CHAPTER - 18 INDEX NUMBER

UNIT - I
 INIDEX NUMBER

For more Info Visit - www.KITest.in

Price relatives are helpful in understanding and interpreting changing economic and business conditions over time.

PRICE RELATIVE

A price relative shows how the current price per unit for a given item compares to a base period price per unit for the same item.

A price relative expresses the unit price in each period as a percentage of the unit price in the base period

AGGREGATE PRICE INDEXES

An aggregate price index is developed for the specific purpose of measuring the combined change of a group of items

An unweighted aggregate price index in period t,

1

Laspyre's Price index number
$P_{01}=\frac{\sum p_{1} q_{0}}{\sum p_{0} q_{0}} \times 100$

Where

, $P_{1}=$ Price of the current year
$\mathrm{P}_{0}=$ Price of the base year
$q_{0}=$ Quantity of the base year

3

Marshall-Edgewoths's Price index number

$$
\frac{\sum\left(q_{0}+q_{1}\right) \times p_{1}}{\sum\left(q_{0}+q_{1}\right) \times p_{0}} \times 100
$$

, Where

- P1=Price of the current year
, $\mathrm{P} 0=$ Price of the base year
, qo=Quantity of the current year
- $q 1=$ Quantity of the current year

5

Weighted Price index number

- If Arithmetic Mean is used

$$
\mathrm{P}_{\mathrm{in}}=\frac{\sum \mathrm{pv}}{\sum \mathrm{~V}} \times 10 \mathrm{Cl}
$$

$$
\mathrm{P}=\frac{\mathrm{p}_{1}}{\mathrm{p}_{0}} \times 100
$$

, Where

$$
\mathrm{V}=\mathrm{Poqq} 0
$$

P1=Price of Current Year
, $\mathrm{P} 0=$ Price of base year

2

Paasche's Price index number

$$
P_{01}=\frac{\sum p_{1} q_{1}}{\sum p_{0} q_{1}} \times 100
$$

, Where
, P1=Price of the current year

- P0=Price of the base year
, $q 1=$ Quantity of the current year

4

Fisher's Price index number

$$
\begin{aligned}
& \mathrm{P}_{01}=\sqrt{\mathrm{L} \times \mathrm{P}} \\
& \mathrm{p}_{01}=\sqrt{\frac{\sum \mathrm{p}_{1} q_{0}}{\sum p_{0} q_{0}} \times \frac{\sum p_{1} q_{1}}{\sum p_{0} q_{1}} \times 100}
\end{aligned}
$$

- Where
, L= Laspyre's Price Index number
, P=Paachee's Price Index number

6

Weighted Price index number

- If Geometric Mean is used

$$
P_{01}=\text { Anti } \log \left[\frac{\sum V \log P}{\sum V}\right] \times 100
$$

, Where
, P1=Price of Current Year
, $\mathrm{P} 0=$ Price of base year

- $\mathrm{V}=\mathrm{P} 0 \mathrm{q} 0$

QUANTITY INDEXES

QUANTITY INDEXES NUMBERS

An index that measures changes in quantity levels over time is called a quantity Index.

Probably the best known quantity Index is the Index of Industrial Production.

1. Simple Aggregate of Quantities $=\frac{\sum Q_{n}}{\sum Q_{0}}$
2. The simple average Quantity relatives $\frac{\sum Q_{n}}{\frac{\sum 0_{0}}{N}}$
3. Weighted Aggregate Quantity indices
i. With base your weight (Laspyres's Index) $\frac{\sum Q_{n} p_{0}}{\sum Q_{o} p_{0}} \times$ 100
ii. With Current year weight (Paasche's Index) $\frac{\sum Q_{n} p_{n}}{\sum Q_{o} n} \times$ 100
iii. Geometric Mean of (1) and (2) $\sqrt{\frac{\sum Q_{n} P_{0} \sum Q_{n} P_{n}}{\sum Q_{0} P_{0} \sum Q_{0} P_{n}} \times 100}$
iv. Base year average of quantity relatives $\frac{\sum \frac{Q_{n}}{Q_{0}} \times\left(P_{0} Q_{0}\right)}{\sum P_{0} Q_{0}} \times$ 100

\section*{| VALUE INDEX | $\frac{\sum V_{n}}{\sum V_{0}}=\frac{\sum P_{n} Q_{n}}{\sum P_{0} Q_{0}}$ |
| :---: | :--- |}

TEST OF ADEQUACY OF INDEX NUMBERS	Time Reversal Test
UNIT TEST	Thircular Test Test The Unit test requires that the formula for constructing an index should be independent of the units in which, prices and quantities are quoted. All formulae except the simple (un weighted) aggregate index formula satisfy this test.

TIME REVERSAL TEST

FACTOR

 REVERSAL TESTA method satisfies time reversal test if it gives $P_{01} \times P_{10}=1$ Where P_{01} is the price index number for the current year P_{10} is the index number of the base year, taking current year as the base,
Both the indices without the factor 100.

