r
,
this difi

’

erence being divided by the square of the

denominator.

VII. The difi
‘

erentia l co efiicient of any p ower of a var iable i s

the product of the exp onent, the p ower with exp onent diminished
by 1, and the difi

‘

erentia l co efiicient of the variable.

13 . Derivation of Fo rmulae.

Pro of of I . This fo llows immediately from the definition o f

a differential co efii cient. Fo r since 55 1
,
its limit 995 1 .

Ax dx

Pro of of II . A constant is a quantity whose value does
no t vary. Hence
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A0 0 and

dc

dx

P ro of of III. Let g = u + v, and suppose that when x is
changed into x + h, g, u, and v become g ', u ', and v

'

; then

therefore its limit

y
r
: “1+

therefore g
'

g uh . u q,
'

that is, Ag Au Av .

Divide by Ax ; then

Ag Au
+
Av

Ax Ax Ax

Now suppose Ax to diminish and approach zero
, and we

have
,
fo r the limits o f these fractions

,

dg da dv

dx dx
+
dx

If in this we substitute for g, u v
,
we have

du dv

It is evident that the same pro o f would apply to any

number Of variables connected by plus o r minus sign s . We
should then have

j (u i ’v i w i u

di f i q i
dw

i
CU dx dx dx

Proof of IV. Let g uv ; then

y
r
: “but

,

g
'
g u v uv (u

'
u)v

'
+ u (v

'
v) ;

Ag v
'Au uAv .
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14 DIFFERENTIAL CALCULUS.

Pro of of VI. Let

f
.

therefore g
'
g

uh ) u (v v)
;

that is
,

All

Ax

Now suppose Ax to diminish towards zero
,
and, noticing

that the limit o f v
' is v, we have

dv

dx

derive VI. from IV.

E

therefore gv u .

By IV.

therefore
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P ro of of VII . F irst
,
suppose n to be a positive integer.

Let g u
"

,

and, g u

that is
,

Ag Au (u
'n ‘ 1

u
2

Ay [ ri—2 171—3 2 n—l A“
u u u u u u

Ax Ax

Now let Ax diminish ; then, u being the limit o f u
'

, each
o f the n terms within the parenthesis becomes therefo re

fly n—l d
’

ll/

dx dx

Second, suppose n to be a po sitive fraction
P

Let g ufi
,

then g
? up ;

d d
th of q per ore

dx
<y

dx
<u

But we have already Shown VII. to be true when the ex

ponent is a positive integer ; hence we may apply it to each
member o f this equation . This g ives

dg du
2 p 1

qy
dx

Pu
dd:

2

—1

therefore dg p up du

dx n
‘ l dx

Substituting fo r g, us, gives
dg p uP

—l du p ug
-Idu

dx g
a
p—gdx q dx

’

which shows VII. to be true in this case also . Hence that
fo rmula applies to any positive value of n, whether integral
o r fractional.
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suppose n to be negative and equal to

1y u

u

n,
(u )

by VI.

,
dx u

2m mu
—m—l

Hence VII. is universally true .

EXAM PLES.

Differentiate the following functions

1. y (13
4
.

If two quantities are equal
,
their differential coefficients

must be equal. Hence

4

dx dx
(x )

If we apply VII .

,
substituting u x and n 4

, we have

d 4 dx
= 4 x3 4 x3 b I .

13
.

—
A n s

dx

2. g = 3 x
4
+ 4 x

3
.

dy £1. =f
l
3 4 i 4 x3

dx dx
<3 x

4
+

dx
( m) +

dx
(

by U L,
making i t 3 x4 and v

d

d

m
(3 5

4

) Si gn,
by v .

,

3 4 x3 : 12 x3.

d d
= 4 x

3 = 4 -3 x2= 12 x”.Simi larly,
dx
(4 x

3

)
dx
(

3
7A 12 2 3+ 12 x

2
: l 2 (x

3
+ x

2

) .

x



Applying

DIFFERENTIATION

d g d
2

x dx
<x ) +

dx
(

d
(o i ) goat, by VII .

d
dx
(2) O

)
by

dg d x 3

dx dx x
2
+ 3

mak ing

x + 3 and v = x
2
+ 3, we have

d d
x
2 3 i

dx
<w+ 3 >

(96
2
4-3 )

(90
2
+

dg _ 3
— 6 x—x

2

dx (x
Z—i

17
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dg d
h

dx dx

If we apply VII.,
mak ing

u= x
2
+ 2 and n g, we have

2 2 —1 d
x
2 — x

2 Z
I— x

i’

4 ”

3

gig 4 x

d“?

g — x.

dy

dx
= i n“ 1) (90

3
s o
i
l

we apply IV.

,
mak ing

u = x
2

+ 1 and v = (x
3 we have

[ 69+ 1) (ar
i
o
i
]

(00
2
+ o

d

i io
i w>

i
+ w)

,

E
w
e n 1)

$ <w
8 m di

i d
m
ak eov er—w)

.
du

A

dm
l ) (x

3
x) —x)

%
2x

gx
2
+ 1 ) § 3 x

2 —x ) 7 x4—2 x2 1
°

2 (x
3

x)
; 2 (x

3
ant
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dv5 38 . (2 x 1)
dx

(16 x 1) (x l )
4

(2 x

x —5 x§ + 2 x
I
+ § x

§

—e + 2fi—3 o

2 x%

12. Given

(a x)
5=a

5
+ 5 a

4
x 10 a3x2+ 10 a

2
x
3
+ 5 d x

4
+ x

5
;

derive by differentiation the expansion o f (a x)
4

derive the sum of the series 1 2 x 3 x? ” nx
” ‘ 1

.

Ans .

nx
’t ’
f l n l )x

”

+ 1
.

(ac

_d_y_
doc (l u rk /1 m m2

x
”

big
(1 x)

" dx (1

16. g = (1 —2 x + 3 x
2

fig

17 . g= (1
dx



20 DIFFERENTIAL CALCULUS.

dx

—3 x)
5

(a

dx

y : (a (b

(d
’
+ 2 ax 12 x’

)

15x“(a—3x)
‘
(a (a

’
+ 2 ax—23 x2) .

E
l

i

—"

Z [m (b+x)
“4

(a x)
“
(b x)

”

dg
dz

mam

29 .

gig
dx

do:

L
S

S
I
S
“

(1

l + x

(3 wok/w

x

2x (1 —x
2

1) i

i ) i .
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22 DIFFERENTIAL CALCULUs .

Now when z Increases indefinitely, we have

limit o f

This quantity is usually denoted by 6 , so that
1 1 1—1e

The value o f C can be easily calculated to any desired
number o f decimals by computing the values o f the successive

terms o f this series . Fo r seven decimal places the calculation

is as follows ,

.5

.166666667

.041666667

008333333

.001388889

.000198413

.000024802

.000002756

000000276

000000025

000000002

6

By calculating the value fo r different values o f 2,

we may verify its limit. Thus

(1

(1 i )
“

(1
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16 . Derivation of Formulae.

Pro of of VIII. Let g logau,

then g
' log , (u Au) ,

Ag log , (u Au) logau log ,

— 10 e. 1 log. 1

Dividing by Ax
,

Av

Aw

—1oe. 1

Now if Ax approach zero, Au at the same time approaches

zero ; then the limit o f is the same as the limit
2

o f as if increases indefinitely. But in Art . 15 we

have already found the latter limit to be e. Hence we have
alu

dg dx

dx
logae 7

a

”

Pro of of IX. This is a special case o f VIII .
,
when a : e .

In this
logae logee 1 .

NOTE — Logarithms to base 6 are called Nap ierian loga
rithms . Hereafter

,
when no base is specified

,
Napierian

logarithms are to be understood .

That is log u log ,u.

Pro of of X.

Let g a
“

.

Taking the logarithm o f each member
,
we have

log g u log a ;

dy

therefore by IX.

,
g :

31
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Multiplying by g : a
“
,
we have

91—y= 10 g a,
0 (L

ug/f.
dx dx

P ro of of XI. This is a special case o f X .

,
where a : 6 .

Pro of of XII. Let g u
”
.

Tak ing the logarithm o f each member
,
we have

log g v log u ;

dg
vdu

therefore by IX.
,

d” dx
log uy u

Multiplying by g u
”

,
we have

+ log u-u”

EXAMP

1 .

2 . g = x log x.

g = x
" log x.

g = lo g \/I —7 2
.

1 — x
2

e
x

(1 —3 x
2—x

3

) .

g \/x

y

g log (6
3
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y (x—3 )e
” 4 xc‘ x. g: (2x

dg 5= 1 5 x
8 -=M Qy Og1°( 37+

dx 5 x + x
3

1
where M

10 g‘10
. -logme = .434294

d

a

10 g 5

fig 4

dx

What is the result o f differentiating bo th members o f each

o f the three following equations ?

13 .

{

I
Ans

L i

l

-x
1—x+ x

’

1 4 . log § +g 3
3

7
1+

Ans

15 .

Ans .

16 . g
17 . g log (x—2)

18 . g logM .

dg Va
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3 x+ 6 x5

g = e
“ 3 x2

+
6 z
2

v

a a

g logx log (logx) logx.

g = log (x—3 Vx
2

dy

26 . g = log

27 .

—
ITF; 2

y= 10 g

y= loe

g (e
'

(e
2 ’
+ 2 e

4°
+

dg log x

dx ( 1—x)
’

dg 1
J ,

dx 2
we

C

C

;
g = ax

3
e
“

dx

dg log (logx)
dx x

g_g 2x

d“? x
2
+ a

2
V x

2
+ b

2

dg x
2 1

dx x
‘
+ x

2
+ 1

1)

dy

d
_
x

( 1—log x)

d?!
+ 10 9;
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33 . g g—i
j—
G

lo gx) .

dg _ 1

35 . y x
log z

.

_1_
36 . g x

10“
.

37 . y 6 3
3

.

38 . g ex
”

.

39 . y (La
x

.

1 7 . Fo rmula: for Difi
'

erentiation of Trigonometric Functions .

In the following formul ae the angle u is supposed to be ex

pressed in Circular measure .

sin u co s u

co s u

tan u sec u

XVII . sec u sec u tan u

XVIII. cosec u °

XIX. vers u sin u

e
e
’

e
”
.

ex
z

x
'

(1 log x) .

gx
" logx (logx)

2



28 DIFFERENTIAL CALCULUS.

18 . Derivation of Fo rmulae.

Pro of of XIII . Let g sin i t
,

then g
'= sin (u Au) ;

therefore Ag sin (u Au)

But from Trigonometry,

sinA sinB 2 sin%(A —B ) co s%(A

If we substitute A u Au and B u
,

we have Ag 2 cos $
2

71.

Au

Hence co s u +
2 A“

Au Ax

2

Now when Ax approaches zero
,
Au likewi se approaches

zero
,
and as Au is in c ircular measure

,
the limit o f

is unity.

Hence

Pro of of XIV. This may be derived by substituting in

XIII . for u,
7

2
1 u .

Then
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30 DIFFERENTIAL CALCULUS.

EXAMPLES.

y= sin2x co sx. gg= 2 co s 2x co s x
—Sin2x sinx

z
dg_

y= tan 5x.

dx
_10 tan 5x sec’ 5x.

dv= ta.

— = ta 2
27.

g nx x
dx

n

d_g__
dx

=M Q—y = s inx + co sx.

secx dx

3
dv_

y= 8m x co sx.

dx
= sin’

x(3 co s
’
x—Sin

’
x) .

dy
co s (x a) °

d
—
x

= 0 0 8 2x

s1n Q 8 111 2 a co sec
’

(a x)
sm (a + x) dx

d?! s

y_tan x
a

: 2 tan x

55—
1

n (a b) sm2x(a sm
’
x b co s’x)

"

dg
co t x.12 . g log smx

dx

13 . g= log tanx.

dx siu 2 x

14 . g log secx.
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15 . g= vers vers

sin 2x.

e
“
sinx.

17 . g co sx log

18 . g sinnx siu”
x.

20 . g x + log co s

21 . g log ta

22. g log co secx.

23 . y log
b siux

co s 4x.

In each o f the foll owing pairs o f equations derive
tiation each o f the two equations from the other :

25 . sin 2x 2 siux co sx,
co s 2x co s

z
x siu’

x.

2 an
26 . 8 111 2x

t a

;1 tan x

1 tanzx
.co s 2x

1 tan
z
x

31

differen

n sinh l
x sin (n + 1) x.

mn sin“
‘ 1
nx co s m n) x

S
I
S

S

I
S

S
I
S

S

I
S

S
I
S

S
I
S

S
I
S

2
O

1+ tanx

secx.

dx

dg_ ab
0

dx a
2
co s

z
x b’ s inzx

S

I
S



s in 3 x 3 Sin x 4 sin3x
,

co s 3 x 4 co s3 x Boo s x .

siu 4 x 4 siu x co s3x 4 co s x sin3x,

co s 4 x 1 8 sin2x co s
z
x.

sin (m n)x sin mx co s nx co smx Sin nx,

co s (m n)x co smx co s nx sinmx sin nx.

x
3

x
5

x
7

SID £13 93

.4

co s x 1 30
2

a’ $
6

31 . Si n x

2V— 1

T‘s/j .

e e
0

co s x
2

1 9 . Fo rmulae fo r Trig onometric

Functions .

sin
” 1
u

XXI . co s
—l
u

XXII . tan ‘ l
u

XXIII. cot “ l
u

XXIV. sec
‘ 1
u

Differentiation of Inverse



DIFFERENTIATION

XXV. co seC
‘ 1
u

XXVI . vers* 1u

20 . Derivation of Formulae .

P ro of of XX. Let g : sin ‘ l
u

therefore sin g u .

By XIII , COSg

therefore

alu

therefore dg d“;

d“? u
2

Pro of of XXI . This may be derived like
the relation

co s
—l
u s1n

“
u

d dwhence co s
—l
u sm

- 1
u

dx dx

P ro of of XXII. Let g z : tan ‘ l
u ;

therefo re tan g u .

dg du
B X 2

y V ’
sec y

dx alx
’

du

therefore dg dx

dx sec2y
°

33

fig da

dx dx

du

dx co s g



34 DIFFERENTIAL CALCULUS.

sec2y= 1 + tan2g = l + u
z

;

du

therefore dg dx

dx 1 u
2

Pro of of XXIII. This may be derived like
the relation

cot “ l u tan “ l
u .

P ro of of XX IV. Let g sec
—l
n ;

therefore sec g u .

By XVII ., sec g tan g
dg _

d_a

dx dx

du

dg dx
therefore

dx sec g tang

secg tang sec g sec2y 1 u

du

therefore g
?!

V

d

f“3 u u 1

P ro of of XXV. This may be derived like XXIV.
,

the relation
co sec

‘ l
u sec

‘ 1
u.

P ro of of XXVI. Let g = vers
“ 1
u ;

therefore u vers g 1 co s g .

alu
B XIy V .

d,
sm y

du

therefore dg dx

dx Sing

But co s
z

g u)
2

y

du

therefore dx



DIFFERENTIATION.

EXAMPLES.

1 . g= tan
' lmx. Z-

Z
:

2. g= sin“(3 x fi 3

3 . g vers‘
2

4 . g : sin
‘ 1

(3 x—4x
3

) .

5 . g tan

6 . g tan
-l
o
'
.

7 . g tan" (n tanx) m .

8 . g co sec

2 x’
10

-1
o

3] VOTE
1+ x

2

11 y= tan
' l e

’ —
2

6

35



36

—l

2

y= tan"
4 siux

3 + 5 co s x

y co s
' l 3 5 co s x

.

5 + 3 co s x

g = s in
‘ 1 1

_ x
2

l + x
i

l -I-x
2

(3
1

g cose
2 x

1—dx

22 . y= tan
“

DIFFERENTIAL CALCULUS.
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38 DIFFERENTIAL CALCULUS.

Fo r example
,
suppose
a

x

g 1

Difierentiating with respect to g,
dx a

dy

B 1
a

b 2y (
dz a

y

This is the same result that we get by solving (2) with
reference to g, giving

a
y
E
—l

r

and differentiating this with reference to x.

22 . To exp ress i
ii ! in terms of g

ig
and

dz

dx dz dx

function o f z
,
and z a given function of x

,
it follows that

If g is a given

g is a function o f x. This relation may be obtained by

eliminating z between the two given equations, but g
y
can be

x

found without such elimination .

By differentiating the two given equations, we find 9
1
4
”

and
dz

£13
, and from these differential coefficients, dg_may be obtained

dx dx

by a relation which may be derived as follows

Ag Ag Az

Ax Az Ax
’

however small Ax, Ag, and Az. A s these quantities approach
zero

,
we have fo r the limits o f the members o f this equation,

1
dx dz alx

That is, the relation is the same as if the di fferential co effi
cients were ordinary fractions .

It is evident that



.DHMERENTHMUON.

For example, suppose

e
s
,

3 a
2

x
2
.

(2)

Differentiating these equations, the first with reference to z,
and the second with reference to x, we have

dz dx

By 31 5 z4 (—2 x)=— l 0 x (a
2 — x

2

)
4

,
by

The same result might have been Obtained by eliminating z

between giving
a (06

2

and differentiating this with reference to x.

EXAMPLES.

In the following seven examples find by differentiation

and then 3
2 by (1 ) Art . 21 .

£13

2a
“I “L

dy (y
dx 2

dy Va
? 1

x —1 ) 1= 2EV ?!
2
(tau

2
x co t

2
x).
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7 . x 2 log

In the following examples find by differentiation
0131

and then
dz:

by (1 ) Art. 22 .

2 z

3 5 — 2 2 x—1
'

9 . z = log (x—x
2

) .

10 . g = log (z%—z) , z= e
3z

2

11 . g = log
1 + z

,
z= e

"
.

z

12 . g : tan 2 z, z= tan
" 1

(2 x

dg 4

dx (x

dy
4 x3 6 x2 1 .

dx

dg 5 e22 — 3

dx e
2" —1

dg e
"° — e

‘ "c

atx e
’° -e

' ac

dg 2 x2 — 2 x + 1

dx 2 (x —x2)
2



CHAPTER IV.

SU CCESSIVE DIFFERENTIA TION.

23 . Definition. A Single differentiation performed on

g =f (x) gives the differential coefficient, %
71 This result
x

being generally also a function o f x
,
may be again differen

tiated, and we thus obtain what is called the second difierentia l
co efficient ; the result o f three successive differentiations is
the third difi

'

erential coefiicient and so on .

For example, if g x
4

,

dy 4 x3
,

dx

d 43 12 S2
,

dxdx

d d dt/ 24 £23.
alxdxdx

24 . No tation. The second differential coefficient of g with

respect to x
,
is denoted byg—

y
z
x

That is
,

dx2 dxdx

d d2g
dx3 dxdxdx dxdx2

d4g d d d dg d fl .

dx4 dxdxdxdx dxdx3

Similarly,

dng d dn ‘ l

g
‘

dx" dxalx" ‘ 1
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Thus
,
if

dx3

The successive differential coefficients are sometimes called
the first, second, third, derivatives .

If the original function o f x is denoted by f (x) , its suc
cessive differential coefficients are Often denoted by

f (x) , f (w) , f (x)

25 . The nth Difi
’

erential Coefiicient. It is possible to express
the nth differential coefficient o f some functions .
Fo r example,

(a) . From g =e
’

,
we have

dx

(b) . From g c
“
,
we have

d iv

alx2

From g log x, we have

2 d31

352 (ti
-

90

3
3

n —1 "" 1
n —1di g d g L_ _

dx4 dx“



SUCCESSIVE DIFFERENTIATION

From g sin ax, we have

di ] a co s ax= a sm d x+
dx

d2il 2 2
a co s a Sin ax

dx2

dBy 3 3—
a co s a Sin x+

dx3

EXAM PLES.

1 . g = x
4—4 x3+ 6 x

2—4 x + l . ZZ
— 12 (x

2

2. g= x
5
.

3 . g 4 xe’ + x.

5 . g = xlogx.

6 . g = x
310 gx.

7 . g log (6
3

+
(e

’
e
"

)
3

43
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8 . sc
i— 6 12 e

”

y 90 +
cw

d i y
ogx

dx”
x log x.

d 3 2 co s x
10 . = lo s nx.

__y
3/ g 1

dx3 siu3x

d 3g 4 a3
11 . x

2
a
53
tany

dxs

d‘g12 .

a};
- 4 e

"

co s x.

13 . g = tanx.
fl = fisec

‘
x—4 sec’x .

dx3

5 x + 1
.

d°g =L§
3

x
2—1 dx6 (x+ 1)

Decompose the fraction before differentiating .

dzg15 . 2y v sec w
cm a

“
a

16
g ig—y n

iz —4 n (n -1) T
2

g
dx2

g g

8 37 c

g
s x c

qz
s

7

x (

c

l

ing Siu3x

dzg
g= tan

2
x + 8 10 g co s x + 3 x

’
.

Egg

g = (x
2

dx8

2
d s?l 2

g = x
3 3 (log x) -l l log x +

d 2y dy 2as —2 02 = 0 .g e Sinbx
dx2

a

dw
+ (a + ) g

2

(1—x
2

)
(

2a
g

xgg-I-m
’
g :
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46 DIFFERENTIAL CALCULUS.

Differentiating (2)

d2

dxz
(uv)=u2v u1v1+ ulv1+ uv2

= u2v 2 ulv1+

3

5x3 (uv) u3v u2v1+ 2 u2v1+ 2 ulv2+ u1v2+ uv3

U3?) 3 u2w1+ 3 “U3 .

We shall find this law o f the terms to apply, however far
we continue the differentiation, the coefficients being those o f
the B inomial Theorem .

In general

n (u —l )

L2_

vulva - 1+ we. (3)

(uv) “
n
” nu

n 1 211+ n
u—2v2

This may be proved by induction, by showing that if true for
dn+1

f
t

(uv) , it is also true for
$
71

the student .
In the ordinary notation (3 ) becomes

d
This exercise is left for

x
71

d”
n

dx" dx” dx"
“ l dx [2 dx"

‘ 2 dx2

du al"
‘ 1
v d”

v

dxdx"
“ 1 dx"

For example, let us find by Leibnitz
’s Theorem

Here u : e
“
,

u1
= ac

“
,

v = x
,

v1
= 1

,
v2= 0, v3

= 0
,

Substituting in we have

dn

dx"
(xe

‘n

) a
”
e
“‘
x na

" “ 1
e
“

a
" “ 1

e
“
(ax n) .
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EXAM PLES.

Find by Leibnitz
’s Theorem the following difierential co

efficients :

1 . y : x
3 tanw. x

z
sec

z
xtan a

2 . y e
’
ogw. e

”c

cgm

a
"

(log [(x log a n)
2

n].

(a; l )
n+3

2 x3 $ eczx (3 tan
2
x 1)

18 x seczw 6 tanw.

4 6 8

5



CHAPTER V .

DIFFERENTIA L-S

27 . The differential coefficient 2
1

7
3! has been defined, not as a
a:

fraction hav1ng a numerator and denominator, but as a smgle

as Am and Ag
Ax

approach zero . But there are some advantages in regarding
the differential “

coefficient as an actual fraction, doc and cly

being infinitely small increments o f a: and y, and called aiy
'

er

entia ls o f a: and y. That is
,
da: is an infin itely small Am, and .

dy an i nfini tely small Ay.

Fo r instance, if we differentiate y : 90
2
, we obtain

dy 2 x
dx

symbol representing the limiting value o f

U sing differentials, this result might be written

dy 2 aclm.

These are two forms o f expressing the same relation . Ac

cording to the first,
The limit of the ra tio of the increment of y to that of so

,
as

these increments app ro ach zero , i s 2 90.

According to the second,
An infinitely sma ll increment of y is 2 90 times the co rresp o nd ing

infin itely small increment of a .

We have the same two forms of expressing other relations
in mathematics .
Fo r instance, we may say

The limit o f the rati o as these quantities approach
zero, is unity .

”
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Or,

An infinitely small arc is equal to its chord .

The equation cly 2 aan may thus be used as a convenient
sub stitute for

dy

clx

We see also why o r is called the
'

difi
f
erential co efiicient,

w

forit is the co efi cie
‘

nt o f dcc in the equation dy 2wdw.

28 . The formulae fo r differentiation may be expressed in
the fo rm o f differentials by omitting the doc in each member .
Thus

,
IV. becomes

d (uv) 71t adv ;

da
and XXII ,

d tan—l i t
1 711

2 ;

and the others may be similarly expressed.

Differentiation by the new formulae is substantially the
same as by the o ld

,
differing only in using the symbol d

instead o f i
doc

For example
,
take Ex . 5

,
p . 17 .

d = dy
(mu s)

?

(90
2
+ 3 ) (m 3 )

?

