

FOR ENQUIRY – 626	2969604 626296	59699
TYPES OF MEDIAN	Calculation of Quartiles, Deciles and Decentiles• For Continuous Series1. Q_1 =Size of N/4th item2. Q_3 =Size of 3N/4th item3. D_1 =Size of N/10th item4. D_9 =Size of 9N/10 item5. P_1 =Size of N/10th6. P_9 =Size of 99N/100th6. P_9 =Size of 99N/100th6. P_9 =Size of 99N/100th7. P_1 =Size of 99N/100th8. P_1 =L1+N/100-c.f*i/f9. P_1 =Size of 99N/100th9. P_1 =L1+N/100-c.f*i/f9. P_1 =L1+N/100-c.f*i/f9. P_1 =L1+N/100-c.f*i/f9. P_1 =L1+99N/100-c.f*i/f9. P_1 =L1+99N/100-c.f*i/f9. P_2 =L1+99N/100-c.f*i/f	
MODE	Formula of Mode : $Z = l_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times i$ where, $Z = \text{value of Mode}$ $l_1 = \text{lower limit of modal class}$ $f_0 = \text{Frequency of the preceding modal class}$ $f_2 = \text{Frequency of the subsequent modal class or post modal class}$ $i = \text{Class interval of the modal class}$	
GEOMETRIC MEAN & HARMONIC MEAN& WEIGHTED MEAN	Geometric Mean: $GM = \sqrt[n]{\prod_{i=1}^{n} x_i} = \sqrt[n]{x_1 x_2 x_3 \dots x_n}$ Harmonic Mean: $HM = \frac{n}{\sum_{i=4}^{n} \frac{1}{x_i}} = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_2} + \frac{1}{x_3} + \dots + \frac{1}{x_n}}$ Weighted Mean: $WM = \frac{\sum_{i=2}^{n} w_i x_i}{\sum_{i=2}^{n} w_i} = \frac{w_2 x_2 + w_2 x_2 + w_3 x_3 + \dots + w_n x_n}{w_1 + w_2 + w_2 + \dots + w_n}$	
RELATIONSHIP BETWEEN MEAN, MEDIAN AND	Mean – Mode = 3(Mean– Median) Mode = 3 Median – 2 Mean	
RELATION BETWEEN AM, GM, AND HM	AM >GM >HM	
	For more Info Visit - www.KITest.in	14. 3

Question 1 Relationship between Mean, Median and Mode

(a) Mean – Mode = 3(Mean – Median)
(b) Mode = 3 Median – 2 Mean
(c) Both (a & b)
(d) None of these

Answer: C

Explanation:

If a frequency distribution is positively skewed, the mean is greater than median and median is greater than mode.

<u>Question 2</u> If median – 20 and mean-22.5 in a moderately skewed distribution then compute approximate value of mode

20 30

(a) 15	(b)
(c) 25	(d)
Answer: A	
Explanation:	
Mean – Mode = 3(Mean – Median)	
22.5 – Mode = 3(22.5 – 20)	
22.5 – Mode = 7.5	
Mode = 22.5 – 7.5	
Mode = 15	

Question 3

A numerical value used as a summary measure for a sample, such as sample mean, is known as a

(a) Population parameter(c) Sample statistic

(b) Sample parameter(d) population mean

Answer: C Explanations:

If it pertains to sample it is called a statistic, if it pertains to population, it is called a parameter.

<u>Question 4</u> Since the population size is always larger than the sample size, then the sample statistic