A method satisfies factor reversal test if it gives

$$
P_{01} \times q_{01}=\frac{\sum p_{1} q_{1}}{\sum p_{0} q_{0}}
$$

Where P_{01} is the price index for the currentyear q_{01} is the quantity index for the current year Fishers index umber only satisfies the factor reversal test

CHAIN BASE
INDEX
NUMBERS

Chain base index numbers is one in which the figures for each are first expressed s percentage of the preceding year. The percentage of chained together by successive multiplication to form a series of chain index, in chain base year index method the base year changes from year to year

Link realtive of current year \times chain index Previous year
100
Current year Price Index

$$
\overline{\text { Immediate previous year price relative }} \times 100
$$

Technique of linking two or more index number series with same items and a common overlapping year but with different base period in order to form a continuous series.
Splicing may be forward or backward
SPLICING
Forward Splicing

Splicing	Index no. of old series	Index no. of new series
Backward	No change	$=($ Index number of old Splicing en index No. of new series

	Index number using new base Index Number using new base Old index number using old base		
Index number Corresponding new base year			
NUMBER OF INDEX		\quad	1. As the indices are constructed mostly from deliberate
:---			
samples, chances of errors creeping in cannot be always			
avoided.			
2. Since index numbers are based on some selected items, they			
simply depict the broad trend and not the real picture.			
3. Since may methods are employed for constructing index			
numbers, the result gives different values and this at times			
create confusion.			
Deflated Time series using index Numbers			
Delated Value $=\frac{2}{\text { Price index of t value current year or }}$			

Questions

Question 1

Construct the following indices by taking 1997 as the base:
(i) Simple Aggregative price Index

Item	A	B	C	D	E
Price Rs. (1997)	6	2	4	10	8
Price Rs. (1998)	10	2	6	12	12
Price Rs. (1999)	15	3	8	14	16

(a) $140,186.67$
(b) $120.90,140.6$
(c) $140,120.90$
(d) 56,420

Answer: A
Explanation:

Item	$\mathbf{P}_{\mathbf{0}}$	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{1}=\frac{\mathbf{P}_{\mathbf{1}}}{p_{0}} \times 100$	$\mathbf{P}_{\mathbf{2}}=\frac{\boldsymbol{p}_{\mathbf{2}}}{P_{0}} \times 100$
A	6	10	15	166.67	250
B	2	2	3	100.00	150
C	4	6	8	150.00	200
D	10	12	14	120.00	140
E	8	12	16	150	200
	$\sum \mathrm{P}_{0}=30$	$\sum \mathrm{P}_{1}=42$	$\sum \mathrm{P}_{2}=56$	$\sum\left(\frac{P_{1}}{P_{0}} \times 100\right)=$	$\sum\left(\frac{P_{2}}{P_{0}} \times 100\right)=$
				686.67	940

Simple Aggregative Price Index:
$\mathrm{P}_{01}=\frac{\sum p_{1}}{\sum P_{0}} \times 100 \frac{42}{30} \times 100=140 \quad$ (for 1998)
$\mathrm{P}_{02}=\frac{\sum P_{2}}{\sum P_{0}} \times 100 \frac{56}{30} \times 100=186.67$ (for 1999)

Question 2

A composite price index where the prices of the item composite are weighted by their relative importance is known as the
(a) Price relative
(b) CPI
(c) Weight aggregate price
(d) None of these

Answer: C
Explanation:

Weight aggregate price index the ratio of the sum of weighted price of current and base time period multiplied by 100 is called weight aggregate price index. This index is calculated allocating weight to each commodity on the basis of their relative importance

Question 3

A weighted aggregate price index where the weight for each item is its current period quantity is called the
(a) Aggregate index
(b) Consumer index
(c) Laspeyres index
(d) Paasche index

Answer: D

Explanation:

Paasche index, index developed by German economist Herman Paasche for measuring current price or quantity levels relative to those of selected base period. It differs from the Laspeyres index in that it uses current - period weight

Question 4

An index that is designed to measure changes in quantities over time is known as the:
(a)Quantity index
(b) Time index
(c) Paasche index
(d) None of these

Answer: A

Explanation:

Index number. As index number is an economic data figure reflecting price or quantity compared with a standard or base value. The base usually equals 100 and the index number is usually 100 times the ratio the base value.

Question 5

Index number is expressed in:
(a) Ratio
(b) Squares
(c) Percentages
(d) Combination

Answer: C
Explanation:
Index number are value expressed as percentage of a single base figure. For example. if annual production of a particulars. Chemical rose by 35% output in the second year was 135% of that in the first year. Index terms, output in the two years was 100and 135 respectively. Index number have no units

Question 6

Indices calculated by the chain base method are free from:
(a) Seasonal variation
(b)Errors
(c) Percentages
(d) Ratio

Answer: A

Explanation:

A value in any specific time period base on the value of the same entity in the preceding period. Changes in the value can be compared between sequential time periods. This differs from a fixed base index in which value in any period are based o the initial value.

Question 7

Consumer price index number is obtained by:
(a) Laspeyres formula
(b) Fisher ideal formula
(c) Marshall Edgeworth formula
(d) Paasche formula

Answer: A
Explanation:
Laspeyres formula. Laspeyres suggested this index formula in 1871, in case of calculating the price index, assuming that for individual item. Price at the base period to be $P_{i} 0$, and quantity at the base period to be $Q_{I} 0$, the following equation is called "Laspeyres formula".

Question 8

The most appropriate average the price relatives is:
(a) Median
(b) Harmonic mean
(c) Article mean
(d) Geometric mean

Answer: D
Explanation:
Geometric mean index number is a multiplicative aggregation of (price or quantity) ratio with their importance exponents /weight derived from one or literature on index number theory

Question 9

The test which is lot obeyed by any of the weighted index numbers unless the weights are constant:
(a) Circular test
(b) Time reversal test
(c) Factor reversal test
(d) None of them

Answer: A
Explanation:
According to this rest the product of price index must be equal to the value index Note1. Since Fisher index number satisfied both time reversal test, it is called an ideal index number, Circular test it is generalized of the time reversal test.