Dividing by also gives
‘

dg/ 3 — 6 50 —93
2

da: ( .n
2
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29 . Successive Difierentials . Successive differential co effi
d2y d3y

c 1ents
,

bl? {fi g}
,
m
,
whi ch have been defined as Single symbols,

may also be interpreted as fractions
,
the numerators, cl2 d3y,

m
,
denoting cl (cly) , m

, and called the second,
third

,
o n

,
differentials o f y, While the denominato rs are (day,

This will be better understood from an example .

Let y (13
4
,

then dy 4 x3 dw.

As 4 x3 dx is a variable
,
cly is a variable

,
and may be

again differentiated. Now
,
a: being the independent variable,

its increment elmmay be supposed the same infinitely small
quantity for all values o f a ; that is, we may regard dcv as

constant in the preceding equation . Thus we obtain

d (dy) 12 a?do: dx 12

Deno ting d (dy) by d
2

dzy 12

Differentiating again, and still regarding Ola: as constant,

d (a
z

y) 24 xclx(da:)
2 24

cl3y

From these equations
,
by dividing by the power of da: in the

second members, we find

d?

(cl
/$2 12 902

,

d3y

(an)
3

24x.

The independent variable 93, whose differential is supposed
constant, is sometimes called the equicrescent variable .
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EXAMPLES.

Difierentiate the following,

90
2
+ 2

93 1

3 .

y e
x log x. oly e

" log x Ola) .

—e ' “B
e
z— e

‘

e
"

+ e
“ ’3

y : sinmxco snx. sinm
‘ l
a
'

cos2a'

n sinzx) elm.

3

1

5
mm tan ac. dy sec

4
xclx.

dx= t
‘ 1 18 y an °gw

wt1 + <logw>
2

1

u sing differentials in the process



CHAPTER VI.

IM PLICIT FUNCTIONS . (See also A rt.

2 3

30 . Hitherto in finding
(
digs, o

, y has been an explicit

function o f (17. When the relation between y and a: is given by
an equation containing these quantities but no t solved with
reference to y, y is said to be an imp licit function of m.

If the equation can be so lved with reference to y, we
may find its differential coefficients by the methods already
g iven . But this solution is not necessary fo r the differentiation,
for by the use of the formulae of differentiation we may derive

3

gi
l
, 353, m , directly from the given equation .

a

3 1 . Fo r example , suppose the relation between y and a: to

be given by the equation

a
2

y
2
+ b

2
x
2= a

2b2 .

Differentiating with respect to x,

ii
d
(a

2

y
2
+ 6

2
93
2 O

,

a:

2 a 2yg
fl 2 bzn O

,

a:

dy a :

doc a
g

y

Having thus obtained the first differential coefficient, we
may, by differentiating again ,

derive the second differential
coefficient .

dz/2 b2_ 62 (1
2

a y a:

da:

a
4

y
2
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_
d
_y co sgw+ y)
dx 1

da+y_.

6
. my‘

da: x (y ax? x
2

(y

dy tan a; dzy tan2y tan%
7 . secwco s y=m.

Ola: tan y (1902 tan3y

dy x
2

an dzy 2 a3ay
x
3 3 O.8 y

s
any

doc y
f

am
,

am? (y
2

an)
3

a b co s 0
, y a 0 b sin 0,

the variables being a
, y, and 0.

dy a + bco s 9 azy

Ola: bsinO ax?



CHAPTER VII.

EXPANSION OP FUNCTIONS .

‘

32 . The student is probably already familiar with methods
o f expanding certain function s into series . Thus, by ordinary
division

,

1 — a
'3
+

by the B inomial Theorem ,

(a as)
"

na
” ‘ 1

a: M a
n—2

93
2
+

But these methods are limited in their application to certain
forms o f functions . We are now about to consider a method
o f expansion applicable to all functions

,
and including as

special cases the expansions just referred to .

These methods are known as Taylor
’

s Theorem and Mac~

laurin
’

s Theorem. These two theo rems are so connected that
either may be regarded as involving the other. We shall first
consider Maclaurin’

s Theorem as the simpler in expression
and derivation .

33 . Maclaurin
’
s Theorem. This is a theorem by which any

function o f a:may be expanded into a series of terms arranged
according to the ascending integral powers of a . It may be

expressed as follows

f (x) =f (0)
2
“mm
I I3

+

in which f (a) is the given function to be expanded, and f (x) ,
f (n) , f m

, its successive differential coefficients .
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That is
, f

’

(x) i f co)
cla:

fl ee) i f
'

a)
dx

f (n—gi

f (O) , m
,
as the notation implies

,
denote the

values (a) , m , when

3 4 . Derivation of Maclaarin
’
s T heorem. This may be de

rived by the metho d o f Indeterminate Coefficients by assuming

Cx2+ Dx
3
+ Ex

4
+ (1 )

where A , B , C
'
, are supposed to be constant coefficients .

Differentiating successively, and using the notation just de
fined

,
we have

f
’

(w) B + 2 0 90 3Dx2+ 4Ex
3
+

f
"

(w) 2 -3Dx 3 .4Ex2+

2 3 1? 2 o3-4Em

Now since equation and consequently
supposed true fo r all values o f a

,
they will be true when

Substituting zero for ac in these equations, we have

from or

o r

o r C—Ji
’

l
tZ-

Q)
’
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from o r

f
iV

(O) = 2-3-4E,
0 1

‘

Substituting these values o f A ,
B
, C, in we have

f (w)=f (0) f

3 5 . As an example in the application o f Maclaurin
’
s Theo

rem
,
let it be required to expand log (1 a ) into a series .

1
f a) (1 + x) f (0) —1 ~

—1~

r
iv
<o>=—L3_.

f a) so oars f
"

(0 ) I4.

Substituting in (6) Art. 34, we have

x
2 2 903

-a:

o r 2
4

4-
96

5

5

36 . If, in the application o f Maclaurin’
s Theorem to a given

function , any o f the quantities f (O) f ' (O) f (O) , are

infinite , thi s function is no t capable of being expanded m the

proposed series . This IS the case with log 03, an, cot a' .
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EXAM P LES.

Derive the following by Maclaurin ’
s Theorem

cv
3

x
5

x
7

1 . s1nw= w

L

I_3_

5 . , where M = logae.

$
3 2 935t6 anw cc +
3
+
15

7

7 . tan
‘ l
x = w—%

3

+
m

5

5
5

;

f (a) tan
- l
oo,

1
f (m)

1 + w
2

— 1—a
‘2-i—w

4—me-I-m ,

f
"
(a) 2 a:+ 4x

3 6 905+

i
s

90
6

3 5 2-4-6 7
SI: 8 .
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f (90) sin
-1
a
,

1
f w

Expanding by the B inomial Theorem,

1 +
2
x
2
+
2

1

290
4

6 212

(1 W
I

1 an
z
+ bn

4
+ ca

6
+

where a = i
,
e

1 3

2 QTZ
’

2-4-6
’

f (90) 2 am 4 bn3+ 6 c.v
5
+

$
6

1Ogmco s a:
12

4

-I"
45

From Ex. 7 derive

1 1 1

3 5 7
+
1

9

Al so
,
since tan—1 1 _ tan—131

2
tan

3217506

where M 4342945.

-11

.785398
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The computation includes 10 terms the first series
7 o f the second.

13 . From Ex . 3 show that

e
w r l — l

x
~

+

co s x 1 sin x
,
by Exs . 1, 2 .

Similarly , show that

co s w 1 sinw.

From these two equations derive the exp onential values o f

the sine and cosine,

sinx_

e
zfi i

+ e
—l

—
i

COSCB

2

3 7 . Taylor
’
s Theo rem. This is a theorem fo r expanding

any function o f the sum of two quantities in a series arranged
according to the powers of one o f these quantities .
As the B inomial Theorem expands (ao in a series

arranged according to the powers of h, so Taylor’s Theorem
expands any function o f (93 + h) in a similar series . It may

be expressed as follows

(e ) + f

38 . The proof of Taylor
’s Theorem depends upon the fol

lowing principle
If we differentiate f (ac h) with reference to w, regarding h

constant
,
the result is the same as if we differentiate it with

reference to h
,
regarding a: constant.
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Equating the coefficients o f like powers o f h according to the
principle o f Indeterminate Co efficients

,
we have

The coefficient A may be found from (1) by putting h
as the equation must hold for thi s value among others .

Then A f
(1A

H ence
dx

f (x)

1 d2A 1
2 de 2 2

f (93)

Substituting these expressions for A,
B
, C

'

,
in we

have

40 . Maclaurin’
s Theorem may be obtained from Taylor

’s
Theorem by substituting a: 0 . We then have

h?

E

This is Maclaurin
’
s Theore

'

m expressed in terms o f h in‘

stead o f x.
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41 . As an example in the application o f Theorem
,

let it be required to expand sin (a: h) into

f (a: h) sin (n: h) ,

f (a?)

f
'

(w) co sx
,

f
f

f
i"

(w)

Substituting these expressions in (2) Art. 39
,
we find

2 3 4

sin (a: -h)= sin czz-t-h co s cc—i -
}f—co s x + %—sinw+ m

[2 l§

EXAM PLES.

Deri ve the following by Taylor
’s Theorem

h h2 h3 h4

1.

—
2w2 3 x3

2 . (a: h)
"

x
"

nw
n ‘ l h fi n—

é
—j) sen

[Q

3 .
—h sinx—Eco sw-f-

I
—
L
s

sinx -F m
.

L2_ 3

4. tan (a h) tan x h sec2a: h2 se0 2x tan x

3

1
; sec

'
z
cc (1 3 tanzx)

h2 h3
5 .

“h z 1 he e +
l2
+
l§

6 . log sin log sin x+ h co t a: co sec
2w+
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2

7 . log sec (a: h) log sec cc h tan x gsec
z
x

3 4l
-

é
-sechvtan a: {é sec

gwfl 3 tangw)

42 . The preceding proofs o f Taylor
’s and Maclaurin’

s

Theorems by the method o f Indeterminate Coefficients are no t

altogether satisfacto ry, inasmuch as the po ssibility o f develop
ment in the propo sed form is assumed.

Any rigorous proof o f Taylor
’s Theo rem

,
independent o f

Indeterminate Coefficients, is comparatively difficult . We g ive
the following as presenting the least difficulties to the student.

43 . Continuous Functions . A function is said to be con

tinuous between certain values of the independent variable,
when it changes gradually while the variable passes from o ne

value to the other. In other wo rds
,
a continuo us function is

one that can be represented by a continuous curve .

44 . If a given function (Mac) is zero when a: a and when
at : b

, and is fin ite and continuOus between those values, as

well as its differential co
efficient then qS' (a )
must be zero for some
value o f asbetween a and b.

Let the function be rep
resented by the curve

Let GA ==a,

0B ==b. Then according
X to the hypo thesis, y 0

when a) : a
,
andwhen a : b.

Since the curve is continuous between A and B , there must
be some point P between them, where the tangent is parallel
to OK,

and consequently 0 . (See Art: Hence the
proposition is established.
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With the aid o f this propo sition ‘
Taylo r

’
s Theorem can now

be derived without the use of Indeterminate Coefficients .

45 . Pro of of Taylo r
’
s Theorem. Suppose f (x) and its suc

cessive n 1 differential co efficients to be finite and continuous
between cc : a and a: a h. Let

where

a + h> .

—f <a >
"

(arm —Ema )

It is to be no ticed that R is independent o f a .

It is evident that when w= 0 and when
Hence by Art . 44

, for some value o f a: between 0
and h. Suppo se h’ this value . Then

—wf (a )

“

n
But 0 when cc : 0 ; hence qS (ac) O for some value
of as between 0 and h ' .

Continuing this process to n 1 differentiations we find

w) R o

fo r some value of at between 0 and h. Let this value o f a:

be 0h
,
where 9 1 .

Then f
” +l (a 6b.) R .

Equating this value of R with that given above
,
we have

R : 0
,
when a : h '.

'

<a >

f
” +1 (a 9h) .
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We may now substitute a: for a, since a may have any
and we have

hn
-H

f
” +1
(x 0h) .+

ln + 1

46 . Remainder in Taylor
’
s Theo rem. The last term

u+ l

| ri+ 11
W“ 9h)

is called the remainder after n 1 terms . When the form o f

the function fl u) is such that by tak ing n sufficiently large,
this remainder can be made indefinitely small, then Taylor

’s
Theorem gives a convergent series .

4 7 . Fa ilure of Taylor
’
s Theorem. When f (cc) o r any of its

successive differential coefficients are infinite or discontinuous
between a: and ax+ h, the preceding demonstration no longer
holds good, and fo r such a function Taylor

’s Theorem is said
to fail .

48 . Remainder in Maclaurin
’
s Theorem. If we let a: O in

the preceding equation, we have

Or substituting a; for h,

fee) =f (0) ar e ) E
N G)

When the remainder f by taking n sufficiently

large, can be made indefinitely small, the series is convergent .
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49 . Rema inder in certa in series . Let us apply the general
71+1

expression fo r the remainder,
a; to the develop

ment o f e”
. Here

The fraction can be made as small as we please by

tak ing n sufficiently large, whatever may be the value o f 93.

Moreover, e” i s finite ; hence R approaches zero.
Hence the series

e
z = 1 + x + -

x—
2

x
3

[2 IE
is convergent for all values o f x.

ca
n“

+ 1It i s evi dent that
1
f

"

(090) W i ll have zero for i ts l imi t
,

wheneverfl u) is o f such a form that all o f its successive dif
ferential coeffic ients are finite . This is the case with sin ce and

co s a . Hence these expansions

sinw= x —£
3

+
x
5

x
2

x
4

cw x= 1

are convergent for all values o f a .

If f (x) log (1 x) , then the remainder

o
f“ — 1 )

"

lfi

| n + 1 (1

This may be expressed as

R
u + 1

If a: is positive and equal to, o r less than, u nity, R has a

limit o f zero.
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Hence the expansion

2
4

is convergent fo r positive values o f a, when x 1 o r x < 1, but

divergent,when w 1 .
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For instance
,
consider the fraction 50

2
”

i
f 2 V“L

W hen a: 2
, the fraction takes the form 3
1
, the fraction takes the form 3: 00 .

a: 1
,
the fraction takes the form 8,which is indeter

52 . TO eva luate a fraction that takes the indeterminate form 9

Frequently an algebraic transformation in the given fraction
will determine the value . If the fraction in the preceding
article be reduced to lower terms , its value, which was before

indeterminate when a; 1
,
will be found to be 1.

As another illustration, consider the fraction 513—2

0
Va: 1 1

W hen 93 2
,
this takes the form

6
. But by rationalizing the

denominator, we transform the fraction into

a: 2

which becomes 2, when x 2 .

53 . The Differential Calculus furnishes the following method
applicable to all cases .
Substitute fo r the numerator and denominator , resp ectively,

their difi
'

erential coefiicients . The value Of this new fraction for

the assigned value ,
Of

'

x will be the value required .

To prove this, suppose the fraction 33g; 8, when to : a ;

that is
, ¢ (a) 0

,
and 0 .

By Art . 50
,
the required value o f the fraction is the limit o f

(Na -H t)

fl a w-h)
as h approaches zero.
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By Taylor
’sTheorem,

h2 h3
h 0 0 0+ <l> (9 0m

<l> (” C
E

W M
W ) r <w> h r (90)(

1

2
+M o ll

Substituting a for x
,
and remembering that

we have
I J}; m

(a )

W ” ) we ) ” (a )
|

(a )

h2

re
“

h?
_

g

therefore
,
as h appro aches zero

,

lIf (a h) W(a )
If (a) O

,
and 0

,
we have similarly from

as h approaches zero,

Ma i -h) ll! (06)
that is, the process must be repeated, and as often as may
be necessary to obtain a result which is no t
Fo r example

,
let us find the value o f the fraction in Art . 51,

cc) x
2 4 3 x + 2 9
519— 1 0

’

Hence (WW) 2 a: 3 1 when a: 1 .

_ 2 a: 2
’

when a: 1 .

For ano ther example
,
let us find the value o f

(f (x) e
x

+ e
- x—2 9

, when m= O.

t]; (a ) 1 co s a:

c
” ; O

s in x O
’

¢
N
<x) e

x

+ p
~ r

a we ) u m’

ft
‘
,

when a: O.

2
, when a: O.
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Find the values

12 .

lo g a:

513— 1

£17

(a: 1
’

3

— 2

e
‘”

e
‘ “B

s in a:
7

DIFFERENTIAL CALCULUS.

EXAM PLES.

when w : 1 .

tan (x 1)

(7r 2m)

90
4 4- 2 933 4- 2 50—1

w6— 15w2 + 24 x—1O
’

2 tan .v s in 2w

s in3 a;

C
5 ” 10 ezz+3 15 ex’

L‘1 6 65

6 6 2 x+2 3 84

sec
z
cc 2 tan a:

l + co s 4 x

(a: 4 ) e
“

e
z
x

’

fo llowing fractions

when a: 2 .

to :

w= 1

x= 0

Ans .

Ans .

Ans .

Ans .

Ans .

1.

2 .

Ans . 6 e“.
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54 . A fraction may take either o f the forms, 93 ,
3

,
f .

a 00 00

By regarding the value o f a fraction as a limit
,
it is evident

that in the first two cases, 3 00
,
and

0

3
0

The form 22is indeterminate, for the reason that, if the
numerator and denominator both increase beyond any finite
limit

,
this alone is no t sufficient to determine the limit o f the

fraction .

55 . To evaluate a fraction thattakes the form

Suppose when a : a ;
41 013)

that is
, ¢ (a ) co

,
and d(a ) = co .

By taking the recipro cals o f (Mr ) and

1

$52; when m= a .

<W 5)

Hence by Art . 53
,

the limiting value o f di
sc)

, when a: a
,
is the value o f

if (93)

(M90) when mz a .

WW) 93)
div (cc)

That is
,

lbw)
511W) (a )

hence l z i
'

a) n(a )
,

we .) e ra )
,

Ma ) WW)



74 DIFFERENTIAL CALCULUS.

In deriving we have divided (1 ) by If
,
however

,

a

o r 00 , equation (2 ) does no t logically fellow from

Nevertheless
,
it may be shown that (2 ) is true in these

cases also .

Suppose M O, and n a finite quantity,
l11 096)

Ma ) Ma )

To this last fraction
, (2 ) evidently applies

,

therefore
Mar) ii! (a )

emH ,
Ma ) M o r

we ) e
'

ga) ,

Ma ) llf
'

(a ) W(a)

(Na )
00 , then M 0,

Ma ) Ma )

and we have the preceding case .

Thus the form g i s evaluated in the same way as the form

Fo r example, find the value o f

lo g x when a: O.

co t a:

4> (x) log x oo when x O.

co t a 00

r 1

a: sin2a3 0

11/ (cc) co sec
Q
a
'

x 0
’
when a: 0 °

(Mgr ) 2 sin wco s x 0 when x
—O

r
"

(w) 1 1

56 . TO eva luate a function that takes the form 0
-0 0 .

The product ¢ (w) becomes indeterminate when one

factor O
,
and the other 00 .
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By taking the reciprocal o f o ne o f the factors , the expression

may be made to take the form8o r 99.

00

Fo r example , find the value o f

(7r 2 a ) tan a ,
when a:

This takes the fo rm 0 But

7r ; 2w 0

cot a;
when a:

The value is found by Art . 53 to be 2 .

(7: 2 x) tanu:

5 7 . TO evaluate a function that takes the fo rm 00 oo .

Transform the expression into a fraction , which will assume

either the form8o r 9—
0

.

(I)

Fo r example , find the value o f
1 1

log x w—l ’ when x= l .

This takes the form 0 0 —oo . But

1 h = 1 .

log x x— l (cc— 1 ) log a: O
w en s:

The value is found by Ar t. 53 to be

EXAM PLES.

Find the values o f the following

1 when a
'

tan a:

2 . sec 3 wco s 7 x, a) :

3 . see as taux,
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1

4 . (a
x—1M} , (ET-22 m .

5 . a
'
: 0

co sec a:

6 . co sec
2
cc

7 . a : 1 .

x 1

8 . ( 1 tan a) sec 2x,

log ( l —w)
’ Ans . oo .

(a
z— af ) tan as= a .

log tan 2 g:
x :

log tan a:

2 1

sin% 1 — cos a:’

13 . 2wtan cc — 1r sec cc ,

x : 1 . Ans . 2 .

58 . TO evaluate a function that takes either of the forms ,
0 0 0°

0 oo 1

Take the logarithm of the given function , which will assume
the form 0 -00 , and can be evaluated by

‘

Art . 56 . From this
the value o f the given function can be found .
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11 .

12 .

DIFFERENTIAL CALCULUS.

tan a : 1

2
CE tan

(co t a: O

w : 0

l

(e
x a) : O

Ans . 1 .

Ans . 1 .

Ans . 6
2
.



CHAPTER IX .

PARTIAL DIFFERENTIATION .

59 . Functions Of several Indep endent Variables . In the pre
ceding chapters differentiation has been applied only to func
tions o f a single independent variable . We shall now consider
functions o f two or more independent variables .

60 . Partial Difierential Co efiicients. Representing by u a

fun ction o f the two independent variables a; and y,
u =f (w) y) (a)

If we difierentiate (a), supposing a; to vary and y to

constant
,
we obtain i ii

dd:

If we difi erentiate (a) , supposing y to vary and a: to remain

constant, we obtain FE?
dr

The di fferential co efficients,
du du

, thus derived, are called
doc dy du da

partial dizferential coefiicients and are denoted 1057

For example, if u =w3 + 3 v
2

y
—
y
3
,

da

6
3 w” 6 vy, regarding y as constant.

a:

3
1

; 3 x2 3 y
2
,
regarding a: as constant .

In general, whatever the number o f independent variables
the partial differential coefficients are obtained by supposing
onl y one to vary at a time .
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EX AM P LES.

du
w—
éE

—l-y

du Ca Ca
u : — z z— a: x(y y),

dx
+—
By dz

3 .
— 3 xyz),

6 ” du du

6x dy

“ log e -N e w s,

e
2’

e ” 2 ez+y sin (a: + y) .

7 . u tan z),

sin 2 wgg+ sin 2 y§ § sin 2 z

61 . Partial Difi
'

erential Co efiicients
‘

Of H igher Orders . By
successive differentiation , regarding the independent variables
as varying only one at a time, we may obtain

E n n n m

65132
,

8y
2’ 6x3

’

Cy
"

If we differentiate u with respect to x
,
then this result with

2

respect to y, we Obtain 5? which is written 6 u
dydw

3

Similarly,
8

6

8

1

232 is the result o f three successive differentiay
tions

,
two with respect to cc

,
and one with respect to y. It will

now be shown that this result is independent of the order of
these difi erentiations .



PARTIAL DIFFERENTIATION. 81

dzu d2u d3u d3a d3a
‘h tT a 18 ’

dydfv dady
’

agar:
2 8338n seedy

6 2 . Given u f (v, y)

8a;

Supposing a: alone to change in (a),
Au
=fla: Av

, y) y)
w AmA

to p rove that

Now supposing y alone to change in (b)

_f (w+ Aw9 y+ Ay)
_f (wa y+ Ay) y)+f (w)

AyAw

Reversing the above order, we find
Au f fiw, y Ar) y)

AyA?!

f(w+ Aw, y+ Ay) y)—f (-r , y)
Aa‘Ay

Hence

This be ing true, however small Ace and Ay may be, we have
for the limits of the above

dzu dzu

ayaw decay

6 3 . This principle, that the o rder of difierentiation is imma

teria l
,
may be extended to any number o f differentiations .

d3a d3u
Thus,

dyda:
2

(9908w
_
d
_

d3a

div daf
’
dy

It is evident that the principle applies also to functions of
three o r more variables .
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EXAM P LE3 .

Verify
82“ d2a

in each of the four following equations
6‘n Goody

1 . u y log (1 my) . 3 . u sin (my
?

)

2 . 4 . “_
av — by

.

ay baz

$
2
11
2 d2a dzu da

5 . If h th 1:u

w+ y
’ S OW a w

daf
+ y

docdy 8a:

dzu d2u du
6 . x

2 f su
away

' i‘ y
dy

2
+
6y

83“
(1 3 xyz x

2
y
2
z
7

)u
dvdydz

8 . u y
2
z
2
eg z

2
x
2
e

'g x
2

y
2

eg
,

66“
e; e; 35

(iaf ély
f’dz2

9 . u : sin (y + 2) sin (z
d3u

2 2
acr3as

co s ( v + 2 y + 2 z)

64 . To tal Difi
'

erential. If u is a function o f two or more
variables, and all vary at the same time, the change in u is
called the to tal increment, and if infinitely small

,
the to tal difl

ferentia l o f u .

This total differential of u may be obtained by the usual
formulae of differentiation, using differentials as in Art. 28.

For example, suppose

i t x
3
y 3 w2y

2
.