FOR ENQUIRY – 6262969604	6262969699			
(a) Can never be equal to the population parameter	(b) Can never be zero			
(c) Can never be smaller than the population parameter Answer: D	(d) None of the above answers is correct			
Explanation: Sample statistic will depend upon the statistic will depend upon the statistic han, equal to population parameter. It <u>Question5</u>	sample chosen. It can be less than, greater can assume the value of zero.			
 Mu is an example of a (a) Population parameter (c) Population variance. Answer: A Explanation: M is a standard representation for pop 	(b) Sample statistic (d) Mode ulation parameter.			
Ouestion 6				
The mean of a sample is (a) Always equal to the mean of the population	(b) Always smaller than the mean of the			
(c) Computed by summing the data values and dividing the sum by (n – 1)	population (d) Computed by summing all the data values and dividing the sum by the			
Answer: D Explanation: Mean = Total of sample values/ sample	number of items e size			
<u>Question 7</u> The sum of the percent frequencies (a) One (c) The number of items in the study	(b) The number of classes			
Answer: D Explanation: If we count the total frequency, it is equ	ual to the sample size n. $\frac{n}{n} \times 100 = 100$			
<u>Question8</u> In a five number summary, which of the following is not used for data summarization?				

(a) The smallest value (c) The median **Answer: D Explanation**: The 25th percentile

Question 9

Since the mode is the most frequently occurring data value, it

(a) Can never be larger than the mean (b) Is always larger than the median (c) Is always larger than the mean (d) None of the above answers is

correct.

(b) The largest value (d) The 25th percentile

Answer: D

Explanation:

The mean, median and mode values will be distributed according to the skewness of the distribution. Accordingly, mode can be greater than or less than mean or mode.

Ouestion 10

The following table gives the distribution of 100 accidents during seven days of the week of a given month. During a particular month there were 5 Fridays and Saturdays and four each of other days. Calculate the average number of accidents per day.

	number of decidents per day.							
Days	Sun	Mon	Tue	Wed	Thru	Fri	Sat.	Total
Number of accidents	20	22	10	9	11	8	20	100
(a) 14 (c) 17 Answer: A Explanation:				(b) 12 (d) 19				

Calculation of number of Accidents per day

Day	No. of Accidents (x)	No. of days inMonth (f)	Total fx
Sunday	20	4	80
Monday	22	4	88
Tuesday	10	4	40
Wednesday	9	4	36
Thursday	11	4	44

6262969699

Friday	8	5	40
Saturday	20	5	100
Total	100	N =30	$\Sigma fx = 428$

 $\frac{\sum fx}{N} = \frac{428}{30} = 14.27$

14 accidents per day

Question 11

Following are the daily wages in Rupees of a sample of 9 workers: 58, 62, 48, 53, 70, 52, 60, 84, 75. Compute the mean wage.

(a) 62.44	(b) 62.04
(c) 60.44	(d) 31.22

Answer: a

Explanation:

Let x denote the daily wage in rupees.

Then as given $x_1 = 58$, $x_2 = 62$, $x_3 = 48$, $x_4 = 53$, $x_5 = 70$, $x_6 = 52$, $X_7 = 60$, $x_8 = 84$ and $x_9 = 75$. Applying (15.1.1) the mean wage is

Given by,

 $=\frac{\Sigma xi}{\Sigma xi}$

n

58 + 62 + 48 + 53 + 70 + 52 + 60 + 84 + 75

9

 $\frac{562}{9} = 62.44$

Question 12

class	350-	370-	390-	410-	430-	450-	470-
interval	369	389	409	429	449	469	489
Frequency	23	38	58	82	65	31	11

(a) 416 (c) 416.71 **Answer:**C **Explanation**:

(b)	416.17
(d)	41.71

Computation of AM						
Class Interval	Frequency(f)	Mid- Value(x)	d= xi-A xi = - 419.50	fx		
(1)	(2)	(3)	(4)	$(5) = (2) \times (4)$		
350 - 369	23	359.50	-3	-69		
370 - 389	38	379.50	-2	-76		

390 - 409	58	399.50	-1	-58
410 - 429	82	419.50	0	0
430 - 449	65	439.50	1	65
450 - 469	31	459.50	2	62
470 - 489	11	479.50	3	33
Total	308	-	-	-43

The required AM is given by

$$X=A + \frac{\Sigma fidi}{N} \times C$$

= 419.50+ $\frac{(-43)}{308} \times 20$
= 419.50 - 2.79
= 416.71

Question 13

The mean salary for a group of 40 female workers is Rs. 5200 per month and that for a group of 60 male workers is Rs. 6800 per month. What is the combined mean salary?

