

For Enquiry – 62629696	04 6262969699
	The above formula defines the <i>population</i> correlation coefficient, commonly represented by the Greek letter ρ (rho). Substituting estimates of the covariances and variances based on a <u>sample</u> gives the <i>sample correlation coefficient</i> , commonly denoted r : $r = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}.$ $r_{xy} = \frac{\sum x_i y_i - n \bar{x} \bar{y}}{n s_x s_y} = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{\sqrt{n \sum x_i^2 - (\sum x_i)^2} \sqrt{n \sum y_i^2 - (\sum y_i)^2}}.$
POINT TO SIGNIFY	The 'coefficient of non-determination' is given by $(1-r^2)$ and can be interpreted as the ratio of unexplained variance to the total variance. The two lines of regression coincide i.e. become identical when r = -1 or 1 or in other words, there is a perfect negative or positive correlation between the two variables under discussion. If $r = 0$ Regression lines are perpendicular to each other The two lines of regression intersect at the point, where x and y are the variables under consideration There aggression coefficients remain unchanged due to a shift of origin but change due to a shift of scale.

Question 1

The table below show the height, x, in inches and the pulse rate y, per minute for 9 people find the correlation coefficient and interpret your result.

Х	68	72	65	70	62	75	78	64	68
Y	90	85	88	100	105	98	70	65	72

(a) 0.69

(b) 0.56

(c) 0.15 (d) None Answer: c Explanation: You may the use the fact that (double check this for practice) $\sum x = 622' \sum y = 773$, $\sum x^2 = \sum y^2 = 68.007$, $\sum x y = 53,336$ Calculate the numerator $x^2 = 43206$ $y^2 = 68007$ $n\sum (xy) - (\sum x)(\sum y) = 9.53336 - 622.773 = -782$ $\sqrt{n\sum x^2 - (\sum x)^2} \sqrt{n\sum y^2 - (\sum y)^2}$ $= \sqrt{9.43206 - (622)^2} \cdot \sqrt{9.68007 - (773)^2}$ $= \sqrt{1970} \cdot \sqrt{14534} = 5350.89$ Now, divide to get $r = \frac{-782}{5350.89} = 0.15$

Question 2

In the previous problem the researcher decides to use data only for adults age 21 to 60 to compute a correlation coefficient what value of r should he expect? (a) r = 0 (b) $r \neq 0$

(d) r > 0

(a) r = 0 (c) r < 0

Answer: a Explanation:

r = 0. It is unexpected that mathematical ability and shoe size varies together

Question 3

The following data relate to the test scores obtained eight salesmen in an aptitude test and their daily sales in thousands of rupees:

I								
	1	2	3	4	5	6	7	8
Scores	60	55	62	56	62	64	70	54
Sales	31	28	26	24	30	35	28	24
(a) 48 (c) 4.5 Answer Explana Asb = $\frac{24}{24}$: d ition: $\frac{+35}{2} = 30$			(b) (d)	56 0.48			
Scores	Sales	in ui	=xi =62	Vi = yi –	Ui vi	(6)	$= (U i)^2$	(7)
(xi)	1000	(yi) (3)	30	(5)=(3))×((Vi) ²

(i)	(2)		(4)	4)		
60	31	-2	1	-2	4	1
55	28	-7	-2	14	49	4
62	26	0	4	0	0	16
56	24	-6	-6	36	36	36
62	30	0	0	0	0	0
64	35	2	5	10	4	25
70	28	8	-2	-16	64	4
54	24	-8	6	48	64	36
Total		-13	-14	90	221	122

Since correlation coefficient remain unchanged due to change of origin we have

Question 4

If r = 0.7; and n = 64 find out the probable error of the coefficient of correlation.

(a) 0.043	(b) 0.43
(b) 0.747, 0.657	(d) 0.7
Answer: a	
Explanation:	
r = 0.7: $n = 64$	
P.E. = $0.67745 \times \left[\frac{1-r^2}{\sqrt{n}}\right]$	
Probable Error (P.E) = $0.6745 \times \frac{1-(0.7)^2}{\sqrt{64}}$	
= (0.6745) × (0.06375)	

= 0.043

Question 5

Compute the probable error assuming the correlation coefficient of 0.8 from a sample of 25 pairs of item

(a) 0.0486	(b) 0.0456
(c) 0.0567	(d) 0.0789
Answer: a	
Explanation:	
r = 0.8, n = 25	
P.E. = 0. 6745	
$1-(0.8)^2$	
$\sqrt{25}$	
= 0.6745 × 0.07 = 0.0486	

Question 6

Difference between Correlation and Causation

For Enquiry – 6262969604	6262969699
(a) The variable mutually influence each	(b) The correlated variables are influenced
other so that neither can be called the	By one or more variables.
(c) Pure change correlation Answer: d	(d) All
Explanation:	
The term correlation should not be mis exists between two variables it must no variable is the cause of a change in over	understood as causation if correlation ot be assumed that a changed in one variable.
<u>Question 7</u> For some bivarilate data the followir	ng result were obtained the two
variable X and Y:	
x = 53.2, $y = 27.9$ bvx = - 1.5 bxy = -0.2	2 = 60 is
(a) 15.6	(h) 13.4
(c) 19.7	(d) 17.7
Answer: d	
Explanation:	
The regression equation of y of x is: y = by x (y x)	
$y - y = 0y \times (x - x)$ = $y - 27.9 = (-1.5) (x - 53.2)$	
Or y = 107.7 - 1.5x	
When $x = 60$ then	
y = 107.7 – 1.5 ×60= 17.7	
<u>Question 9</u> If the sum of square of the rank diffe	rence in mathematics and physics
marks of 10 students is 22, then the	coefficient of rank correlation is:
(a) 0.267	(D) 0.867 (d) None
Answer: b	(u) None
Explanation:	
Co. efficient of rank correlation	
$1 - \frac{6 \sum a^2}{n(n^2 - 1)}$ $1 - \frac{6 \times 22}{n(n^2 - 1)}$	
$10(10^2-1)$	6 × 2
1 –	10×9
For more Info V	isit - www.KITest.in

17.6

$\frac{13}{15}$ = 0.867 (Approx.)

