

For Enquiry – 62629	69604 6262969699
	The number of permutations of n things chosen r at a time is given by
	${}^{n}P_{r} = n(n-1)(n-2)(n-r+1)$
	Where the product has exactly r factors.
	(a) n ordinary permutations equal one circular permutation.
Circular	Hence there are ${}^{n}P_{n}/n$ ways in which all the <i>n</i> things can be arranged in a circle. This equals $(n-1)!$.
Permutations	(b) The number of necklaces formed with n beads of different colors
	• Number of permutations of n distinct objects taken r at a time when a particular object is not taken in any arrangement is $n^{-1}p_{r}$.
	 Number of permutations of r objects out of n distinct objects when a particular object is always included in any arrangement
Combinations	The number of ways in which smaller or equal number of things are arranged or selected from a collection of things where the order of selection or arrangement is not important, are called combinations.
	${}^{11}C_{r} = n!/r! (n - r)!$
	$^{11}C_r = ^{11}C_{n-r}$
	$\mathbf{n}_{\mathbf{O}} = n! / \{0! (n-0)!\} = n! / n! = 1.$
	${}^{\mathbf{n}}\mathbf{C}_{\mathbf{n}} = n! / \{n! (n-n)!\} = n! / n! \cdot 0! = 1.$
	$^{11}C_r$ has a meaning only when r and n are integers 0^{12} r ⁿ and $^{11}C_n$, r has a meaning only when $0n-r^n$.
	• $n+1C_n = nC_n + nC_{n-1}$
	• $nP_r = n - 1P_r + r^{n-1}P_{r-1}$
	Permutations when some of the things are alike, taken all at a time
Permutations	Permutations when each thing may be repeated once, twice, up tor times in any arrangement =n!.
	The total number of ways in which it is possible to form groups by
	5. 2 For more Info Visit - www.KITest.in

taking some or all of n things $(2^{n}-1)$.

The total, number of ways in which it is possible to make groups by taking some or all out of n $(=n_1 + n_2 + n_3 + ...)$ things, where n₁ things are alike of one kind and so on, is given by

 $\{(n_1 + 1) (n_2 + 1) (n_3 + 1)...\} - 1$

The combinations of selecting r_1 things from a set having n_1 objects and r_2 things from a set having n_2 objects where combination of r_1 things, r_2 things are independent

Question 1

An examination paper consists of 12 questions divided into parts A and B Part A contains 7 questions and part B contains 5 questions. A candidate is required to attempt 8 questions selecting at least from each part. In how many maximum ways can the candidate select the question?

(a)	35
(c)	210

(b)	175
(d)	420

Answer: d

Explanation:

The candidate can select 8 questions by selecting at last " three from each part in the following ways:

3 questions from part A and 5 questions from part B = $7_{C_3} \times 5_{C_5} = 35$ ways 4 questions from part A and part B each

 $= 7_{C_4} \times 5_{C_4} = 175$ Ways.

Questions from part A and 3 questions from part $B = 7_{C_5} \times 5_{C_3} = 210$ ways Hence, the total number of ways in which the candidate can select the question will be = 35 + 175 + 210 = 420 ways

Question 2

Code word is to consist of two English alphabets followed by two distinct numbers between 1 and 9. How many such code words are there? (a) 6,15,800 (b) 46,800

(c) 7,19,500 Answer: b	(d) 4,10,800
Fynlanation	
The number of ways filling the first two	places with English alphabets = 26 × 25 =
The number of ways of filling the last tw	vo places with distinct numbers = 9 × 8 =
The numbers of code words that can be = 46800	formed are = 650×72
Question 3 A boy has 3 library tickets and 8 boo 8, he does not want to borrow Mathe part – I is also borrowed? In how may to be borrowed?	ks of his interest in the library of these matics part – II unless Mathematics ny ways can he choose the three books
(a) 41	(b) 51
(c) 61	(d) 71
Answer: a	
Fynlanation:	
There are two cases possible	
CACE 4 Mail Mail Mail	
CASE 1: When Mathematics Part – II is I	borrowed (i.e. it means Mathematics Part
– I has also been borrowed	
Numbers of ways = 6_{C_1} = 6 ways	
CASE 2: When Mathematics part – II is i	not borrowed (i.e. 3 books are to be
selected out of 7)	
Number of ways $= 7 = 35$ Ways	
Number of ways – 7_{C_3} – 55 ways	
Therefore, total number ways	
35 + 6 = 41 ways	
Question 4	
Find 5!, 4! And 6!	
(a) 720	(b) 120
(a) 380	(d) 620
	(u) 020
Allswell. a	
Explanation:	
$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$: $4! = 4 \times 3 \times 3 \times 3 \times 1 = 120$	$2 \times 1 = 24; 6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$
$\frac{\text{Question 5}}{\text{Find } \frac{9!}{5!}; \frac{10!}{5!}}$	
(a) 630 504	(b) 504 720
(a) 020 620	(d) 121720
(0) 920,030	(u) 121,/20

6262969699

Answer: b Explanation: $\frac{9!}{6!} = \frac{9 \times 8 \times 7 \times 6!}{6!} = \frac{9 \times 8 \times 7}{7!} = \frac{504}{7!}; \frac{10!}{7!} = \frac{10 \times 9 \times 8 \times 7!}{7!} = 720$ $10 \times 9 \times 8 = 720$

Question 6

Find x if $\frac{1}{9!} + \frac{1}{10!} = \frac{x}{11!}$	
(a) 121	(b) 112
(c) 211	(d) 111
Answer: a	

Explanation: We have, $\frac{1}{9!} + \frac{1}{10!} = \frac{x}{11!}$

9! + 10! - 11!

 $\Rightarrow \frac{11}{10} = \frac{\pi}{11 \times 10}$

→ X = 11 × 11 = 121

Question 7

Evaluate each of 5_{P_3} , 10_{P_2} , 11_{P_5} (a) 540 (b) 55440 (c) 5440 (d) 5540 Answer: b Explanation: $5_{P_3} = 5 \times 4 \times (5 - 3 + 1) = 5 \times 4 \times 3 = 60.$ $10_{P_2} = 10 \times \times (10 - 2 + 1) = 10 \times 9 = 90$ $11_{P_5} = \frac{11!}{(11 - 5)} = 11 \times 10 \times 9 \times 8 \times 7 \times \frac{6!}{6!} = 11 \times 10 \times 9 \times 8 \times 7 = 55440$

Question 8

How many three letters words can be formed using the letters of the word SQUARE?