Question 10

Index number having upward basis is:
(a) Laspeyres index
(b) Paasche`s index (c) Fisher`s index
(d) Marshall Edgeworth index

Answer: B

Explanation:

Paasche index, index developed by German economist Herman Paasche for measuring current price or quantity level relative to those of a selected base period. it differs from the Laspeyres index in that uses current period weighting

Question 11

Marshall Edgeworth price index was proposed by:
(a) One English economist
(b) Two English economist
(b) Three English economist
(d) Many English economist

Answer: b
Explanation:
The Marshall - Edge worth index credited to Marshall (1887) and Edge worth (1925) is a weight relative of current period to base period set o price This index uses the arithmetic average of the current and based period quantities for weighted it is considered a pseudo - superlative formula and is symmetric.

Question 12

Panache`s price index number is also called
(a) Base year weight
(b) Current year weight
(c) Simple aggregative index
(d) Consumer price index
Answer: B

Explanation:
Passche index, index developed by German economist Herman Passche for measuring current price of quantity level to those of selected base period. it differs from the Laspeyres index in that it uses current period weight

Question 13

The major groups for whom the consumer price index number are constructed in India
(a) The industrial workers
(b) The urban non- manual workers and
(c) The agricultural workers
(d) All of these
Answer: D
Explanation:
Consumer price index member are having types:
The industrial worker
The urban non - manual worker and
The agriculture labors.

Question 14

From the following data construct price index of 1995 taking 1990 as base by using Average price Relative Method:

Commodity	A	B	C	D
Price in 1990 Rs.	60	45	80	25
Price in 1995 Rs.	75	50	70	40

(a) 120.90
(b) 12.60
(c) 809.56
(d) 12.888

Answer: A
Explanation:

Commodity	$\mathbf{P}_{\mathbf{0}}$	$\mathbf{P}_{\mathbf{1}}$	$\frac{\mathbf{P}_{\mathbf{1}}}{\boldsymbol{P}_{\mathbf{0}}} \times \mathbf{1 0 0}$
A	60	75	125
B	45	50	111.11
C	80	70	87.50
D	25	40	160
Total	210	235	

Question 15

Calculating weighted aggregate price index from the following data using Laspeyre's method

Base Period	Current period			
Price	Quantity Price		Quantity	
A	2	10	4	5
B	5	12	6	10
C	4	20	5	15
D	2	15	3	10

(a) 155.09
(b) 12.60
(c) 135.26
(d) 12.888

Answer: C
Explanation:

Commodity								
A	2	10	4	5	20	40	10	20
B	5	12	6	10	60	72	50	60
C	4	20	5	15	80	100	60	75

Question 16
Calculate weighted aggregate price index member from the following data by using paasches method

Commodity	Base year		Current	
	Price	Quantity	Price	Quantity
A	$\mathbf{1 0}$	30	$\mathbf{1 2}$	50
B	8	15	10	$\mathbf{2 5}$
C	6	20	6	$\mathbf{3 0}$
D	4	10	6	20

(a) 199.79
(b) 119.79
(c) 135.26
(d) 12.888

Answer: B
Explanation:

Commodity	P					
A	10	30	12	50	500	600
B	8	15	10	25	200	250
C	6	20	6	30	180	180

Question 17
Calculate Laspeyres and Passche index for the following data:

Commodity	$\mathbf{1 9 7 0}$		$\mathbf{1 9 9 0}$	
	Price	Expenditure	Price	Expenditure
A	8	100	10	90
B	10	60	11	66
C	5	100	5	100
D	3	30	2	24
E	2	8	10	20

(a) $109.73,107.91$
(b) $119.79,169.56$
(c) $135.26,0.465$
(d) 135.26, 0.465

Answer: A
Explanation:
Since we are given the expenditure and price we can obtain the quantity by dividing expenditure by the price for each commodity.

E								
A	8	12.50	10	9	100	125	72	90
B	10	6.0	11	6	60	66	60	66
C	5	20.0	5	20	100	100	100	100
D	3	10.0	2	12	30	20	36	24

Question 18
Calculate weighted average of price relative index from the following data

Item	Weight in \% (Rs)	Base year Price (Rs)	Current year Price (Rs)
A	40	2	4
B	30	5	6
C	20	4	5
D	10	2	3

(a) 215
(b) 156
(c) 965
(d) 325

Answer: B
Explanation:

Item	\mathbf{W}	$\mathbf{P}_{\mathbf{0}}$	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{R}=\frac{p_{\mathbf{1}}}{P_{0}} \times \mathbf{1 0 0}$	$\mathbf{R W}$
A	40	2	4	$\frac{4}{2} \times 100=200$	8000
B	30	5	6	$\frac{6}{5} \times 100=120$	3600
C	20	4	5	$\frac{5}{4} \times 100=125$	2500
D	10	2	3	$\frac{3}{2} \times 100=150$	1500
Total					$\sum R W$ $=15600$

$\mathrm{P}_{01}=\frac{\sum R W}{\sum W}-\frac{15600}{100}-156$

Question 19

The monthly capital expenditure incurred by worker of an industrial center during 1980 and 2005 on the following item are given below: The weights of these item are $75,10,5,6$ and 4 respectively Prepare a weighted index number cost of living for 2005 with 1980as base.