Cov(x,y)

Or r = $\frac{1}{\sqrt{vary(x) - vary(y)}}$

Question 10

(a) -0.97

(c) 0.89 Answer: a **Explanation**: $r = \frac{Cov(x,y)}{Cov(x,y)}$ $\sigma_x \sigma_v$

The coefficient of correlation r between x and y when: Cov (x, y) = - 16.5, Var (x) = 2.89, Var (y) = 100 is:

> (b) 0.97 (d) - 0.89

Ouestion11

-16.5

 $\sqrt{2.89 \times 100}$

= - 0.97

Two random variable have the regression line 3x + 2y = 26 and 6x + y = 31. The coefficient of correlation between x and y is:

(b) -0.5 (a) -0.25 (d) 0.25 (c) 0.5

Answer: c

Explanation:

The regression lines 3x + 2y = 26 and 6x + y = 31 are given Let first equation be y on x sand second be x only respectively therefore, 3x + 2y =26

$$=\left(\frac{-3}{2}\right)x + 26$$

$$\therefore byx = -3/2$$

and $6x + y = 31$

$$= x = \left(\frac{-1}{6}\right)x + \left(\frac{31}{6}\right)$$

by = -1/6 Now
 r^2 byx. bxy

$$= \left(\frac{-3}{2}\right) \times \left(\frac{-1}{6}\right)$$

= 0.25
r= 0.5
Hence, our assumption hold true hold and r = 0.5 (-1 r 1)
Note r is negative because byx and bxy = 0

Question 12

The coefficient of correlation between X and Y is 0.6 U and V are two variable defined as U = $\frac{x-3}{2}$, V= $\frac{y-2}{3}$, then the coefficient of correlation between U and V is: (b) 0.8 (a) 0.6 (c) 0.4 (d) 1 **Answer:** a **Explanation**: Since correlation coefficient (Karl Pearson's) is independence of both scale and origin therefore, p(u,v) = p(x,y) = 0.6it may be noted that if μ = ax, + b and V; = CY; + d then r(u,v) = P(x,y) if an and care of same signs P (x,y) if a and c are of opposite sing

Question 13 For the following	g data the (coefficient	t of rank corr	elation is:	
Rank in Botany	1	2	3	4	5
Rank in	2	3	1	5	4

Rann m Botany	•	-	•	-	0
Rank in	2	3	1	5	4
Chemistry					

(b) 0.4

(d) None

(a) 0.93

(c) 0.6

Answer: c

Explanation:

S No.	Rank in Botany(xi)	Rank in Chem (vi)	d = (xi) - (yi)	d ²
1	1	2	-1	1
2	2	3	-1	1
3	3	1	2	4
4	4	5	-1	1
5	5	4	1	1
Total			0	8

Hence coefficient of rank correction

 $1 - \frac{6 \times 8}{5 (5^2 - 1)}$ $S = 1 - \frac{2}{5} = 0.6$

Question 14

The following data is given on 450 students for marks is statistics and **Economic at a certain examination**

Mean marks in statistics = 40 Mean marks in economics **= 48** S.D. of marks (statistics) = 12 Variance of marks (Economics) = 256 Sum of the products of deviation of Marks from their respective mean = 42075 The average marks in economics of candidates who obtained 50 marks in statistics is: (a) 45 (b) 54 (c) 54.5 (d) 47.5 **Answer: c Explanation:** Let x = marks statistics and v = marks in Economics we know that $\Gamma_{xy} = \sum \frac{(\sum dx \times dy)}{n \times \sigma_x \sigma_y}$ Where dx = $x_1 \cdot \bar{x}$ and dy = $y_1 \cdot \bar{y}$ $r_{xy} = \frac{(42075)}{450 \times 12 \times 16} = 0.49$ Now regression equation of y on x y - $\bar{y} = \frac{ro_{y(x-\bar{x})}}{\sigma_x}$ = y - 48 = $\times \frac{0.49 \times 16}{12}$ (x-40) = y = 0.65 then v = 0.65x - 26 + 48y = 0.65 x + 22x = 50

Question 15

For 10 pair of observation, number of concurrent deviation was found to be 4. what is the value of the coefficient deviation?

(a) $\sqrt{0.2}$	(b) $-\sqrt{0.2}$
(c) 1/3	(d) – 1/3
Answer: d	
Explanation:	
Here C = 4, N= 10, So	
n = N -1 = 10 -1 = 9	
$rc = \pm \sqrt{\frac{\pm (2_{c-n})}{n}}$	
$rc \pm \sqrt{\pm \frac{(2 \times 4 - 9)}{9}}$	
	For more Info Visit - www.KITest.in

Here $(2_c - n)$ is negative so negative sign is take at both the place so rc = (-1)/3

Question 19

There two regression lines passing through

(a) Represent means

(c) (a) and (b)

(b) Represent S. Ds (d) None of these

Answer: a

Explanation: The two regressions lines passing through or (Intersect) at their means.

Question 20

The regression equation x and y is 3x + 2y = 100 value of b_{xy}

(a) $-\frac{2}{3}$	(b) $-\frac{3}{2}$
(c) $\frac{2}{3}$	$(d)\frac{100}{2}$
Answer: a	2
Explanation:	

The regression equation of x & y is 3x + 2y = 100

3x + 2y - 100 = 0

 $b_{xy} = -\frac{Cofficient \ of \ y}{coefficient \ of \ x} = -\frac{2}{3}$

Question 21

In beauty contest there were 10 competitors of these candidates assigned by two judge A and b the sum of squares of difference of rank is 44. The value of rank correlation is:

(a) 0.70	(b) 0.73
(c) 0.80	(d) 0.60
Answer: b	
Explanation:	
Sum of square of difference of rank (\sum	d²) = 44
r _R =?	
$r_{\rm R} = 1 - 6 \frac{\sum d^2}{n(n^2 - 1)}$	
$1 - \frac{6 \times 4}{10 (10^2 - 1)}$	
$1 - \frac{6 \times 44}{10 \times 90}$	
= 1 - 0.267	
= 0. 733	