(a) 110

(b) 12

6262969699

(c)120	(d) 210		
Answer: c			
Explanation:			
Since the word 'SQUARE' consists of 6	different letters, the number of		
permutations of choosing 3 letters out	t of six equals $6_{P_3} = 6 \times 5 \times 4 = 120$		
<u>Question 9</u> In how many different wave can five	a parsons stand a line for a group		
nhotograph?	e persons stand a fine for a group		
(a) 110 ways	(b) 120 ways		
(c) 130 ways	(d) 20 ways		
Answer: h	(u) 20 ways		
Explanation:			
Here we know that the order is impor	tant, hence this is the number of		
permutation of five things taken all a	t a time. Therefore, this equals		
$5_{P-} = 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$ wave			
- F 5			
Ouestion 10			
How many three letters words can	be formed using the letters the word		
HEXAGON?	C		
(a) 110	(b) 12		
(c) 120	(d) 210		
Answer: d			
Explanation:			
Since the word 'HEXAGON' contains 7	different letters, the number of		
permutations is $7_{P_3} = 7 \times 6 \times 5 = 210$.			
Question 11			
First, second and third are to be aw	arded at an engineering fair in which 13		
exhibits have been entered. In how	many dif? ferent		
(a) 1110 ways	(b) 1320 Ways (d) 1716 ways		
(c) 1830 ways	(u) 1716 ways		
Allswel: u Evaluation:			
Here order of selection is important a	nd repetitions are not meaningful as no		
exhibit can receive more than one prize	ze Hence the answer is the number of		
normutations of 12 things taken three	a_{12} at a time. Therefore, we find $12 = \frac{13!}{2}$		
	at a time. Therefore, we find $13p_3 - \frac{10!}{10!}$		
$13 \times 12 \times 11 = 1,/16$ ways			
Question 12			

In how many different ways can 3 students be associated with 4 chartered accountants, assuming that each chartered accountant can take at most one student?

(a) 10	(b) 12
(c) 20	(d) 24

Answer: d

Explanation:

This equals the number of permutations of choosing 3 persons out of 4, hence the answer is $4_{p_3} = 4 \times 3 \times 2 = 24$.

Question 13

Compute the sum of 4 digit numbers which can be formed with the four digits 1, 3, 5, 7, if each digit is used only once in each arrangement.

(a) 1,06,656	(b) 1,46,800
(c) 7,19, 500	(d) 4,10,800
Answer: a	

Explanation:

The number of arrangement of 4 different digits taken 4 at a time is given by $4_{p_4} = 4! = 24$. All the four digits will occur equal number of times at each of the positions, namely ones, tens, hundreds, thousands.

Thus, each digit will occur $\frac{24}{4} = 6$ times in each of the positions. The sum of digits in one's position will be $6 \times (1+3+5+7) = 96$. Similar is the case in ten's, hundred's and thousand's places. Therefore, the sum will be $96 + 96 \times 100 + 96 \times 1000 = 106,656$.

Question 14

In how many different ways can a club with 10 members select a President, Secretary and Treasurer, if no member can hold two offices and each member is eligible for any office?

	<u> </u>	
(a) 720		(b) 780
(c) 960		(d) 630
-		

Answer: a

Explanation:

The answer is the number of permutations of 10 persons chosen three at a time. Therefore, it is $10_{P_3} = 10 \times 9 \times 8 = 720$

Question 15

When jiana arrives in New York, she has eight shops to see, but he has time only to visit six of them. In how many different ways can he arrange her schedule in New York?

(a) 20,160

(b) 2016

6262969699

(c) 26105 (d) 21560 **Answer: a Explanation:** She can arrange his schedule in $8_{P_6} = 8 \times 7 \times 6 \times 5 \times 4 \times 3 = 20,160$ ways

Question 16 When Dr. Ramanujan arrives in his dispensary, he finds 12 patients waiting to see him. If he can see only one patient at a time. Find the number of ways; he can schedule his patients if they all want their turn.

(a) 479001600	(b) 79833600
c) 34879012	(d) 67800983
Answer: b	

Explanation: There are 12-3 = 9 patients. They can be seen $12_{P_9} = 79,833,600$ ways.

Question 17

How many arrangements can be made out of the letters of the word 'DRAUGHT' the vowels never beings separated?

(a) 1440	(b) 720
(c) 740	(d) 750

Answer: a

Explanation:

The word 'DRAUGHT' consists of 7 letters of which 5 are consonants and two are vowels. In the arrangement we are to take all the 7 letters but the restriction is that the two vowels should not be separated.

We can view the two vowels as one letter. The two vowels A and U in this one letter can be arranged in 2! = 2 ways. (i) AU or (ii) UA. Further, we can arrange the six letters: 5 consonants and one letter consisting of two vowels. The total number of ways of arranging them is $6_{P_6} = 6! = 720$ ways.

Hence, by the fundamental principle, the total number of arrangements of the letters of the word DRAUGHT, the vowels never being separated = $2 \times 720 = 1440$ ways.

Question 18

An examination paper with 10 questions consists of 6 questions in mathematics and 4 questions in statistic part. At least one question from each part is to be attempted in how many ways can this be done?

(a) 1024 (c) 1000 **Answer: b Explanation:** Total question = 10 (b) 945 (d) 1022

No. of Mathematics questions = 6 No. of statics questions = 4. No. of ways at least one question of Mathematics = $(2^6 1) = (64 - 1) = 63$ No. of ways at least one question of statics = $(2^4 1) = (16 - 1) = 15$ Total no. of ways = $63 \times 15 = 945$

Questions 19

A student has three books on computer, three books on Economics and five books on Commerce. If these books are to be arranged subject wise, then these can be placed on a shelf in the number of ways:

(a) 25290	(b) 25092
(c) 4320	(d) 25920
Answer: d	
Explanation:	
No. of ways = 3! 3! 5! 3!	
$= 6 \times 6 \times 120 \times 6$	
= 216 × 120	

= 25, 920

Questions 20

A person has ten friends of whom six are relatives. If h invites five guests 'SUCH' that three are his relatives, then the total number of ways in which he can invite then are:

(a) 30	(b) 60
(c) 120	(d) 75
Answer: c	
Explanation:	
Total friend: 10	

No. of Relative = 6 No. of friend = 4 No. of ways to invite five guests such that three of them are his relatives. = $6_{C_3} \times 4_{C_2}$ = $\frac{6!}{3! \times 3!} \times \frac{4!}{2! \times 2!}$

 $20 \times 6 = 120$

Questions 24

Six seats of articled clerks are vacant in a 'Chartered Accountant Firm'. How many different batches of candidates can be chosen out of ten candidates?

(a) 216

(b) 210

For Enquiry – 6262969604		6262969699
(c) 220 Answer: b Explanation: The number of ways in which 6 articled = 10_{C_6} = 210 ways.	(d) 230 I clerks can be selected out of	10 caildidats
Question 25 Six persons A, B, C, D, E and F are to b many ways can this be done, if A must and B must always have either C or D (a) 3 (c) 12 Answer: d Explanation:	De seated at a circular table. St always has either B or C o D on his right? (b) 6 (d) 18	In how n his right
Using the given restrictions, we must he Therefore, we have the following altern ABC, D, E, F, which gives $(4 - 1)!$ Or $3!$ we ABC, D, E, F which gives $(4 - 1)!$ Or $3!$ we AC, BD, E, F, which gives $(4 - 1)$ or $3!$ we Hence, the total number of ways are = 3! + 3! + 3! = 6 + 6 + 6 = 18 ways	ave AB or AC and AB or BD natives vays. vays. ays.	
Question 26 A fundamental principle of counting (a) m × n, m - n (c) m + n, m ÷ n Answer: b Explanation: Fundamental principles of counting a. Multiplications Rule: m × n b. Addiction Rule: m + n	is: (b) m × n, m + n (d) m ÷ n, m – n	
Question 27 If $n_{C_r} = n_{C_{r-1}} $ and n_{P_r} and $n_{P_{r+1}}$, the (a) 3 (c) 2 Answer: a Explanation: The conditions provided that $n - r = r - r$ We put $n = 3$, then $r = 2$ satisfies the conditions	n the value of n is 27. (b) 4 (d)5 $1 \rho r = \frac{n+1}{2}$ so if iditions	