Item	Price in 1980	Price in 2005
Food	100	200
Clothing	20	25
Fuel and Lighting	15	20
Music	30	40
House Rent	35	65

(a) 185
(b) 156
(c) 165
(d) 325

Answer: A

Explanation:

Item	\mathbf{W}	$\mathbf{P}_{\mathbf{0}}$	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{R}=\frac{\mathbf{P}_{\mathbf{1}}}{\boldsymbol{P}_{\mathbf{0}}} \times$ $\mathbf{1 0 0}$	$\mathbf{R W}$
Food	75	100	200	200	15000
Clothing	10	20	25	125	1250
Fuel and Light	5	15	20	133.33	666.65
Music	6	30	40	133.33	799.98
House Rent	4	35	65	185.71	742.84
					$\mathbf{\sum P W}=\mathbf{1 8 4 5 9 . 4 7}$

CPI $=\frac{\sum R W}{\sum W}=\frac{18459.47}{100} 184.59=185$ (Approx)

Question20

An enquiry into the budget of the middle-class families in a certain city gave the following information:

Expenses on Item	Food $\mathbf{3 5 \%}$	Fuel $\mathbf{1 0 \%}$	Clothing $\mathbf{2 0 \%}$	Rent $\mathbf{1 5 \%}$	Music $\mathbf{3 0 \%}$
Price in 2004 (Rs.)	1500	250	750	300	400
Price in 1995 (Rs.)	1400	200	500	200	250

(a) 165.62
(b) 134.5
(c) 165.60
(d) 325.8

Answer: B
Explanation:

Item	Win \%	$\mathbf{P}_{\mathbf{0}}$	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{R}=\frac{p_{\mathbf{1}}}{p_{0}} \times$ $\mathbf{1 0 0}$	R W
Food	35	1400	1500	107.14	3750
Fuel	10	200	250	125.00	1250
Clothing	20	500	750	150.00	3000
Rent	15	200	300	150.00	2250
Music	20	250	400	160.00	3200

CPI $=\frac{\sum R W}{\sum W}=\frac{13450}{100}=134.5$
Question 21
Calculate the cost of living index number using family budget method

Commodities	Wheat	Rice	Pulses	Ghee	Sugar	Oil	Fuel	Cloths
Unit	200	50	56	20	40	50	60	10

consumed in								
Price Rs. in Bose	1.0	3.0	4.0	20.0	2.5	10.0	2.0	15.0
Price Rs. In C. Y	1.2	3.5	5.0	30.0	5.0	15.5	2.5	18.0

(a) 166.62
(b) 136.88
(c) 165.870
(d) 325.8

Answer: B
Explanation:

Commodities	Q_{0}	P_{0}	P_{1}	$\mathrm{R}=\frac{P_{1}}{P_{0}} \times$ 100	$\mathrm{~W}=\mathrm{P}_{0} \mathrm{q}_{0}$	RW
Wheat	200	1.0	1.2	120.00	200	24000
Rice	50	3.0	3.5	116.67	150	175.00 .5
Pulses	56	4.0	5.0	125.00	224	28000
Ghee	20	20.0	30.0	150.00	400	60000
Sugar	40	2.5	5.0	200.00	100	20000
Oil	50	100	15.5	155.00	500	77500
Fuel	60	2.0	2.5	125.00	120	15000
Cloths	40	15.0	18.0	120.00	600	72000
					$\sum \mathrm{w}=22$	$\sum \mathrm{RW}=$

CPI $=\frac{\sum R W}{\sum W}=\frac{314000.5}{2294}=136.88$

Question 22

If the salary of person in the base year is Rs. 4,000 per annum and the current year salary is Rs. 6,000 by how much should hid salary rise to maintain the same standard of living if The CPI of the current year is 400?
(a) 10000
(b) 13688
(c) 165870
(d) 16000

Answer: D
Explanation:
Salary required in the current year to maintain the same standard of living of base year.
Base year salary $\times \frac{\text { CPI OF CURRENT YEAR }}{\text { CPI OF base year }}=4000 \times \frac{400}{100}$ Rs. 16,000
Current year salary = Rs. 16,000
The increase in current Year salary required $=16000-6000=$ Rs. 10,000

Question 23

Given the following data:

Year	$1995-$	$1996-$	$1997-$	$1998-$	$1999-$	$2000-$	$2001-$	$2002-$
WPI $(1993$	121,6	127.2	132.8	140.7	145.7	155.7	161.3	161

Calculate the inflation of year 1998-99
(a) 5.94%
(b) 59.89%
(c) 4.4%
(d) None

Answer: A
Explanation:
Year 1996-97 $=\frac{X_{1}-X_{t-i}}{X t-i} \times 100 \frac{127.2-121.6}{121.6} \times 100=4.6 \%$
Year 1997-98 $=\frac{X_{1}-X_{t-i}}{X t-i} \times 100 \frac{132.8-127.2}{127.2} \times 100=4.40 \%$
Year 1998-99 $=\frac{X_{t}-X_{t-i}}{Y} \times 100=\frac{140 .-132.8}{132.8} \times 5.94 \%$

Question 24

What will be the real wage of the consumer if his money wage Rs. 10 and the cost of living index is 526 ?
(a) 1900
(b) 1.901
(c) 2186
(d) 4664

Answer: B
Explanation:
Real wages $=\frac{\text { Money Wages }}{\text { Cost of living index }} \times \frac{10.000}{526} \times 100=$ Rs. 1.901

Question25

Index for base period is always taken as:
(a) 100
(b) 0
(c) 200
(d) 1

Answer: A
Explanation:
The index at the base period is usually scaled to 100 or 1000 . for example, that the index at the chosen base period is set to 1000. if at another period is 2000 then the value indicated by the index (e.g., prices) would be estimate double what it was during the base period.