So answer be 0.73

Question 22

If two regression lines are x + y = 1 and x - y = 1 then mean value of x and y will be:

(a) 0 and 1 (c) 1 and 0 **Answer: c Explanation**: Given Regression line $=> x = \frac{2}{x} = 1$ x = 1 in equation (1) we get 1 - y = 1v = 0Mean of x = x = 1Mean of y = y = 0Hence 1 and 0

Ouestion 23

The coefficient of correlation between x and y is 0.6 If x and y value are multiplied by 1 then the coefficient will be

(b) 1 and 1

(d) None

(a) 0.6	(b) 1-0.6
(c) 1/0.6	(d) -0.6

Answer: a **Explanation**:

The coefficient of correlation between X and Y is 0.6 If x and y values are multiplied by 1 then coefficient remains unchanged then are coefficient of correlation will be 0.6

Ouestion 24

The coefficient of correlation between the temperature of environment and power consumption is always:

(a) +ve	(b) - ve
(c) 0	(d) = 1

Answer: a

Explanation:

The coefficient of correlation between the temperature of environment and power consumption is always positive.

Ouestion 25

Out of the following the one which the regression coefficient is

(a) Change origin only (c) Change of scale and origin both (d) Neither a nor b Answer: b **Explanation**:

(b) Change of scale only

By shifting the scale, coefficient of regression is changed.

Question 26When the correlation coefficient r is equal to + 1 all the point in a scatterdiagram would be(a) On a straight line direct from(b) On a straight direction from lower

(a) On a straight line direct from upper left to lower right (b) On a straight direction from lower left upper right

(d) Both (a) and (b)

Answer: b Explanation:

(c) On a straight line

When the correlation coefficient r is equal to + 1 all the point in a scatter diagram on a straight line directed from lower left to upper right.

Question 27

In case of ``Insurance companies" profit and the number of claim they have to pay there is -----correlation.

(a) +ve	(b) -ve
(c) No relation	(d) None
Answer: b	

Explanation:

In case of ``Insurance companies" profit and the number of claim they have to pay there pay there is Negative correlation:

Question 28

If the correlation coefficient between two variables is zero then the lines of regression are

(a) Parallel	(b) Perpendicular
(c) Coincide	(d) None
Ancwor, h	

Answer: b Explanation:

If the correlation coefficient between two variables is zero then the lines of regression are perpendicular

Question 29

Their competitors in a contest are ranked by two judges in the order 1,2,3			
and 2,3,1 respective Ca	alculate the spearman`s rank correlation coefficient.		
(a) -0.5	(b) -0.8		
(c) 0.8	(d) 0.5		
Answer: a			

Explanation:

Rank by 1 st judge	Rank by 2 nd Judge	Diff $D = R_1 - R_2$	D ²
R ₁	R ₂		

6262969699

1	2	-1	1
2	3	-1	1
3	1	+2	4
			$\sum d^2 = 6$

Here n = 3

Spearman's Rank Correlation Coefficient = $1 - 6 \frac{\sum d^2}{n (n^2 - 1)}$

$$= 1 - \frac{6 \times 6}{3(3^2 - 1)}$$
$$= -0.5$$

Question 30

The strength (degree) of the correlation between a set of independent variables X and dependent variable Y is measured by

- (a) Coefficient of Correlation
- (c) Coefficient Determination
- (b) Standard error of estimate
- (d) All of these

Answer: d

Explanation:

The strength (degree) of the correlation between a set of independent variables X and dependent variable Y is measured through

- Coefficient of Correlation
- Standard error of estimate
- Coefficient Determination

Question 31

The percent of told variation of the dependent variable Y explained by the set of independent variables X is measured by:

(a) Coefficient of Correlation

- (c) Coefficient Determination
- (b) Standard error of estimate (d) Coefficient of skewness

Answer: c

Explanation:

The coefficient of determination (denoted by R?) is a key output of regression analysis an R^2 of 0 means that the dependent variable cannot be predicted from the independent variable An R^2 of 1 means the dependents variable can be predicted without error from the independent variable

Question 32

A coefficient of correlation is computed to be -0.95 means that

(a) The relationship between two	(b) The relationship two variables is
variables	strong
is weak	and positive
(c) The relationship between two	(d) Correlation coefficient cannot

For Enquiry – 6262969604	6262969699
variables	have this
is strong and but negative	value
Answer: c	
Explanation:	
A coefficient of correlation is comput	e to be -0.95 means that relationship
between two variables is strong and	but negative
Ouestion 33	
Let the coefficient of determinatio	n computed to be 0.39 in a problem
involving one independent variab	e and one dependent variable this result
means that	
(a) The relationship between two	(b) The correlation coefficient is 0.39
variables	also
is negative	
(c) 39% of the total variation is	(d) 39% of the total variation
explained by	explained by
the independent variable	the dependent variables
Answer: c	•
Explanation:	
The coefficient of determination com	nuted to be 0.20 in a problem involving one

The coefficient of determination computed to be 0.39 in a problem involving one independent variable and one dependent variable. 39% of the total variation is explained by the independent variable.

Ouestion 34

Relationship between correlation coefficient and coefficient of determination is that:

(a) The coefficient of determination is	(b) The coefficient determination is
the	the
square of coefficient of correlation	square root of the coefficient of

are of coefficient of correlation

square root of the coefficient of correction (d) Both are equal

(c) Both are unrelated

Answer: a

Explanation:

Coefficient of correlation is ``R" value which given in the summary table in the regression output. R square is called coefficient of determination multiply R times R to get the R value. In other word coefficient of correlation R square or Coeff. of determination shows percentage variation and in y which is explained by all the x variable together higher the better it is always between 0 and 1. it can never be negative – since is a squared value.

It is easy to explain the R square in term of regression it is not so easy to explain the R in terms of regression.