Differentiating, regarding both a: and y variable,

du d(a;
3

y) d (3 defy?)
M y ydw“) 3 wide”

) 3 r
’dtv

’

)
x
3dy 3 vzydtc 6 x2ydy 6 xy

fdv

(3m
f

g 6 xy
2

)dx (v
3 6 v2y)dy.
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3 v2y
—6 cvy

2

gig, and v
3 — 6 x2y

du dad — d —ClHence u

da;
m+

dy
y

This expression for the total differential holds for any func
tion o f two variables , u f (v, y) .
For

,
if we difierentiate this equation

,
using differentials as

in the preceding example, we may arrange the terms in two

groups containing dx and dy respectively, so that the result
will be of the form

da Pda; Qdy (2)

Now if a: alone varies, y being constant
, (2) becomes

dwa Pdfv
, giving Q2? P .

890

If y alone varies
,
a; being constant

, (2) becomes

d
y
u Qdy, giving 22

6

Q.

Substituting in (2) these expressions for P and Q, we have

du i s da: dy
6a: dy

Similarly, if u f (w, y, z), it may be shown that

—
d
dx + — dy+

a
—dz (4)

65 . The result of the preceding article may be reached also
in the following way . The to tal dilferential of a function Of
several indep endent variables ASS the sum Of its p artial dizferen

tials arising from the sep arate variation of the variables .

Let Au, du , deno te the total
f

increment, and differential o f u .

A
z
u
,
A
y
u
,
d
x
u
,
d
y
u, the partial increments and differentials,

when a: and y vary separately.

Let u =f (x> y),
u
,
f (x “1" Am)

u
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A
,
u u

A
y
u
'

u

Au u u .

Hence Au A
x
u A

y
u
'
.

Now if Aw
,
Ay, and consequently Az

u
, become

nitely small
,
we have

mw=dfl 4fl % %
since the limit o f u ' is u .

We may write Cl
,
u

(

2)—
u
da

,
d
,
u

a:

giving
92 doc dy.

dv dy

The process above may be extended to fun ctions
more variables .

EX AM P LES.

Find as in Art. 64 the total differential o f u in each o f the
fo llowing, and show that it agrees with Art. 64 .

1 . u as:
2 2 b.ry+ cy

z

,
du : 2 (acv+

2 . i t du = u duo

4 w2
3 . u : lo

a y
+ 2 tan4 § doc—arty .

Find the total differential o f u in each o f the following, and
show that it agrees with Art. 64 .

4 .

du 2 (ha+ by+fz)dy+ 2 (ga:+fy+ cz) dz.

5. u my”
, da xy

z “ 1

(yzdcv za; log ady my log adz) .

sin 2 a' sin 2 y sin 2 z/
6 . u tan2 a: tan2y tan

2
z
,
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EXAM PLES.

By means of (1) determine which
'

of the following expres
sions are exact differentials

1. (Spy 2 y
2

)dv (90
2 2 vy) Cly.

4 . er r<wy —wy
— 1> dyi

Show that condition (1) is satisfied by the answers to Ex
amples 1, 3 , Art. 65 ; and condi tions (2) by the answers to
Examples 4

,
5
,
Art. 65.

6 7 . Difierentiation Of an Imp licit Function. The diflerential

coefficient of an implicit function may be expressed in terms
of partial di fferential coefficients .
Suppose y and a: connected by the equation <5 (w, y) 0 . Let

u represent the first member of this equation . That is
,

u (P017) y) O (1)

From (3) Art. 64, we have for the total differential o f u,
du du
dot d

6a: dy

y

But by u i s always zero , that is, a constant ; and there
fore its total di fferential du must be zero. Hence

du

6a: dy

Ga

Ga:

du

631

For example
,
suppose

,
as in Art. 31

,

a
f
y
2 bzv2 2b2 0.
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a
f

y
2 b"

’

x
2

a
2b2

,

da

as

2 bzx b2xH ce b 2en y 7

2 a2y “23,

Derive by (2) the expressions fo r 9
13 in the examples in

Ar t. 31 .

d”

68 . Extension Of Taylor
’
s Theorem to functions Of two inde

p endent variables. If we apply Taylor
’s Theorem to

f (w h
. y k).

regarding x as the only variable, we have

f (w h
. r Ic) =f(w, y + k) hi re.y 7s)

712 62
h 1

Now expanding f(x, y regarding y as the only variable,
6 762 62

f (x, y 70) =f(w) y) le
a

—

g
i ft” ) y) y)

Substituting this in

8
re h

, y 7c) =f(w, y) h
55 rd , y) to

gi7mr y)

82

79?

This may be expressed in the symbolic form thus

8

55
+ r)

91 32 2

f(wr r)

d
o n
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where +k is to be expanded by the Binomial Theorem,

as if h—a and k—
a were the two terms o f the binomial, and the

dx dy

resulting terms applied separately to f (x, y) .

69 . Taylor
’
s T heorem app lied to functions number Of

indep endent variables . By a method similar to that o f the pre
ceding article we shall find

a
y

‘ l‘ kr z)+
w
+ k
dy
+ l f(xr y) z)

hi + k9~ + z rev, y. z)
dx dy

Thi s expans ion may be extended to any number o f variables.
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71 . It is sometimes necessary in the differential coefficients ,
dy d2y d3y

dx
’

dx2
’

d
’

to introduce a new variable z in place o f x o r y, 2 being a given
function o f the variable remo ved .

There are two cases , according as z replaces y o r x .

dy dfg d3y in terms 0

dx
’

dxz
’

dx3
’ f7 2 . F irst. To exp ress

where y is a given function Of z.

Ex?

Fo r example , suppose y z
3
.

Then dy 3
dz

dx dx

d2y 6 z
dx2

Similarly, terms

and x .

It is to be noticed that in this case there is no change o f the
indep endent variable , which remains x .

2 3

7 3 . Second . To exp ress 5113, $532
3
, t
i

l
—33 , in terms of

32, gig, where x is a g iven function Of z.

z

This is called changing the indep endent variable from x to 23.

Fo r example , suppose x z
”
.

By (1) Art . 22 ,
dx dz dx

3
doe2

dz d
2
z dfz

3 2_
dx dx2

+ z

ding

may be expressed in



CHANGE OF VARIABLE.

z

dx 3 dz

Cli
’

y d dy d dy dz
By (1)Art . 22

’
d? dx dx dz dx dx

From (a ) ,

d2y 1

(Toff
—
9

d3y d d2y dz
Similarly

dx3 dz dx2 dx

From (b) 6 z
-5 —6

Clz dx2
_
9 dz2

+ 10 z

(Pg 1 _6
d3y

dd s 27 deg
+ l 0 z

_8

EXAMPLES.

Change the independent variable from x to y in the two
lowing equations :

2 dy d3y . dfg

dx dx3 do:
2

°

dy
3

0131
2
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Change the variable from y to z in the two following equa
tions

Ans . (z+ 1)
d—
3

—z_gx

Change the independent vari able from x to z in the following
equations

2

: 0 , x
2
: 4 z. Ans . z + y : 0 .5

dx2 x dx

df_ g
2 x dy y 06 . x_tanz .
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7 6 . The

This curve may be constr ucted from the circle ORA

(radius, a) by drawing any abscissa MR , and extending it
to P by the contruction shown in the figure .
The equation above may be derived from this construction.

The axis o f X is an asymptote .

7 7 . The ax
? 2 003.



REPRESENTATION OF OURVES. 95

7 8 . The Catenary,

y g(6
5

This is the curve o f a cord or
chain su spended freely between
two points .

7 9 . The Pdm bo la referred to Tangents at the Extremitz
’

es of

the Latus Rectum
, xi y

i‘
a
}

.

0L 0L ' =a .

X

The line LL ' is the latus rectum ; its middle point F,
the

focus ; OFM is the axis o f the parabola ; the middl e point of
OF,

A
, is the vertex .
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The Hyp ocycloid

81 . The Curve,

The equation is that o f the ellipse

with the second exponent changed from 2 to 3L.

fi + fi=fi

This is the curve
d e s c r i b e d by a

point P in the
c ircumferenc e o f

the c ircle PR,
as

it rolls within the
c ircumference o f

the fixed c ircle
ABA '

,
whose .ra

dius, a
,
i s four

times that of the
former.
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85 . If n
7 ,
in (1) Art. 83

,
we have

The Semi-Cubical Parabo la
, a

%
y mi

l

,
o r ag

z ma.

POLAR CO—ORDINATES.

86 . The Circle, r a sin 0.

The circle is OPA (diameter, a ) tangent to the . initial line
OX at the pole, O.

87 . The Sp iral of Archimedes, r 3 a0.

In this curve r is proportional to 0. Assuming
when 6 2 7r, then

0 P1=4, ,0A OP2= 1 0A,
OP5==5 OA,
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The dotted part o f the curve corresponds to megati ve values

88 . The Logarithmic Sp iral, r

Starting from A
,
where

and r= i
,
r increases

with 0 ; but if we sup

pose 0 negative, r de
creases as 0 numerically
increases . Since r = 0

only when 0 —cc , it
follows that an infinite
number . of retrograde
revolutions from A is
required to reach the
pole O.

A property o f this
Spiral is that the radii vectores m

, make a
constant angle with the curve .
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89 . The Parabo la, r a 3 9 0
2

3.
The initial line OX is the axis o f the parabola; the pole O
is the focus ; LL '

,
the latus rectum.

90 . The Lemniscate, r
2

a
2
co s 2 0.

This is a curve o f two loops like the figure eight .
It may be defined in connection with the equilateral hyper

bola
, as the locus o f P ,

the foot o f a perpendicular from 0 on

PQ, any tangent to the hyperbola.

The loops are limited by the asymptotes o f the hyperbola,
making

TOX T’OX OA a .

The lemniscate has the following property
If two points, F and F be taken on the axis, such that

OF : OF '

V2

then the product of the distances P 'F,
P 'F '

,
of any point o f

the curve from these fixed points, is constant, and equal to the
square of OF.
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92 . The Cardio id, r a (i co s

This is the curve described by a po int P in the c ircumfer‘
ence of a circle PA (diameter, a ) as it rolls upon an equal
fixed circle OA .

Or it may be constructed by drawing through 0 , any line OR
in the circle OA ,

and producing OR to Q and Q
'

,
making

RQ=RQ
' 0A .

The given equation follows directly from this construction.

93 . The r = a sin 2 9.



CHAPTER XII.

DIRECTION OP CURVE. TANGENT AND NORMA L.

A SY M PTOTES .

94 . D irection of Curve . When the equation o f the curve is
given in rectangular co -ordinates , its directio n at any point
is determined by the angle made by its tangent at that po int
with the ax is o f X. We shall
denote this angle by
Let P be a po int in a curve
whose equatio n is y its
co -ordinates being a} : OM and

y PM . Draw the tangent
PT, and PR parallel to OX .

Then TFR (I) .

Now give to a; the increment
Aw : MN ; then y will receive
the increment Ay=QR , and we have another po int Q in the
curve . Draw PQ.

Then tan QPR $32 i—Z (a )

Now if A x be supposed to diminish and approach zero , Ay
will approach zero , the point Q will move alo ng the curve
towards P , and PQ will appro ach in directio n PT as its limit .
Taking the limits o f the two members o f equation (a) , we
have

limit o f QPR TPR 98,

limit o f é—g g_y
, by definitio n .

A ce Ola;

dy

da:
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Fo r example
,
find the direction at any point o f the parabola

y
2= 4 am.

de

div

hence tan <1)

At the vertex 0 , where a: 0
,

tan <1) <1;

At L,
where w a

,

tan <1) 1
, ct

For that part o f the curve
beyond L

,
as 93 increases

,
tan cb

and 4) decrease . Thus the par
abola is more nearly parallel to
OX, the further it extends from O.

Subtangent Subnormal. Let P T be the tangent,
and PN the normal

,
to a

curve at the point P,
whose

ordinate is y PM Then
MT is called the subtangent,
and MN the subnorma l, co r.

responding to the point P
To find expressions for
these quantities

Subtangent =MT PM cot PTM : y cot

doc

d
Subnormal =MN=PM tanMPN: y tan q5 y

et

—g

a

l

)

.

The length PN is sometimes called the normal. It is evident

that PN=PM sec
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96 . D irection of Curve. P o lar Oo-o rdinates. By means o f
the equations

a = r cos 9, y= r sin 0

we may express tan qt in terms o f r and 0 . Thus

i ?! r co s
‘

9 “Pg
t

e
s in 9

tau gt—g
g
_gga:

d

a

g
r s in 0 +

a

—
O
cos 0

The angle OPT between the tangent and the radius vector
may also be ex

pressed . Denote
this angle by ll] .

Let r , 0, be the

co-o rdinates o fP ;
r A r , 0 A 0,

the co -ordinates
o f Q . Describe
the arc PR about
O as a centre .
Then

RQ= A r , POR = A 0, PR = rA 0.

If we suppose Q to approach P , the figure PRQwill approach
mo re and more nearly a right triangle , R being the right angle .

We have at the limit

tan PQR

We also have

P TX : OPT POX ,



DIRECTION OF CURVE.

97 . P o lar Subtangent and

Subno rma l.

If through O, NT be drawn
perpendicular to OP, OT is
called the p o lar subtangent, and

ON the p o lar subnorma l, co r

responding to the point P .

OT= OP tan OP T that is
,

107

Polar subtangent r tan ll! 5;
d0

ON : OR co tRNo that is,

Polar subnormal r co t tp El
l—

z

EXAM PLES.

In the circle r a sin 0, find all and (I) .

Ans . and gb 2 9.

In the logarithmic spiral r ea
"
,
show that (I! is constant.

In the spiral o f Archimedes
,
r = a0, show that tam/z 0 ;

thence find the values o f ll' when 0 2 7: and 4 7r.

Ans . 80
°

57 and 85
°

Also show that the polar subnormal is constant.

The equation o f the lemniscate referred to a tangent at its
centre is r

2= a
2 sin 2 0. Find it, and the po lar sub

tangent . T 3

Ans . (I! 2 0 ; qt 3 0 ; subtangent a tan 2 9V sin 20.

Given the equation o f a curve r = a sin3g; show that
(I)

In the parabola r a sec
z

g, show that c]; 1r.
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7 . In the cardioid r d (l co s find qt, 511, and the polar
subtangent.

s o
,

9
Ans . <1)

5 ,
5;
subtangent 2 a tangsin

2

‘

0

2

8 . Find the area o f the circumscribed square of the precedi ng
cardioid, formed by tangents inclined 45

°

to the axis .

Ans .

9 . Derive equation (a) from equations (6) and (c) , ofArt . 96.

98 . Difierential Co efi cient of the Arc. Rectangular Co
-oroli

nates . In the figure o f Art . 94, let 3 denote the length o f the

arc of the curve measured from any fixed point o f it.

Then 3 arcAP,
As arcPQ.

W h PRe ave sec Q
1 Q

Now suppose A91: to approach zero
, and the point Q to

approach P .

Then limit sec QPR sec TPR sec

. PQ . . arc PQ . As (18
1m1

R
1m1

PR
imi

Arc dw

Hence sec qt
dcv

therefore Eli tan2¢ =V
‘
1

dx

It is evident also that

fig da:
srn <1;

as
’ cos <1;

as
(2)

It may be noticed that these re
lations (1 ) and (2) are correctly rep
resented by a right triangle, whose
hypothenuse is as, sides dx and dy,

and angle at the base (I) .
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figbeing derived from the equation o f the given curve y

and applied to the po int o f contact (a
'

, y
'

)
l

If we denote this by 93 , we have , sub stituting ml

equation (a )
daz

dy
'

dac'

fo r the equation o f the required tangent .

y
—
y
'

Since the normal is a line through (x
'

, y
'

) perpendicular to the
tangent, we have for its equation

1

55,
CI)

a?

Fo r example , find the equations o f the tangent and normal to
the circle m2 31

2
: a

2
at the point (w

'
,

Here
, by differentiating x

2
y
2

a
2

, we find
I

fill — g from which Ell/
7

a:

da: y doc y

Sub stituting in we have
I

y
—
y
'

as the equation o f the required tangent.

It may be simplified as follows

gy
l _

‘y
l 2 mm! a;

mm! yy
l= x

l 2
+ y

l 2 “2.

The equation o f the normal to the circle is found from (2)
to be

I

y

which reduces to

3/
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EX AM PLES.

Find the equations o f the tangent and normal to each o f the
three following curves at the point (w' , y')

1 . The parabola y
2= 4 am.

Ans . 2 a (y

“2

l l

Ans .

i

f; +%
q
2

bzx' (y .

2

2 . The ellipse —
2
= 1 .

3 . The equilateral hyperbola w a
2

.

Ans . ay
’

yac
'

a
2

, y
'

(y y
'

) cc
'

(cc w
'

)

4 . Show that in the preceding curve the area o f the triangle
formed by a tangent and the co -ordinate axes is constant
and equal to a

2
.

90
3

2 a —x

gent and no rmal at the points whose ab scissa is a .

Ans . At (a , a ) y= 2x— a , 2y+ w= 3 a .

A t (a , —a ) , y + 2m= a , 2y= w—3 a .

8 ag

4 a 2 + x
2
’

and normal at the point whose abscissa is 2 a .

5 . In the cissoid y2 find the equations o f the tan

6 . In the witch 3] find the equations o f the tangent

Ans . m+ 2y= 4 a , y= 2x—3 a .

i
7 . In the curve 1 , find the equation o f the

r I

tangent at the point (w
'

, Ans .

y
1 .

“2 3 bfiy
'i

8 . In the ellipse x
2 2y

2 2wy a; 0 , find the equations o f
the tangent and normal at the points whose abscissa is 1 .

Ans . At 2y= w— 1 , y + 2w= 2.

A t 2y= w+ 1 , y + 2x=
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In the parabo la ai
l -1 y

l
a
7
,
find the equation o f the tan~

gent at the po int (x
'

,
y Ans . xx

" ?
a 9

°

Show that in the preceding curve the sum o f the intercepts
o f the tangent on the co -ordinate axes is constant and

equal to a .

In the hypocyclo id mg
‘

y
’l

( i
ii
,
find the equation o f the

tangent at the point (w
'

, Ans . xx
r
-ir

yy
r
—lr

a
d

.

Show that in the preceding curve the part o f the tangent
intercepted between the co-ordinate axes is constant and
equal to a .

100 . A symp to tes . Rectangular Co-o rdinates. W hen the
tangent to a curve approaches a limiting position, as the dis
tance o f the point o f contact from the o rigin is indefinitely
increased, this limiting position is called an asymptote . In

other words
,
an asymptote is a tangent which passes within a

finite distance of the origin, although its point o f contact is at
an infinite distance .

101 . From the equation of the tangent (1) Art. 99, we

find for its intercepts on the cc-ordinate axes,

Intercept on X a
' "2

dy
'

dy
'

Interce t on Y : -x
'

- op y
,

“

dx’

If either o f these intercepts is finite for x' 00 , o r y
'=oo ,

the corresponding tangent will be an asymptote .
The equation of this asymptote may be obtained from it s
two intercepts, or from one intercept and the limiting value
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There are then two asympto tes, who se equations are

y= i é ca
a

The ellipse, having no infinite branches
, can have

asymptote .

1 03 . A symp to tes Parallel to the Co-ordinate Axes .
When

,
in

the equation o f the curve, a; 00 gives a finite value of y, as
y a

, then y a is the equation o f an asymptote parallel toX.

And when y = oo g ives m= a
,
then at =a is an asymptote

parallel to Y.

1 04 . Asymp to tes by Expansion. Frequently an asymptote
may be determined by solving the equation o f the curve for a:

or y and expanding the second member .

Fo r example, to find the asymptotes of the hyperbola

90

— a )
2

A s 9: increases indefinitely, the curve approaches the

y= d: 993, the asymptotes .
a

1 05 . A symp to tes . Po lar Co-o rdinates. From the figure o f

Art. 97 , it is evident that for an asymptote, the polar subtan
gent OT has a finite limit

, as OP is indefinitely increased.

That is
,
when r

i

g—
0
has a finite limit fo r r : 00

,
there is an

asymptote at that distance from the pole, and parallel to r.

If the distance 7
2

3—
9

“

is positive
,
it is to the right, and if

7
'

negative, to the left, o f the pole, looking in the direction o f

the infinite r.
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106 . Fo r example, find the
asympto tes o f the curve

r a tan d.

dd
a sec

2 d
,

and the subtangent

a sin2 d.

W hen d j :
7

2

7

’

we have r 00 ,

and the subtangent a .

There are two asympto tes perpendicular distance
a from the pole

,
on each side o f it .

EX AM P LES.

Investigate the following curves with reference to asymp

totes :
x
3

7 1 . y
90
2

3“2
A sympto te, y so .

Y 2 . y
3 = 6 x2 - x

3
. Asympto te, az+ y= 2 .

7L 3 . The c isso id y2 A symptote, ac=2 a .

4 . £13
3

y
3

a
3
. A symptote, a; g 0 .

5 . (r —2 a )y
2= a

3 — a
3
. A sympto tes, oc = 2 a, x + a = i y.

6 .

—
x
3

y
3 3 6190

.

7]?e “1&c Asymptote, a: y a 0 .

(Substitute y we in the given equation and in the
expression s fo r the intercepts . ) “l “ V V

7 . The recipro cal Spiral r i
d

.

Asymptote parallel to OX,
at the distance a above.
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r = a sec 2 d.

There are four asymptotes at the same distance 3from thepole
,
and inclined 45° with OX .

a
Th b le para o a r

1 — co s d
There is no asymptote.

(r a ) sin d b.

There is an asymptote parallel to OX,
at the di stance b

above .

r a (sec 2 d+ tan 2 d) .

There are two asymptotes parallel to d 31
1

, at the distance
a on each side of the pole .
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From the second figure , we see that when the curve is con

cave downward , tan (I) decreases as a: increases , and therefore

that is ,
dz?! 0 .

1 10 . A Po int of Infiea
' ion o f a curve is a point P , where the

curvature changes , the curve on o ne side o f this point being
co ncave . upward , and o n

the other
,
co ncave down

ward . Hence, by A rt. 109
,

dzy
at a point o f infiex ion , dict
changes sign ; that is ,

2
0 0 1

’

00 .

It is evident that the tan

gent at a point o f inflex ion intersects the curve at that point .

Find the point o f inflex io n of the curve y (w and the
direction o f curvature on each side o f it.

d2yHere 6 a: 1

Putting this equal to zero , we have fo r the required point o f
d d2y

1nflex 10 n , a
: 1 . If w < 1

, E£2
< 0 , and 1f x > 1 , w > 0 .

Hence the curve is concave downward on the left , and con

cave upward on the ri ght , o f the po int o f inflexion.

EXAM PLES.

Find the points o f infiex ion ,
and the direction o f curvature ,

o f the three following curves

1 . The curve a g
f — aT

2
4- 2 a

3
.

3

Ans . concave downward o n the left o f this
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The witch y

Ans . :t $
0
5 concave downward these
3

points , co ncave upward outside o f

x
3

The curve y
m2 3 a2

9 a
3 a , (O 0 ) 3 a ,

—
4

concave up

ward o n the left o f first po int , downward between
first and seco nd , upward between second and

third , and downward o n the right of third point .

Find the points of inflex io n o f the curve

A 718 . a: 21:

5 . Find the points o f inflexion o f the curve a
4

y
°

a% 4

Ans . cc : rl:gV27



CHAPTER XIV.

CURVA TURE. RADIU S OF CURVA TURE . EV OLUTE

A ND INVOLU TE.

111 . Definition of Curvature. If a point moves in a straight
line , the d irectio n o f its mo tio n is the same at every po int o f its
course ; but if its path is a curved line , there is a co ntinual
change o f directio n as it moves along the curve . This change
o f directio n is called curvature .

The direction at any point being the same as that o f the tan

gent at that po int,_the curvature may be determined by compar
ing the linear mo tion o f the point with the simultaneous angular
mo tio n o f the tangent . The curvature is either unifo rm o r

variable .

1 12 . Unifo rm Curvature . The curvature is uniform when , as
the point moves over equal arcs , the tangent turns thro ugh equal
angles . It is then measured by the angle described by the tan

gent while the point describes a unit of arc .

Suppo se the point P to move in the curve AQ. Let s AP

denote its distance along the curve from any fixed point A , and

let qt=PTX , the angle made
by the tangent P T with the
fixed line OX . Then as the

po int describes the arc PQ,

which is deno ted by A s
, the

tangent turns through the
angle QRK or A4) . Then, if
the curvature is uniform , it

Ad)
.

A s

The circle is the only curve o f uniform curvature . Supposing
APQ an arc o f a c ircle , if we draw the radii CP and CQ, and

let r denote the length o f the radius , then the angle PCQ
QRK=A¢ ; but are PQ CP > < anglePCQ ; that is , As rc ) .

is equal to
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Also , by interchanging a: and y , we have

dy
2

which is sometimes the mo re convenient expression .