Question 26

When the prices of rice are to be compared, we compute:
(a) Volume Index
(b) Value Index
(c) Price Index
(d) Aggregate Index

Answer: C
Explanation:

Price index. Measure of relative price changes, consisting of a series of numbers are arranged so that a comparison between the values for any two period of places will show the average changes in price between period or the average difference in prices between places.

Question 27

Which formula is used in chain indices?
(a) $\frac{\sum P_{n}}{\sum P_{o}} \times 100$
(b) $\frac{P_{n}}{P_{n-1}}$
(c) $\frac{P_{n}}{P_{o}}$
(d) None

Answer: B
Explanation:
In the chain index the comparison takes place always between successive calculation periods. In the chain index the changes in two calculation periods is used to take forward the index point figure of the desired base period in the chain index the weight are changed in principal in each calculation period.

Question 28

An index number that can serve purpose is called
(a) General purpose index
(b) Special purpose index
(c) Cost of living index
(d) None of these

Answer: A

Explanation:

It is used measure the Changes in the wholesale price level of country over a period of time.
It is used measure the changes in the cost of living of a certain selected people living in a certain locally.
It is very much used by the government agencies to for policies on different matter viz.

Question 29

Laspeyres index =110, Paasche index = 108 then fisher ideal index equal to:
(a) 110
(b) 108
(c) 100
(d) 109

Answer: D
Explanation:
$\mathrm{F}=\sqrt{L \times P}$
So. $\sqrt{110 \times 108}=109$

Question 30

Consumer price indexes are obtained by:
(a) Paasche formula
(b) Fisher`s ideal formula
(c) Marshall Edgeworth formula
(d) Family budget method formula

Answer: d

Explanation:

A consumer price index (CPI) measure changes in the price level of market basket of consumer goods and services purchased by household, The CPI is a statistical estimate constructed using the price of a simple of representative item whose prices are collected periodically.

Question 31

Which of the following satisfy the time reversal test?
(a) $P_{01}=\frac{\sum P_{1} q_{0}}{\sum P_{0} q_{0}}$
(b) $\mathrm{P}_{01}=\frac{\sum P_{1} q_{1}}{\sum P_{0} q_{1}}$
(c) $\mathrm{P}_{01}=\sqrt{\frac{\sum P_{1} q_{0}}{\sum P_{0} q_{0}}} \times \frac{\sum P_{1} q_{1}}{\sum P_{0} q_{1}}$
(d) None

Answer: C
Explanation:
Factor reversal test time reversal test This test is proposed by Living fisher According to him an index number (formula) should be such that when the base year and current year are interchanged (reversed) the resulting number should be the reciprocal of the earlier.

Question 32

Simple average method of relative method is equal to:

(a) $\frac{P_{n}}{P_{o}} \times 100$
(b) $\frac{\sum P_{n}}{\sum P_{0}} \times 100$
(c) $\sum\left(\frac{p_{n}}{P_{0}}\right) \times 100$
(d) $\frac{1}{N} \sum\left(\frac{P_{n}}{P_{0}}\right) \times 100$

Answer: D

Explanation:

In case of un weighted average of relative price relative of each commodity is first calculated and then the average (mean, median, or geometric mean) of these price relatives for all the commodities is taken average of relatives can be calculated by taking arithmetic mean, geometric mean or median as average.

Question 33

Link relative of current year is equal to:

(a) $\frac{\text { Price of the current year }}{\text { price of the base year }} \times 100$
(b) $\frac{\text { Price of the base year }}{\text { price in the precending year }} \times 100$
(c) $\frac{\text { Price in the current year }}{\text { price in the precending year }} \times 100$
(d) $\frac{\text { Price in the precending year }}{\text { price in the current year }} \times 100$

Answer: C
Explanation:
This method of finding the seasonal indices in the form of the chain relatives was
(C) $\frac{\text { PRICE IN THE CURRENT YEAR }}{\text { PRICE IN THE PRCENDING YEAR }} \times 100$

Development by Prof. Karl Person and hence this method is also known as the person method of seasonal variation Hence is correct answer.

Question 34

Marshall Edge worth price index was proposed by:
(a) Only English economist
(b) Two English economist
(c) Three English economist
(d) May English economist

Answer: B

Explanation:

The Marshall Edgeworth index credited to Marshall (1887) and Edgeworth (1925) is a weighted relative current period to base period seats of prices this index uses the arithmetic a pseudo- superlative formula and is symmetric.

Question 35
Write down formula calculating inflation rate:
(a) $\frac{X_{1} X_{t-1}}{X_{1-1}} \times 100$
(b) $\frac{\sum P_{n} q_{n}}{\sum P_{o} q_{o}} \times 100$
(c) $\frac{P_{a}}{P_{a-1}} \times 100$
(d) None

Answer: A
Explanation:
Inflation rate $=\frac{X_{t}-X_{t-i}}{x_{t-i}} \times 100$
Where X_{t} refers to WPI for the $(\mathrm{t})^{\text {th }}$ week
X_{t} refers to WPI for the $(\mathrm{t}-1)^{\text {th }}$ week.

Question 36

If all the values are not equal importance the index number is called
(a) Simple
(b) Un weighted
(c) Weighted
(d) None

Answer: C
Explanation:
When all commodities are not equal importance, we assign to each commodity relative to its importance and the index computed from the weight is called weighted index number

Question 37

In fixed base method the base period should be:
(a) For away
(b) Abnormal
(c) Unreliable
(d) Normal

Answer: D

Explanation:

The value in any specific time period is based on the value in the initial time period and this base remains unchanged through the index. This is different from chain base index in which values in any period are based on the preceding time period

Question 38

How many types are used in the calculation number?
(a) 2
(b) 3
(c) 4
(d) 5

Answer: B

Explanation:

Index number are used as an indicate the changes in economic activity they also provide framework for decision making and to period future event. There are three types of index number are generally used they are price index, quantity index, and value index.