Question 35 For a bivariate data two tines of re regression are 40 x - 18y = 214 and 8x -10y + 66 = 0 then find the value of x and y (a) 17 and 13 (b) 13 and 17 (c) 15 and 17 (d) None Answer: b Explanation: Given: $40 \times -18y = 214$ 8x: -10y = -66on solving (1) and (2) we get x = 13 and y = 17 $\therefore x = 13$ and y = 17

Question 36 In multiple regression when the global test of significance is rejected we can conclude that:

- (a) All of the net sample regression coefficient are equal to zero
- (c) At least one sample regression coefficient is not equal to zero
- (b) All of the sample regression coefficient
- are not equal to zero (d) The regression equation intersects the y – axis at zero

Answer: c

Explanation:

In multiple regression when the global test of significance is rejected we can conclude that at least one simple regression coefficient is not equal to zero.

Question 37

Correlation Coefficient value lies between

(a) – 1 and + 1 (c) -1 and 0 (b) 0 and 1 (d) None

Answer: a Explanation:

The strength of the linear association between two variables is qualified by the correlation coefficient the correlation coefficient always takes a value between -1 and 1 with 1 or -1 indicating perfect correlation (all point would lie along a straight line in this case)

Question 38

In correlation both variables are always

(a) Random (c) Same (b) Non Random (d) None

Answer: a

Explanation:

Complete correlation between two variables is expressed by either + 1 or -1 when one variable increases the correlation is positive when on decrease as the order increases it is negative complete absence of correlation is represented by 0.

Question 39

The table below shows the number of absence x, in a calculsis course and the final exam grade y for 7 student find the correlation coefficient.

X	1	0	2	6	4	3	3
у	95	90	90	55	70	80	85

(a) 0.38	(b) -0.38
(c) 0.62	(d) -0.93

Answer: d

Explanation:

You may use the facts that (double check this for practice) $\sum x = 19$, $\sum y = 565$, $\sum x^2 = 75$, $\sum y^2 = 46,775$, $\sum xy = 1,380$ Calculate the numerator: $n \sum (xy) - (\sum x)(\sum y) = 7.1380 - 19 \times 565 = -1075$ Then the calculate the denominator;

$$\frac{\sqrt{[n(x^2) - (x)^2]}\sqrt{[n(y^2) - (y)^2]}}{(525 - 369).[327425 - 319225]}$$

Question 40

Two regression lines are parallel to each other if their slope is

(a) Random	(b) Non Random
(c) Same	(d) None

Answer: c

Explanation:

When there is a reasonable amount of scatter we can draw to different regression lines depending upon which variable we consider to be the most accurate The first is a line of regression of y on x which can be used to estimate y given x the other is a line of regression of x on y used to estimate x given y Hence two regression lines are parallel to each other if their slope is same

Question 41

When regression line passes through the origin then

U I
(a) Regression coefficient is zero
(c) Intercept is zero
Answer: c

(b) Correlation is zero (d) Association is zero

17.18

For Enquiry – 6262969604

Explanation:

Prism linear regression analysis fits a straight line through your data and lets you force the line to go through the origin this is useful when you are sure that the line must begin at the origin (x = 0 and y = 0) Prism's nonlinear regression offers the equation line through origin.

Question 42

The table below shows the number of absence, x in a calculate course and the final exam grand, y for 7 student find the correlation coefficient.

Х	1	0	2	6	4	3	3
у	85	80	70	55	90	90	95
(a) 0.38	0.38 (b) 0.6						
(c) -0.38				(d) 0.62			
Answer:	С						
Explanat	tion:						
There are	e 7 ordere	d pairs (x, y	y) so n = 7	7 Calculat	te the neede	ed sums:	
Х	Y		X ²		Y ²	xy	
1	85		1		7225	85	
0	80		0		6400	0	
2	70		4		4900	140	
6	55		36	36 3025		330	
4	90		16		8100	360	
3	90		9		8100	270	
3	95		9		9025	285	
X = 19	Y =	= 565	$X^2 = 75$		$Y^2 = 46775$	Xv=	1470

Calculation the numerator: n $\sum (xy) - (\sum x)(\sum y)$

= 7. 1470 -19. 565 = - 445 Then calculate the denominator:

$$\sqrt{n\sum_{x} x^{2} - \left(\sum_{x} x\right)^{2}} \sqrt{n\sum_{y} y^{2} - \left(\sum_{y} y^{2} - \left(\sum_{x} x\right)^{2}\right)^{2}}$$
$$= \sqrt{164} \sqrt{8200} = 1159.66$$

Now, divide to get r = $\frac{-445}{1159.66} = -0.38$

Question 43 If two variables oppose each other than the correlation will be

(a) Positive Correlation

(c) Perfect Correlation

Answer: b

Explanation:

A correlation of zero means there is no relationship between the two variables, when there is a negative correlation between two variables as the value of one variable increase the value of the other variable decrease and *vise-versa*

Question 44

The time x in years that an employee spent at a company and the employee's hourly pay, y for 5 employees are listed in the table below. Calculate and interpret the correlation coefficient r. Include a plot of the data in your discussion

(a) 0.38

(c) 0.62

(b) -097 (d) None

(d) None

(b) Negative Correlation

Answer: d Explanation:

X	Y	X ²	Y ²	ху
5	25	25	625	125
3	20	9	400	60
4	21	16	441	84
10	35	100	1225	350
15	38	225	1444	570
X = 37	Y=139	X ² 375	$Y^2 = 4135$	XY = 1189

Hint Calculate the numerator:

 $n \sum (xy) - (\sum x)(\sum y) = 5.1189 - 37.139 = 802$

Then calculate the denominator = $\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 - (\sum y)^2}$

 $=\sqrt{5 \times 375 - (37)^2} \cdot \sqrt{5.4135 - (37)^2}$ $= \sqrt{506} \cdot \sqrt{1354} = 827.72$ Now divide to get r = $\frac{802}{827.72} = 0.97$

Question45 Identify the true correlation (a) -1 & 1 (c) 0& 1 Answer: a Explanation:

(b) -1 & 0 (d) All are true

This will always be a number between -1 and 1 (inclusive)

- If is close to 1 we say that the variables are positively correlated. This means there is likely a strong linear relationship between the two variables with a positive slope.
- If is close to-1 we say that the variable are negatively correlated this means there is likely a strong linear relationship between the two variable with a negative slope.
- If r is close to 0, we say that the variables are not correlation this means that variables may still be related some other way.