A s an example , find the radius o f curvature o f

cubical parabola dv
2

x
3

.

_d_y di g 3

da: 2

_

0t
% dcvz 4 01 510

2

Substituting in we find

Diffe i entiating ,

P

EX AM PLES.

Find the radius o f curvature o f the following curves :

2
_

s in3

a

ll)
.1 . The parabola y

2= 4 ax. Ans . p

The equilateral hyperbola fil my a
2
. Ans . p

The ellipse 503
2
+ _
v__
2

1

What are the values o f p at the extremities o f
'

9and mino r axes
Ans

4 . The curve 1 , at the point (0 , b) .

Ans . p

5 . The curve y log sec at.

6 . The parabola 51
2
+ y

‘} 5
.
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a
—2

catenary y -

2
(e e

a

hypo cyclo id a
ll

a
g

. Ans . p 3 (argfi.

curve aft/
2

a
zm“ T

6
, at the points (0 , 0 ) and (a ,

Ans . p
=gand p

= a .

t
cissoid y

z Ans . p
M .

3 (2 a —ct
'

)
2

115 . Radius of Curvature
’

in Po lar CO-Ordinates.

( 1) Art. 114 , p
01
—
8

, let us express p in terms o f r
dqfi

From (3 ) Art .

From (c) Art . 96 ,

4) 9 ‘PI

From (b) A rt . 96 ,

tan 4} g? 0 1
'

‘l’ tan
- 1

Differentiating ,

Sub stituting ,

Hence
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EX AM P LES.

Find the radius o f curvature o f the following curves :

1 . The circle r a sin d. Ans . p g
;

2 . The logarithmic spiral r e
a" Ans . p r a

2
.

3 . The s iral o f A rchimedes r ad. Ans .p p
r
2 2 a2

cardioid r : a (1 co s Ans . p
2

3
curve r a sin39 Ans . p

8a
3 4 3

2 9 3 0parabola r a sec

2
. Ans . p 2 a sec

5
2

7 . The lemniscate r
2

co s 2 d. Ans . p g“

116 . Co-ord inates of the Centre of Curvature. Let at , y be the
co -ordinates o f P , any

point o f the curve AB ,

and C the corresponding
centre o f curvature . CP

is then the radius o f

curvature , and is normal
to the curve .

Draw also the tangent
PT.

Then CP = p

angle PCR PTX :

Let a , ,
B, b e the co -ordinates o f C .

OL = OM—RP , LC=MP + RC

that is , u =m—p sin qs, B= y + p co s ¢ (1)

To express a and
,
B in terms o f 90 and y, we have , by (2) Art.

98 , and Art. 1 14
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Substituting in (2) Art . 116 , we have

a z : 3 at 2 a , B

Eliminating m, we have fo r
the equation o f the evo lute

,

aB
2

22
4—
7
(a 2 a )

3
.

This curve is the semi
cubical parabo la . The figure
shows its fo rm and po sitio n .

F is the focus o f the given
parabola .

OF .

1 19 . P rop erties of the Invo

lute andEvo lute. Let us return
to the equatio ns, ( 1) A rt . 116

,

a a: p sind ,

.
3 3/ p COS 95

Differentiating with reference (2)Art . 98 ,

( 1) Art. 114 , we have
do da: de s n co s

ds ds ds
1 (I) p d)

d
_
cl
_y_ (19 sin

ds ds ds
0 0 8 96 p (I)

Dividing (b) by (a )

El—B=
do.

If oS' denote the angle made with the axis o f X by the tan

gent to the evolute , then , by ( 1) Art . 94 ,

dB r_ 71 .

da
tau nt .

That is , the tangent to the evo lute is perpendicular to the
corresponding tangent to the involute . In other words , a tan

gent to the evo lute at any point Cl (Fig . Art. is ClPl , the



EVOLUTE AND INVOLUTE.

1 20 . Again , from (a ) and (b) , Art . 119
,

where s' denotes the length o f the arc o f the evo lute measured
from a fixed point . Hence ,

ds ' d
j : —p and therefore As '= :t A

ds ds
p

That is , the difi erence between any two radii o f curvature
P 10 1 , P 30 3 , is equal to the corresponding included are o f the
evolute CIC3 .

1 21 . From the two properties o f A rts . 119 and 120 , it fol
lows that the involute AB may b e described by the end o f a

string unwound from the evo lute EX . From this property the
wo rd evo lute is derived .

It will be noticed that a curve has only o ne evolute , but an
infinite number o f invo lutes , as may be seen by varying the

length o f the string which is unwound . Such curves are called

parallel curves .

EXAM PLES.

ind the co -ordinates o f the centre o f curvature o f the
cubical parabola gf

'

a
'

tv .

Ans . a M , B
a
4

y
_ 9 y

5

6 a2y 2 a4

Find the co -ordinates o f the centre o f curvature o f the

catenary y : g(e e

Ans . d = x—g\/y2— OL
2
, B= 2y.

3 . Find the co -ordinates o f the centre o f curvature , and the
2

equation o f the evo lute
,
o f the ellipse £

2 b
i
z
: 1.

a
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Show that in the parabola ai
l l we have the rela

tion a + B=

Find the co -ordinates o f the centre o f curvature , and the
equation o f the evolute , o f the hypocycloid x

ii -k y
3

a
3

.

Ans . a B= y

6 . Given the equation o f the equilateral hyperbola
show that

3

a B
(y
22
x)

3

a
2

Thence derive the equation o f the evolute

—(a 2 a?
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1 23 . W hen the o rder of contact i s even
,
the curves cro ss at

the p o int of contact ; but when the o rder i s Odd
,
they do no t

cro ss .

Fo r a contact o f the first o rder
,
it is evident from Fig . 1

,

Art. 122
, that outside o f P I and P2, the dotted curve is on the

same side of the other curve . Hence
,
when the two po ints

co incide to form the point of contact
,
the curves do not cross

at that point.
Fo r a contact o f the second order

,
it is evident from Fig . 2

,

Art . 122
,
that when P3 coincides with P

,
the curves cross at

the point o f contact.
Fo r a contact of the third order

,
Fig . 3

,
Art. 122 shows that

the curves do no t cross at the point o f contact .
Similarly it is evident that the proposition is generally true.

1 24 . Osculating Curves . As a straight line can be made to
pass through only two points, the tangent has generally a

contact o f only the first order with a curve .

The circle having the closest contact with a curve at a given
point is called the o sculating circle. As a circle can be made
to pass through only three points, the osculating circle has

generally contact of the second order.
The parabola of closest contact is likewise called the o scu

lating p arabo la . As a parabola can be made to pass through
four points

,
the osculating parabola has contact of the third

order .
The coni c of closest contact is called the o sculating conic .

A s a conic can be made to pass through five points, the
osculating conic has contact o f the fourth order.
It is evident from Art. 123 that the o sculating circle and

o sculating conic cross the curve at the po int o f contact, while
the tangent and o sculating parabola do no t.

125 . Excep tional P o ints . Although the tangent has gener
ally contact o f the first order, it may at exceptional po ints of
a curve have a contact o f a higher order.
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Fo r example, since the tangent at a point of inflexion crosses
the curve, it fo llows from Art . 123

,
that the o rder o f contact

must be even . Hence at a po int o f infiexion the tangent has
contact of at least the second o rder.
The osculating circle, which has generally contact o f the
second o rder,has a higher order of contact at po ints o f maxi
mum o r minimum curvature

,
as

,
fo r example

,
the vertices o f

an ellipse . It is evident from the symmetry o f the ellipse
with reference to its vertices

,
that no c ircle tangent at these

points would cross the curve at the po int o f contact . Hence,
by Art . 123

,
the order o f contact is o dd

,
— at least the third.

1 26 . Ana lytical Conditions fo r Contact.

Let y =M93). and

be the equations o f two curves having two common points
P and Q.

Let 0M : a, MN : 71.

Then qt (d ) d(a ), and ¢ (a h) ¢(a h) .

Expanding each member o f this equation by Taylor
’s

Theo rem
h3

E
4) (a)

h2 h3

(0 04-5 3
0

«0 +



132 DIFFERENTIAL CALCUL Us .

Since d (a) we have from (1) after dividing by h,

<a > +

When Q appro aches P ,
h approaches zero

,
and we have at

the 11m1t
WW)

Hence the conditions fo r a contact o f the first o rder at the
po int a: a

,
are

M“) Na ) , WM)

1 27 . Again, suppose the two curves hav e a contact o f the
first order at P and another common point Q .

As before
,
let OM a

,
MN h.

Since d (a ) and (p
'

(a ) (a) ,

we have from (1) Art . 126
,
after dividing by h2,

h 1 u h m

[5
95 (a ) + (a ) +

W hen Q approaches P
,
we have at the limit, when h 0

,

WW) .

Hence the conditions fo r a contact o f the second order at the
point a: a

,
are

<I> (a )

1

5
4> -l
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Substituting (4) and (5) in

Hence d = x b y+

dx2

In these expressions
,
x , y , gig, g_zg, refer to the equa

tion o f the c ircle ; but since the o sculating circle by definition
has contact o f the second order with the given curve

,
these

quantities will have the same values if derived from the
equation y at the point o f contact .
By comparing (7 ) and (8 ) with the expressions fo r a , B,

and p, in Arts . 114, 116, it is evident that the osculating
c ircle is the same as the circle o f curvature .

M,
130 . A t a p o int Of maximum o r minimum curvature

,
the

o sculating circle has contact Of the third o rder .

If we regard equation (8) in the preceding article as re

ferring to the given curve
,

we have as a condition
fo r a maximum o r minimum value o f r,

0 ”

(See Art .

dx

We thus obtain from (s)
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from which
1+

Again, if we regard (8 ) as referring to the osculating circle

(as 60
2
+ (y b)

2= 7
3
.

drwe shall also have
dx

since r is constant for all po ints on the circle.

Thu s we obtain
,
bo th fo r the curve and the c ircle the same

3 2

expression (1) for 94
71
, and since dy and

d—y in the second
dx3 dx dx2

member of (1) have, at the point of contact, the same values
3

fo r bo th curves
,
it follows that 32 has likewise the samex

value. Hence the contact is of the third order.

EX AM P LES.

Find the order o f contact of the two curves
,

y= x
3
,

and y= 3 x
2—3 x + l .

By combining the two equation s, the po int, x :

is found to be common to both curves .

Differentiating the two given equations,

g
y= 3 w Z

y— Gw— 3
,

(U (I)

2

itx
d3y _ 61°F
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When x 1
,

dy 3
,
in both curves ;

in both curves ;

d3y

dx3
has different values in the two curves.

Hen ce the contact is o f the second order.

Find the order of contact of the parabola 4 y x
2
,
and

the straight line y x 1 Ans. First order.

Find the o rder o f contact of

9 y= x
3—3 x2+ 27 , and 9 y + 3 x = 28 .

Ans . Second order.
Find the order o f contact of

y = log (x and x
2

at the common point (2, Ans . Second order.

Find the order of contact o f the parabola 4 y x
2 4

,
and

the c ircle w2+ y
z 2y 3 . Ans. Third order.

What must be the value o f a
,
in o rder that the parabola

may have contact of the second order with the hyperbola

xy= 3 x
-1 ? Ans . a =—1 .

Find the order o f contact o f the parabola

(x 2 a )
2
+ (y 2 a )

z
z 2 xy,

and the hyperbola xy a
2
. Ans. Third order.
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1 33 . The envelop e of a series Of curves is tangent to every

curve of the series .

Suppose L,M N to be any three curves o f the series . P is
the intersection of M with the preceding curve L

, and Q its
intersection with the fo llowing curve N.

As the curves approach coincidence, P and Q will ultimately
be two consecutive po ints o f the envelope, and o f the curve M
Hence the envelope to uches M
Similarly, it may be shown that the envelope touches any
other curve of the series .

equation the envelop e of a given series of

Before considering the gen
eral problem let us take the
following special example .
Required the envelope o f

the series o f straight lines
represented by

y = ax + fi
r

Cb

a being the variable param
eter.
Let the equations o f any

two of these lines be

y= ax +mr
(b

and
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From (1) and (2) as simultaneous equations
,
we can find

the intersection of the two lines . Subtracting (1) from

which are the co-ordinates o f the intersection .

Now if we suppose h to approach zero in we have for
the ultimate intersection o f consecutive lines

r
_
n 2m

a
2
’

a

By eliminating a between these equations we have

y
2 4mx

,

which, being independent of a, is the equation o f the locus o f
the intersection o f any tw o consecutive lines that is, the equa
tion of the required envelope .

The figure shows the straight lines, and the envelope which
is a parabo la.

135 . We will now give the general solution .

Let the given equation be

0
;

which, by varying the parameter a
,
represents the series o f

curves .
To find the intersection o f any two curves o f the series

,
we

combine
f (wy y)

f (x) y) a + h) = 0
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From (1) and we have

h

and it is evident that the intersection may be found by com.

bining (1 ) and instead of (1 ) and
When the two curves approach coincidence, h approaches

zero, and we have, by Art . 10
,
for the limit o f equation

£1199, y, a ) 0 . (4)

Thus equations (1) and (4) determine the intersection Of
two consecutive curves . By eliminating a between (1) and

(4 ) we shall obtain the equation of the lo cus of these ultimate
intersections, which is the equation of the envelope .

136 . Applying this method to the preceding example,

y= aw+ fi
a

a

we differentiate with reference to a , and obtain for (4 ) Art. 135,

Eliminating a between these equations gives the equation
o f the envelope

,

y
2 i: 4mx

,
as before .

13 7 . The evo lute of a given curve is the envelop e of i ts

normals.

This is indicated by the figure o f Art . 117 , and the propo si
tion may be proved by the method of Art . 135

,
as follows

The general equation o f the normal at the point (x
'

, y
'

) is
by (2) Art. 99,

l

w
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Find the envelope o f a series o f c ircles whose centres are
on the axis o f X

,
and radii proportional to (m times)

their distance from the origin . Ans . y
2= m2

(x
2
+ y

2

) .

Find the evolute o f the parabola y
2 4 ax according to

Art. 137 , taking the equation of the no rmal in the form

y : m(x— 2 a)—am3
. Ans . 27 ay

2= 4 (x «—2 a)
3

2 2

Find the evolute o f the ellipse g, —
2
= 1

,
taking the

equation of the normal in the form

by ax tan qt (a
2 bz) sin qS,

where <5 is the eccentric angle .

Ans. (ax)
§ (a

2—
s

b2)
§

Find the envelope of the straight lines represented by

x co s 3 d ysin 3 d

0 being the variable parameter.

Ans . (x
2

y
?

)
2

a
2

(x
2

y
?

) the lemniscate.

Find the envelope o f the series of ellipses
,
whose axes

coincide and whose area is constant.
The equation of the ellipses is

x
2

y
2

a
2 IF

1
’

a and b being variable parameters, subj ect to the con

dition ab 762
, (2)

calling the constant area 7 702

Substituting in (1) the value o f b from (2)
x
2

a
2

y
2

a
2 707

1
’

in which a is the only variable parameter. Differen
tiating (3 ) with reference to a, we have
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Eliminating a between (3) and we have

4 x"‘y
2 764.

Second So lution . Differentiate regarding both a

b as variable .

y
2dbx

zda

3 b361.

Differentiating (2) also, we have

bda adb 0 .

From (5) and we have

x
2

y
2

a
2
_
55

.

From (7 ) and

x
2

y
? 1

a
2 b2 2

Substituting (8) in

4 xz
’

y
2 764

8 . Find the envelope o f the circles whose diameters are the
double ordinates o f the parabola y

2 4 ax.

Ans .

Find the envelope o f the straight lines 2+ 1
,

When a
"

+ b
” kn . L L 1 .

Ans . wn
-f-l

y
n+ l yen

x
2

y
?

Find the envelope o f the elli pses —
5

1
,

a

when a b h. Ans . xl + y
‘gf kl
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Find the envelope of the c ircles passing through the
origin, whose centres are on the parabo la y2 4 ax.

Ans . (x 2 d )y
z
+ x

3

Find the envelope o f circles described o n the central radii
o f an ellipse as diameters

,
the equation o f the ellipse

“32 d
g

_l A $13
2 2 2 _ 2

x
2

+
83

713 + y ) — a " l“ 3/
“2

being

Find the envelope of the ellipses whose axes coincide, and
such that the distance between the extremities o f the
maj or and minor axes is constant and equal to k.

Ans. A square whose s ides are (x i y)
2 k";
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Since u contains no radicals
,
this expression for

dx

have but one value at any given point, unles s it takes

form 8; that is,
Ga Ga

0 a d

These are therefore the conditions for a multiple point .
If values o f x and y which satisfy (1 ) also satisfy
equation o f the curve

f (x y) 0
2

we have for any such point
dy 0

dx 0

This indeterminate form can be evaluated by the method
o f Art . 53 .

The result o f the process of evaluation will be an equation

o f the second, or higher, degree with respect to fly
,
thus

dx

determining several values of that quantity. This will be
apparent from an example .

140 . Let examine for multiple points the lemniscate

(90
2
+ u

2

)
2= 31

2

)

u = — x
2

) = 0 .

da
4 x(x

2

y
?

) 2 d 2x,
dx

6“
4 y(w

2

if) 2 azu
ar

Putting 0
,
and g—Z

we find x= 0
, y= 0, or x= :l:
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Of these values o f x and y, x= 0
, y= 0, alone satisfy the

equation o f the given curve . Let us find the value o f

0
—
13 for this point.
dx

du

dy dx 2 x3+ 2 xy
2— a

2
x_ 0

dx da 2 x2y + 2 y
3
+ a

2

y 0
’

at

when x= 0
, y= 0 .

Evaluating by Art. 53
,

6 x11» 2y
2
+ 4 xyg

g
a
2

x

d
when x= 0

, y 0 .

Hence

The origin is a double point, the two tangents being inclined
45

° to X.

141 . Again, take the curve whose equation is

u x
4
+ 2 ax

2

y d y
3
z 0 .

du
= 2 d x2 3 ay

2
.4 x3 + 4 axy,

dy
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Putting
d
_
u

0
,
and

916 0
,
we find 50 : 0

, y= 0, to be the
dx dy

only po int o f the curve satisfying these conditions .

In finding the values o f fig
dx

’

and y2

4 x3 4 O

3 (by
: 6

,
when x 0

, y 0 .

Evaluating by Art. 53,

when x= 0
, y 0.

6 ayyl 4 d x

Evaluating again,

Say, when x= 0
, y 0.

6 ay1
2
+ 6 ayy2

—4 a 6 ayl
2—4 a

Hence y1 (3 3/1
2—2 )= 4 yb

and therefore y1= 0, o r y,= :t V2.

Hence the o rigin is a triple point as shown in the figure.
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1 43 . Cusp s. W hen the branches of the curve are only on

one side o f the point o f osculation
,
thi s point is called a cusp

,

as P, o r P2.

The conditions for a cusp are the same as those fo r a point
o f osculation

,
with the additional condition o f imaginary

points o f the curve on one side o f this point .
Fo r example

,
take the semicubical

parabola
y
°= at

y i mg)

e i
dx

i
2
x

W hen x 0
,

dx

There are then two coincident
tangents at the origin . But since

y is imaginary fo r negative values
o f x

,
there are no points on the left

o f the origin . Hence the origin is
a cusp .

144 . Conjugate Po ints . If, in determining a multiple point,

the values o f 3
g

. are imaginary, we then have a point of the
x

curve through which no branches pass ; that is, an isolated
point. Such a point is called a conjugate p o int.
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example, the curve

d y
'
z

x
3
+ bx

2 = 0
,

3 902 —2 658

8, when x= 0
, y 0 .

dx 2 ay

Hence

dy 6 x 2 b

dx
2 a fly
dx

when x = 0
, y= 0 .

Therefore

dv

dx

Hence the origin is a con

jugate po int . This appears
directly from the given equa
tion

_b) ’

from which ev idetltxthat
besides the origin, there are

no points o f the curve when
x < b.

‘

EXAMPLES.

Show that the curve

a
2

y
2

a
2
x
2

x
4

has a multiple point at the origin .

Show that the curve

y
2

” log (1 x) ,

has a multiple point at the origin.
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Show that the c issoid
x
3

2

y
2 a — x

’

has a cu sp at the origin .

Show that the curve

x
3
+ 2 x

2

+ 2 xy
—
y
2
+ 5 x—2y 0

,

has a cusp at the point —1
,

5 . Show that the curve

y
2

)
2

a
2m2 b2y

2

,

has a conjugate point at the origin.

6 . Show that the curve

ay
2

(x d )
2

(x b) , at the point

has a conjugate point, if a b

a double point
,

if a b

and a cusp, if a b.
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dy dzy
en

dx
x

d
2 x 4

By (a ) , x
2

Solving this equation,
x= 1 o r 3

To apply (b) , we substitute both x 1 and x

d7 —2 4
dx2

x
:

and find when x 1
,

d 0
dx

z

dzyh 3 0 .w en x

dxz

Hence when x 1
, y is a maximum ;

when x 3
, y is a minimum.

The maximum value o f y is 24, and the minimum value, 1.

147 . In exceptional cases it may happen that the value o f
2

x given by (a) makes i ii = 0, so that neither o f the con

ditions (b) is satisfied. This
would be the case fo r a point
o f infiexion R,

who se tangent
is parallel to OX . Here the
ordinate RL is neither a

maximum no r a mlnlmum.

But there emay be a maxi
mum o r minimum value of

h WW—o ThX y, even w en

d

_

x
2
_ 18

is mo re fully considered in Art . 150 . The method o f the
following article is also applicable to such cases .

148 . Second Method Of determining Maxima and fif inima .

Referring to the figure o f Art . 145, and supposing x to
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increase, we see that as we approach P , y increases, and on

leavmg P, y decreases . Hence, by Art . 108
, g! is positive onx

the left, and negative on the right, o f P . That is
,
when y

is a maximum, 3
3
changes from to

x

Similarly, it may be shown that when
,
as at Q, y is a

minimum
, 311 changes from to

x

These relations may also be obtained by noticing that tan qt,

which is equal to changes Si gn at P and Q .

dx

Let us apply these conditions to the example in Art . 146,

where

gZ= r
2 —1) (r

Here dy can change sign only when x 1 o r x 3 .

dx

By supposing x to be first slightly less, and then slightly
greater, than 1

,
we find that x— 1 changes from to

but since x 3 is then negative, it follows that
(

d
l
changes from

x

to when x : 1
,
and denotes a maximum. In the same

way, we find that 33! changes from to when x 3, and
,x

denotes a minimum.

Again, consider the function y (x 4 )
5

(x

Here gal
/

3

3 (3 x 2) (x 4 )
4

(x

W hen x 3
3]
changes from to

x

when x —2
, 3

31 changes from to
x

when x 4
, 2?does not change Sign,(23

since (x cannot be negative .
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Hence we conclude that y is a minimum whenx g; a max
imum when x 2 ; but neither a maximum no r minimum
when x 4 .

d?
As this method does not requ ire

(Tel
/
i ” it is preferable to that

o f Art. 146
,
when the second differentiation of y involves much

work .

149 . Case where
d

00 . It i s to be noti ced that
Ed:
some

x

times changes sign by passing through infinity instead o f Zero.

Hence if dy
00

,

dx

fo r a finite value o f x
,
this value should be examined, as well

dy 0 .as those g i ven by
dx

Fo r example, suppose

y = 0 .
—b(fB

dy 2 b
Then

d” fie —er
"

hence we have

00
,
when x 0 .

dx

It is evident that when
dy

changes from
dx

to indicating a maximum
value o f y, which is a .

The figure shows the max
imum ordinate PM ‘

corre
sponding to a cusp at P .

x= 0,
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Hence the second members of both (1) and (2) must be
negative.
By tak ing h sufficiently small

,
the first term can be made

numerically greater than the sum o f all the others, invo lving
h2

,
h3

,
etc . Thus the sign o f the entire second member will

be that of the first term. As these have difierent signs in (1)
and the second members cannot both be negative unles s

Equations (1) and (2) then become

f (a + h) -
Z

l§ (a ) +

f (a —h) (to—7131
0

12 [2

The term containing It2 now determines the sign o f the
second members . That these may be negative, we must have

f
~
<a > 0 .

If then and

f (a ) is a maximum.

Similarly, it may be shown that if

and

f (a ) will be a minimum.

If and

similar reason ing will Show that fo r a maximum we must also
have

and

and for a minimum

and

1 51 . The conditions may be generalized as follows

Suppo se

P <a >= 0 o



MAX IMA AND MINIMA FOR ONE VARIABLE. 159

Then if n is even
, f (a ) is neither a max imum no r a

minimum .