PAST EXAMINATION QUESTIONS: MAY 2018

Question 1

A series of numerical figure show the relative position is called:
(a) Index number
(b) Relative number
(c) Absolute number
(d) None

Answer: A
Explanation:
A series of numerical figures which show the relative called Index Number:

Question 2

P 01 is the index for time:
(a) 1 on 0
(b) 0 on 1
(c) 1 on 1
(d) 0 on 0

Answer: A
Explanation:
P01 is the index number 1 on 0 .

Question 3

if $\Sigma P_{0} Q_{0}=1360, \Sigma P_{n} Q_{0}=1990, \Sigma P_{0} Q_{0}=1344, \Sigma P_{0} Q_{n}=1880$ then the Laspeyra`s index number is:
(a) 0.71
(b) 1.39
(c) 1.75
(d) None

Answer: B

Explanation:

if. if $\sum \mathrm{P}_{0} \mathrm{Q}_{0}=1360, \sum \mathrm{P}_{0} \mathrm{Q}_{0}=1990, \sum \mathrm{P}_{0} \mathrm{Q}_{\mathrm{n}}=1344, \sum \mathrm{P}_{0} \mathrm{Q}_{\mathrm{n}}=1880$ then the Laspeyre`s index no. $\frac{\sum P_{n} Q_{0}}{\sum P_{0} Q_{0}}=\frac{1900}{1360}=1.3970$

Question 4

Price relative is expressed in term of
(a) $\mathrm{P}=\frac{P_{n}}{P_{0}}$
(b) $\mathrm{P}=\frac{P_{0}}{P_{n}}$
(c) $\mathrm{P}=\frac{P_{1}}{P_{0}} \times 100$
(d) $\mathrm{P}=\frac{P_{0}}{P_{n}} \times 100$

Answer: C
Explanation:
Price relative $\quad \mathrm{P}=\frac{P_{1}}{P_{0}} \times 100$

Question 5

Circular test is satisfied by:
(a) Laspeyre`s index number
(b) Paasche index number
(c) The simple geometric mean of price relatives
(b) None of these
and the weighted aggregative weight
Answer: C

Explanation:

Circular test is satisfied by the simple geometric mean an of price relative weighted aggregative with fixed weighted

Question 6

If the 1970 index with base 1956 is 200 and 1965 index weighted 150 the index 1970 on base 1960 will be:
(a) 700
(b) 300
(c) 500
(d) 600

Answer: B
Explanation:
Let $1960 \quad 19651970$
$\begin{array}{lll}\mathrm{P}_{0} & \mathrm{P}_{1} & \mathrm{P}_{2}\end{array}$
Index no. of 1965 with base year 1960
$\mathrm{P}_{0}=\frac{P_{2}}{P_{1}} \times 100=150$
$\frac{P_{1}}{P_{0}}=\frac{150}{100}$

Index no of 1970 with the base 1965
$\mathrm{P} \infty=\frac{P_{2}}{p_{1}} \times 100=200$
$\frac{P_{2}}{p_{1}}=\frac{200}{100}$
Multiply equation (1) (2)
$\frac{P_{1}}{P_{0}} \times \frac{p_{2}}{p_{1}}=\frac{150}{100} \times \frac{200}{100}$
$\frac{p_{2}}{p_{0}}=3$
$\frac{P_{1}}{P_{0}}=100$
$\frac{p_{2}}{p_{1}} \times 100=3 \times 100$
$\mathrm{P} \infty=300$

Nov 2018

Question 1

Which of the following statement is true?

(a) Passhe`s is index number is based on the base year quantity (c) Arithmetic mean is the most appropriate average for constructing the index number (b) Fisher index number is the arithmetic mean of Laspeyre`s index number and Paasche`s index number
(d) Fisher index number is an ideal index number

Answer: d
Explanation:
Fisher index number is an ideal index NO.

Question 2

It Laspeyre`s index number is 250 and Paasche index number is $\mathbf{1 6 0}$ then Fisher index number is:
(a) 40,000
(b) $\frac{25}{16}$
(c) 200
(d) $\frac{25}{16}$

Answer: C

Explanation:

Laspeyre`s index NO. (l) = 250
Paasche index NO. (p) $=160$
Fisher index NO. $(F)=\sqrt{L \times P}$
$=\sqrt{250 \times 160}$
$=\sqrt{40,000}$
$=200$
Question 4
If $\sum P_{0} Q_{0}=240, \Sigma P_{0} Q_{1}=480, \Sigma P_{1} Q_{0}=600, \Sigma P_{1} Q_{1}=192$ the Laspyres's index number is:
(a) 250
(b) 300
(c) 350
(d) 200

Answer: A

Explanation:

If $\sum \mathrm{P}_{0} \mathrm{Q}_{0}=240, \sum \mathrm{P}_{0} \mathrm{Q}_{1}=480, \sum \mathrm{P}_{1} \mathrm{Q}_{0}=600, \sum \mathrm{P}_{1} \mathrm{Q}_{1}=192$
Laspeyra`s index no. $\frac{\sum P_{1} Q_{0}}{\sum P_{0} Q_{0}}=\frac{600}{240} \times 100$
$=250$

May 2019

Question 1

The prices and quantities of 3 commodities in base and current year are as follow:

$\mathbf{P}_{\mathbf{0}}$	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}$
12	14	10	20
10	8	20	30
8	10	30	10
$\mathbf{3 0}$	$\mathbf{3 2}$	$\mathbf{6 0}$	$\mathbf{6 0}$

The Laspeyres price index is:
(a) 128.13
(b) 107.14
(c) 120.10
(d) None

Answer: B
Explanation:
$\mathrm{LA}=\frac{\sum P_{1} Q_{0}}{\sum P_{0} Q_{0}} \times 100$
$=\frac{32 \times 60}{30 \times 60}=\frac{1920}{1800}=1.0777 \times 100$
$=107.4$

Question 2

Which is called an ideal index number?
(a) Laspeyre's index number
(b) Paasche index number
(c) Fisher index number
(d) Marshall Edgeworth number

Answer: C

Explanation:

the reason the fisher index is called the ideal index is twofold because the Paasche
index and the Laspeyre's index. the index satisfies the time reversal test and the factor reversal test

Question 3

The most commonly used mathematical method for finding secular trend is:
(a) Moving average
(b) Semi - average
(c) Least squares
(d) None of these

Answer: B
Explanation:
This method is a simple and relatively objective as the free hand method the data is divided in two equal halves and the arithmetic mean of the two sets of modules of Y is plotted against the center of the relative time span It is the number of observations is even the division into halves will be straight forward

Question 4

Semi average method if the number of values is odd then we drop
(a) First value
(b) Last value
(c) Middle value
(d) Middle two value

Answer: C

Explanation:

If the number of observations is even the division into halves will be straight forward however if the number of observations is odd then the middle most item i.e., $\left(\frac{n+1}{2}\right)$ is dropped the two points so obtained are joined through a straight line which show the trend

Question 5

If Laspeyre's index is L and P Paasche index is P then Fisher index F is $F_{2}=1 \times P$
(a) $\mathrm{F}=\mathrm{L} \times \mathrm{P}$
(a) $\mathrm{F} 2=\mathrm{L} \times \mathrm{P}$
(c) $\mathrm{F} 2=\sqrt{L+P}$
(d) $\mathrm{F}=\frac{1}{L \times P}$

Answer: B
Explanation:
If Laspeyre's index is L and Paasche index is P then Fisher index F is F2 $=\mathrm{L} \times \mathrm{p}$

Nov 2019

Question 1

Fisher`s index does not satisfy:
(a) Circular test
(b) Time reversal test
(c) Factor reversal test
(d) Unit test

Answer: A
Explanation:

Fisher`s ideal formula for calculating index no. satisfies unit test as unit test require that the formula should be independent of the unit in which or for which prices and quantities are quoted and that is full filed by fisher1s ideal index Factor reversal test hold when the product of price index and quantity index should be equal to corresponding value index i.e. \(\frac{P_{1} Q_{1}}{P_{0} Q_{0}}\) \(\mathrm{P}_{01} \times \mathrm{Q}_{01}=\frac{P_{1} Q_{1}}{P_{0} Q_{0}}\) Hence it is satisfied by Fisher`s Ideal index
Time reversal test is a test to determine whether a given method will work both ways in time forward and backward So fisher`s satisfies this test
Circular test: It is concerned with the measurement of price change over a period of year this is not met by Fisher ideal index no.

Question 2

The index number of prices at place in the year 2008 is 225 with 2004 as the base then there is
(a) 125% increase
(b) 225% increase
(c) 100% increase
(d) 25% increase

Answer: A
Explanation:
Let the index no. of price of base year be 100
Year index no.
$2004=100$
Increase $=225-100=25$
So there is 125% increase.

Question 5

In semi average method if the no. of value is are exclude:
(a) First value
(b) Last value
(c) Middle value
(d) None

Answer: C

Explanation:

Semi average method is a method of measurement of secular trend. Under this method the whole the series data is classified into two equal parts and the average for each half are calculated. If the data is for even no. of year it is easily divided into two. If data is for odd no. of year then the middle year of the time series is left and the two halves are constituted with the period on each side of middle year.

DEC 2020

Question 1

Index Number are expressed as \qquad
(a) Squares
(b) Ratios
(c) Percentages
(d) Combinations

Answer: C
Explanation:
Index numbers provide a simple way of representing changes over time. Each value is expressed as a percentage of a base value which is the value that occurred in a base period. The index numbers below show how average earnings in different sectors changed between 2000 and 2006.

Question 2

If Laspeyre's index number is 110 and Fisher's ideal Index number is 109. Then Paasche's Index number is
(a) 108
(b) 110
(c) 109
(d) 118

Answer: A
Explanation:
Laspeyre's Index (L.I.) =110
Paasche's Index (P.I.) =108
Fisher's Ideal Index $=\sqrt{\text { L.I. } \times P . I .}$
$=\sqrt{110 \times 109}$
$=108$

IAN 2021

Question 1

The cost of living index is always
(a) Price index number
(b) Quantity index number
(c) Weighted index number
(d) Value index number

Answer: C

Explanation:

The cost of living index is always Weighted index number - The cost-of-living index, or general index, shows the difference in living costs between cities. The cost of living in the base city is always expressed as 100 . The cost of living in the destination is then indexed against this number.

Question 2
 Fisher's index number does not satisfy.

(a) Unit test
(b) Circular Test
(c) Time reversal test
(d) Factor reversal test

Answer: B

Explanation:

The circular test is satisfied by. Fisher's index number.