Question 46

A researcher carefully computes the correlation coefficient between two variables and gets r = 1.23 what does this value mean?

(a) -1 <u><</u> r <u><</u> 1	(b) -1≥r≥1
(c) Both	(d) None
Answer: a	
Explanation:	
A error was made all correla	tion coefficient $-1 \le r \le 1$

Ouestion 47

If R² is zero that is no collinearly / Multi collinearity the variance inflation factor (VIF) will be

(a) 1	(b) 2
(c) 3	(d) None
Answer: a	
Explanation:	
$\text{VIF} = \frac{1}{1 - R^2}$	

Ouestion 48

If the equation of regression line is y = 5, then what result will you take out from it?

- (a) The line is parallel to x- axis(b) The line passes through (5.0)(c) The line passes through origin(d) The line passes through origin

Answer: a **Explanation**:

y = k for one value of y there are infinite value of x

Ouestion 49

The method of least squares finds the best fit line that the error between observed and estimated point on the line

(a) Reduces to zero (c) Minimize

(c) Minimize

Answer: c

Explanation:

The method f least squares finds the best fit line that minimize the error between observed and estimate points on the line.

Question50

A regression model may be:

(a) Linear(c) Both (a) and (b)

(b) Non - linear(d) Neither (a) and (b)

(b) Approaches to infinity

(d) Maximize

Answer: a

Explanation:

In the regression it appears on the left side of the equal sign, while your can use regression to predict the dependent variable your always start with a set of known y value and use these be build (or to calibrate) the regression model may be linear and nonlinear both

PAST EXAMINATION QUESTION

<u>MAY 2018</u>

Question1

If the model points are a scatter diagram is evenly distributed then the correlation is:

(a) 0 (c) +ve (b) -ve (d) a or b

Answer: a

Explanation:

In the case of a positive correlation, the plotted points are distributed from lower left corner to upper right corner (in the general pattern of being evenly spread about a straight line with a positive slope), and in the case of a negative correlation, the plotted points are spread out about a straight line of a ...

<u>Question2</u> If the plotted points in a scatter are evenly distributed, then the correlations zero.

For Enquiry – 6262969604	6262969699
The coverience between veriable is	
(a) Strictly positive	(b) Strictly negative
(c) Always zero	(d) Fither positive or negative zero
Answer: d	(u) Entier positive of negative zero.
Explanation:	
The Co- variance between two variables	is either positive or negative or zero.
Question3	
The coefficient of determination is de	efined by the formula.
(a) $r^2 = \frac{1 - unexpansion and variance}{1 - unexpansion and variance}$	(b) $r^2 = expansion ex$
$ \begin{array}{c} (a) & T & Total variance \\ (a) & D & the (a) & and (b) \end{array} $	Total variance
(c) Both (a) and (b)	(a) None
Allswer: C	
Explanation: The coefficient of determination	
1 -unernalained variance	
$r^2 = \frac{1 - anexplatation variance}{Total variance}$	
$r^2 = \frac{expalained variance}{r^2}$	
Total variance	
Question4 In the method of concurrent deviation direction/ Negative direction) in the calculation of	ns only the directions of change (positive variable are taken into account for
(a) Coefficient of SD	(b) Coefficient of regression
(c) Coefficient of correlation	(d) None
Answer: c	
Explanation:	
The method of concurrent deviation onl	y the direction of change (positive direction/
Negative direction) in the variables are of correlation	taken into account for calculation of coefficient
Question	
Questions Correlation coefficient isof the uni	ts of measurement
(a) Dependent	(b) Independent
(c) Both	(d) None
Answer: b	
Explanation:	
Correlation coefficient is Independent o	f the units of measurement.
1	
Question 6	
In case speed of an automatic and the	e distance required to stop the car after
applying correlation is	
For more Info) Visit - www.KITest.in
	17.22

For Enquiry – 6262969604	6262969699
(a) +ve	(b) -ve
	(d) None
Fynlanation:	
In case speed of an automatic and the o	listance required to stop the car after applying
correlation is positive	abtance required to stop the car after applying
Question7	
A relationship $r^2 = 1 - \frac{500}{200}$ is possible	•
(a) True	(b) False
(c) Both	(d) None
Answer: a	
Explanation:	
$r^2 = 1 - \frac{500}{200}$ is possible	
$r^2 = 1 - \frac{-200}{200}$ is not possible	
So it is true	
Question8	
Rank correlation coefficient lies bet	ween
(a) -1 to + 1	(b) 0 to 1
(c) -1 to 0	(d) Both
Answer: a	
Explanation:	
Rank correlation coefficient lies betwe	en -1 to + 1 inclusive of both value.
N	<u>OV 2018</u>
Question1	
The two lines of regression intersec	t at the point
(a) Mean	(b) Mode
(c) Median	(d) None
Answer: a	
Explanation:	
The two lines of regression intersect at	t the point is Mean.
Question2	
If the two line of regression are $x + 2$	2y -5 = 0 and 0, then the regression line of y
on x s:	
(a)x + 2y - 5 = 0	(b) $2x + 3y - 8 = 0$
(C) x + 2y = 0	(a) 2x + 3y = 0
For more In	to Visit - www.KITest.in 17.23

6262969699

Answer: a Explanation:

Given two regression line are x + 2y 5 = 0 and 2x + 3y - 8 = 0 $byx = \frac{-coff.of x}{coff of y} = \frac{-1}{2}$ and $bxy \frac{-coff.of y}{coff of x} = \frac{-3}{2}$ Here, $bxy \times bxy \leq 1$ which is satisfied So.1st equation x+2y-5 =0 is the regression equation y on x