If n is odd
, f (a ) will be a maximum o r minimum

,
acco rding

o r > o.

EXAM P LES.

Find themaximum value of ax x
2
. Ans . when x

Find the maximum and minimum values o f
2 x3 9 x2 l 2 x 3 . Ans . x 1 gives a maximum,

2 ;

x 2 gives a minimum,
1 .

Find the maximum and minimum values o f
x
3—3 x2 9 x + 5 . Ans . x 1 gives a maximum

,
10 ;

x 3 g ives a minimum,
22 .

Show that x3 3 x2 6 x has neither a maximum no r min

imum value .

5 . Show that ax 2, is a minimum,
when ax

8

2 2

Show that the least value o f
,

OL b is (a b)
2
.

srn
2d co s

zd

Investigate the fo llowing functions fo r max ima o r minima

x
2 7 x 6 Ans . x 4 gives a maximum value o f y ;
x 10 x 16 gives a minimum value o f y.

CZ?
Ans . A minimum when x e.

log x

(66 W
,gives a maximum value,

4 ab

10 . y 2 ta
‘

n x tan2x. Ans. A maximum when x
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11 . y siu x (1 co s x) . Ans . A maximum when x

12 . y tan x 3 co t x. Ans . A minimum when x

13 . y sin x co s (x a ) . Ans . A maximum when x

a minimum when x

Ans . A minimum when
a 2 x

y (x l )
4

(x

Ans. A maximum when x a minimum when x 1

neither when x 2 .

y 2 )
5

(2w 1r
Ans . A max imum when x a minimum when x

neither when x 2 .

y= (x

Ans . A minimum when x 5 ; a maximum when x

a minimum when x —1 .

y : (2x a )A(x
2 a

Ans. A maximum when x —

3
a minimum when x a .

PROBLEMS IN MAXIMA AND MINIMA .

1 . Divide 10 into two such parts that the product o f the
square o f one and the cube o f the o ther may be the greatest
possible .
Let x and 10 x be the parts . Then —x)

3 is to be a
maximum. Letting u x

2
(10 x)

3
,
we find

i t 5x (4 x) (10 a )
2 0,

dx

from which we find that u is a maximum when x 4 . Hence
the required parts are 4 and 6 .
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From the right triangle OPR we have

x
2

y
2 72. (Ct)

The convex surface o f the cylinder

2 wx-2 y —x
2

i»
From thi s

, y

r\/2 .

Another solution of the problem is the following

r

V2

Since the convex surface is 4 wxy, put i t xy, to be amaximum.

da dy 0 .

dx
3! 00

da:
(5)

But from (a) , x o. (c)
58

Eliminating il
l—
i from (b) and (c) we have x= y, which

combined with (a ) , gives the same result as before.

5 . A rectangular piece o f pasteboard 30 inches long and 14

inches wide has a square cut out at each corner ; find the side
o f this square so that the remainder may form a box o f maxi
mum contents . Ans . 3 inches .

6 . Divide a into two parts such that the product of the mth
power o f one and the nth power of the other may be a maxi
mum . Ans . The required parts are proportional to m and n .

7 . A person being in a boat 3 miles from the nearest point
o f the beach

,
wishes to reach in the shortest time a place 5 miles

This will be a maximum when
u r

z
x
z

x
4 is a maximum.

This is found to be when x

V2
the radius o f the base o f the required
cylinder.

Hence the altitude o f the cylinder is
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from that point along the shore supposing he can walk 5 miles
an hour , but row only at the rate o f 4 miles an hour , required
the place he must land .

Ans . One mile from the place to be reached .

8 . The top o f a pedestal which sustains a statue 11 feet high
is 25 feet above the level o f a man

’ s eye ; find his horizontal
distance from the base o f the pedestal when he sees the statue
subtending the greatest angle . Ans . 30 feet.

9 . Through a point (a , b) , referred to rectangular axes , a

straight line is to be drawn , forming with the axes a triangle
o f the least area . Show that its intercepts on the axes are 2 a

and 2 b.

10 . Through the point (a , b) a line is drawn such that the
part intercepted between the axes is a minimum . Showthat its
length is (all b%)

I

11 . Given the slant height a o f a right cone find its altitude
when the vo lume 18 a maximum .

Ans
a

V3

12 . Given a point o n the axis o f the parabola y2= 4 ax, at

the distance . h from the
~

vertex ; find the ab scissa o f the point
o f the curve nearest to it . Ans . x h 2 a .

13 . Find the maximum rectangle that can be inscribed in an

ellipse whose semi-axes are a and b.

Ans . The sides are a\/2 and b\/2 ; the area , 2 ab.

14 . A rectangular box , Open at the top , with a square base ,
is to be constructed to co ntain 108 cub ic inches . What must
be its dimensions to require the least material ?

Ans . A ltitude , 3 inches ; side o f base , 6 inches .

15 . Find the altitude o f the right cylinder o f greatest vo lume
inscribed in a sphere whose radius is r .

An
2 r

3 .
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16 . Find the altitude o f the right cylinder inscribed m a

Sphere whose radius is r , when its entire surface is a max imum .

A ns .

17 . Find the altitude o f the right cone o f greatest vo lume
inscribed in a sphere whose radius is r . Ans . {f r

18 . Find the altitude o f the right cone o f maximum entire
surface inscribed in a sphere whose radius is r .

Ans . (23
"

1

2
5

°

Find the altitude o f the right cone o f least volume c ir
cumscribed about a sphere who se radius is r
Ans . Its altitude is 4 r , and its volume is twice

' that o f the
sphere .

20 . Find the altitude o f the least isosceles triangle cir

cumscribed about an ellipse who se semi-axes are a and b, the
base o f the triangle being parallel to the maj or axis .

Ans . 3 b.

21 . A tangent is drawn to the ellipse whose semi-axes are a

and b, such that the part intercepted by the axes is a minimum.

Show that i ts length is a b.

22 . The lower corner o f a leaf , whose width is a , is folded
over so as just to reach the inner edg e o f the page . Find the
width o f the part folded over , when the length o f the crease is
a minimum .

Ans . 4a .

23 . In the preceding example , find when the area o f the tri
angle folded over is a minimum.

Ans . When the width folded is ga .



https://www.forgottenbooks.com/join
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As h and It are independent of each other
,
this is equivalent to

du du
0

dx
and

By
(2)

Equation (1) then becomes

f (w k) —f (x, y) %(A7.
2 2 Bkk Ck?)

dzu
B

dzu dzu

arz
’

aray
’

dy
z

But Ah2+ 2 Bh7t + OIr
2=

A"+ 3 7“ AOL -3 2 702
. (3 )

where

In order that (3) may preserve the same Sign fo r all small
values o f h and Is

, it is necessary that AC B 2 should be
positive ; for if negative, the numerato r o f (3 ) will be positive
when k : 0

,
and negative when Ah Bk 0 . Hence we have

as an additional condition for a maximum
,

B 2 AO. (4)

The sign of (3) then depends upon that o f the denominator
A . Hence for a maximum we must have

A < O.

Similarly it may be shown that fo r a minimum value o f u,

we must have (2) and together with

A > O.

It may be noticed that (4) requires that A and C should
have the same sign . Hence if A is positive, C will be also.
The exceptional cases, where

B 2=AC,

o r where A = O
,

B = 0
, C= 0

require further investigation . We shall no t consider them
here.
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1 54 . The condi tions for a maximum or minimum value of
u f (x, y), may be restated as follows
Fo r either a maximum o r minimum

,

0
, and

For a maximum,
0
,

and

For a minimum,
0
,

and

155 . Functions Of Three Var iables. A similar investigation
to that in Art. 153, gives as the conditions o f a maximum o r

minimum vulue of u =f (x, y, z)
Fo r either a maximum or minimum,

Ga Ba Ba

dx dy

dzu 2 din dzu

dxdy 8x2 dy
ff

For a maximum 0
,

and A 0

for a minimum,

where A

> 0, and A > O ;

di v, d2a d2a

6x2 dxdy dxdz

d2a dQu
’

dzu

dxdy dy
z dydz

d2a dzu 62u

dxdz"dydz
’
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EXAM P LES.

1. Find maximum value of

u 3 axy x
3

y
’
.

du da

dx dy
3 ax

62a d’u
AlSO

(9x2 dy
z

Applying (1) Art. 154
,
we have

ay
—x

2 = 0, and dx— y
2 = 0 ;

whence or

The values x 0
, y 0

, give

(i n dzu
0

din

dx2 dy
z dxdy

which do not satisfy (2) Art. 154 .

Hence they do not give a maximum or minimum .

The values x a
, y a

, give

d’a d2a dzu

6x2 dy
2 dxdy

which satisfy both. (2) and Art. 154 .

Hence they give a maximum value of i t which is a3.

2 . Find the maximum value of xyz, subj ect to the condition

x
2

y
2

z
2

1 .

a
2
+
b2
+

c
2

2
(13
2 2

From i, 1
a
,

E
li
-

2 ;

and as xyz i s numerically a maximum when x
"’

y
2
z
2 is a

maximum
,
we put
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Find the values of x and y that render

s in x Siny+ co s (x + y)

a maximum o r minimum.

Ans. A mlnlmum
,
when x

a maximum
,
when x =

’

y

7 . Find the maximum value o f

Let the parts be x
, y,

and a x—y.

Then i t xy(a —x y) , to be a maximum.

6 a

d
i
a

l

; ay
—2 xy—y

2 = 0
,

(I; ax—x
2—2 xy= 0 .

These equations give x y 3
.

Hence a is divided into equal parts .

NOTE —When
,
from the nature o f the problem,

it is
evident that there is a maximum o r minimum

,
it is

often unnecessary to consider the second differential
coefficients .

Divide a into three parts, x, y, z, such that x
m
y
n
zp may

be a maximum.

x y z
m n p m+ n + 10
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1. Divide 30 into four parts such
/

that the continued pro d
not o f the first

,
the Square o f the second

,
the cube

the third
,
and the fourth power of the fourth, may

be a maximum .

Ans. 3 6 9
,
12 ,

Given the vo lume a3 o f a rectangular parallelopiped ; find

when the surface is a minimum .

Ans . When the parallelopiped is a cube.

An open vessel is to be constructed in the form o f a

rectangular parallelopiped, capable o f containing 108

cubic inches of water. What must be its dimensions to
require the least material in construction

Ans . Length and w idth, 6 in . height, 3 in.

Find the co-ordinates o f a point
,
the sum o f the squares

o f whose distances from three given points,

(501; (552; (x3,

1° mm lmum '

Ans . gen
t w.+ wt). é<yi+ yr+ ysb

the centre o f gravity o f the triangle joining the g iven
points .

5. Find the volume o f the greatest rectangular parallelopiped
that can be inscribed in the ellipsoid

x
2

(1
2
4-52“= 1 .

‘
i
e
nl

t
i
e
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of a known function
,
o r in reducing it to a form where such

reco gnition is po ssible . All functions can be differentiated
,

but all canno t be integrated ; that is, their integrals canno t
be expressed in terms of known functions .

2 . Elementary Princip les .

(a) . It is evident that we have

2 xdw= x
2
+ 2, o r xdx= x

2— 5
,

as well as 2 xdw= x
2
;

since at? + 2 and x
2 5 are functions

,
each o f whose difi eren

tials is Za ch}.

In general 2 so da: x
2

c
,

where 0 denotes an arbitrary constant called the constant of
integration .

Every integral in its most general form includes this term,

e. We shall omit this constant o f integration in the follow
lng integrals, as it can readily be added when necessary.

(b) . Since d (u :l: v

it follows that

(da j: dv j: dw)

That is we integrate a po lynomial by integrating
rate terms

,
and retaining the signs .

Since d (au) a du,

it follows that a da .

That is
,
a constant factor may be transferred from one side

of the symbol to the other
,
without affecting the integral .
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3 . Fundamental Integra ls . We shall now give a list o f

fo rmulae
,
which may be regarded as fundamental

,
and to

which all integrals mu st ultimately be reduced . We shall
then consider in this chapter such examples as are integrable
by these formulae, either directly, o r after some simple trans
formation.

os u du sin a .

in u da co s a .

ec
z
u du tan a .

VIII . o sec
g
u du co t a .

ec u tan u du see u .

osec a co t a da cosec u .

an u da lo g sec u .

o t u du log s in a .

XIII . ec u da lo g (sec u tan a ) log tan

o sec u du log (co sec u co tu) log tang
“
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_1_10 g
a u

2 a a u

XVII.
co s

XVIII .

11111.

cosec

VGI
'

S

V2 au ”

a
?

of I . and II.

To derive I.

,

since (n 1 )Meta
,

therefo re

a
n“

(n 1 )Meta (n 1 ) u
” du

, by (0) Art. 2.

Hence

Formula follows

It is to be noticed that I . applies to all values o f n except
n 1 . Fo r this value

,
it gives

n
o

w e

0

Fo rmula II . provides fo r this failing case o f I.

n
u-i-l

n 1

directly from

at log a -
d
—
u

u

.

’
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2 6

ac
“ 2

log x
“
.

11 . (a
2 2 x%

‘ 3 (

5
x
2 3

3
1

1
96
4

i
n
“

5

12 Vim; fi x
2x7

.

2 5

13 . (a: 1)
2da; (90 4

3

Integrate also
, after expanding (x+ How are

results reconciled

53m
” 4 a "

) a
2” logw.

15. (x
2

Integrate also, after multiplying x
2 2 41: 2 by a: 1

,
and

compare the two results .

16 . (3 an:
2

a
s
)% (2 am at

?

)da: {
2

5
63ax

2 m3)

—1-log (aac
8 3 bx) .

am3 + 3 bx 3

Integrate also, after multiplying numerator and denominator
by 2, and compare the two results .

18.

clx
(nay

-

2
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a: log (2 a:

90
2 m3

«at.

(i f)?

doc : %[log (9c
2 g

,

3 (a

(x
3 1) (m

3 5)%dx gar

Suggestion. (x
3 1 ) (x

3

(a
l
l
;

5w3
‘

fi(£1:l x
‘

7
l
f) .

n—l

(x
n

+ 7L)
n

(o
r

n)“
n

l

Suggestion. Multiply numerator and denominator by co
m

.

The following integrals may be evaluated by I.

, after mul‘
tiplying the binomial under the radical sign by a:

2

29 .

d”
G
em

- 2 1)
-i x

- 3da.~

“ 3dw)
2
a:2 a2

-21 )%
L22

x(a
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This may be obtained from Ex. 33 by substituting w a

for x.

5 . Pro of of III. and IV. These are evidently obtained
directly from the corresponding formulae o f differentiation.

EX AM PLE8

FOR FORMULJE III. AND IV.

n lo g a m lo g b
.
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By Trigonometry,
“

ff
2

cosec u cot u

2 sin
7

5
"
co s

i t

If we substitute in this 3
2
5+ u for u

,

1 Ow “.

sec u tan u tan I
0 0 "M

obtain the second forms o f XIII . and XIV.

EXAM PLES

FOR FORMULA; V.
—XIV.

(sin 2 x co s 2x) da; %(sin 2m co s 2m) .

g sin 3 w)da
° =

in (a+bw)—cos (a _4 " 0 0 8

b

doc 1

co s
23 w

c—+ tan dx= 2 ang+ sec

cosec aw co t ax) .

(tan x co tm)
2dw tan a co t 417.

(sec s: tanw)
2d:c 2 (tan a: seem)

sin cc ale: 1—
b

-lo g (a bco sx) .

2m b sinzm

2 (b—a )
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(tan 2w—1)
2da: tan2w+ log c0 8 2 ca

(co sec a: 1) (co tx+ 1)dw —x cosecw—log (1+ co s a).

(sec at: cosecw)
2dw tan a cot a: 2 10 g tanx.

sin 2x.inzwdoc 93
2

g sin 2 x.

2 p
p
m
—ss
u

n
-x

s
z
xdaz=

da' 2 (sec a: tan x)

dx élog tan

an actan (w+ a)dx _w_
lo g 1

—tan a tan a
tan a

ecwsec (cv+ a )dw

7 . P ro of Of XV.
—XX.

To derive XV.

,

To derive XVII ,
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To derive XIX.

To derive XX.

,

da
vers

2 au u u
2

4 1‘ 71

a 2

it is evident that “ 116 d cot “ l

a

Hence either expression may be used as the integral in XV.

In the same way we obtain the second forms o f XVII . and

XIX.

The formulae XVI. and XVIII . are inserted in the list o f
integrals, because they are of similar form to XV. and XVII .

,

respectively, with different signs .
To derive XVI.

,

1

a
2 2 a

hence

a
2 2 a

—1 -[lo g (u —a )
1
log

2 a 2 a

Or we may integrate thus
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1
—vers
b

1
b

1
vers

‘ 1 3 cc.

V8

1
log

bx a 1 bw+ a
°

2 ab bw+ a 2 ab bat—a

5 —1 3 ”

V6

1 5 w\/3
dx=—lo 3 132—2

—2 3
g (

a:

The same formulae may be applied to expressions involving
ax b o r m2 ax b

,
by completing the square

with the terms containing w. Thus
,

dx
_1_
2

12 513
—1

1 V2

110 g
x_ 5

.

4 513—1
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doc — 3

\/1 + 3 w—w VI73

log (a: 2 —4 cv

sec a tan
" 1

(msee a tan a ) .

1 3 a> + 1

3 4 a + 3

tan“
2 am+ b



CHAPTER II.

INTEGRATION OF RA TIONAL FRA CTIONS.

8 . Preliminary Op era tion . If the degree of the numerator
is equal to, o r greater than, that o f the denominator, the frac
tion should be reduced to a mixed quantity, by dividing the
numerator by the denominator.
For example

,

E—2E
m3 + 1

2 cv5 —3 x4 + 1 —2 —3
56
4
4-18

2
a:

m4 + x
2

The degree o f the numerator o f this new fraction will be
less than that o f the denominator . Such fractions only will
be considered in the following articles

9 . Factors Of the Denominator . A rational fraction is inte

grated by decomposing it into partial fractions,whose denomi
nato rs are the factors o f the original denominator.
Now it is shown by the Theory of Equations, that a poly

nomial o f the nth degree with respect to as, may be resolved
into n factors o f the first degree,

(a; a 1) (a: az) (m a3) -(a; a
n) .

These factors are real o r imaginary, but the imaginary fac
tors will occur in pairs, o f the form

ao —1
,

and m— a —b\/— 1
,

whose product is (a a real factor o f the second
degree .
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x
2
+ 6 w—8 2 1 2Hence
x
3 — 4 a: a: w—2 fizz

dx 2 log a log (x 2) 2 10 g (x + 2)

(50 2)
2

°

A shorter method o f finding A , B , O, is the following
If in (2) we let m= 0, B and C will disappear from the
equation

,
and we shall have

8 —4A
,
o r A = 2 .

Similarly, If 0 1
‘ B = 1 .

If a: OI
‘

EXAM P LES.

3 x—1
dx log [(ac 3 )

2

(a: 2)

w_ w3
dcv= log

w
2
+ 2w—co s2 a + OOSa

x
2
+ 2 x + sin2 a

{Add 513
2 1 (1) — 1 16

-lo a: 2

(m
2 2 6 (90 + )

3
+ g (

cedar
x
2—4 x + 1

2 ' l —2
,

2 f
lo g (x

2V3

1 x—2 — V fi
10 iz

z

g (
w
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x
3
+ x

4—8 —2 2
5

4 1
(13
3—4 x

50 + 0 g
(x + 2)

3

90
5 —5 az3 + 4m (a:

1 1 . CASE II . Factors Of the denominato r a ll Of thefirst degree,
and some rep eated.

Here the method o f decomposition o f Case I . requires modi
fication . Suppose

,
fo r example

,
we have

w(az

If we follow the metho d o f the precedi ng case
,
we should

write
90
3
4-1 A B D

x (x 90 513—1 w— l w— l
o

But since the common denominator o f the fraction s in the
second member o f this equation is (n(a: their sum canno t
be equal to the given fraction with the denominator n(a:
To meet this obj ection, we assume

90
3
4- 1 A B

w(w a; (115 (93

Clearing o f fractions
,

90
3
+ 1 =A (w 1)+ Dw(m

—3A + O’—2D)an
2

+ (SA + B C+ D)x—A .

Hence A + D= 1,

—3 A + O— 2D= O
,

SA + B —O+ D= O

A = 1 .

W hence —1
,
B =2

, D= 2.
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2 1
+
<w

— lo g x
1

+ 2 log (x—1)
(sr -m l )

2
w— l

a: (axl
(cv

0 g
a:

EX AM P LES.

93
3 —4 a‘2

+ 4 x 513— 2

3 1132 — 2 _ 12w+ 19da: 3 1 2

x
2

-1 (ax—F1 )
2

x
5 — 5 93 —3 x

2 2 x + 3—2 l 1 2

dx x 1
10

9 ( 2 03—5 2 x+ 1

(m
l — x (cc -1

7 . (8 00
6—1 )dx _

x
12x + 1 108w— 61

+ 24 log x

(2 a
‘2—x)

3 2 x2 4 (2w

45

z
ogwc

12 . CASE III . Denominato r conta ining factors Of the second

degree, but none rep eated.

The fo rm o f decomposition will appear from the following
example, 5 a:+ 12

da:
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g3 x—2) da: g3 x—3 )dx +
dx

w2 —2w+ 5 x
2 —2 w+ 5 x

2 —2 w+ 5

(cc—1 ) (x
2- 2 ao+ 5 )

EXAM PLES.

d“; 1 CD
4

l tan‘ l w
4 2

w
2dx 1

+ 110 g (
a: If .

(w 2 (w—1) 4 x
2
+ 1

(00
3 —6 )dx ten“

(13

w4 + 6 w
2
+ 8 we

+ 2 .

2 2 V2 V2

_. log -

2
-t

2 Vg
tan

V3

W )

m4 + 6 x
2
+ 25

1
log
m

‘
L

an
"

« rtan
—1m“ 1
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4 da: 1

50
4
4- 1 w2 — oox/2 + 1

x
2
0 0 S2 a + 1

w4 + 2w
2
0 0 8 2 a + 1

sin a w2 + 2 wsin a + 1 Cos a. _ 2 a' cos al t 1

4 n 2—2 x sin a + 1
+

2
an

1 — 93
2

13 . CASE IV. Denominator conta ining factors Of the
‘
second

degree, some Of which are rep eated.

This case bears the same relation to Case III .

,
that Case II.

bears to Case I.

, and requires a similar modification o f the
partial fractions .
Fo r illustration take

2fi + x + 3

(w
?

W e assume
2 x3+ w+ 3 Am+ B

+
0 cc + D

(x
2
+ (90

2
+ 93

2
+ 1

-B

A =—1
, B = 3

, D= O.

x
3
+ m+ 3 —a:+ 3 2 513h fT ere ore
(x

2
+ 1 )

2

dx=
a dm

(M 1 ) (eon

1

(90
2
4

To integrate the last fraction, we use the following formula
o f reduction,
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This formula will be derived in Chapter IV.
,
but the

student can now verify it by differentiating both members .
It enables us to integrate the expression peculiar to

this case by mak ing it de
(2

2
+ a

2

)
By successive applications the given integral is made to depend

ultimately upon
2

which is l tan ‘ l w

a: a a a

To apply this formula t wemake a=1 and n z 2.

We then have

d ie a: 1 _1-tan a:

(a
' 2
+ 2 2 63

2
+ 1 )

+
2

whence 1 3 x
an

‘ l
cc
,

3 w+ 1
+
3
—t

‘ 1 l x
2 1 .

z
an 90+ og (

As another example in the integration o f a partial fraction
in Case IV.

, consider

3 a + 2 do:

(az
2

(113
2

(2 x—3)dw 3

2 (x
2—3 w+ 3 )

doc

(x
2—3 x + 3 )

2

where z a:
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x
3
+ 8 x + 21

dz

(w
2

log (a:
2 4 33+ 9)

(33
4
+ 56

2

+



CHAPTER III.

INTEGRA TION BY RA TIONA LIZATION. INTEGRA TION

BY SU BSTITUTION.

14 . As the preceding chapter provides for the integration
o f rational fractions, it follows that any rational algebraic
function is integrable .
Some irrational expressions may be integrated by substitut

ing a new variable, so related to the o ld, that the new expres
sion shall be rational .

15 . Exp ressions invo lving only fractional p owers Of w. Such
forms may be rationalized by assuming a: z

”

,
where n is the

least common multiple o f the denominators o f the several
fractional exponents .

Take for example,

72
3

2
2

Substituting in this, z p
f
,
we have

da:
2 xI—3 xi + 6mi‘

dcv

xl + afii

£6 : z
“
, dx= 6 z

5dz ;

al
l

Z
3
, £13
% 2

2

6 z5dz

z
3

z
2
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1 6 . Exp ressions invo lving only fractiona l p owers Of (a bx) ,
may be rationalized by the method o f the preceding article.