For Enquiry - 6262969604 6262969699 **Ouestion 28** $n_{P_r} \div n_{C_r} =$ (b) (n - r)! (a) n! (c) 48 (d) r!Answer: d **Explanation: Ouestion 30** The number of ordered triplets of positive integers which are solutions of the equation x+y+z = 100 is (a) 6005 (b) 4851 (d) none of these (c) 5081 **Answer: b Explanation**: The number of triplets of positive integers which re solutions of $X + y + z = 100 = \text{coefficient of } x^{100} \text{ in } (x + x^2 + x^3 + \dots)^3$ = coefficient of x^{100} in $x^3(1 - x)^{-3}$ = coefficient of x^{100} in $X^3 (1 + 3x + 6x^2 + \dots + \frac{(n+1)(n+2)}{2}x^n + \dots)$ $=\frac{(97+1)(97+2)}{2} = 49 \times 99 = 4851$ **Ouestion 32** The number of way to sit 3 men and 2 women in a bus such that total number of sitted men and women on each side is 3 (b) $6_{c_{s}} \times 5!$ (a) 5! (d) $5! + 6_{C_{r}}$ (c) $6! \times 6_{P_{r}}$ **Answer: b Explanation:** 3 men and 2 women equal to 5. A group of 5 members make 5! Permutations with each other. The number of ways to sit 5 members = 5! 6 places are filled by 5 members by 6_{C_5} ways. The total number of ways to sit 5 members on 6 seats of a bus = $6_{C_{5}} \times 5!$ **Question 33** If P (n,r)=1680 and C (n,r) = 70, then 69n+r! = (a) 128 (b) 576 (c) 256 (d) 625 **Answer: b Explanation:**

6262969699

P (n, r) = $1680 \frac{n!}{(n-r)!} = 1680?...$ (i) C (n, r) = 70ρ $\frac{n!}{r!(n-r)!} = 70?$ (ii) $\frac{1680}{r!} = 70.$ [From (i) and (ii)] r! = $\frac{1680}{70} = 24\rho$ r = 4 \therefore P (n, 4) = 1680 \therefore n (n - 1)(n - 2)(n - 3) = 1680ρ n = 8 \therefore 8 \times 7 \times 6 \times 5 = $1680 + r! = 69 \times 8 + 4! = 552 + 24$ = 576

Question 34

Number of divisors of n = 38808 9eexcept 1 and n) is (a) 70 (b) 68

(d) 74 (d) 74 Answer: a Explanation:

Since $38808 = 8 \times 4851$ $8 \times 9 \times 539 = 8 \times 9 \times 7 \times 7 \times 11 = 2^3 \times 3^2 \times 7^2 \times 11$ Number of divisors = (3 + 1) (2 + 1) (2 + 1) (1 + 1) = 72. This includes two divisors 1 and 38808. Hence the required number off divisors = 72 - 2 = 70

Question 35

If eleven members of a committee sit at a round table so that the president and secretary always sit together, then the number of arrangement is

(a) 10! × 2
(b) 10!
(c) 9! × 2
(d) None of these

Answer: c
Explanation:
Required number of ways 9! × 2 (by fundamental property of Circular permutation).

Question 36

In how many ways can 5 keys be put in a ring?

(a) $\frac{1}{2}$ 4!	(b) $\frac{1}{2}5!$
(c) 4!	(d) 5 ⁻ !
Answer: a	
Explanation:	
Mark the keys as 1, 2, 3, 4	4, 5
Assume the ring as a circ	le with 5 positions.
First position can be take	en by any one of them.
The 2^{nd} positions has 4 p	ossibility, 3 rd has 3, 4 th has 2, 5 th has 1
Totally $4 \times 3 \times 2 \times 1 = 24$.	

A question paper is divided into two parts A and B and each part contains 5 questions. The number of ways in which a candidate can answer 6 questions selecting at least two questions from each part is

(a) 80

(c) 200

(b) 810

nswor: d

(d) None of these

6262969699

Answer: d Explanation:

The number of ways that the candidate may select 2 questions from A and 4 from $B=5_{C_2} \times 5_{C_3}$ 4 questions from A and 2 from $B=5_{C_4} \times 5_{C_2}$. Hence total numbers of ways are 200.

Question 38

How many number lying between 10 and 1000 can be formed from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 (repetition is allowed)

(a) 1024	(b) 810
(c) 2346	(d) None of these
Answer: b	

Explanation:

The total number between 10 and 1000 are 989 but we have to form the numbers by using numerals 1, 2,.....9, i.e. 0 is not occurring so the numbers containing any?0? would be excluded i.e., Required number of ways

 $= 989 - \begin{cases} 20, \ 30, 40, \dots, 100 = 9\\ 101, 102, \dots, 300 = 19\\ 201, \dots, 300 = 19\\ \dots, 901, \dots, 990 = 18 \end{cases}$

= 989-(9+18+19×8) = 810. Aliter: Between 10 and 1000, the numbers are of 2 digits

And 3 digits. Since repetition is allowed, so each digit can be filled in 9 ways. Therefore number of 2 digit numbers = $9 \times 9 = 81$ and number of 3 digit numbers $9 \times 9 \times 9 = 729$. Hence total ways = 81 + 729 = 810

Question 39

The number of ways in which the letters of the word TRIANGLE can be arranged such that two vowels do not occur together is

(a) 1200	(b) 2400
(c) 14400	(d) 14400
Answer: c	
Explanation:	
-	

For Enquiry – 6262969604	6262969699
•T·R·N·G·L Three vowels can be arrange a required number of arrangements = 12	at 6 places in 6_{P_3} = 120 ways. Hence the $0 \times 5! = 14400$
Question 40	
There are four balls of different colo	urs and four boxes of colours same as
those of the balls. The number of way	ys in which the balls one in each box,
could be such that a ball does not go	to box of its own colour is
(a) 8	(b) 7
(c) 9	(d) None of these
Answer: c	
Explanation:	
Since the number of derangements in s	uch a problems is given by
$n! \left\{ 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} \dots \dots \dots (-1)^n \frac{1}{n!} \right\}$	
\therefore Number of derangements are = 4! $\left\{\frac{1}{2}\right\}$	$-\frac{1}{2}+\frac{1}{2}$
= 12-4+1 = 9	3! 4!)
Question 41	
If 56_{P} : 54_{P} = 30800:1, then r =	
(a) 31	(b) 41
(c) 51	(d) none of these
Answer: b	
Explanation:	
$56! \times (51-r)!$	
(50-r)! 54!	
$\frac{30800}{1}$ = 56×55×(51 – r) = 30800	
r = 41	
Question 42	
The number of ways of dividing 52 c	ards amongst four players so that three
players have 17 cards each and the f	ourth player just one card, is

(a) $\frac{52!}{(17!)^3}$	(b) $\frac{52!}{(17!)^2}$
(c) 52!	(d) none

Answer: a Explanation:

For the first set number of ways52_{C17}. Now out of 35 cards left 17 cards can be put for second in $35_{C_{17}}$ ways similarly for 3rd in $18_{C_{17}}$. One card for the last set can be put in only one way. Therefore the required number of ways for the proper distribution = $\frac{52!}{35!17!} \times \frac{35!}{18!17!} \times \frac{18!}{17!1!} \times 1! = \frac{52!}{(17!)^3}$

Ouestion 43

m men and n women are to be seated in a row so that no two women sit together. If m>n, them then the number of ways in which can be seated is (b) $\frac{m!(m-1)!}{(m-n+1)!}$

(d) none

(a) $\frac{m!(m+1)!}{(m+1)!}$ (m-n+1)!