Question3

If the two regression line lines are 3x=y and 8y = 6x the value of correlation coefficient is: (b) -0.5 (a) 0.5 (c) 0.75 (d) -0.80 Answer: a **Explanation:** Given **Regression** line 3x=y and 8y=6x 3x-y =0 and 6x-8y =0 bxy = $\frac{-coff.of y}{coff of x}$ and byx $\frac{-coff.of x}{coff of y}$ $\frac{-(-1)}{3} = \frac{-6}{-8} = \frac{3}{4}$ $bxy = \frac{1}{2}bxy = 3/4$ Coff. of correlation is given by $r = +\sqrt{byx \times bxy}$ = $\pm \sqrt{\frac{3}{4} \times \frac{1}{3}}$ +1/2= 0.5**Question4** The regression coefficient is independent of the change of (a) Scale (b) Origin (c) Scale and Origin both (d) None **Answer: b Explanation**: The regression coefficient is independent of the change of 'Origin'

Question5

For Enquiry – 6262969604 62629696					2969699				
If the correlation coefficient between the variable X and Y is 0.5, then the						е			
Answor:	Jetween	the vari		r anu J-	_ y				
$2x_{-11} - 4 = 0$	and 2	<u>v + v</u> _2 –	0						
$2x^{-u} - coff.of u$		-coff.of 1	,						
$b = \frac{ff}{coff of x} a$	and $d = -$	coff of y	-						
$d=\frac{1}{2}$	$d = -\frac{1}{2}$	1							
² Uara hand d	2 both how	a diffana	nt aign ag						
	DOUI IIdv	e uniere	nt sign st	$J I_{\rm uv}I_{\rm x}$	У				
= -0.5									
			<u>MA</u>	<u>Y 20</u>	<u>19</u>				
Ouestion1									
Given that									
X	-3	-3/	2	0	3	/2	3	3	
V	9	9/4	1	0	9	/4	9)	
						/			
(a) Positive				(b) Zer)				
(c) Negative				(d) Nor	e				
Answer: b				()	-				
Explanation:									
x	V		X ²		Y ²		XV		
-3	9		9	81		-27	-27		
-3/2	9/4		9/4	81/16		-27	/8		
0	0		0		01/10		0	/0	
3/2	$\frac{1}{2}$		9/4		81/16		27/	28	
3	9		9		81		27	0	
0		90	9	00	27	754	0		
U		1	-	<u> </u>			U		
	_45	4	_45	4	13	877			
	=2		2			0			
			Henc	e Answei	<u>- 0</u>	0			
Question?									
Given the foll	lowing s	eries							
\mathbf{x} 1	0	13	12	1	5	8		15	
\mathbf{x} 1 \mathbf{y} 1	2	6	12	1	5 6	7		19	
The rank corr	ection co	efficient	r =			,		10	
	$m_{-m}(m^3)$	$\frac{1}{2}$.1 -		Γ	$m_2(m^2 -$	1)]		
$6\sum d^3 + \sum_{i=d}^2 \frac{m_2(m_2^{-1})}{12} \qquad 6\left[\sum d^2 + \sum_{i=1}^3 \frac{m_2(m_1^{-1})}{12}\right]$									
(a) $1 - \frac{1}{m(n^2 - 1)}$ (b) $1 - \frac{1}{n(n^2 - 1)}$									
$6[\Sigma d^2 + \Sigma_{i=1}^3 m_2(m_1^9 - 1)]$ (d) None									
$n(n^2-1)$									
			_						
		Fo	r more Info	o Visit - ww	/w.KITes	t.in			17 25

6262969699

Answer: b Explanation: $1 - \frac{6\left[\sum d^2 + \sum_{i=1}^{3} \frac{m_2(m_1^2 - 1)}{12}\right]}{n(n^2 - 1)}$

Question3

If the regression line of y on x is given by y = x+ 2 and Karlperson's coefficient of correlation is 0.5 then $\frac{\sigma y^2}{\sigma x^2}$

(a) 3
(c) 4
Answer: c
Explanation:
y on x = > y = x + 2
R = 0.5
byx = r × $\frac{\sigma y}{\sigma y}$
byx = $\frac{2}{0.5}$ σx

(b) 2 (d) None

Question4

A .M. OF regression coefficient is:

(a) Equal to r (c) Half of r (b) Great than or equal to r(d) None of these

Answer: b

Explanation:

Regression coefficient is a statistical measure of the average functional relationship between two or more variable In regression analysis one variable is considered as dependent and other as independent, Thus it measure the degree of dependence of one variable on the order (s)

Question5

If the two regression lines are x + y = 1 and x - y = 1 then \overline{x} and \overline{y} are (a) 1,0 (b) 0,1 (c) 1,1 (d) None of these Answer: d Explanation: Consider x-y =1 as equation (1) as equation (2) Now add both (1) and (2) You get 2x=2 i.e. x=1Now put x=1 in either of equation (1) or (2) You get y=0

For Enquiry – 6262969604	6262969699
Question6	
Coefficient of correlation between X a	nd Y is 0.6 if both X and Y are multiplied
then resultant coefficient of correlation	on:
(a) 0.6	(b) 1/0.6
(c) Both	(d) None of these
Answer: a	
Explanation:	
sign and as per property bxy , byx& r sig	h should be equal / same
<u>NO</u>	<u>V 2019</u>
Question1	
If two of regression are x + 2y -5 = 0 a	nd 2x + 3y -8 = 0 So x + 2y -5 0 is
(a) y on x	(b) x on y
(c) Both	(d) None
Answer: a	
Explanation:	
x + 2y -5 =0 – Eq 1 2x + 3y -8 = 0- Eq2	
Let Eq 1 be y on x from Eq ²	
by $=\frac{-cofficient of x}{cofficient of x}$ by $=\frac{-cofficient of x}{cofficient of x}$	
$(-1)_{1}_{1}_{2}_{2}_{3}_{3}_{3}_{3}_{3}_{3}_{3}_{3}_{3}_{3$	
$Dyx = \left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right) = \frac{1}{4}$	
So, byx × bxy< 1	
So, $\times + 2y - 5 = 0$ is y on \times	
and $2x + 3y - 8 = 0$ is x on y	
Question2	
Find the coefficient of regression.	
2x + 3y = 2	
4x + 3y = 4	
(a) 0.5	(b) -0.5
(c) 0.25	(d) -0.25
Answer: b	
Explanation:	
2x + 3y = 2 - Eq 1 ax + 3y = 4 - Eq 2	
Let Eq1 be y on x	
From Eq1	
byx = $\frac{-cofficient of x}{contact} = \frac{-2}{contact}$	
cofficient of y 3 From Fa2	
FIOHEQ2	
Faultana lafa	Visit