Take for example
, s

da)

(x (x 2)
f

Assume x 2 z
“
,
dx 6 a5dz.

dx 6 z‘5dz z dz

(x
z
5
+ z

4
z + 1

6 [z log (z

Substituting 2 we have

dx

W
6 (x 6 log [ (x

w_
'

6 w

EXAMPLES.

i"x dx 4 it

3 3
log (x

2 logx 24 log (xT
1
7

6 x2 + 6 x + 1

g_(x 3 (x i ) i
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—1)

If we assume
,
as in the preceding articles,

the expression for x, and consequently that o f dx, in terms o f '

z
,
will involve radicals . To meet this obj ection we assume

terms o f z.

Take for example,

A ssume z—x
,
—x + 2 = z

2—2 zx,

are expressed rationally

(2x

fi —z + 2

2 2 —1

2 dx 1 z

—2 z
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19 . Expressions containing x
2

ax b.

To rationalize in this case, it is necessary to resolve b+ ax—x
2

into two factors . These factors will be real
,
unless the given

radical V b ax x
2 is imag inary for all values of x. For

b+ ax—x
2= a’—

2

+ b

(Va
2
+ 4 b—a) +

These factors are real unless a
2
+ 4 b is negative, but then

b+ ax—x
2 is negative for all values o f x, and consequently

V b ax x
2 is imaginary.

Represent the two factors thus
,

b + ax—x
2= (a

Now assume

Thus x is expressed rationally in terms o f z.

Take

Assume V 2 + x —x)

2 z2—1
z
2
+ 1

’

3 x

l + x= (2—x)z
2

,
x

Therefore
,



INTEGRAL 0ALOULUS.

Substituting 2:

EX AM PLES.

2 tan
‘ 1

(x x
2
+ 2 x

_

8 + 6 x

x—1

O 7 20 . Integration by Substitution . This method 18 used for
rationalization

,
as shown in the preceding articles

,
but in other

cases the introduction o f a new variable often simplifies
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CHAPTER IV .

INTEGRA TION BY PA RTS . INTEGRATION BY SUC . .

CESSIVE REDU CTION.

21. Integration by Parts . From the equation

d (uv) u dv vdu,

we obtain,
.

by integrating both members,

u dv da .

Hence dv uv

The use o f (1) is called integration byparts.

Let us apply it, for example, to

log xdx.

Let u log x, then dv xdx;

whence dx
, and 7)

x 2

Substituting in we have

logx-xdx log x-
"

g
2

f logx £
2

2

The student should carefully notice how the factors u,
v, du, occur in the process, so as to be able to apply it without
such a formal substitution as in the preceding example .
On referring to the equation we see that, after selecting
for u a certain factor of the given integral, as logx, we obtain
the first term in the second member, by integrating as if this
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factor were constant ; also that the expression following the

second is the same as the preceding term, with the factor

log x replaced by its differential.
Take fo r another example

co s xdx.

A ssuming u co sx
,
we find

x
2

co s xdx= co s x —

2
—S1nxdx) .

But as the new integral is no simpler than the given
we gain nothing by this application o f the process .
If
,
however, we let u x

,
we find

xcos xdx x sin x sin xdx

x sin x co sx.

0 7 .

EXAM PLES.

log xdx og x

‘ l log xdx= og x

sin xdx —x co s x + sinx.

log (x 2)dx= (x
2 4)log X/x+ 2

ax

e
u dx

x
2
+ 1

tan
‘ 1
x—£

c

2

in
‘ l
xdx x sin

“ 1
x x

2
.

tan
“ 1
xdx
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10 .

1(P 1 _+—i vfl v
m 2 (1

-

13.

x
1

(w+ 1 )
2

90 +
og x log (H l )

x
2
s1n

" 1
xdx

In each o f the following examples integration by parts must
be applied successively.

14 . x
f
e
zdx= (x

2

fi ew dx
3 x2

+
6 x 6 e

“

a a
2

a

x
3

(log x)
2dx (log x)

2—%log x

17 .
Egg—

m 2

x

22 . Formulae Of Reduction. These are formulae by which
the integral,

x
“
(a bx" )d ,

may be made to depend upon a similar integral with either m
o r p numerically diminished. There are four such formulae,
as follows

,

bx" )
1’dx

w M L“
a+ bx d A
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Substituting (2) in and transposing, we have

(np +m 1) b

(m n 1) a a zpdx.

Dividing by (np m 1) b, we have (A ) .

If in (3) we substitute

m

and transpose, we have

(m
' 1)a x

m'

zpdx

x
m'

+1zp+
1

(np m'
n 1)b

Omitting the accents, and dividing by we have

24 . Derivation Of Formulae (B ) and (D) . If we integrate

by parts x
m
zpdx

,
calling u zP

,
we have

dx z
?
“m“ " bp +lz

P- l
a
r - 1dx.

m 1 m 1

(m 1) x
m+1

zp n

x
m
zpdx (a bx”

)x
m
zp

‘ 1dx

a
‘ ldx b

Eliminating from (1) and we have

(np m 1) x
m
zpdx x

m+1
zp np a x

m
zP

ldx.

Dividing by np m 1
, we have (B) .
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If in (3) we substitute

p

and transpose, we have

x
m
z
p
'

dx
'“dx.

Omitting the accents, and dividing by n (p 1 ) a, we have (D).

Formulae (A ) and (B ) fail, when np m 1 0 .

Formula (0 ) fails, when m 1 0 .

Formula (D) fails, when p 1 0 .

Apply (A) , making

m= 2, n= 2, p = d = a
,
b

(aw—Erie =
x(a

2—x
2

) % a
3

—2 — 2

g(a
z

x
2

)
% (

gsm
‘ l

g

Apply (B ) , making

m= 0
,

n = 2
, 10 .—é, a = a

2

, b= 1 .

2 dx
(a

2
+ x

2

2 2

2

g(a
2
+ x

2

)
% + %log (x + x

2

) .

2 a 3

EXAM PLES.

a
z

V a
2—x

2
+ -

2
- s in

x
2’

(a
2
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Apply mak ing

m —3
,

n = 2
, p d = a

2
, b

2
x
*3

(a
2

x
2

)
' ldx M 1

x
‘ 1

(a
2

x
2

)
" fdx.

2 a2 2 a2

Ex . 4, p . 205
, gives

x
“ 1

(a
2

162)
—Ida:

dx
_
1
_

w\/a
2_x

2 a —x
2

Substituting, we obtain the complete integral.

5

x
2

) ? 3 a“(a
2

Apply (D) , mak ing

m = 0
,

n = 2
, p a = a

2
, b

Ex . 33
,
p . 180

, gives

a
2

x
2

" g'dx

(a
,

x
2

),

Substituting this, we have

dx 2 x

(a
2

x
2

)
% 3 a2 (a

2
x
2

)
% 3 a“(a

2
x
2

)
%

x

3 a”

(a
2

x
2

)

3 a2 2 x2
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1
tan

—1 x
.

6 933 R fi x/2 V2

—
x
3
.

2 x2 + 1 _2
3 x3

a .

Apply (A) , and the integral is reduced to



CHAPTER V .

TRIGONOMETR IC INTEGRALS .

25 . Required an
"
x dx

,
o r cot”xdx .

These forms can be readily integrated when n i s an integer,
positive or negative .

tan“xdx an
” ‘ 2

x (sec
z
x 1) dx

“ 2
x sec

z
xdx tan” ‘ 2

xdx

tann ‘ l
x

tann
‘ z
x dx.

n 1

Thus tan
"
xdx is made to depend upon

ultimately, by successive reductions, upon an xdx

When n is negative, the integral takes the

o t”xdx,

which can be integrated in a similar manner.

Fo r example, required tan5x dx.

tan5xdx (sec
2 1 )dx

an
3
xdx.

tansxdx

Hence an
5
x dx log sec x.

x (sec
2
x 1)dx

log sec x.

tanhe
2
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26 . Required ec
”
x dx

, o r co sec
”
xdx.

These forms can be readily integrated, when n is an even
positive integer.

see”xdx ec
” ‘ 2

x sec
f
xdx

n—2

(tan
2
x 1)

2
sec

z
xdx.

If n is even
,

will be a whole number
,
and

factor can be expanded by the Binomial Theorem
terms integrated directly.

The following example will illustrate the process .

sec
fi
xdx

(tan
z
x see2xdx (tan

‘
x 2 taufx 1) see

’
xdx

5 3ta

g
x

+
2 ta

é

n x
-l-tanx.

27 . Required an
m
x see"xdx

,
or cot

m
x co sec

”
xdx.

These forms may be readily integrated when n is a positive
even number, o r when m is a po sitive odd number.
When n is even

,
the method o f Art. 26 is applicable .

This is illustrated by the following example

tanex sec4xdx tan
z
x 1) sec

z
xdx

9 7

(tan
s
x tan

fi
x) see

’
xdx

ta

g
x tax

;
W hen m is odd

,
proceed as follows

an
m
x see”xdx ‘ l

x seen-1x sec xtanxdx
m—l

1)
2
sco

’ H
x sec xtan xdx.
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19 .
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W hen n is odd
,

tann ‘ 1

tan
”
xdx

x tan x

+
tan x_

n — 1 n — 3 n —5

tan7x 3 tan5x
ec
s
xdx

7 5
tan3x tan x.

o sec
s2 xdx

co t52 x cot32 x

10 3

7 5

au
4
x sec‘xdx tan x tan x

.

7 5

8 8 0
6
513dx

tanx—2 co tx

angx see4xdx

ot5xco sec‘xdx

3 5 see’x see5x
an x sec x dx

7 5

co sec
9
x 2 co sec7x ose 5

ot5x co sec
5
xdx

c c x
.

9 7 5

s 2 see2x
an

5
x secf xdx 2 sec

’Z’x
7

(tau x cot x)
3dx (tau

l
x cot

2
x) log tan

’
x.

tan7x 2 tan5x 2 tau3x

(sec x tanx)
4dx g(see

3
x tau3x) 4 sec x x.

co t3x

3

2 tangx 2 tan
‘g'x

5 9

co t
6
x co tsx

6 8
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28 . Required co s
”
xdx.

This is readily integrated when m o r n is a positive odd
number

,
o r when m n is a negative even number.

Suppose n to be odd and positive .

sin' "
xco s

”
xdx inmx (1 sin2x)

2
co sxdx.

As
n

5
1 is a po sitive integer, the second factor can be

expanded
,
and the terms integrated separately.

For example,

sin2xcos5xdx in2x (1 sinfx)
2
co sxdx

sin6x 2 sin4x sinfx)cosmdx

sin7x 2 siu5x
+
sin3x

7 5 3

A similar proces s may be used, when m is odd and po sitive.

For example
,

sin3x cos2xdx o s
2
x (1 co s

z
x) sinxdx

(co s
f
x co s

4
x) sinxdx

co s
3
x co s

5
x

3 5

When m + n is a negative even number, the form can be

integrated by expressing it in terms o f seex and Thus

sinmx cos”
xdx dx

dx.
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Since m n is positive and even
,
the method of Art . 27

is applicable.

Fo r example
,
consider

Here

EXAM P LES.

in‘x cos3xdx
sin5x siu7x

7

in5x co s4xdx
co s

5
x 2 co s’x co s

g
x

5 7 9

co s
7
x

5

7

3 0

2
8 x

cos
3
x co s x.

0 8
5—dx Sin

5 1

3
0
Sin

3g 5 8 111

2 sin x
.

1

Sln x

co s x co s
3
x

4 5

co t5x

5

4. 3“a

;
x

2 tanx cotx.

tan‘x 3 tan2x

2
3 log tanx.

2 5

Sin § xdx 3 tan? x

COS
5

(taux 3 cot x) .
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EXAM PLES.

sin4xdx sin2 x

co s
4
xdx

sinzxco s2xdx

sin6xdx x—4 sin 2 x+

co s
e
xdx

16

sin4x co s4xdx

co s
e
x sin2xdx 5x 2sin

32 x siu 4 x

sinsxdx

4 sin 2x gsin
32 x+gsin 4x

30 . Integration of Trigonometric Functions by Transforma
tion into A lgebra ic Functions .

If in the integral sinmx co s”
xdx

,
we assume sinx=z

, we

have also

co s a; (1 2
2

)
I
, x sin

‘ l
z
, dx

2

Hence sin’”
xco s

”
xdx

n—l

z
'"

(1 z
?

)
2 dz.

sin32 x 3

3 4

e
Sin

3

2 x
+ § Sin4

sin x
x s1n4 x

8



TRIGONOMETRIC INTEGRALS. 223

By means of the formu lae of reduction, this form is inte

grable for all integral values of m and n
,
positive o r negative .

In the preceding tran sformation we might have assumed
co s x z

,
instead of sin x z.

Any expression containing sin x and co s x, free from radicals,
can thus be integrated, either by a formula o f reduction o r by

rationalization . Moreover
,
since the other trigonometric func

tions can be expressed rationally in terms o f the sine and

cosine, it follows that any rational trigonometric expression
can be integrated.

EXAMPLES .

3 5
co s x co s x co s

S1n
2
x co s

4
xdx

12

Assume co sx z
,

sin2x 1 z
2

,
dx

sin2xcos4xdx (1 z
2

)
%dz.

By the formulae of reduction,

z
8

12
(1 z

2

)
% 1z

4

(1
16

Substituting z co sx, we have the integral required.

sec
3
xdx W $10 g (sec x tanx) .

Assume secx z
,

x sec
‘ l
z
,
dx

dz

z\/z
z 1

2

sec
3
xdx [ Vig

z—

I gw
/z

‘
” 1 310 5302 1)

sec x

z

tan x

élog (seex tanx) .

dx 1
log tan

sin x co s2x cos x
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dx sin x 1 3

siu2x cos3x 2 co szx sinx 5
10 g (sec x tanx) .

co s x 3_. c - l t
2 8 1n2x

o s x

2
0 g an

0

2 3
Sln xdx sm x sm x

co s
5
x 4 co s4x 8 co szx 8

Assume tanx z.

dx 1
mmx— l 4

w x tan a log (cotx tan a ) .
tanx

dx bx a

a tan x + b a
2
+ b

2
a
z
+ b

2
10 g (a sin x + bcos

31 . Trigonometric Formulae of Reduction .

By means o f the following formulae, sin’”
xco s

"
xdx may be

obtained for all integral values of m and n
,
by successive re

duction.

sinmx co s”
xdx

sinm
“ l
x co s

n+1x m 1
8mm“ ?

x co s
"
xdx.

m n m n

co s
” +1x m—n 2 co s

”
x dx

(m 1 ) sin
m ‘ l

x m—l sinm
‘ 2
x

sin’"
xco s

"
xdx

m+ l n—l
x o x8m 0 S

sm '”
xco s

’ “ 2
xdx.

m n

x n m 2 sin’”
xdx

(n 1) co s
” ‘ 1

x co s
" “ 2

x

sin” —1

s in’”
xdx
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EXAMPLES.

in6xdx
co s x in5x —5- siu3x § sin
2 3 12 8

o sec
5
xdx

COSx

3 .

7 d sin x 1 5
sec x x

2 co s2x 3 co s4x 12 co szx

i

5—
g
log (seex tanx)

o s
8
x clx o s

7
x+g co s x

in4x co s’x clx
co s x in5x siu3x
2 3 12 8

o s
‘
x sin2x co szx gsi

COSx

(3 co s
z
x

2 sin x 2

1 1 5 g
co s

z
x 3 sin3x 3 sin x 2

glog (sec x tanx)

dx
R d33 agui re

a bS111x

a + bsin x= a o s
2 § + sin2 + 2 bsin § co s

m

2 2 2

sec
z

gdx a sec
i’

gdx

a + 2 b tang+ atan

where z a tang b.
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If a b
,
numerically,

dx

0. b sinx

If a b, numerically,

dx

d + b sin x

34 . Required
at b co s x

d + bco s x= a o s
l’

g
-F sin2 + b os

—b) sin

sec
2

gdx

d + b+ (a —b) tan

If we put tan z
,

dx dz

a + b co s x d -b - (a —b)z
2

If a b, numerically

dx 2

a bco s x
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a b
,
numerically,

dx 2

a + b co s x b—a

1

62“ “2
x/b—a tang

—Vb+ a

35 . Required e
“
sin nxdx

, and e
“
co snxdx.

Integrating by parts, with u e
“
,

e
“
co s xx a

e
“
s1n nxdx

n a
e
“
cosnxdx.

Integrating the same, with u sin nx
,

c
‘” c
sin nx n

e
“
sm nxdx

a

e
“
co s nxdx.

Eliminating from (1) and (2) e
u
co s nxdx

,
we have

(d
2

n
?

) e
“
sin nxdx sin nx n co s

e
az
sin nxdx

e
m

fa sin nx n co s nx )
“2

Substituting this in (1) and transposing, g ives

sin nx a
2
cos nx)

(d
2
+ n

2

)n

e
u
co s nxdx

e
“
(n s1n nx a cos nx )

e
“
co s nxdx
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CHAPTER VI.

INTEGRA L-S FOR REFERENCE.

36 . We give fo r reference a list o f some of the integral s
the preceding chapters .

1 .

EXPONENT IAL INTEGRALS.

a
t:

log a.

6 .

TR IGONOMETR IC INTEGRALS.

inx dx co sx.

0 8 xdx sinx.

an xdx log secx.

xdx log sinx.
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sec xdx log (sec x tan x)

log t

osec xdx lo g (cosec x cotx)

log tang
ec
z
xdx tanx.

o sec
2
xdx cotx.

ec xtanxdx secx.

o sec x cotxdx cosecx.

in?xdx sin 2x.

x 1

2 4

x 1
2 .

4
Sln x18 . co s

2
xdx

INTEGRALS CONTAINING —x
2
.
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2

V a
z

x
zdx=g\/d

2
x
2
+ 9
2
—sin

d —x
zdx=g(2 x

2 —a
2

)v a
z

x

(d
2

a
2
\/a2 £17

2

(a
z

x
2

)
%dx g(ba

2
x
2
+
3—
8

ai sin

INTEGRA LS CONTAINING
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234

60 .

INTEGRAL CALCUL US.

2 3

d x—x
2 dx

3 0. + 6

?
2 ”fi

x/2 d x—x
2
+ %vers

INTEGRALS CONTA INING j: dx
2 bx

tan“
2 ax b

. 1

\/b2—4 ac 2 ax + b+ V b
2—4 ac
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OTHER INTEGRALS.

dx=V (d (a. b) sin



CHAPTER VII.

INTEGRA TION A S A. SUMMA TION . DEFINITE

INTEGRA LS .

3 7 . The proces s o f integration may be regarded as the
summation o f an infinite series o f infinitely small terms .
As an illustration, consider the following problem.

38 . To find the area

PABQ included between
a given curve OS,

the

axis of X,
and the o rdi

nates AP and B Q.

Let y x% be the equa
tion o f the g iven curve .
Let 0A a

, QB b.

Suppose AB divided
A AI A2 into n equal parts (in the

figure, n and let Ax
denote one o f the equal parts, as AA], A 1A2,

Then AB b a nAx.

At A 1,
A2,
m
,
draw the ordinates A lPl , A2P2,

m
,
and com

plete the rectangles PAI, PIAQ,

From the equation Of the curve, y x%
,

PA a%
,
P1A1

= (a Ax)? P2A2 (a 2 QB b%

Area o f rectangle PA l PA x AA 1 aAAx.

Area o f rectangle P1112 PIA1 x AIA2 (a AxfiAx.

Ar ea o f rectangle P2A3 P2A2 x A2A3
= (a 2 AxfiAx.
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238 INTEGRAL CALCULUS.

That is
, 20” dx)%

Hence, xi
‘

dx § (x dx)
%
5
2
x%

Substituting for x, a
,
a dx

, a 2 dx
,
m

,
b dx

,

we have ag
'

dx § (a dx)
% gai

(a deflate g(a 2 dx)
% g. (a

(b defiant 5
2 —b% § (b dx)

%

Adding and cancelling terms in second member, we have

a
idx+ —dx)

%dx § b%
That is

,
as x varies from a to b, the sum o f the successive

increments of the functiongxg is equal to its entire increment.
b

x
%dx § b% ga

”g area PAB Q.

W e have thus shown that the sum of the infinite series repre

sented by is found by substituting for x, b and a in

gfi ,
the integral o f xidx, and subtracting the latter result from

the former.
b 1

The expression x
"

2
'

dx i s called a definite integral, and the
process o f evaluating it is called integrating between limits, the
initial value a of the variable being the inferior limit, and the
final value b the sup erior limit.

In contradi stinction gfi is called the indefinite integral Of
tx dx.
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b

40 . The relation o f the terms of the series xidx to the

integral 2x
73? may be made clearer to the student by consider

ing the following series Of numbers
1

3

4
5

9
7

16
9

25
11

36

The numbers in the second column are the differences be
tween consecutive numbers in the first

,
and it is evident that

the sum o f the second column of numbers is the difference
between the first and last

,
in the first column . That is

,

—1 .

The terms of
b

x
‘idx may be similarly arranged, as follows

(b dx)%dx.
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Since x%
"

dx is the differential o fgxg
’

,
the terms in the second

column are the infinitesimal differences between the consecu
tive terms in the first

, and therefore

that is
,

xAdx b
i
)

:T 20613.

p

41 . Genera l Definition of a Definite Integra l.
In general, if <1) (x) denote any given function o f x

,
whi ch is

finite and continuou s from x a to x b, ¢ (x)dx is the

definite integral representing the sum of an infinite series o f
terms

,
Obtained from by supposing x to vary from

a to b.

If <1) (x)dx 30 (x), the indefinite integral,

—tlf (a)

This may be illustrated by an area as in Art. 38, by suppos
ing y ¢ (x) to be the equation o f the curve OS, and the pro o f
o f Art. 39 may be similarly modified, by substituting d> (x) for

and z/1 (x) forgxg
’

.

42 . We add in this article the proof o f the relatio n between
the definite and indefinite integrals, expressed in the form o f

limits instead of infinitesimals as in Art. 39 .

We shall u se the expression LimitAm O
” to denote the words

“The limit
,
as Ax approaches zero , o f.

”

d
Gw en e (w)

a; i (
w),

22d) (x)Ax=
<1> (b—Ax) Ax,
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242 INTEGRAL CALCULUs .

Hence 2 sAx vanishes with ck, that is, with Ax.

Tak ing the limit o f we have

Mb) W“) LimitAx =022¢ (x)Ax cf) (x)dx.

43 . It is to be noticed that the arb itrary constant c, in the

indefinite integral, disappears from the definite integral.

Thus, if in evaluating x
3dx

, we call the indefinite integral

c , we have

4 4 4

52+ 0
b 91

, as before.

Or if in evaluating we call the indefinite inte

gral d(x) + 0
,
we have

2(b) + 0 1N?) Ma).

as before .

EXAMPLES.

Evaluate the following definite integrals

_x
3 4
_ 64 1

3 1 3 3

log x
6

= log e log 1 1.

l

sin xdx —co s x =O

4 . (b
2

x
3
)dx
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3
xdx log 2

.

1 + x
2 2

8 a3dx

x
2 4 a2

sec
40d9

dx 7r—a
.

x
2 2 xCOSa + 1 2 sin a

dx 1r

(d
2
+ x

2

) (b
2 2 ab(a b)

.

ef
’“
sinnxdx i n

2n

W

co sx 3

Derive the following by (5) and Art . 31

15 . If n is even,

1-3 o5 u -(n
—1) r3' d d$ 111 a} m COS w w

N . n 2

16 . If n is Odd
,

2 o4 ~6 m (n—1 )d d
i

8 111 x x OS x x
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435. Change of Limits . When a new variable is used in
obtaining the indefinite integral, we may avo id the restoration
o f the o riginal variable, by changing the limits to correspond
with the new variable .

Fo r example
,
to evaluate

4 dx
assume

0

Then we have dx 2 zdz

1 + v Q 1 + z

Now when x= 4
,
z= 2 ; and when x= 0

,
z= O.

4 dx 22 zdz 2

Hence z—lo 1 + z

0 1 + fi 1 + z
E s (

— 4 —2 lo g 3 .

EXAMPLES.

Assume x

0
Assume x—2 = z

3
.

(x

log se
x

e
x _ 1

dx = 4 A ssume e
” — i = z

z
.

e
x

+ 3

dx
1 s 0 tan

X/e
Qx—i- tanza tan a

o g ( e a + (1 )

A ssume e
h tan2 a z

2
.

7f (sin d co s 9)d0 lo g 3
.