Question 3

When the prices for quantities consumed of all commodities are changing in the same ratio, then the index numbers due to Laspyres's and Paasche's will be
(a) Equal
(b) Unequal
(c) Reciprocal of Marshall Edge worth
(d) Reciprocal of Fisher Index
index number
number

Answer: A
Explanation:
When the prices for quantities consumed of all commodities are changing in the same ratio, then the index numbers due to Laspyres's and Paasche's will be equal

July 2021

Question 1

The consumer price Index goes up from 120 to 180 when salary goes up from 240 to 540, what is the increase in real terms?
(a) 80
(b) 150
(c) 120
(d) 240

Answer: Options (c)

Question 2

The weighted aggregative price index numbers for 2001 with 2000 as the base year using Paashe,s Index Number is

Commodity	Price (in ₹)		Quantities	
	2000	2001	2000	2001
A	10	12	20	22
B	8	8	16	18
C	5	6	10	11
D	4	4	7	8

(a) 112.32
(b) 112.38
(c) 112.26
(d) 112.20

Answer: Options (d)
Question 3

The weighted aggregative price index numbers for 2001 with 2000 as the base year using Marshal - Edge worth Number is

Commodity	Price (in ₹)		Quantities	
	2000	2001	2000	2001
A	10	12	20	22
B	8	8	16	18
C	5	6	10	11
D	4	4	7	8

(a) 112.26
(b) 112.20
(c) 112.32
(d) 112.38

Answer: Options (a)

Question 4

The weighted aggregative price index numbers for 2001 with 2000 as the base year using Fisher's Index Number is

Commodity	Price (in ₹)		Quantities	
	2000	2001	2000	2001
A	10	12	20	22
B	8	8	16	18
C	5	6	10	11
D	4	4	7	8

(a) 112.32
(b) 112.20
(c) 112.32
(d) 112.38

Answer: Options (d)

DEC 2021

Question 1
If P_{10} and P_{01} are index for 1 on 0 and 0 on 1 respectively then formula $P_{01} \times P_{10}=$ 1 is used for
(a) Unit test
(b) Time Reversal Test
(c) Factor Reversal test
(d) Circular Test

Answer:

Explanation:
$\mathrm{P}_{01} \times \mathrm{P}_{10}=1$ is used for 'Time Reversal Test'.

Question 2

The weighted averaged of price relatives of commodities, when the weights are equal to the value of commodities in the current year, yields \qquad index number.
(a) Fisher's ideal
(b) Laspeyres's
(c) Paasches
(d) Marshall Edgeworth

Answer: c

Explanation:

The weighted Averaged of Price relatives of commodities, when the weights are equal to the value of commodities in the current year yield Paasche's Index No.

Question 3

From the following data base year:

	Commodity	Base Year		Current year
	Price	Quantity	Price	Quantity
A	4	3	6	2
B	5	4	6	4
C	7	2	9	2
D	2	3	1	5

Fisher's ideal Index is
(a) 117.30
(b) 115.43
(c) 118.35
(d) 116.48

Answer: a
Explanation:
Fisher's Index
$=\sqrt{\frac{\sum P_{n} Q_{0}}{\sum P_{0} Q_{0}} \times \frac{\sum P_{n} Q_{n}}{\sum P_{0} Q_{n}}} \times 100$
$=\sqrt{\frac{(6 \times 3)+(6 \times 4)+(9 \times 2)+(1 \times 3)+(6 \times 2)+(6 \times 4)}{(4 \times 3)+(5 \times 4)+(7 \times 2)+(2 \times 3)+(4 \times 2)+(5 \times 4)}}$
$=\sqrt{\frac{63}{52} \times \frac{59}{52}} \times 100=117.3$

Question 4

Index numbers are not helpful in
(a) Framing economics policies
(b) Revealing trend
(c) Forecasting
(d) Identifying errors

Answer: d

Explanation:

Index numbers are not helpful in Identifying Errors.

Question 5

The three index numbers, namely, Laspeyre, Paasche and Fisher do not satisfy
test.
(a) Time reversal
(b) Factor reversal
(c) Unit
(d) Circular
Answer: d
Explanation:
Laspeyre, Paasche and Fisher donot satisfy circular test.

JUNE 2022

Question 1

Geometric mean method used in which index number to find it out
(a) Laspeyres
(b) Paasches
(c) Fishers index Number
(d) None

Answer: c
Explanation:
Geometric mean Method used in Fisher's Index No to find it out.

Question 2

Which test is known for shift base index no.
(a) Factor test
(b) Unit test
(c) Circular test
(d) Time reveral test

Answer: c
Explanation:
Circular test is known for shift base Index No

Question 3

Laspeyre and Paasche do not satisfy -
(a) Unit Test
(b) Factor Test
(c) Time Reversal Test
(d) Bowley's Test

Answer: c
Explanation:
Laspeyre and paasche do not satisfy 'Time Reversal Test

Question 4

Laspeyer's index number is based on?
(a) Last year weight
(b) Present year weight
(c) Last year value
(d) Present year value

Answer:

Explanation:

Laspeyres Index Number is based on last year weight.

Question 5

Price relative is-
(a) $\frac{P_{1}}{P_{0} \times 100}$
(b) P
(c) P_{0}
(d) $\frac{P_{1}}{P_{0}}$

Answer: a
Explanation:
Price relative (R) $\frac{P_{1}}{P_{0}} \times 100$

Question 6

Which one of the following is not appropriate for calculation of index number?
(a) Unit Test
(b) Price Relative Test
(c) Circular Test
(d) Time Reversal Test

Answer: b

Explanation:

Price Relative test is not appropriate for calculation of Index No.