(c) $\frac{(m-1)!(m+1)!}{(m-n+1)!}$

Answer: a **Explanation:**

First arrange m men, in arrow in m! Ways. Since n<m and no two women can sit together, in any one of the m! Arrangement, there are places in which n women can be arranged in m + $1_{P_n} = \frac{m!(m+1)!}{[(m+1)-n)!} = \frac{m!(m+1)!}{(m-n+1)!}$

Question 44

The number of times the digit 3 will be written when listing the integers from 1 to 1000 is:

(a) 369	(b) 300
(c) 271	(d) 302
Answer: b	

Explanation:

To find number of times 3 occurs in listing the integer from 1 to 999. (Since 3 does not occur in 1000). Any number between 1 to 999 is a 3 digit number xyz where the digit x, y, z are any digits from 0 to 9. Now, we first count the numbers in which 3 occurs once only. Since 3 can occur at one place in 3_{C_1} ways. There $are_{3_{C_1}}$. (9 × 9) + 3 × 1 = 300

Ouestion 45

Ten persons, amongst whom are A, B, and c to speak at a function. The number of ways in which it can be done. If A wants to speak before B and B wants to speak before C is

(a) $\frac{10!}{6}$ (c) 10_{P_2} .7!

(b) 3 ! 7 !

Answer: a

(d) None of these

Explanation:

For A, B, C, to speak in order of alphabets 3 places out of 10 may be chosen first in 1. 3_{C_2} = 3 ways. The remaining 7 persons can speak in 7! Ways. Hence, the

number of ways in which all the 10 person can speak is 10_{C_3} . $7! = \frac{10!}{3!} = \frac{10!}{6}$

Ouestion 46

How many words can be made out from the letters of the word INDEPENDENCE, in which vowels always come together?

For Enquiry – 6262969604	6262969699
(a) 16800 (c) 1663200 Answer: a Explanation:	 (b) 16630 (d) None of these
Required numbers of ways are $\frac{1}{2!3!} \times \frac{1}{4!}$ letters}.	= 16800. {SINCE IEEEENDPNDNC = 8
<u>Question 47</u> The exponent of 3 in 100! Is	
(a) 33 (c) 48 Answer: c	(b) 44 (d) 52
Explanation: Let E (n) denote the exponent of 3 in n. divisible by 3 is 99. We have E (100!) = E (1 .2 .3 . 499 . 100) = E (3 .6 . 999) = E [(3 . 1)(3 . 2) (3 . 3) (3 . 33)] = 33 + E (1 .2 . 333) Now E (1 .2 . 333) =E (3 . 6 . 933) = E [(3 . 1) (3 . 2) (3 . 3) (3 . 11)] = 11+ E (1 .2 . 311) And E (1 .2 . 311) = E [(3 . 1) (3 . 2) (3 . 3) 3 + E (1 .2 . 3) = 3 + 1 = 4 Thus E (100!) = 33 + 11 + 4 = 48	the greatest integer less than 100
Question 48 A dictionary is printed consisting of 2 with a letter of the word CRICKET. If alphabetical order, as in an ordinary before the word CRICKET is (a) 530	7 lettered words only that can be made the words are printed at the dictionary, then the number of word (b) 480
(c) 531 Answer: a Explanation: The number of words before the word ((d) 481 CRICKET is 4×5! +2×4! +2! = 530
Question 49 The number of positive integral solu (a) 30 (c) 8	tions of abc = 30 is (b) 27 (d) none of these
Answer: b	

Explanation:

We have, $30 = 2 \times 3 \times 5$. So, 2 can be assigned to either a or b or c i.e. 2 can be assigned in 3 ways. Similarly, each of 3 and 5 can be assigned in 3 ways. Thus the no. of solutions are $3 \times 3 \times 3 = 27$.

Question 50

The number of different words that can be formed out of the letters of the word 'MORADABAD' taken four at a time is

(a) 500	(b) 600
(c) 620	(d) 626

Answer: d

Explanation: In MORADABAD, we have 6 different types of letters 3A^s, 2D^s and rest four

different. We have to form words of 4 letters. (i) All letters $6_{P_4} = 6 \times 5 \times 4 \times 3 =$

360. (II) Two different two a like $2_{C_1} \times 5_{C_2} \times \frac{4!}{2!} = 240$ (iii) 3 alike 1 different

 $1_{C_1} \times 5_{C_1} \times \frac{4!}{2!} = 20$ (iv) 2 alike of one type and 2 alike of other type $2_{C_2} \times \frac{4!}{3!} = 6$ Therefore total number of words

= 360 + 240 + 20 + 6 = 626

PREPARE FOR WORST

Question 1

How many 3 letter words with or without meaning can be formed out of the letters of the word MONDAY when repetition of words is allowed?

(a) 125	(b) 216
(c) 120	(d) 320

Question 2

In how many ways the letters in the word TOOTH can be arranged? (a) 120 (b) 40 (c) 20 (d) 30

<u>Type – 2</u>

Question 1

How many five letters words with or without meaning, can be formed from the
word 'COMPLEXIFY', if repetition of letters is not allowed?

(a) 43200	(b) 30240
(c) 12032	(d) 36000

Question 2

In how many different ways can the letters of the word 'LOGARITHMS' be

For Enquiry – 6262969604	6262969699
arranged so that the vowels always c	ome together?
(a) 6720	(b) 241920
(c) 40320	(d) 360344
Question 3	
How many three digit numbers can b	e formed from the digits 3, 4, 5, 7, 8, and 9.
Also, the number formed should be d	livisible by 5 and no repetition is allowed?
(a) 20	(b) 24
(c) 25	(d)
Type 3	
Ouestion 1	
An ice cream seller sells 5 different i	ce-creams. John wants to buy 15 ice creams
for his friends. In how many ways can	n he buy the ice-cream?
(a) 1450	(b) 3768
(c) 3879	(d) 1540
Question 2	
There are 5 types of soda flavor avail	able in a shop. In how many ways can 10
soda flavors be selected?	
(a) 1454	(b) 1001
(c) 1211	(d)1540
Type - 4	
Ouestion 1	
A wooden box contains 2 grey halls.	R nink halls and 4 green halls. Fins out in
how many ways 3 balls can be drawn	from the wooden box. Make sure that at
least one pink ball is included in the	draw?
(a) 64	(b) 46
(c) 56	(d) 65
Question 2	
There are 5 boys and 10 girls in a cla	ssroom. In how many ways teacher can
select 2 boys and 3 girls to make a da	ince group?
(a) / 20	(b) 1200 (d) 940
(C) 240	(d) 840
Question 3	
There are 10 consonants and 5 vowe	ls. Out of which how many words of 5
consonants and 2 vowels can be mad	e?
(a) 2520	(b) 1200
(c) 210	(d) 720
	5. 18