6262969699

17.28

bxy = $\frac{-cofficient of x}{cofficient of x} = \frac{-3}{4}$				
So above assumption hold	l true.			
$r = + \sqrt{b_{yx} x b_{xy}}$				
$\sqrt{(-2)}$ (-3)				
$r = \pm \sqrt{\left(\frac{-3}{3}\right)} x \left(\frac{-4}{4}\right)$				
$r = \frac{-1}{2}$				
r = -0.5				
Question3 What is the coefficient of	farmolation	from the fall	owing data?	
X^{\cdot} 1	2		4	5
Y: 5	4	3	2	6
	•	0	_	
(a) 0		(b) -0.75		
(c) -0.85		(d) 0.82		
Answer: a				
Explanation:				X7
<u>X</u>		Y r		Xy r
2		Э Л.		<u>2</u>
3		3		9
4		2		8
5		6		30
$\sum x = 15 \qquad \qquad \sum x = 20 \qquad \qquad \sum xy = 60$			= 60	
$\sum_{x} x = 13$ $\sum_{x} x = 20$ $\sum_{x} x = 0$				
For more Info Visit - www.KITest.in				

	variables
Answer: a	
Explanation:	
Correlation between two variables have	ving no causal relationship
Question 2	
Scatter diagram does not help us to	
(a) Find the type of correlation	(b) Identify whether variables correlated or not
(c) Determine the linear (or) non – linear correlation	(d) Find the numerical value of correlation coefficient
Answer: d	
Explanation:	
To Find the numerical value of correla	tion coefficient
Question 3	
The Covariance between two variables	s is
(a) Strictly Positive	(b) Strictly Negative
(c) Always Zero	(d) Either positive (or) Negative (or) Ze
Answer: d	
Explanation:	
Covariance can be positive, zero, or ne then their covariance is 0: Cov (X, Y) = converse, however, is not always true.	gative If X and Y are independent variables, = $E(XY) - \mu X \mu Y = E(X)E(Y) - \mu X \mu Y = 0$ The Cov (X, Y) can be 0 for variables that are not
inde- pendent. Hence, either positive (or) Negative (or) Zero
T	NN 2021
<u>1</u>	
<u>Uuestion 1</u>	
For the set of observations $\{(1, 2), (2, 3)\}$	2, 51, 13, 71, 14, 81, 15, 101}, the value of Karl

Question 2

Scatter diag

Question 3

ve (or) Zero

negative.

Explanation:

(a) Correlation between two variables (b) Negative Correlation

DEC 2020 Ouestion 1

If the points in a scatter diagram lie from upper to left lower right them correlation us

Which of the following is spurious correlation?

having no causal relationship

(c) Bad relation between two variables

(d) Very low correlation between two

For the set e of Karl-<u>, (3, 7), (4, 0), (3, 10)</u>}, the val

For Enquiry – 620	62969604			6262969699
person's coeffic (a) 0.755 (c) 0.525 Answer: d Explanation:	ient is approxin	nately given by (b) 0.655 (d) 0.985 xy	x ²	y ²
1	2	2	1	4
2	5	10	4	25
3	7	21	9	49
4	8	32	16	64
5	10	50	25	100
Total 15	32	115	55	242
$\overline{\sqrt{50}\sqrt{186}}_{95}$ $\overline{7.07106 \times 13.638} = 0.985105$ $\overline{95}_{7.07106 \times 13.638} = 0.985105$				
The intersecting (a) $(0_1 0)$ (c) (b_{yx}, b_{xy}) Answer: b Explanation: Properties of Reg known to interse and y.	g point of the tw gression Lines Th ect at a specific po	To regression lin (b) (\bar{x}, \bar{y}) (d) $(1, 1)$ here are two lines bint (\bar{x}, \bar{y}) Here th	tes: y on x and x s of regression. Bo e variables unde	on y is oth these lines are r consideration are x
	F	and Info Visit	. KITaat in	

Ouestion 4

Given that the variance of x is equal to the square of standard deviation by and the regression line of y on x is y = 40 + 0.5 (x - 30). Then regression line of x on y is

(a) y = 40 + 4(x - 30)(c) y = 40 + 2(x - 30)Answer: d **Explanation:**

Ouestion 5

The regression coefficient remain unchanged due to

(a) A shift of scale

(b) A shift of origin (c) Replacing x – values by $\frac{1}{r}$ (d) Replacing y values by $\frac{1}{r}$

(b) y = 40 + (x - 30)

(d) x = 30 + 2 + 2(x - 40)

Answer: b

Explanation:

The regression coefficient remain unchanged due to A shift of origin By properties of regression line we have, The regression coefficients remain unchanged due to a shift of origin but change due to a shift of scale.