3 + sin 2 0 4

(x
2 1 d“;

lo g 3 . Assume x z.

fl .

x\/x“ - 7 x2 1

Assume sin 0 co s 6 x.
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We may also regard the required area as generated, by the
ordinate AP moving from left to right, and varying in length
according to the equation of the given curve . Regarding y as
constant while moving the distance dx, it generates the rec

tangle ydx. Then the general fo rmula for the required area is

A ydx, as before ;

the inferior limit a 0A,
denoting the initial position o f the

moving ordinate, and the superior limit b OB ,
its final posi

tion .

Similarly the area between the given curve, the axis Of Y,
and two g iven abscissas, is

the limits o f integration being the limiting values o f y.

EXAM PLES.

1 . Find the area between the parabola y2 4 ax and the ‘

axi s

Of X
,
from the origin to the ordinate at the point (h, It) .

3

4 a%hg
‘

h

y dx 2 a%x%dx
3 0 3

Since 762 4 ah
,
k 2 ant.

A ghk, two-thirds the circumscribed rectangle.
2

Find the entire area of the ellipse 1024-23 : 1 . Ans. trab.

a

Show that the area o f a sector o f the equilateral hyper
bo la x

2

g
2

a
2

,
included between the axis Of X and a

diameter through the point (x, g) o f the curve, is
2

a
log

w+ y
o

2 a

8 a3

Find the entire area between the witch y
2
,

and the axis o f X.

93
2 4 a

Ans. 4 wa
fi
.
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5 . Find the area intercepted between the co-ordinate axes by
2the parabola x

’i
y
i

a
?

Ans .
a“
6

6 . Find the entire area within the curve

Aflns nab.

Find the entire area within the hypocycloid x
3

y
§

a
il

.

3 7ICL2
Ans .

8

Find the entire area between the cissoid y
2

2

96
3

and the line x 2 a
,
its asymptote .

a x

Ans. Swag.

The area between two curves is the sum,
o r the difference,

o f the areas between the curves and one o f the co-ordi
nate axes , the limits being determined by the points Of
intersection .

Find the area included between the parabola x
2
: 4 ag,

38 a I
W Ans. a

2
.and the witch y

x
2
+ 4

Z ra

46 . Areas of Curves .

Po lar Co-o rdinates . To find

the area POQ, included be
tween a given curve PQ, and

two given radi i vectores
, OP

and OQ. Let

POX QOX ,
8 .

Let r and 0 be the co-o r

dinates Of any point P2 of
the curve

,
then

r + Ar
, 6 + AO

,

will be the co-ordinates
of P3 .
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The area o f the circular sector P2OR2 is

1 1

§
0 P2 X P2R2 '

2
—7. ° TA9 1

2

The sum o f the secto rs POR, P IOR l , P2OR2,
m
,
may be rep

resented by B

éflnaa.

The required area POQ is the limit o f the sum Of the sectors,
as AOapproaches zero. That is

,

A:
—1 B

4 7 . We may also regard the area POQ as generated, by the
radius vecto r revolving from OP to OQ, and varying in length
acco rding to the equation o f the given curve .
Regarding r as constant while describing the angle dd, it

generates the sector whose area is éfidd.

Hence A 1 B
r
2d9, as before ;

the inferior limit a. deno ting the initial, and the superior limit

6, the final position, of the moving radius vector.

EX AM PLES.

Find the area described by the radius vector in one entire
revolution o f the spiral o f Archimedes r a0.

1 2 1 2"
2 2 a

2 03 2" 4 rt
3
a
2dHere A _ r

’fdd a 0 0
2 3 0 3

Find the area described by the radius vector in the loga

rithmic Spiral r e
“
,
from 0 O to 0 71 .

(e
m
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EX AM PLES.

1 . Find the length o f the are o f the parabola y2 4 ax
,
from

the vertex to the extremity o f the latus rectum.

dx
x3

therefore s 1 dx

Integrated by 9, p . 213, mak ing b O.

i
dx= x/ax+ x

2
+ a log

Find the length o f the arc of the semi-cubical parabola
dv

2
x
3
,
from the origin to x 5 a .

A ns
335 a

.

27

Find the length o f the arc o f the curve 9 ay2 x (x 3 a )f,
from x= O to x = 3 a . Ans . 2 a\/3 .

4 . Find the length o f the arc of the catenary y g
a

ve
“

e

from x 0 to the point (x, y) .

Ans .

5 . Find the entire length Of the arc of the hypocyclo id

Ans. 6 a .

49 . Lengths of Curves . P o lar Co -o rdinates . To find the

length of the arc PQ between two given p o ints P and Q .

Let POX QOX :
,
e.
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g’
dd

(3 ) Art . 982, Dif. Cal .
therefore

7
2
+

the limits being the limiting values
Of 0.

Or we have ds

therefore f
dr

,

the limits being the limiting values of r. That is
, OP = a

,

OQ= h

EX AM PLES.

Find the length o f the arc o f the spiral o f Archimedes
r ad, from the po le to the end o f the first revolution .

dr

dd

(a
r
e
2

a
2

)
%dd d (1 as

i de

élo gw 92)

d + 4 7
2
+%log (2 7r

Find the entire length Of the cardioid r a (1 co s d) .

Ans . 8 a .

Find the length o f the lo garithmic spiral r e
a"
,
from the

pole to the po int (r, d) . U se formula

Ans . Iva
" 1 .

a
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4 . Find the entire length o f the curve r a sin3g
Ans .

3 ” a

2

5. The equation o f the epicycloid, the radius of the fixed

c ircle being a
,
and that o f the rolling c ircle 9, is

2

27 a
‘*
r
2

From the above equation

2 _ 2d0 2\/r a then use Formula Ans. 6 a .

d7‘ TX/4 a
2

50 . Surfaces of Revo lution . Vo lume . To find the vo lume

generated, by revo lving about OX the p lane area APQB .

Let 0 14 a
, QB b.

Let a; and y be the
co—ordinates o f any point
P2 of the given curve .

It is evident that the
rectangle P gAzrél3 w ill

generate a right cylin

der
,
whose volume is

wy
z
Aw.

The sum o f all these
cylinders may be repre

A3 A4 8 sented by wz
b

y
z
Aw.

The required volume is the limit of the sum of the cylinders,
as Ax approaches zero . That is,

V= 7r

Or we may regard the required volume as generated by the
area o f a circle

,
which moves with its plane always perpendicu~

1ar to the axis of X,
its '

centre moving along this axis, and its
radius being the ordinate o f the given curve .
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EX AM PLES.

Find the volume and surface o f the prolate sphero id
2 2

obtained, by revolving about X the ell ipse 3
3 g 1 .

a
2

b2

From (1 ) Art . 50
,
we have

1

2
a
“
)doc

From

b2m2

x
2

)
d

[a
4

(a
2 b?)x

2

]
ldw

8 111

Find the volume and surface generated, by revolving about
X. the parabola y2 4 ax

,
from the o rigin to a: a .

Ans . 2 7ra
g
and

8 5

33
— 1 )

Find the volume and convex surface o f the right cone

generated, by revo lvi ng about X the line j o ining the
2ori g in and the pomt (a, b) .

Ans .

wab
and 7rb\/a

2
+ b

2

Find the entire vo lume and surface generated, by revolving
about X the hypocycloid xii y

gi
a
i

Ans.
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5 . Find the entire volume generated by revolving the witch

x
2 4“2

Ans . 4 1r2a3.

Find the volume generated by revolving about X
,
the part

o f the parabola wl+ y
’l

a
5‘
,
intercepted by the co-ordi

nate axes .
Ans

n a
?’

15
°

Find the volume and surface o f the torus generated by
revolving about X

,
the circle a? (y b)

2
a
2
.

Ans . 2 7r2a2b and 4 1:2ab.

Find the volume and surface generated by revolving

about Y, the catenary y g(e + e from a=0 to mz a .

wa
3

_1 2 —1

2
(e + 5 e —4) and 2 7ra (1 - e

52 . Other Vo lumes . The method o f finding the volume o f
a solid o f revolution in Art . 50, by considering it generated .

by a moving circle o f varying radius, may be extended to any
solid, Where the area

'

o f a section can be expressed as a

function of its perpendicular di stance from a fixed point.

If we denote this distance by a
,
and the area of the section

by X, we have for the volume,
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EX AM P LES.

Find the volume o f a pyramid o r cone having any base
whatever .

Let A be the area o f the base, and h the altitude.
Let a; denote the perpendicular distance from the vertex

,

o f a section parallel to the base. Calling the area o f

this section X,
as in we have by solid geometry,

X x
2 An; 2

A hr
ix

7 ?

Substituting in

A h3 Ah

h2 3 3

volume o f a right conoid with circular base, the
o f base being a

, and altitude h.

0 A= B 0 = 2 a B 0 = 0A = h

The section R TQ,
‘ perpendicular to

GA,
is an isosceles triangle.

Let a: OR; then

X = area RTQ P T XPQ=hV 2 aw—a
2
.

Substituting in we have

2

This is one-half the cylinder o f the same base and

altitude .

A rectangle moves from a fixed point, one side varying
as the distance from this point, and the other as the
square o f this distance . At the distance o f 2 feet,
the rectangle becomes a square o f 3 feet . What i s
the volume then generated Ans . 47} cubic feet .
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CHAPTER IX .

SU CCESSIVE INTEGRATION .

53 . Double Integral. If we reverse the Operations repre
2

sented by
6

8

g we have what is called a double integral.
93 y

Fo r example, suppose wig/
3
,

then 2

31
3d?! dx,

which indicates two successive integrations, the first with
reference to a

,
regarding y as a constant

,
and the second

with reference to y, regarding a: as a constant . Thus

_wiyf
12

’

omitting the constants o f integration .

54 . Definite Double Integral. Here the integrations are

between given limits .
Fo r example,

a

(a at)y
2dyda: d y

2b
a
2
2 7 a2b3d

2
y y

6

In the above
“

(a x)d ydx, the right integral sign

with the limits 0 and a , is to be used with the variable x, and
the left with the limits b and 2 b, with the variable y ; that is,
the integral signs with their limits are to be taken in the same
order as the differentials dy, dx, at the end, and from right to
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55 . Sometimes the limits o f the first integration are func
tions o f the variable of the second.

Fo r example,

<3 y
3
+ 2 ay

2—a
2

y)dy

As another example
,

(90 + y)dxdy

56 . Trip le Integrals. A similar notation i s used for three
successive integrations . Thus

a

x
2

y
2
zda:dydz

(a
3 O3) .

EXAM PLES.

Evaluate the following definite integrals

2 2

avg/(a; y)da dy 9g(a b) .

a
s ba

r
2 sin 0drd9

3

(co sB co s a )
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262 INTEGRAL CALCULUS.

Hence

Moment o f MNN 'M ' dw (a:
2

y
?

)dv

bx2 dx.

Having thus found the moment o f a vertical strip
,
we may

sum all these strips, by supposing a: in this result to vary from
O to a . That is

,

Moment o f OAO'B x
2

gda: 23
} ab

3

But the preceding operations are the same as those repre
sented by the double integral,

(x
2

y
?

)dcc dy. (See Art.

If we first collect all the elements in a horizonta l strip
,
and

then sum these horizontal strips
,
we have

Moment o f OACB
0
(m
2

y
?

)dyda:

59 . To find the moment
o f inertia of the right tri
angle OAC about 0 .

Let 0A Ct
,
AO : 6.

The equation o f 0 0 i s
b

a

This differs from the preceding problem only in the limits
o f the first integration . In collecting the elements in a vertical
strip MN, 3; varies from O to MN. But MN is no longer a.
constant as in Art . 58

,
but varies with OM,

according to the

equation o f (9 gay. Hence the limits o f y are 0 and

In collecting all the vertical strips by the second integration,
a: varies from O to a

,
as in Art. 58.



APPLICATION OF DOUBLE INTEGRATION.

Moment o f OAO’
a

(or
2

g
?

) dwdy ab

By suppo sing the triangle composed of ho rizonta l
HK

'

,
we shall find

Moment of OAG

(x
2

y
2

)dydx

60 . Plane Area as a Double Integra l. If in Art . 58 we omit
the factor we shall have instead o f the moment

,
the

area, of the given surface.

That is
,

Area dwdy

the limits being determined as before .

EXAM P LES.

1 . Find the moment o f inertia about the origin, o f the right
tr1angle fo rmed by the co -ordinate axes and the line
j o ining the points (a , O) , (O, b) .

b (a—z )

Ans .

12

2 .
'Find the moment o f inertia about the origin, o f the circle

2 _ 2 4
" 0“

Ans . 4 (x
2
+ y

2

)dxdy
71g.

Find also the area o f the preceding circle by Art . 60 .

Ans .

Find by Art . 60
,
the area between a straight line and a

parabola
,
each o f which j oins the origin and the po int

(a, b) , the axis of X being the axis o f the parabola.
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5 . Find the moment o f inertia o f the preceding area about
the o r1g1n .

Ans .
£5.

6 . Find the moment o f inertia about the origin, o f the area
included within the parabola y2=4 am, the line w+ y=3 a,
and the axis o f X.

Ans . (x
2

y
?

)da
' dy

3(F a

ke/3
2

y
?

) (la:dg

314 a4
x
2 2 d d+ y ) y x

35

7
d 61 . Double Integration. Po lar Clo -ord inates . To find the
area of the quadrant o f a circle A OB, whose radius is a .

In rectangular co -ordinates,
Art . 58, the lines o f division
consist o f two systems, fo r one

o f which a: is constant, and for
the other

,
y is constant.

So in polar co -ordinates
,
we

have one system o f straight lines
through the pole, fo r each o f

which d is constant, and another
system o f circles about the pole as centre

,
for each o f which r

is constant .
Let r, d, which are to be regarded as independent variables,

be the co-ordinates o f any point o f intersection as P
,
and

r dr
, d dd, the co-ordinates o f Q . Then the area o f PQ is

PR x RQ rdd dr.

If we first integrate regarding d constant, while r varies
from O to a

,
we collect all the elements in any sector MOM

The second integration sums all the sectors, by varying d

f O trom 0

2

Hence Area BOA
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266 INTEGRAL CALCULUS.

EX AM P LES.

Find the moment o f inertia about 0 o f the area o f the
semicircle in Art . 63 .

Ans
3 7ra4

4

Find the moment o f inertia about the pole
,
o f the area

included by the parabola r a see2g, the initial line OK,

and a line at right angles to it through the pole .
u ses

2 9
z

r
sdddr

48 a
?35

Find the moment of inertia about its centre
,
o f the area

of one loop o f the lemniscate r
2

a
2
0 0 s 2 d.

Ans
wa
“

16

Find by double integration the entire area of the cardio id
r a (i co s d) .

Ans
2

Find the moment o f inertia about the pole
,
o f the area o f

the precedi ng cardioid.

Ans
35

16



CHAPTER XI.

SURFA CE AND V OLUME OF ANY SOLID .

6 4 . TO find the area Of any surfa ce, who se equation is given

between three rectangular co-ordinates, w, y, z.

Let this equation be
f (x, y)

Suppose the g iven surface to be divided into elements by
two series of planes

,
parallel respectively to XZ and YZ .

These planes will also divide the plane XY into elementary

rectangles, one of which is PQ, the proj ection upon the plane
XY o f the co rresponding element o f the surface P '

Q
'
.

Let x
, y, z

,
be the co-ordi nates o f P '

, and m+ dv, y + dy,
z dz, of Q'.
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Since PQ is the proj ection of P ’Q ’

, the area of
w

PQ is equal
to that of P '

Q
’

,
multiplied by the cosine of the inclination of

P ’

Q
' to the plane XY.

‘

This angle is evidently that made by
the tangent plane at P ' with the plane XY. Denoting this
angle by 7 )

Area PQ Area P '
Q
'
co s y,

Area P '

Q
' Area PQ sec ‘

y.

We see from the figure that

Area PQ dandy.

Also from analytical geometry of three dimensions
,

sec 7
i
, (See p .

where Qz andQ3 are partial differential coefficients, taken from
an dy

the equation of the given surface z f (x, y) .

Hence Area P '

Q
'

If S denote the required surface,

the limits of the integration depending upon the proj ection, on
the plane XY

,
o f the surface required.

65 . For example, suppose the surface ABC to be one-eighth
o f the surface o f a sphere whose equation is

a
‘z
+ y

2 -z
2

a
z
.

dz a: dz
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270 INTEGRAL GALOULUs .

Find the area o f that part of the surface

z
2

(a cos a ysin a )
2

a
2

,

which is situated in the positive compartment of co

ordinates .

The surface is a right circular cylinder, whose axis is the

line z= O, mCOSa + ysin a =O
,

and radius o f base a .

A diameter o f a Sphere, whose radius is a, i s the axis o f a
right prism with a square base, 2 b being the side o f the
square. Find the surface o f the sphere intercepted by
the prism.

b
Ans . 8 a b sin ‘ 1

a sin 1

66 . TO find the vo lume Of any so lid bounded by a surface,
who se equation is given between three rectangular co-ordinates

,

2 .

As a plane area, by dividing it into elementary rectangles,

so any solid may be supposed to be divided, by planes parallel
to the co-ordinate planes

,
into elementary rectangular parallelo

pipeds . The volume of one of these parallelopipeds is docdydz,
and the volume o f the entire solid is

a:dydz,

the limits o f the integration depending upon the equation
o f the bounding surface.
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6 7 . Fo r example, let us find the volume o f one-eighth of

the ellipsoid
,
whose equation is

x
2

y
2

z
2

a
2

b2 0
2

PQ represents one o f the elementary parallelopipeds whose
volume is dcc dydz.

If we integrate with reference to z
,
we collect all the

elements in the column MN z varying from zero to MM

that is
,
from O to z

Integrating next with reference to y, we collect all the

columns in the slice KLN 'H , y varying from zero to KL ;

that is, from O to y= b

Thi s value of y is taken from the equation o f the curve ALB.
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Finally, we integrate with reference to a
,
to collect all the

slices in the entire so lid ABC. Here a: varies from zero to
OA ; that is, from O to a .

Hence we have
3 2 2 2N1

7 ? “2 b” dccdydz.

Evaluating mtegral, we find
be

V=
7r d

6

For the entire ellipsoid
,

EXAMPLES.

Find the volume o f one o f the wedges cut from the cylin
der

,
x
2
+ y

2= a
2
, by the planes

z= 0 and z= xtan a .

Ans 2
x tan a

dwdydz
“Stan“

3

Find the volume o f the solid contained between the
paraboloid o f revolution

y
2= az,

the cylinder x
2
+ y

”
: 2 am,

and the plane z O.

Ans . 2 do:dydz

Find the volume bounded by the surface

1
,

and by the positive sides o f the three co-o i
'dinate planes .

be
Ans

90
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CHAPTER XII.

HY PERBOLIC FUNCTIONS . EQUA TIONS AND PROPER ~

TIES OP CY CLOID, EPICY CLOID, AND HY POCY CLOID.

INTR INSIC EQUA TION OF A CURVE.

68 . W e have reserved for this chapter certain miscellaneous
subj ects, for the treatment o f which, both the Differential, and
Integral, Calculus are required .

HYPERBOLIC FUNCTIONS.

69 . Definitions. By analogy with the exponential values of
the sine and cosine, on page 60,

(30 8 33

the real functions

and
6
3

6
4

2 2

are called the hyp erbo lic s ine
,
and hyp erbo lic cosine, of x, and

written

sinha
2

cosh a:

By
’ substituting a v 1

a n

evident also that

Sinh O 0
,

sinh x) sinhx, coshm.

2

a: in we find

co shw co s (xv
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The functions, sinhw
, co sh a' , fo r real values o f

periodic functions like sin 90
,
co s at

,
but increase

infinity.

The other hyperbolic functions are

sinh x e
”

e
”

tanh a:
co sh a: e

‘
e

1 e
i5

e
" 3

coth a:
tanh a: e

”
e

”
,

1 2sech a;
co sh a: e

ac
e
“ ’

cosech x 1 2
O

s1nh oc e
”c

e
‘ “

From these definitions we find

co shzx sinh2a: 1
,

tanhfi’
x sech2a: 1

,

co th2a: co sech2x 1
,

sinh 2 so 2 sinh .v coshw
,

cosh 2 a: co shza sinhzx
,

sinh (a: :l: y) sinhwco sh y :t coshwsinhy,

cosh (w j : y) coshwooshy :t sinh a:sinhy,

1 d: tanh cc tanhy

Inverse Hyp erbo lic Functions.

93 sinhy,

y sinh—Ix.

from
ey

_ye
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Solving this with reference to y,

V90
2
+ 1) .

Hence sinh—1a; log (a: x/zz:2

Similarly, too sh
‘ l
cc log (ac V a

?

1 l + xt uh I
a a:

2
og
1 _ x

,

w co th
‘ l
x tanh—11 110 g

“? 1
,

8 8 011
- 1
33 COSh

_1 -= 1og
1 V 1 x

2

a: as

cosech- l a: sinh ‘ 11 log
a; a:

'
72 . Difi

’

erentiation of Hyp erbo lic Functions. From
nitions we have

sinh w co shw,
dx

d
cosh a: smh ac

,

Ola:

tanh a: sechzw,
da:

cothw co sechzw,
da;

sech a: sech a:tanh at,
dd

2} cosech a: cosech a:coth a' .
a:

To differentiate the inverse function

y sinh- 1x,

we have a; sinh y,
doc

dy
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278 INTEGRAL CALCULUS.

7 4 . Circular and Hyp erbo lic Functions, as related to
and Equi lateral Hyp erbo la . To show the o rigin of the

hyperbo lic functions, let us

consider the circle

£8
2

y
2

(1
2
.

If we let

and u sectorial area POA,

we have

a: a co s d, y= a sin d, u

Hence OM w a cos

PM =y= a sin

W e shall now show that if “
co s and “

sin in (1)
are replaced by “

cosh ”
and

sinh
,

” then (1) will apply
to the equilateral hyper
bola

:c
2

y
2

a
”
. (2)

Here the sect orial area
POA is

u

W hence

From (2) and
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Hence

Hence OM cc a co sh
g—
z

-
u

,

a

PM h
2 u

y a sm
C7

,

similar expressions to

d angle POA , in the hyperbola,

g tanh
cc

“2hence
2
tanh“tan d;

whereas in the circle,

u tan
‘ 1 tan d.

Exercises in Hyperbo lic Functions.

tanh-4
11w2 tanh—1x.

2 . sinh
" l

(3 cc 4 x3) 3 sinh—1a} .

tanh“ 1
sin cc sech

“ l
co s cc .

4 . tan
—l
sinh w sec

“ 1
cosh cc .

2 tan
" 1 tanh cc tan

“ 1 sinh 2m.

6 . 2 tanb
‘ l tan cc tanh“ 1

sin 2 cc .

2 cosh‘ 1
co s a: cosh—l oos 2 cc .

8 . 2 co s
*1
cosh cc cosh 2 cc .
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9 . y tan
—l
x tanh-l ac.

10 . y tan
‘ 1 tanh cc.

11. y sinh “ 1 tan zc . sec cc .

13 . y tan
-IVtanhw tanh

‘ l
v tanh zc .

14 . sinh a = w+

15 . co sh cc = 1 +
[A

16 .

3 5

Express the equation o f the catenary

and also the length o f the arc from the vertex
,
in

hyperbolic functions . 5 1"

cc
Ans. y a cosh

d’
and s a smh

EQUATION AND PROPERTIES OF THE CYCLOID.

7 6 . Definition. The cycloid is the curve described by a

po int in the circumference o f a circle
,
as it rolls along a straight

line .
Let OX be the straight line . As the circle NPT, with
radius a

,
rolls along this line, the point P describes the cycloid

OBO'
.
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282 INTEGRAL CALCULUS.

Substituting these 1n we obtain

w' a (d 7T) a sin d,

a a cos d.

Letting d 77 d', the angle through which the circle has
rolled from A ,

and omitting the accents on cc
'
and y

'

,
we have

cc ad’ a sin d',

y a a cos d',

the equation o f the cycloid referred to its vertex.

78 . Tangent and Normal. From (1) Art . 76, we have

3: a (1 co s d) 2 a sin2
5
,

gig : a sin d= 2 a singco sg;

dvtherefore tan <5 co t
dcc

Hence 7

; 2

But since P TN g, the angle made by P T with the axis

o f X is Eg; hence PT is the tangent to the curve, and PN
the normal .

’ir‘ 7 9 . Radius of Curvature. From (1) and (2) o f the preced
ing article, we find

cosec

(30 8 8 0
0

4 a 8m
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Substituting in the expression for the radius o f curvature
,

we have
-co t

2 %
4 a sin4—g —4 a s in —2 PN.

Hence if we produce PN to Q, making NQ=PN, Q will
be the centre o f curvature for the po int P .

80 . Evo lute. Produce the diameter TN,
mak ing

and on NR as diameter describe the c ircle NR . This c ircle
will pas s through Q, since NQ PN.

arcNQ=arcPN= ON,

areNQR OA

therefore are QR OA ON RK.