For Enquiry – 6262969604	6262969699	
Question 4 A committee of 5 persons is to be formed from 6 men and 4 women. In how many		
(a) 196	(b) 186	
(c) 190	(d) 200	
Question 5 If the letters of the word SACHIN are a words are written out as in dictionary	rranged in all possible ways and these y, then the word 'SACHIN' appears at serial	
number:		
(a) 601	(b) 600	
(c) 603	(d) 602	
Question 6 A college has 10 basketball players. A 5-member team and a captain will be selected out of these 10 players. How many different selections can be made?		
(a) 1200	(d) 1600	
(C) 1250	(d) 1600	
Question 7 When four fair dice are rolled simultaneously, in how many outcomes will at least one of the dice show 3?		
(a) 625	(d) 567	
(C) 025	(u) 507	
Question 8 A letter lock consists of three rings each marked with six different letters. The number of distinct unsuccessful attempts to open the lock is at the most?		
(a) 215	(b) 268	
(c) 254	(d) 216	
Question 9 In how many ways can the letters of the word EDUCATION be rearranged so that the relative position of the vowels and consonants remain the same as in the		
$(a) A \mathbf{x} A $	$(h) \leq l \leq l$	
(c) $4 x 5 $	(d) $3! \times 4!$	
	(u) 5: x +:	
Question 10 In a Plane there are 37 straight lines, of which 13 pass through the point A and 11 pass through the point B. Besides, no three lines pass through one point, no		

For Enquiry – 6262969604	6262969699	
lines passes through both points A an number of points of intersection of th	d B , and no two are parallel. Find the e straight lines.	
(a) 525 (c) 545	(d) 555	
Question 11 How many different four letter words meaningful using the letters of the wo letter is E and the last letter is R? (a) 59 (c) 64	can be formed (the words need not be ord "MEDITERRANEAN" such that the first (b) 56 (d) 55	
Question 12 In how many ways can 5 different toy no box is empty, if any of the boxes ma (a) 36 (c) 24	s be packed in 3 identical boxes such that ay hold all of the toys? (b) 25 (d) 72	
Question 13 In a box, there are 5 black pens, 3 whit can 2 black pens, 2 white pens and 2 m (a) 180 (c) 240	te pens and 4 red pens. In how many ways red pens can be chosen? (b) 220 (d) 160	
ANSWERS AVAILABLE ON: • TELEGRAM CHANNEL: t.me/KINSHUKInstitute • WEBSITE : <u>WWW.KITest.IN</u> • KITest APP		
PAST EXAMINATION QUESTIONS:		
<u>MA</u>	<u>Y 2018</u>	
Question 1 The number of triangle that can be for 12 points, seven of which lie on the sa (a) 185 (c) 115 Answer: a	rmed by choosing the vertices from a set of me straight line, is: (b) 175 (d) 105	
For more Info	5. 20 Visit - www.KITest.in	

6262969699

Explanation:

Here n = 12, k = 7No. of triangle are formed from 'n' point In which (k) points are collinear = n_{C_3} - k_{C_3} $= 12_{C_3} - 7_{C_3}$ = $\frac{12 \times 11 \times 10}{3 \times 2 \times 1} - \frac{7 \times 6 \times 5}{3 \times 2 \times 1}$ =220-35 =185

Question 2 If $1000_{C_{98}}$ + 999 $_{C_{97}}$ + $x_{C_{901}}$, find x: (a) 999 (b) 998 (c) 997 (d) 1000 Answer: a **Explanation:** If $1000_{C_{98}} - 999_{C_{97}} + x_{C_{901}}$ $\therefore n_{C_r} + n_{C_{r-1}} = n + 1_{C_r}$

Then x = 999[999_{C_{901}} + 999_{C_{98}}]

NOV 2018

Question 1	
A bag contains 4 red, 3 black, and 2 w	hite balls. In how many ways 3 balls can be
drawn from his bag so that they inclu	de at least one black ball?
(a) 64	(b) 46
(c) 85	(d) None
Answer: a	
Explanation:	
No. of total balls = 4 Red+3 Black + 2 wh	ite = 9 balls
Total number of ways	
= 3C3 + (3C2 x 6C1) + (3C1 x 6C2) [beca	use 6 are non black]
=1+[3×6]+[3×(6×52×1)]=1+18+45=64	-
<u>Question 2</u>	
The number of words from the letter	word BHARAT, in which B and H will never
come together, is	
(a) 360	(b) 240
(c) 120	(d) None
Answer: b	
	5. 21

6262969699

Explanation: Given word 'BHARAT' 123456 Total No. of ways arrange the letter word = $\frac{6!}{2!} = \frac{720}{2} = 360$ If Letter 'B' and 'H' are never taken together = 360 - 120=240 **Question 3** The value of N in $=\frac{1}{7!} + \frac{1}{8!} + \frac{N}{9!}$ is (a) 81 (b) 78 (c) 89 (d) 64 **Answer: a Explanation:** $If \frac{1}{7!} + \frac{1}{8!} = \frac{N}{9!} \\ \frac{9 \times 8 \times 1}{9 \times 8 \times 7!} - \frac{9 \times 1}{9 \times 8!} = \frac{N}{9!}$ $\frac{1}{9!} + \frac{1}{9!} = \frac{1}{9!}$ 81 N $rac{-1}{9!} = rac{-1}{9!}$ N = 81 **Question 4** If n_{P_r} =720, n_{P_r} = 120, then r is (a) 3 (b) 4 (c) 5 (d) 6Answer: a **Explanation**: Given $n_{P_r} = 720$, $n_{C_r} = 120$ We know that $\frac{n_{C_r}}{m_{C_r}} = \frac{1}{m_{C_r}}$ n_{Cr} r 120 1 720 r1 6 r R = 3 **MAY 2019** For more Info Visit - www.KITest.in

Question 1

If $11_{c_r} = 11_{c_{2x-4}}$ and $x \neq 4$ then the value of $7_{c_x} =$ (a) 20 (b) 21 (c) 22 (d) 23 Answer: b Explanation: Equate bases of LHS and RHS So x=4 Therefore, LHS = RHS 11-x = 2x-4x=5

 $7_{C_3} = 7_{C_2} = 21$

Question 2

Which of the following is not a correct statement?

(a) $n_{P_n} = n_{P_{n-1}}$ (c) $n_{P_n} = 3. n_{P_{n-3}}$

Answer: d Explanation:

LHS \neq RHS In case of d option

(b) $n_{P_n} = 2.n_{P_{n-2}}$ (d) $n_{P_n} = n. n. (n-1)_{P_{n-1}}$

Question 3

How many words can be formed with the letter of the world "PARALLEL". So that all L's do not come together?

(b) 3000

(d) None of these

(a) 2000

(c) 4000

Answer: b

Explanation:

There are 8! ways of arranging the eight letters of "PARALLEL", but since there are three "L"s and two "A"s, we must divide through by $3! \times 2!$ to get a total of $\frac{8!}{3! \times 2!}$

permutations.