(a) 6160	(b) 616
(c) 6.16	(d) 61.6
Answer: A	
Explanation:	
As given $n_1 = 40$, $n_2 = 60$, $x_1 = Rs. 520$	00 and

 $X_2 = Rs.6800$

Hence, the combined mean salary per month is

 $X = \frac{n_1 x_1 + n_2 x_2}{1 + n_2 x_2}$

$$n_1 + n_2$$

 $\frac{40 \times \text{Rs.} 5200 + 60 \times \text{Rs.} 6800}{40 \times \text{Rs.} 6800}$

= 6160

Question 14

The sum of the deviation of a given set of individual observations from the arithmetic mean is always infinite. The statement is True or not?

(b) Incorrect

(d) None

(a) Correct

(c) Error

Answer: B

Explanation:

According to Mathematical properties of the Arithmetic Mean: The sum of the deviation of a given set of individual observations from the arithmetic mean is always zero. Symbolically = 0. It is due to this property that property the arithmetic mean is characterized as the center as the center gravity i.e., the sum of positive deviations from the mean is equal to the sum of negative deviations.

Question 15

The mean age of a combined group of men and women is 30 years. If the mean age of the group of men is 32 and that of women group is 27. Find out the percentage of men and women in the group.

(b) 20%, 80% (a) 30%, 70% (c) 60%, 40% (d) 40%, 60% **Answer: C Explanation:** Let us take group of men as first group and women as second group. Therefore = 32 years, = 27 years, and = 30 years. In the problem, we are not given the number of men and women. We can assume N1 + N2 = 100 and therefore. N1 = 100 - N2Apply = $30 = (Substitute N_1 = 100 - N_2)$ $30 \times 100 = 32(100 - N_2) + 27N_2 \text{ or } 5N_2 = 200$ $N_2 = \frac{200}{5} = 40\%$ $N_1 = (100 - N_2) = (100 - 40) = 60\%$ Therefore, the percentage of men in the group is 60 and that of women is 40.

Question 16

Median and mode of the wage distribution are known to be Rs. 33.5 and 34 respectively. Find the third missing values.

Wages (Rs.)	No. of Workers
0-10	4
10—20	16
20-30	?
30-40	?
40-50	?
50-60	6
60-70	4
Total	230

(a) 6 (b) 10 (c) 9 (d) 40 Answer: D

Explanation:

We assume the missing frequencies as 20 - 30 as x, 30 - 40 as y, and 40 - 50 as 230 - (4 + 16 + x + y + 6 + 4) = 200 - x - y.

We now proceed further to compute missing frequencies:

Wages (Rs.)	No. of workers	Cumulative
X	f	frequencies

		cf
0-10	4	4
10-20	16	20
20-30	Х	20 + x
30-40	у	20 + x + y
40-50	200-х-у	220
50-60	6	226
60-70	4	230
	N = 230	

Apply median = 33.5 =Y(33.5 - 30) = (115-20-x) 103.5y = 1150 - 200 - 10x $10x + 3.5y = 950 \dots (i)$ Apply mode = 34 = 4(3y - 200) = 10(y - x) $10x + 2y = 800 \dots$ (ii) Subtract equation (ii) from equation (i), 1.5y = 150, y = 100Substitute the value of y = 100 in equations (i0, we get 10x + 3.5(100) = 95010x = 950-350 $X = \frac{600}{10} = 60$ Third missing frequency = 200 - x - y = 200 - 60 - 100 = 40.

Question 17

Calculate mode from the following data:

Marks	Frequency
Below 10	4
"20	6
"30	24
"40	46
<i>"</i> 50	67
"60	86
"70	96
"80	99
"90	100

(a) 41.3 (c) 40.13

Answer: A Explanation:

Since we are given the cumulative frequency distribution of marks, first we shall convert it into the normal frequency distribution:

Marks	Frequencies
0-10	4
10-20	6-4=2
20-30	24-6=18
30-40	46-24=22
40-50	67-46=21
50-60	86-67=19
60-70	96-86=10
70-80	99-96=3
80-90	100-99=1

It is evident from the table that the distribution is irregular and maximum chances are that the distribution would be having more than one mode. You can verify by applying the grouping and analyzing table.