Hence Q is a point in an equal cyclo id, generated by
the c ircle NQR from K along the straight lineKR .

Hence the evo lute o f the cyclo id OB O' is composed
two semi-cycloids OK and KO’

.
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81 . Length Of Arc. To find the length o f the arc OP (Fig.

of Art. 76) we substitute in

W e thus obtain

s = 2 a
a

singdd= 4 a 1 — co s

If d 2 7r, we have for the entire arc, OBO' 8 a .

This result is also evident from the property of the evolute,
from which

OQK BK: 4 a .

82 . Area . To find the area between the curve and the axis
of X,

we substitute in

A

y a (1 co s d) , dcc a (1 co s d)dd.

Thus we have for the entire area OBO'A
,

A (1 COS dd 3 n a2.

Hence this area is three times that of the generating circle .

EPICYCLOID AND HYPOCYCLOID.

83 . Equation Of Ep icyclo id . The epicycloid is the curve
described by a point in the circumference of a circle, which
rolls outside o f a fixed circle .
Suppose the circle BPS rolls on the fixed circle ADA ’

, the
point P describing the epicycloid APA '

.

Let 0 B a
,
B 0 : b

,
B OA e, BOP : t .
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286 INTEGRAL CALCULUS.

If in equations (3 ) Art. 83, we change b into —b, we have
the equations o f the hypocycloid,

cc = (a

y= (a b sin

85 . W hen, in the epicycloid o r hypocycloid, the ratio between
a and b is given, we can eliminate <5 between the two equations,
and obtain a single algebraic equation between a: and y.

Fo r example, consider the hypocycloid where a 4 b. Then
equations (1 ) Art . 84, become

cc :

3

f eca l; geos 3 ¢ a cos3¢,

y
§

f sin ¢
—
gsin 3 ¢ a sin3 qS.

W hence mg y
g

a
ll
,

as given on page 96 .

8 6 . Radius Of Curvature Of Ep icyclo id. By differentiating
(3 ) Art. 83

,
we have

3; (a + b) Sln
a

Z
-b
d) —Sln

— c/> co s

(a + b)

Therefore

g = tan
dx
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W hence
ga + 2 b

¢
.

d
_
2

y_ a + 2 b a + 2 b 2 6

(la/32 2 b 2 b div 4 b (a + b) _a_
2 b
4)

Substituting in the formula for the radius of curvature, we find

a 2 b 2 b a 2 b 2

If a 00
,
the epicycloid becomes the cycloid, and

a b
1 .

a 2 b

Hence p 4 b sing, as in Art . 79.

g 8 7 . Radius of Curvature Of Hyp o cyclo id. By changing b
into b in (5) Art . 86, we have for the radius o f curvature
of the hypocycloid, numerically,

4 b (a b) lg.

a —2 b 2

88 . Length Of Arc. From (2) and Art. 86, we have

4 b 2 2—0°(a s1n

2 b

Hence for the entire ‘loop APA '

(Fig . Art . we have

For the hypocycloid, the length of one loop is
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89 . Area betweeen Curve and Fixed Circle. To find the area
APA 'BA (Fig . Art. it is better to use polar co-ordinates,
r
, d. The formula

,

A was,

will g ive the area APA 'OA,
and this

,
less area

tor A ’OA,
will be the required area.

Differentiating 1 tan d
,

we have M
i
l /fl sec

zddd,
{ CM 6

wdy 1 a ce s $ 1

From (3 ) Art 83: and Ar t. 86, we find

ccdy dd) .

Therefore

1 — co s

Hence

AreaAPA
'
OA (a b) (a 2 b) co s

Subtracting the area o f the sector

AOA '
nab,

We have
b 2 b 52 3 a 2 b

AreaAPA 'BA = 7rb
a W

a

The corresponding area for the hypocycloid

7rb2 (3 a 2 b)
a
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Fo r example
,
let us find the intrinsic equation of

Tak ing the vertex as or1g in, we use equations
reversing the direction o f the axis o f Y. W e

omitting accents,
cc a (d sind) ,

y= a (1 —co s d) .

Differentiating these equations, we obtain

tam % _ l ibfs d
—tan

Hence <1) 3
a
2

(2 Zco sd) 4 a2 cos

Hence s 2 co sgdd 4 a sing.

Eliminating d between (1) and we have

3 4 a sin <5,

which is the intrinsic equation o f the cycloid, referred to its
vertex.

92 . Intrinsic Equation of the Evo lute.

If we differentiate the intrinsic equation o f the curve

3

we have, by (1) Art. 114, Dif. Cal ., the radius o f curvature,

i i :
r 1

Let O’
,
P ’

,
be the centres o f curvature fo r O, P, respectively,

and O’P ’
,
the evolute Of OP .

Let

and s
’=O’P ’

,
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Since tangents to O’
P ’

are normals to UP,
<1»

But from (1)
consequently
Hence

Omitting the accents on s and as no longer necessary,
we have

,
for the intrinsic equation o f the evolute

,

8

93 . For example, from the intrinsic equation of the cycloid

s 4 a sin ¢ =f (qt)

we have

and f
’

(0) 4 a .

Hence the equation o f the evolute is

s 4 a (cos (D

8 being negative, as the radius o f curvature is decreasing.
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EXAM PLES.

Find the intrinsi c equations o f the foll owing curves
, and

o f their evolutes .

\ 1 . y= Ans . s= a tan ¢, and s = a tan24> .

2 . a? Ans. s £3-
2
£ and s

3 . r = a (1—co s d) . Ans. s = 4 a vers fg, and s
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294 INTEGRAL CALCULUS.

Since y is constant for points in the plane it is evi
dent that the tangent o f the angle M PX ’ is . the p artial
differential coefficient o f z with respect to cc 3 that is,

tanM’PX ’=
93 .

dcc

dz
S1m1larly, tanN P Y

a

_ .

y

As the tangent plane at P contains the two tangent lines
PM and PM,the plane M’PIW i s the tangent plane .
Pass a plane parallel to X’Y’

at the distance h above it,
intersecting the tangent lines in the points M ’

, N
’

,
whose

proj ections are M, N.

Draw MN,
and PT perpendicular to it, and erect the plane

PTT’ perpendicular to X’Y’
.

Then T’P T y,

the angle made by the tangent plane M
’PN’ with X ’Y ’

.

Let PM a
,
PN b.

By similar triangles

h hV a
2 b2

r
tan TPT

T ab

tan2M ’PM tan2N ’PN;

8 6 0
2

7 1
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95 . Ano ther Method.

Let a
, ,
8 , y, be the angles made by the normal to the

surface at P with PX ’

,
P Y ’

,
PZ ’

.

Let angles

The direction cosines o f PMT
are co sA , 0

,
sinA ;

o f PN ’
,

0
,

. co s B , sin B .

Since the normal is perpendicular to both PM ’
and PN ’

,
we

must have co s a co s A co s y sinA O
,

and co sBco s B co s y sin B 0
,

from which co s a tanA co s y,

B tan B cOSy.

Substituting these expressions in

co s
2
a co s

2

,
B 0 0 8

2 ‘

y 1
,

we have co s
2

7 (tan
2A tan2B 1) 1

,

sec
z

y 1 tan2A tan
ZB 1

sec
2

7 se
tan2A

2 2
sec 7 sec 7

tan
2 B
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PLANE AND SOLID.

B Y B . W . N IC H O L S ,

Professor of Mathema tics in the
‘
Uirgim

'

a Military Institute.

The mm o f the author has been to prepare a work fo r be
ginners, and at the same time to make it suffic iently compre
hensive for the requirements o f the usual undergraduate c ourse .

Fo r the metho ds o f develo pment o f the various princ iples he has
drawn largely upo n his experience in the classro om. In the

preparation o f the work, all authors, home and foreign, who se
wo rks were available , have been freely c o nsulted .

In the first few chapters elementary examples fo llow the dis

cussio n o f each princ iple . In the subsequent chapters, sets o f
examples appear at intervals througho ut each chapter, and are

so arranged as to partake bo th o f the nature o f a review and an

extension o f the prec eding princ iples . At the end o f each
chapter general examples, invo lving a mo re extended applicatio n
o f the princ iples deduc ed, are plac ed fo r the benefit o f those
who may desire a higher c o urse in the subj ec t.
Nicho ls’

s Analytic Geome try is in use as the regular text in
the greater number o f the larger c o lleges and universities

, and

has proved itself adapted to the needs o f institutio ns with the
most varied requirements.

Cloth. Pages x i i 2 75 . Intr oduction pr ice,

D. C . HEATH 8c CO .

,
Publishers, Boston, New York , Chicago



NUMBERANDITSALGEBRA
BY ARTHUR LEFEVRE, C .E.

Instructor in
‘
Pure Mathema tics in the University of Texas .

In the form o f a syllabus o f lec tures o n the theo ry o f number
and its algebra, intro duc to ry to a c ollegiate c o urse in algebra,
this mo nograph presents a tho rough expo sition o f number as

c o nc e ived and used in mathematic s, in fo rm c omprehensible by
tho se no t already tho ro ughly versed in the sc ienc e . It is no

mere psycho lo gical discussion o f mental proc esses antec edent to
the primary c o nc ept o fnumber,but the self-c o nsistent development
o f the co nc ept thro ugh phases undreamed o f by the man who se
so le no tio n of number is his abstrac tion from a flo ck of sheep o r
pile o f c o ins, the whole being a bo dy of knowledge essential to
right teaching at any stage o f systematic mathematical instruc tion.

Among the unive rsities that have adopted this wo rk are Har

vard and the universities o f Pennsylvania and Virginia.

Cloth. Pages, iv 23 0 . Pr ice,

THE NUMBER SYSTEM
OF ALGEBRA

Treated Theoretically and Historically

BY HENRY B. FINE, PHD .

Pr ofessor of Ma thema ti cs in Pr inceton Un iversity

The theore tical part o f this boo k is an elementary exposition
o f the nature o f the number c onc ept, o f the positive integer, and
o f the fo ur artific ial forms o f number, which, with the positive ih
teger, c onstitute the number system

”
o f algebra, viz., the nega

tive, the frac tio n, the irrational, and the imaginary.

The histo rical part presents a resume o f the histo ry o f the

most impo rtant parts o f elementary arithmetic and algebra.

Clot/z. Pages, x 13 1 . Pr ice,

D. C . HEATH 8c CO Publishers, Boston, NewYork , Chicago
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COLLEGE ALGEBRA
BY EDW ARD A. BOW SER,

LL.D.

Professo r of Ma thema tics a nd Engineer ing in Rutgers Co llege .

This wo rk is designed for academies
,
c olleges and scientific

scho o ls . It begins with the elements, and the full treatment o f

the earlier parts renders it unnec essary that students who use

it shall have previously studied a more elementary algebra.

Amo ng its po ints o f superio rity are the fo llowing
1 . Completeness o f treatment combined with simplic ity.

z . Avo idance o f the abstruse and the elaborate in treating the
more difficult parts o f the subjec t.

3 . Definiteness o f statement— the steps and pro c esses are

generally fo rmulated in plain rules .

4 . Careful consideration and c lear presentatio n o f material fo r
the student.

5 . Systematic arrangement o f material under each subj ec t.
6 . Full no tes o f explanatio n, direc tion, and info rmatio n, use

ful to student and teacher.

7 . Numero us examples are distributed throughout the text in
immediate connec tion with the principles they illustrate .

Half lea ther . Pages, xv i i i + 5 40 . Introduction pr ice,

Bowser’s Academic Algebra ,
Bow ser

’
s Plane and Sol id Geometry,

Bowser’s Elements of Place and Spherical Trigonometry, 90 cents .

W ith tables ,

Bow ser’s Five Place Logarithmic and Trigonometric Tables , 50 cents .

Bowser’s Treatise on Trigonometry ,

D. C . HEATH 8c CQ ,
Publishers, Boston, New York , Chicago



CO L L EGE A LGE BRA
BY W EBSTER W ELLS, S.E.

,

Professor of Mathematics in the Massachusetts Institute

of Technology.

The first eighteen chapters have been arranged with referenc e
to the needs o f tho se who wish to make a review o f that po rtio n
o f Algebra preceding Quadratics. While c omple te as regards
the theo re tical parts o f the subjec t, o nly eno ugh examples are

given to furnish a rapid review in the c lassro om .

Attentio n is invited to the fo llowing particulars o n ac c o unt o f

which the bo o k may justly c laim superio r merit
The pro o fs o f the five fundamental laws o f Algebra the Com

mutative and Asso c iative Laws fo rAddition andMultiplicatio n
,
and

the Distributive Law fo rMultiplication— fo r po sitive o r negative
integers, and po sitive o r negative frac tions ; the pro o fs o f the

fundamental laws o f Algebra fo r irratio nal numbers the proof o f
the Binomial Theorem fo r po sitive integral expo nents and fo r

frac tio nal and negative expo nents the pro o f o f Descartes ’s Rule
o f Signs fo r Po sitive Ro o ts, fo r inc omple te as well as c omplete
equations ; the Graphical Representatio n o f Func tio ns ; the so

lutio n o f Cubic and Biquadratic Equations.
In Appendix I will be found graphical demo nstratio ns o f the

fundamental laws o f Algebra fo r pure imaginary and c omplex
numbers and in Appendix II, Cauchy

’s pro o f that every equa

tion has a ro o t .

Ha lf leather. Pages , vi 5 78 . Introduction price,

Part 11, beginning with Quadratics . 34 1 pages . Introductionprice ,

D. C . HEATH 8L CO .
,
Publishers, Boston, New Yo rk , Chicago



TREATISE ON TRIGONOMETRY
AND ITS APPLICA TIONS TO

ASTRONOMY AND GEODESY

BY EDW ARD A. BOW SER, LL.D.

Professo r of Ma thema tics and Eng ineering in Rutgers Co llege

The aim o f the autho r has been to present in as c onc ise a

form as is c o nsistent with clearness, the fullest c o urse in Trigo
nometry which is given in the best technical schoo ls and in

advanc ed c o urses in c olleges .
The examples are very numerous and are carefully selec ted .

Among these are some o f the most elegant theo rems in Plane and
Spherical Trigonometry. The numerical solutio n o f triangles
has rec eived much attention, each case being treated in de tail.
The chapters o n De Mo ivre

’

s Theorem, and Astronomy,
Geodesy, and Polyhedro ns will serve to intro duce the students to
some o f the higher applications o f Trigonometry, rarely found in
American text-bo oks.
American Mathematical Monthly Excepting one , this is the mo st complete

Treatise on Trigonometry published in America, and in po int o f excellence is superior
to that wo rk . In the method o f treatment , arrangement

,
typographical execution,

and numero us and well-selected exercises, it has no superio r. The definitions o f the

functio ns are given
“
o nce fo r all ” and need no t be restated and modified when o b

tuse and reflex angles are considered .

In the develo pment o f the theoretical part o f the subject, the wo rk is especially
interes ting and clear . From the beginning the student is carried along with enthu
s iasm and with the assurance that he is mas tering the subject. The unusually large

and well-cho sen co llection of problems are suited to every requirement, and by

so lving these the student learns to do by do ing .

The treatment o f Trigonometric Eliminatio n
,
De Mo ivre ’

s Theorem
,
Summation

of Series , etc .,
is mo re complete than is usually g iven in text-bo o ks .

These observations have been gathered by using the bo ok in the class
-ro om.

Ha lf leather . Pages, x iv + 3 08. Intr oduction pr ice,

Bowser’s Five Place Logarithmic and Trigonometric Tables , 50 cents .

Bowser’s Elements o f Plane and Spherical Trigonometry, go cents .

W ith tables ,
Bow ser

’
s Plane and Solid Geometry,

Bow ser’s Academic Algebra ,
Bowser’s College Algebra ,

D. C . HEATH CO Publishers, Boston, NewYo rk , Chicago
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DESCRIPTIVE GEOMETRY
BY CLARENCE A. W ALDO , PH.D.

Professo r of Ma thema tics in Purdue University

The spec ial features o f this wo rk are The me thod o f develop
ing the subj ec t by pro blems systematically arranged, and supple
mented by suggestions when needed ; the large number o f

pro blems given ; the metho d o f stating the problems
,
which

,
in

c onnec tion with the no tatio n adopted, makes every lettered
drawing entirely self-explanato ry ; the intro duc tio n o f several
subjec ts o f c onsiderable descriptive value, such as the axis o f
affinity, axonometry, Pascal

’s and Brianchon
’
s hexagons the

early discussio n o f the c one and cylinder o f revo lution and the

sphere , in order that from the beginning these surfac es may be
used as auxiliary ; the omission o f all plates exc ept a few of a

generic charac ter.
Cloth. Pages, x i i 77 . Pr ice, 80 cents.

GEOMETRICAL TREATMENT
OF CURVES

W hich a re isogona l conj ugate to a stra ight line w ith respect to a tr iangle

BY ISAAC J . SCHW ATT, PHD .

Assistant Professor of Ma thema ti cs in the Un iversity of Pennsy lvania

The discussion includes the hyperbola and several aspec ts o f
the ellipse . Three large fo lding plates illustrate the application
o f princ iples .

Paper . Octavo . Pages, iv + 4j . Pr ice,

C O N I C S E CTI O N S
BY RUFUS B. HOW LAND,

Professor of Ma thema tics in Wy oming Semina ry , Kingston, Pa .

This manual presents the elements o f Conic Sec tio ns in a

form suited to the capac ity o f advanc ed c lasses in Geome try.

Cloth. Pag es , iv + 00 . P r ice, 75 cents.

D. C . HEATH CO .
,
Publishers, Boston, New York, Chicago



Sc ienc e .

Ballard ’ s World of Matter. A guide to mineralo gy and chemistry .

Benton ’
s Guide to General Chemistry . A manua l fo r the labo rato ry . 35 cents .

Boyer ’
s Laboratory Manual in Biology . An e lementary guide to the labo rato ry study of

an imals and plan ts . 80 cents .

Boynton , Morse and Watson ’
s Laboratory Manual in Chemi stry . 50 c ents .

Chute ’
s Physical Laboratory Manual . A well-balanced c o urse in labo rato ry phys ics , t e

quiring inexpens ive apparatus . Illustrated . 80 cents .

Chute ’
s Practical Physics . Fo r high sch o o ls and c o lleges .

Clark ’
s Methods in Microscopy . Detailed descripti o ns o f successful me tho ds .

Coit ’
s Chemical Ari thmetic . With a sho rt system o f analysis . 50 cents .

Colton’
s Physiology : Experimental and Descriptive . Fo r high scho o ls and c o lleges.

Illustrated.
Colton ’

s Physiology : Briefer Course . Fo r earlier years in high scho o ls . Illustrated.
go cents .

Colton ’
s Practical Z oology . Giv es careful study to typical animals . 60 cents .

Grabfield and Burns ’
s Chemical Problems . Fo r review and drill. Paper. 2 5 cents .

Hyatt
’
s Insecta . A practical manual fo r s tudents and teachers . Illustrated.

New ell ’ s Experimental Chemistry . A mo dern text-b o ok in chemistry fo r high scho o ls
and c o llege s .

Orndorff ’ s Laboratory Manual . Co ntains directio ns fo r a course o f experimen ts in O rganic

Chemis try, arranged to accompany Remsen
’
s Chemistry . Bo ards . 35 cents .

Pepoon, Mitchell and Maxw ell ’ s Plant Life . A labo rato ry guide . 50 cents .

Remsen ’
s Organic Chemistry . An intro duc tion to the study o f the c ompo unds o f carbon.

Fo r students o f the pure science , o r its application to arts .

Reberts ’
s Stereo-Chemistry . Its deve lo pment and present aspec ts .

Sanford ’
s Experimental Psychology . Part I . Sensatio n and Perception .

Shaler ’
s F i rst Book in Geology . Clo th , 60 cents . Bo ards , 45 cents .

Shepard ’ s Inorganic Chemi stry . Descriptive and ua litative ; experimental and induc tive
leads the s tudent to o bserve and think . Fo r big scho o ls and c o lleges .

Shepard ’
s Briefer Course in Chemi stry ,

w ith chaa
ps
ter o n O rganic Chemis try . Fo r scho o ls

g i ving a half year o r le ss to the subject, and scho o limited in labo rato ry facilitie s . 80 c ents .

Shepardl s Laboratory Note-Book . Blanks fo r experiments ; tables fo r the reac tio ns o f
me tallic salts . Can be used w ith any chemistry. Bo ards . 35 cents .

Spalding ’
s Botany . Practical exercises in the study o f p lants . 80 cents .

Stevens ’
s Chemi stry Note-Book . Lab o rato ry sheets and co vers . 50 cents .

Venable ’
s Short History of Chemistry . Fo r students and the general reader.

Walter, Whitney and Lucas ’
s Animal Li fe . A lab o rato ry guide . 50 cents .

Whit ing ’
8 Physical Measurement I . Densi ty ,

H eat , Lig .ht and So und . I I . Dynamics ,
Magne tism, Electricity. III. Pr1nc iples and

y
Me tho ds o i

g
Ph sical Measurement, Phys i'

cal Laws and Principles , and Tables . Parts I IV ,
in o ne v o ume , $3 .75

Whiting ’
s Mathematical and Physical Tables . Paper. 50 cents .

W illiams ’
s Modern Petrography . Paper. 2 5 cents .

F or e lementa ry w or ks see o u r l is t of
ho oks in E lementa ry S c ience .

D.C . HEATH Publishers, Bo sto n,NewY o rk
, Chicago



Mathematic s

Barton’
s Theory ofEquati ons . A treatise fo r co llege c lasses .

Bow ser
’

s Academic Algebra. Fo r seco ndary scho o ls .

Bow ser ’
s College Algebra . A full treatment o f e lementary and advanced to pics’ .

Bow ser' s Plane and Solid Geometry . PLANE
,
bo und separately . 75 cts .

Bowser' s Elements of Plane and Spherical Tri gonometry . 90 cts w ith tables ,
Bow ser

’
s Treatise on Plane and Spherical Tri gonometry . An advanced wo rk fo r co l

leges and technical scho o ls .

Bow ser
’
s Five-Place Logari thmi c Tables. 50 c ts .

Fine’s Number System In Algebra . Theo re tical and histo rical.
Gi lbert ’

s Algebra Lessons. Three numbe rs : No . 1 , to Frac tional Equations ; No . 2 .

thro ugh Quadratic Equatio ns ; No . 3 , H ighe r A lgebra . Each numbe r, pe r do zen,
nopkins ’

s Plane Geometry . Fo llow s the induc tive me tho d . 75 cts .

How land ’ s Elements of the Conic Sections. 75 c ts .

Lefevre ' s Number and its Algebra . Introducto ry to co llege courses in algebra.

Lyman’
s Geometry Exercises . Supplementary wo rk fo r drill. Pe r do zen,

Mccurdy ’
s Exercise Book inAlgebra . A tho rough drill bo ok . 60 c ts .

Mi ller' s Plane and Spherical Trigonometry . Fo r co llege s and technical schoo ls .With s ix-place tables ,
Nichol ’s Analyt ic Geometry . A treatise fo r co lleg e co urses.

Nichole ’
s Calculus . Differential and Integral.

Osborne
’
s Differential and Integral Calculus .

Peterson and Baldw in’

s Problems inAlgebra . Fo r texts and reviews . 30 cts.

Robbins
’

s Survey ing and Navi gat ion. A brie f and practical treatise . 50 c ts .

Schwatt
’

s Geometri cal Treatment of Curves .Wald o ’
s Descriptive Geometry . A large number o f problems sys tematically arranged and

w ith sugges tio ns. 80 c ts .Wel ls ’
s Academic Arithmetic . With o r without answe rs .Wells ’
s Essentials of Algebra . Fo r seco ndary scho o ls .Wells ’
s Academic Algebra. With o r w itho ut answers .Wells ’
s New HigherAlgebra . Fo r scho o ls and co lleges .

Wells ’
s HigherAlgebra.Wells ’
s University Algebra. Octav o .Wells ’
s College Algebra . Part I I , beg inning w ith quadratics .Wells ' s Essentials of Geometry . PLANE, 75 c ts . So u p

, 75 cts.Wells ’
s Elements of Geometry . Rev ised . ( 1 894 ) PLANE, 7 5 c ts . ; 75 c ts.Wells ’
s New Plane and Spherical Trigonometry . Fo r co llege s and technical schoo ls .
With s ix place table s , With Robbins ’

s Survey ing and Nav igatio n,Wells ’
s Complete Trigonometry . Plane and Spherical. 90 cts . With tables ,
PLANE

, b o und separately, 7 5 c ts .Wells ’
s New Six-Place Logarithmi c Tables. 60 cts .

Wells ' s Four-Place Tables. 2 5 c ts .

Fo r A r ithmet ic: s ee o u r l i s t of bo oks i n Elementa ry Mathm d ies .

D.C .HEATH 81 Yo rk
,
Chicago