<u>IULY 2021</u>

Ouestion 1

If the sum of the product of the deviation of and Y from their means is zero correlation coefficient between X and Y is:

(a) Zero

(b) Positive (d) 10

(c) Negative **Answer: Options (a)**

Explanation:

Given: sum of the product of deviations of x and y series from their mean is zero, To Find: the coefficient of correlation

r = coefficient of correlation

 $r = Sxy / (Sx \cdot Sy)$

Correlation coefficient = $cov(x,y)/(std deviation(x) \times std deviation(y))$

product of deviations of x and y series from their mean is zero

=> Sxy = 0

=> r = 0

Coefficient of correlation = 0

Ans: If the sum of the product of deviations of x and y series from their mean is zero, then the coefficient of correlation will be ZERO

For Enquiry – 6262969604	6262969699
Question 2	lated to be 5.5 and the intercent 15 then
the value of V when Y is 6 is	hated to be 5.5 and the intercept 15 then
	(b) 48
(a) 00	(d) 78
Answer: Ontions (h)	(u) / 0
Explanation:	
The value of Y when X is 6	
a+bX	
15+5.5(6)	
Ans: 48	
Question 3	
If y = 9x and X = 0.01Y, then r is equal to:	
(a) -0.1	(b) 0.1
(c) 0.3	(d) -0.3
Answer: Options (c)	
Question 4	
The straight – line graph of the linear eq	uation Y = a +b X, slope is horizontal if:
(a) b =1	(b) $b \neq 0$
(c) b =0	(d) $a = b \neq 0$
Answer: Options (c)	
Question 5	
If $D_{xy} = -1.6$ and $D_{xy} = -0.4$, then r_{xy} will be	
(a) 0.4	(d) 0.0 (d) 0.0
(c) 0.04 Answer: Ontions (b)	(u) 0.8
Answer: Options (b)	
DEC	2021
Ouestion 1	
I f the data points of (X,Y) series on a scat goes downwards as X-values move from	tter diagram lie along a straight line that left to right, then the data exhibit
correlation.	
(a) Direct	(b) Imperfect indirect
(c) Indirect	(d) Imperfect direct

Answer: c **Explanation**:

This is a Perfect Negative correlation, or indirect correlation.

Ouestion 2

For any two variables x and y the regression	equations are given as $2x + 5y - 9 = 0$
and 3x - y - 5 = 0. What are the A.M. of x and y	?

(a) 2, 1	(b) 1, 2
(c) 4, 2	(d) 2, 4

Answer: a

Explanation:

The regression lines intersect at the means of x and y. Therefore, the common point of intersection of these two lines will give the means of X and y. This means that the means of x and y will satisfy these two equations simultaneously.

We can either solve these two equations simultaneously or find out the values of x and y, which will give uS our means; or, we can simply try the options.

Option (a) -2, 1Putting the value of x = 2, and y = 1 in the equation 2x + 5y - 9 = 0, we get LHS = 2(2) + 5(1) - 9 = 0 = RHSPutting the value of x = 2, and y = in the equation 3x - y - 5 = 0, we get LHS = 3(2) - 1 - 5 = 0 = RHSTherefore, option (a) is the answer.

Question 3

The intersecting point of two regression lines falls at X-axis. If the mean of Xvalues is 16, the standard deviations of X and Y are respectively, 3 and 4, then the mean of Y-values is

(a) 16/3	(b) 4
(c) 0	(d) 1

Answer: c

Explanation:

The intersecting point of two regression lines gives the means of x and y. Since the point of intersection falls on the x-axis, the value of y is 0. Therefore, the mean of yvalues is zero.

Question 4

For Enquiry – 6262969604	6262969699
The regression coefficients remain unch	anged due to
(a) Shift of origin	(b) Shift of scale
(c) Always	(d) Never
Answer: a	
Explanation:	
The regression coefficient remain uncharge	d due to shift of origin.
JUNE	2022
Question 1	
If Coefficient of correlation for 3X+ 4y =	6 is 0.5. Find the coefficient of
correlation for of $3u + 9v = 7$ for u and v.	
(a) - (0.5)	(b) (0.5)
(c) ‡ 0.5	(d) 0.25
Answer: D	
Explanation:	nder consideration) then $r_{-} = r_{-} = 0.5$
correlation is change	1000000000000000000000000000000000000
correlation is change	
Question 2	
Karl Pearson Correlation Coefficient me	thod is used for -
(a) Any data	(b) Scattered data
(c) Grouped data	(d) Ungrouped data
Answer: d	
Explanation:	
Karl Pearson Correlation Coefficient metho	d is used for ungrouped data.
Question 3	
If the plotted point in a scatter diagram l	ie from lower left to upper right then
correction is:	
(a) Positive	(b) Negative
(c) Perfectively Negative	(d) Zero
Answer: a	
Explanation:	nom lower left to upper right then it is said
If the plotted point in a scatter diagram here	form lower left to upper fight them it is salu
Question 4	
If concurrent coefficient is $\frac{1}{\sqrt{2}}$. If sum of d	eviation is n 6 for n pairs of data?
(a) 9	(b) 8
(c) 10	(d) 11
Answer: c	
For more Info Vis	it - www.KITest.in

11 1 11

6262969699

Explanation:
Given
$$r_c = \frac{1}{\sqrt{3}}$$
, $n = ?$
C = 6
Coeff of concurrent deviation
 $r_c = \pm \sqrt{\frac{2c - m}{m}}$
 $\frac{1}{\sqrt{3}} = \pm \sqrt{\frac{2 \times 6 - m}{m}}$
On squaring both side
 $\left[\frac{1}{\sqrt{3}}\right]^2 = \left[\pm \sqrt{\frac{12 - m}{m}}\right]^2$
 $\frac{1}{3} = \frac{12 - m}{m}$
m = 36 - 3m
m + 3m = 36
4m = 36
m = $\frac{36}{4} = 9$
n = m + 1 = 9 + 1 = 10

Question 5

Which of the following is used he find correlation between two qualitative characteristics

- (a) Karl Pearson
- (c) Concurrent deviation

- (b) Spearman rank correlation
- (d) Scatter diagram

Answer: b

Explanation: Spearman's rank correlation coefficient is used to find correlation between two qualititative characteristics.

Question 6

Scattered diagram is used the plot

(a) Quantitative data(c) Discrete data

(b) Qualitative data (d) Continuous data

Answer: a Explanation:

Scattered diagram is used to plot quantitative data.