The formula to calculate the value of mode in cases of bio-modal distribution is: **Mode = 3 median – 2 mean.**

Computation of Mean and Median

Marks	Mid-Value	Frequency Cumulative (dx)		(dx)	fdx
	X	f	frequencies		
			cf		
0-10	5	4	4	-4	-16
10-20	15	2	6	-3	-6
20-30	25	18	24	-2	-36
30-40	35	22	46	-1	-22
40-50	45	21	67	0	0
50-60	55	19	86	1	19
60-70	65	10	96	2	20
70-80	75	3	99	3	9
80-90	85	1	100	4	4
	405	$\Sigma f = 100$	528	0	Σfdx
					= -28

Mean =

Median = size of item = 50th item Because 50 is similar to 67 in C.f. column, Median class is 40 – 50 Median = Median = Apply Mode = 3 median – 2 Mean

6262969699

Mode = 3 × 41.9 - 2 × 42.2 = 125.7 - 84.6 = 41.3

Question 18Find the arithmetic mean of the first 7 natural numbers.(a) 5(b) 6(c) 7(d) 4Answer: DExplanation:The first 7 natural numbers are 1, 2, 3, 4, 5, 6 and 7.Let x denote their arithmetic mean.Then mean = Sum of first 7 natural numbers/number of natural numbersX = (1 + 2 + 3 + 4 + 5 + 6 + 7)/7= 28/7= 4Hence, their mean is 4.

Question 19

The heights of five runners are 160cm, 137 cm, 149 cm, 153 cm, and 161 cm respectively. Find the mean height per runner.

(a) 152	(b) 150
(c) 148	(d) 120

Answer: A

Explanation:

Mean height = Sum of the heights of the runners/number of runners = $\frac{(160+137+149+153+161)}{5cm}$

 $=\frac{100}{5cm}$

= 152 cm.

Hence the mean height is 152 cm.

Question 20

Find the mean of the first five prime numbers.

(a) 4.6	(b) 6.5
(b) 78	(d) 5.6
Answer: D	
Explanation:	
The first five prime numbers	are 2, 3, 5, 7 and 11.
Mean = Sum of first five prim	e numbers/number of prime numbers
$=\frac{(2+3+5+7+11)}{2}$	
5 28	
$=\frac{28}{5}$	

= 5.6

Hence, their mean is 5.6

Question 21 Find the mean of the first six multiples of 4. (a) 12 (b) 13 (c) 14 (d) 15 **Answer: C Explanation**: The six multiples of 4 are 4, 8, 12, 16, 20, and 24. Mean = Sum of the first six multiples of $\frac{4}{No.of multiple}$ $=\frac{(4+8+12+16+20+24)}{}$ 6 $=\frac{84}{6}$ = 14.Hence, their mean is 14. **Ouestion 22** If the mean of 9, 8, 10, x, 12 is 15, find the value of x. (a) 30 (b) 41 (c) 36 (d) 63 **Answer: C Explanation:** Mean of the given numbers = $\frac{(9+8+10+x+12)}{5} = \frac{(39+x)}{5}$ According to the problem, mean = 15 (given). Therefore, $\frac{(39+x)}{5} = 15$ \rightarrow 39 + x = 15 × 5 → 39 + x = 75 \rightarrow 39 - 39 + x = 75 - 39 \rightarrow x = 36 Hence x = 36. **Question 23** If the mean of five observations x, x+4, x+6, x+8, and x+12 is 16, find the value of x. (a) 154 (b) 54 (c) 451 (d) 541 **Answer: C Explanation**: Mean of the given observations x+(x+4)+(x+6)+(x+8)+(x+12)5

 $= \frac{(5x+30)}{5}$ According to the problem mean = 16 (given). Therefore, $\frac{(5x+30)}{5} = 16$ $\Rightarrow 5x + 30 = 16 \times 5$ $\Rightarrow 5x + 30 = 80$ $\Rightarrow 5x + 30 - 30 = 80 - 30$ $\Rightarrow 5x = 50$ $\Rightarrow x = \frac{50}{5}$ $\Rightarrow x = 10$ Hence, x = 10.