Okay, so how many of these have all three "L"s together?

 $\frac{8!}{3!\times 2!} - 6 \times \frac{5!}{2!} = 3000$

Question 4

The Indian cricket team consists of 16 players. It includes 2 wicket keepers and 5 bowlers. In how many ways can a cricket eleven be selected if we have to select 1 wicket keeper and atleast 4 bowlers?

(a) 1024

(b) 1900

6262969699

(c) 2000 Answer: d

(d) 1092

Explanation:

We are to choose 11 players including 1 wicket keeper and 4 bowlers or, 1 wicket keeper and 5 bowlers.

Number of ways of selecting 1 wicket keeper, 4 bowlers and 6 other player's in $2_{c_1} \times 5_{c_4} \times 9_{c_6} = 840$

Number of ways of selecting 1 wicket keeper, 5 bowlers and 5 other players in $2_{C_1} \times 5_{C_4} \times 9_{C_5} = 252$

Total number of ways of selecting the term = 840 + 252 = 1092.

<u>NOV 2019</u>

<u>Question 1</u>

Three girls and five boys are to be seated in a row so that no two girls sit together. Total no. of ways of this arrangement are:

(a) 14,400	(b) 120
(c) 5_{P_3}	(d) 3! × 5!
Answer: a	
Explanation:	
(a) Required arrangement	
$X B_1 X B_2 X B_3 X B_4 X B_5 X$	
No. of ways of arranging 3 girls in 6 place	ces
$=5_{p_{3}}$	
Total ways = ${}^{6}p_{3} \times {}^{5}p_{5}$	
$=\frac{6!}{(6-3)!} \times 5!$	
$=\frac{6 x 5 x 4 x 3!}{3!} \times 120 = \text{Rs. } 14,400$	

Question 2

How many numbers can be formed with the help of 2, 3, 4, 5, 6, 1 which is not divisible by 5, given that it is a five-digit no. and not repeating?

(a) 600	(b) 400
(c) 1200	(d) 1400
Answer: a	
Explanation:	
(a) No's 2, 3, 4, 5, 6, 1.	
A no. is divisible by 5 when it ends with	0 or 5
ТТНТННО	

For Enquiry – 6262969604	6262969699
No. of ways of filling one's digit = 5 (all except 5) No. of ways of filing ten's digit = 5 No. of ways of filling thousand place = 4 No. of ways of filling ten thousand place = 3 No. of ways of filling hundred's place = 2 Total ways = $5 \times 5 \times 4 \times 3 \times 2$ = 600 ways	
Question 3	
How many different groups of 3 people can be formed from a g	group of 5 people?
(a) 5 (b) 6	
(c) 10 (d) 9	
Answer: c	
Explanation:	
No, of ways to choose r objects out of n objects is ${}^{n}C_{n}$	
Using the formula.	
Choosing 3 distinct objects (groups) from	
$5 = {}^{5}C_{3} = \frac{5!}{1-5!}$	
$(5-3)! \times 3$	
$=\frac{1}{2!\times3!}$	
= 2×3!	
10 ways	
Question 4	
In how many ways can 4 people be selected at random from 6	bovs and 4 girls if
there are exactly 2 girls?	v 0
(a) 90 (b) 360	
(c) 92 (d) 480	
Answer: a	
Explanation	
(a) Boys (b) GIFIS (4)	
No. of ways of selecting 2 boys out of $6 = {}^{6}C_{2}$	
No. of ways of selecting 2 girls out of $4 = {}^{4}C_{2}$	
Total ways = ${}^{6}C_{2} \times {}^{4}C_{2}$	
$= \frac{6!}{4!}$	
$ \begin{array}{c} (6-2)! \times 2 \\ _{6\times5\times4!} \\ _{4\times3\times2!} \end{array} 21 \times (4-2)! $	
$=$ $\frac{4! \times 2}{2! \times 2}$	
$= 15 \times 6 = 90$ ways.	
	5 25

6262969699

Question 5 ⁿp₃:ⁿp₂ = 2: 1 (a) 4 (c) 5 Answer: a Explanation: (a) ⁿp_r = $\frac{n!}{(n-r)!}$ ⁿP_r:ⁿP₂ = 2:1 $\frac{n!}{(n-3)!}$: $\frac{n!}{(n-2)!} = \frac{2}{1}$ $\frac{n!}{(n-3)!} \times \frac{(n-2)(n-3)!}{n!} = \frac{2}{1}$

DEC 2020

(b) 7/2

(d) 2/7

Question 15 If Np4 = 20 Np2 = where P denotes the number of permutations n =___ (a) 4 (b) 2(c) 5 (d) 7Answer: d **Explanation:** $n_{P_r} = \frac{n!}{(n-r)!}$ Here, $n_{P_4} = 20n_{P_2}$ = $\frac{n!}{(n-4)!} = 20 = \frac{n!}{(n-2)!}$ (n-2)! = 20(n-4)!(n-2)(n-3)(n-4)! = 20(n-4)!(n-2)(n-3) = 20 $n^2 - 5n + 6 = 20$ $n^2 - 5n - 14 = 0$ $n^2 - 7n + 2n - 14 = 0$ n(n-7) + 2(n-7) = 0(n+2)(n-7) = 0If $n+2 = 0 \Rightarrow n = -2$ (Not possible) If $n-7 = 0 \Rightarrow n = 7$ Thus, the value of n is 7.

Question 16

For Enquiry – 6262969604		6262969699
A fruit basket contains 7 app	oles, 6 bananas and 4 n	nangoes. How many selections
of 3 fruits can be made so th	at all 3 are apples?	
(a) 120 ways	(b) 35 ways	
(c) 168 ways	(d) 70 ways	
Answer: c		
Explanation:		
Given:		
Number of Bananas = 6		
Number of Apples = 7		
Number of Mangoes = 4		
To find: Number of ways can a	person make a selection	n of fruits from the basket.
Number of ways to select zero	or more bananas = 6 + 2	1 = 7 ways
Number of ways to select zero	or more apples = 7 +1 =	= 8 ways
Number of ways to select zero	or more mangoes in 4 +	-1 = 5 ways
So, Total number of ways = 5 x	x 8 x 7 = 280	
We included a case of 0 Banan	a, 0 apple and 0 mangoe	es, so we have to subtract this
from total number of ways,		
\Rightarrow Number of ways = 280 - 1 =	= 279 ways	
Therefore, A person can make	a selection of fruits from	n the basket is 279 ways.
\therefore 3 fruits can be made so that a	all 3 are apples is 35	
	* *	
Question 17		
Out of 7 boys and 4 girls a te	am of a debate club of	5 is to be chosen. The number
of teams such that each tean	n includes at least one	girl is
(a) 429	(b) 439	-
(c) 419	(d) 441	
Answer: d		
Explanation:		
The Team Consist of 4 girls +1	bov	
Number of selections $4_c \times 7_c$	$= 1 \times 7 = 7$	
Hence the total number of tea	ms that can be formed =	140+210+84+7= 441
frence, the total number of tea	ins that can be formed –	110-210-01-7-111
Question 18		
From a group of 8 men and A	1 women 4 nersons ar	e to be selected to form a
committee so that at least 2	women are there on the	a committee In how many
ways can it he done?		le committee. In now many
(2) 201	(h) 168	
(a) 201	(0) 100 (d) 220	
	(u) 220	
AllSWELLA Evaluation:		
4 Womon 1 Man		
$7 \times 6 = 25 \times 6 = 210$		
$7_{C_3} \times 6_{C_1} = 35 \times 6 = 210$		

<u>JAN 2021</u>

Question 1

Eight chairs are numbered from 1 to 8. Two women and three men are to be seated by allowing one chair for each. First, the women choose the chairs from the chairs numbered 1 to 4 and then men select the chairs from the remaining. The number of possible arrangements is:

(a) 120 (b) 288 (c) 32 (d) 1440

Answer: d

Explanation:

1440

Step-by-step explanation:

First women can take any of the chairs marked 1 to 4 in 4 different way.