Question 24

The mean of 40 numbers was found to be 38. Later on, it was detected that a number 56 was misread as 36. Find the correct mean of given numbers.

(a) 38 (b) 26 (c) 38.5 (d) 89 Answer: C Explanation: Calculated mean of 40 numbers = 38. Therefore, calculated sum of these numbers = $(38 \times 40) = 1520$. Correct sum of these numbers = [1520 - (wrong item) + (correct item)]= (1520 - 36 + 56)= 1540. Therefore, the correct mean = $\frac{1540}{40} = 38.5$.

Question 25

The mean of the heights of 6 boys is 152 cm. If the individual heights of five of them are 151 cm, 153 cm, 155 cm, 149 cm and 154 cm, find the height of the sixth boy.

(a) 157 (b) 159 (c) 150 (d) 89 Answer:C Explanation: Mean height of 6 boys = 152 cm. Sum of the heights of 6 boys = $(152 \times 6) = 912$ cm Sum of the heights of 5 boys = (151 + 153 + 155 + 149 + 154) cm = 762 cm. Height of the sixth boy = sum of the heights of 6 boys) – (sum of the heights of 5 boys) = (912-762) cm = 150 cm.

Hence, the height of the sixth girl is 150 cm.

Question 26	<u>)</u>							
Find the mo	de of the fol	lowing set o	f marks.					
Marks	1	2	3	4	5			
Frequency	6	7	7	5	3			
(a) 2 and 4			(b) 4 and 3					
(c) 2 and 3		(d) 2 and 5						
Answer: C								
Explanation								
The marks 2	and 3 have th	ne highest fro	equency. So, th	e modes are 2	2 and 3.			

Note: The above example shows that a set of observation may have more than one mode.

Ouestion 27

There are 8 number cards with values 0 - 7. Each time a card is drawn at random and the card value is recorded. The frequency refers to the number of times a value is shown.

Card	0	1	2	3	4	5	6	7
values								
Frequency	8	12	7	10	12	13	12	10

(b) 5, 79

(d) None

(a) 75,5 (c) 80, 89 **Answer:** A **Explanation**:

(a) Mode: 75 kg (highest frequency of 12)

(b) Mode: 5 (highest frequency of 13)

Question 28

The following frequency table shows the marks obtained by students in a quiz. Given that 4 is the mode, what is the least value for x?

Marks	1	2	3	4	5	6
Number of students	7	9	10	Х	9	11
(frequency)						

(a) 12	(b) 10
(c) 3	(d) 6
Answer: A	
Explanation:	
X is as least 12 (if x is less	s than 12 then 4 will not be the mode)
	For more Info Visit - www. KITest in

Question 29

The mean of the followir	g frequency distribution is
--------------------------	-----------------------------

Class Interval	Frequency
0-10	4
10-20	6
20-30	10
30-40	16
40-50	14

(a) 25	(b) 35
(c) 30	(d) 31

Answer: D

Explanation:

Class interval	Mid-point	Freq.	Diff, from $(A - 2E)$	fd
0-10	5	4	(A = 25) -20	-80
10-20	15	6	-10	-60
20-30	25	10	0	0
30-40	35	16	10	160
40-50	45	14	20	280
Total	Σf=50			$\Sigma fd = 300$
$(\mathbf{v}) = \Lambda + \frac{\Sigma FD}{\Sigma} = 0$	$25 + \frac{300}{2} - 21$			

 $(x) = A + \frac{2P}{\Sigma F} = 25 + \frac{300}{50} = 31$

Question 30

Mean of twenty observations is 15. If two observations 3 and 14 replaced by 8 and 9 respectively, then the new mean will be

(a) 14		(b) 15
(c) 16		(d) 17
	-	

Answer: D

Explanation:

Mean of 20 observations = 15

 \therefore Sum of 20 observations = $15 \times 20 = 300$

Replacing 3 and 14 by 8 and 9 will mean that 3 + 14 = 17 is replaced by 8 + 9 = 17Hence there will be no effect on the sum. It will remain 300, so the mean will not change and will remain 15.