Second women can take any of the remaining 3 chairs from those marked 1 to 4 in 3 different ways.

So, total no of ways in which women can take seat $=4 \times 3$

⇒4P2

4P2=4!(4-2)!

=4×3×2×12×1

=12

After two women are seated 6 chairs remains

First man take seat in any of the 6 chairs in 6 different ways, second man can take seat in any of the remaining 5 chairs in 5 different ways

Third man can take seat in any of the remaining 4 chairs in 4 different ways.

So, total no of ways in which men can take seat $=6 \times 5 \times 4$

⇒6P3

6P3=6!(6-3)!

```
\Rightarrow 6 \times 5 \times 4 \times 3 \times 2 \times 13 \times 2 \times 1
```

⇒120

Hence total number of ways in which men and women can be seated = 120×12 =>1440

Question 2

'n' locks and 'n' corresponding keys are available but the actual combination is not known. The maximum number of trials that are needed to assigns the keys to the corresponding locks is.

6262969699

(a) $(n-1) C_2$	(b) $(n + 1) C_2$
(c) $\sum_{k=2}^{n} (k-1)$	$(d)\sum_{k=2}^{n}K$
Answer: a	
Auestion 3	
The harmonic mean of the roots of th	e equation
$(5 \pm \sqrt{2})v^2 = (4 \pm \sqrt{5})v \pm 8 \pm 2\sqrt{5} = 0$	c
$\begin{array}{c} (3 + \sqrt{2}) \times 2 \\ (3 + \sqrt{2}) \times 2 \\$	(h) 4
$ \begin{array}{c} (c) \\ c \end{array} $	(d) 8
Answer: b	
Explanation:	
let the 2 roots be α, β	
$2\alpha\beta = 2 \times \frac{8 + \sqrt{5}}{2 \times 2} = 2 \times 2 (4 + \sqrt{5})$	
H.M. = $\frac{2\alpha\beta}{\alpha+\beta} = \frac{5+\sqrt{2}}{4+\sqrt{5}} = \frac{2(1+\sqrt{5})}{(4+\sqrt{5})} = 4$	
$\frac{1}{6+\sqrt{2}}$	
Question 4	
<u>Question 4</u> There are ten fights onerating hetwee	on city A and city B. The number of ways in
which a person can travel from city A	to city B and return by different fight, is
(a) 90	(b) 95
(c) 80	(d) 78
Answer: a	
Explanation:	
To go from A to B = 10 Flight	
& to go from B to $A = 9$ flights	
(as cannot comping in some flight)	
$10 \times 9 = 90$ ways	
Question 5	
How many odd numbers of four digits	can be formed with digits 0, 1, 2, 3, 4, 7 and
8?	
(a) 150	(b) 180
(c) 120	(d) 210
NOTE: The correct Ans is: 300	
Answer: b	
Explanation:	
$5 \times 5 \times 4 \times 3 = 300$	
(0 cannot be here & 1 used in last can no	t be here)
(1,3,7) can be on last place as it should b	eodd
Question 6	
In how many different ways, can the h	etters of the word 'DETAIL' be arranged in
,	

For Enquiry – 6262969604	6262969699
such a way that the yowels occupy on	ly the odd numbered position?
(a) 32	(h) 36
(c) 48	(d) 60
Answer: h	(u) 00
Fynlanation.	
Explanation.	d positions the lat 2rd and Eth mote Lat's
determine how many ways the word car	n be arranged when the vowels occupy the odd
positions.	
Ist spot: 3 options (any of the 3 vowels)
2nd spot: 3 options (any of the 3 consol	nants)
3rd spot: 2 options (any of the 2 remain	ning vowels)
4th spot: 2 options (any of the 2 remain	ling consonants)
5th spot: 1 option (the last remaining v	owel)
6th spot: 1 option (the last remaining c	onsonant)
So, the word can be arranged in 3 x 3	x 2 x 2 x 1 x 1 = 36 ways.
Question 7	
${}^{n}C_{p} + 2{}^{n}C_{P-1} + {}^{n}C_{p-2}$?	
(a) ${}^{n+}C_{P}$	(b) $^{n+2}C_p$
(c) $^{n+1}C_{p+1}$	(d) $^{n+2}C_{p-1}$
Answer: d	
Explanation:	
Direct Formula	
for refer another origin formula	
${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$	
Question 8	
A husiness house wishes to simultant	ously elevate two of its six branch heads. In
how many ways those alovations can	taka nlaca?
(a) 12	(b) 2
$ \begin{array}{c} (a) & 12 \\ (a) & 6 \end{array} $	(b) 5 (d) 15
(c) o	(u) 13
Allswer: u	
Explanation:	
${}^{6}C_{2} = \frac{6 \times 5}{2} = 15$	
	Y 2021
<u>101</u>	
Question 1	
$n p_6 = 20 p_4$ then the value of n is gr	
(a) n = 5	(b) $n = 3$
(c) $n = 9$	(d) $n = 8$
	5. 30

6262969699

Answer: Options (c)	
Explanation:	
By option Method	
Taking n = 9	
${}^{4}p_{6} = 20 {}^{9}p_{4}$	
$6040 = 20 \times 3024$	
60480 = 60480	
Question 2 How many number of seven digit number 3,4,5,6,7,8,9 no digits being repeated are (a) 4320 (c) 3900 Answer: Options (a)	rs which can be formed for the digits not divisible by 5? (b) 4690 (d) 3890
If no should not \div 5 then 5 not on last plag (6 \times 5 \times 4 \times 3 \times 2 \times 1 \times 6 4320	3,4,5,6,7,8,9)
Question 3 A person can go from place 'A' to 'B' by 11 allowed to return back to "A" by any mod number of different ways, the entire jour (a) 110 (c) 9 ⁵ Answer: Options (a)	different modes of transport but is e other than the one earlier. The ney can be complete is_ (b) 10 ¹⁰ (d) 10 ⁹
If a person has 11 ways of going and cannot 11 × 10 = 110	come from same place 10 ways of coming
Question 4	
The number of ways 5 boys and 5 girls ca	n be seated at a round table, so no two
boys are adjacent is	
(a) 2550	(b) 2880 (d) 2476
	(d) 24/6
Answer: Options (b)	
Explanation:	
5 boys can sit around the circular table in (5	-1] = 4! Ways
the 5 hove	ons, 5 girls has to sit in the gap between
The girls can be arranged in these gaps in 5	ways
Therefore, total number of seating arrangen	1200 = 100000000000000000000000000000000
	5. 31

<u>DEC 2021</u>

<u>Question 1</u>

The number of four letter words can be formed using the letters of the word DECTIONARY is

(a) 5040	(b) 720
(c) 30240	(d) 90

Answer: a

Explanation:

There are 10 letters in the word DECTIONARY. 4 letters can be selected and arranged out of these 10 letters in ${}^{10}C_4 \times 4!$ ways.

Therefore,

 $10_C \times 4! = \frac{10 \times 9 \times 8 \times 7}{1 \times 2 \times 3 \times 4} \times 4! = 5,040$

Question 2

The number of words that can be formed using the letters of the "PETROL" such that the words do not have "P" in the first position, is

(a) 720	(b) 120
(c) 600	(d) 540

Answer: c

Explanation:

We have 6 places to fill:

The first place can be filled either with E, T, R, O, or L, i.e., in 5ways.

Suppose you fill the first place with T. Now, the second place can be filled either with P, E, R, O, or L, i.e., in 5 ways.

Suppose you fill the second place with P. Now, the third place can be filled either with E, R, O, or L, i.e., in 4 ways.

Suppose you fill the third place with E. Now, the fourth. be filled either with R, O, or L, i.e., in 3 ways.

Suppose you fill the fourth place with R. Now, the Can fifth be filled either with O, or L, i.e., in 2 ways.

Suppose you fill the fifth place with O. Now, the sixth place cab be filled either with L, i.e., in 1 way.

Therefore, the number of words that can be formed = $5 \times 5 \times 4 \times 3 \times 2 \times 1 = 600$

Question 3

If ${}^{n}P_{2} = 12$, then the value of n is		
(a) 2	(b) 3	
(c) 4	(d) 6	

Answer: c

Explanation: Try the options. Option (a) -2 ${}^{2}P_{2} = 2$ Option (b) -3 ${}^{3}P_{2} = 3 \times 2 = 6$ Option (c) -3 ${}^{4}P_{2} = 4 \times 3 = 12$

Question 4

The number of different ways the letters of the word "DETAIL" can be arranged in such a way that the vowels can occupy only the odd position is

(a) 32	(b) 36
(c) 48	(d) 60
Answer:	
Explanation:	
Vowels: E, A I	
Consonants: D, T, L	
These are six places to be filled:	
1 2 3 4 5 6	
There are three odd positions, i.e., 1, 3 a three vowels can be arranged in 3 place	nd 5. Also, there are three vowels. Thereore, s in 3! Ways.
Similarly, the 3 consonants can be arran	iged in the positions 2,4, and 6 in 3! Ways.
Therefore, total number of ways = $3! \times 3$	$4! = 6 \times 6 = 36.$
Question 5	
Six boys and five girls are to be seated	d for a photograph in a row such that no two
girls sit together and no two boys sit	together. Find the number of ways in which
this can be done.	
(a) 74,200	(b) 96,900
(c) 45,990	(d) 86,400
Answer:	
Explanation:	
No. of Boys = 6	
No. of Girls = 5	
$B_1 \times B_2 \times B_3 \times B_4 \times B_5 \times B_6$	
No. of ways = ${}^{5}P_{4} = 6!$	
$= 5! \times 6!$	
= 120×720	
=86,400	

<u>JUNE 2022</u>

Question 1 If a man travels from place A to B in 10 ways then by hoe many ways can become back by another train? (a) 94 (b) 110 (c) 90 (d) 99 **Answer: Options (c) Explanation**: No. of ways = 10×9 = 90 **Question 2** If four words are taken with or without meaning from the word 'Logarithm' without repetition. How many words will be formed? (a) 5040 (b) 2520 (c) 120 (d) 40320 **Answer: Options (a) Explanation**: 'Logarithm' Here n = 10 and r = 4No. of ways = ${}^{n}p_{r}$ $= 10 p_4$ $=\frac{\underline{\text{L10}}}{\underline{\text{L10-4}}}=\frac{\underline{\text{L10}}}{\underline{\text{L6}}}$ $=\frac{10\times9\times8\times7L6}{L6}$ = 5040 **Question 3** If $\frac{n!}{10} = \frac{(n-1)!}{(n-1-n+3)!}$, find 'n'. (a) 4 (b) 5 (c) 6 (d) 7 **Answer: Options (b) Explanation**: If $\frac{n!}{10} = \frac{(n-1)!}{(n-1-n+3)!}$ $\frac{n(n-1)!}{10} = \frac{(n-1)!}{2!}$ $\frac{n}{10} = \frac{1}{2} \Rightarrow 2n = 10$ n = 5

For Enquiry – 6262969604	6262969699	
Question 4 7 boys and 4 girls from which a team of 5 is to be selected, each team should have		
(a) 429	(b) 439	
(c) 419	(d) 441	
Answer: Options (d)	(u) 111	
Fynlanation:		
Boys Girls		
7 4		
If at least one girl is selected then it may be	following cases:	
(a) 1 Girls and 4 Boys = ${}^{4}C_{1} \times {}^{7}C_{4} = 4 \times 35$	= 140	
(b) 2 Girls and 3 Boys = ${}^{4}C_{2} \times {}^{7}C_{3} = 6 \times 35$	= 210	
(c) 3 Girls and 2 Boys = ${}^{4}C_{3} \times {}^{7}C_{2} = 4 \times 21$	= 84	
(d) 4 Girls and 1 Boys = ${}^{4}C_{4} \times {}^{7}C_{1} = 1 \times 7 =$	7	
Total No of ways = 140+210+84+7		
= 441		
Question 5 8 people are seated in a row in a meeting among them the president and vice president are to be seated always in the center. What is the arrangement? (a) 7!2! (b) 6!2! (c) 6! (d) 1! Answer: Options (b) Explanation: Image: A state of the second		
Ouestion 6		
There are 5 questions each have four options. Then in how many different ways can we answer the question?		
(a) 20	(b) 120	
(c) 1024	(d) 60	
Answer: Ontions (c)		
Explanation:		
No. of ways = n^r		
Here $n = 4$, $r = 5$		
For more Info Vi	5. 35 sit - www.KlTest.in	

For Enquiry – 6262969604	6262969699
= 4 ⁵ = 1024	
Question 7If there are 6 points in a line and 4 pointsparallelogram formed?(a) 80(c) 90Answer: Options (c)Explanation:No. of Parallelogram = $mC_2 \times nC_2$ Here, m = 6, n = 4= ${}^{6}C_2 \times {}^{4}C_2$ = 15×6	(b) 70 (d) 100
= 15 × 0 = 90 Question 8 If ¹¹ C _x = ¹¹ C _{2x-4} and x ≠ 4, then value of ⁷ C _x (a) 20 (c) 22 Answer: Options (b) Explanation: If ¹¹ C _x = ¹¹ C _{2x-4} [∴ if ⁿ C _x = ⁿ C _y , then n = n + y then, x + 2n - 4 = 11 3n = 15 n = $\frac{15}{3}$ = 5 ⁷ C _n = ⁷ C ₅ = ⁷ C ₂ = $\frac{7\times6}{2\times1}$ = 21	(b) 21 (d) 23