Question 31

Factory A	Factory B
No. of wage of earners 250	200
Average daily wage Rs. 2.00	Rs. 2.50

The average of daily wages for the earners of the two factories combined is

(a) Rs. 2.12		(b) Rs. 2.06
(c) Rs. 2.20		(d) Rs. 2.22
Answer: D		
Explanation:		
Required average =	250×2.00+×2.50×200	
Required average -	250+200	

 $=\frac{1000}{450}\\=\frac{20}{9}$

Rs. 2.22

Question 32

The height of 30 boys of a class are given in the following table:

	8
Height in cm	Frequency
120-129	2
130-139	8
140-149	10
150-159	7
160-169	3

If by joining of a boy of height 140 cm, the median of the heights is changed from M_1 to M_2 then M_1 - M_2 in cm is

(a) 0.1 (c) 0 (b) -0.1 (d) 0.2

Answer: C

Explanation:

Height in cms	Frequency	Cumulativefrequency	Actual Class limit
120-129	2	2	119.5-129.5
130-139	8	10	129.5-139.5
140-149	10	20	139.5-149.5
150-159	7	27	149.5-159.5
160-169	3	30	159.5-169.5
n = 30			

Here n = 30

$$\therefore \frac{n}{2} + 1 = 15 + 1 = 16$$

∴ 16 is under cumulative frequency 20. So median class be 140-149 $L_1 = 139.5$, $L_2 = 149.5$, f = 10, n = 30, c = 10.

Median M₁ = L₁+
$$\frac{L_2-L_1}{f}\left(\frac{n}{2}-c\right)$$

= 139.5 + $\frac{10}{10}$ (15 - 10)

6262969699

$$= 139.5 + \frac{10}{10} \times 5 = 144.5$$

If by joining f a boy of height 140 cms, the n=31, f=11

: Median M₂ = 139.5 +
$$\frac{149.5 - 139.5}{11}$$
 (15.5 - 10)

$$= 139.5 + \frac{10}{11} \times 5.5 = 144.5$$
 cms

Then $M_1 - M_2 = 144.5 - 144.5 = 0$

Question 33

The marks awarded to seven students in a school admission test were:

	Mathematics	English
А	55	35
В	45	32
С	75	44
D	15	50
Е	10	45
F	40	60
G	06	40

Which subject has the better median value?

(a) Mathematics(c) Both (a) and (b) above

(b) English(d) None of the above

Answer: B Explanation:

The awarded makes in Mathematics and English were arranged in ascending in ascending order separately.

Maths	English
06	32
10	35
15	40
40	44
45	45
55	50
75	60

Hence, English has the better median value.

Question 34 Identify the mode of the given distribution.

6262969699

Marks	4	5	6	7	8
Number of	3	5	10	6	1
students					

(b) 1

(d) 6

(a)	7
J	1

(c) 8

Answer: D

Explanation:

Mode is 6 as it has the highest frequency

Question 35

The given data are the times (in minutes), it takes seven students to go to school from their homes.

Demoormo		meor					
11	6	22	7	10	6	15	
Which statement about the data is false?							
(a) Their median is 11. (b) Their mean is 15.							
(c) Their range is 16. (d) Their mode is 6.							
Answer: a							
Explanation:							
Arranging the given data in ascending order, we get 6, 6, 7, 10, 11, 15, 22							
$Mean = \frac{6+6+7+10+11+15+22}{2}$							
$\frac{77}{-1} = 11$							
$\frac{1}{7} = 11$							
Mode = 6 I	Mode = 6 Median = 4^{th} value = 10						

Question 36

The medians of the following two sets of numbers are equal, and the sets are arranged in ascending order {1, 4, x, 8} and {2, 5, y, 9}. What is y – x? (a) -1 (b) 0 (c) -2 (d) 3 Answer: a

Explanation:

Recall that the median of an even-numbered of numbers is the arithmetic mean of the pair of middle terms. Thus $\frac{(4+x)}{2}$ = median of the first set and $\frac{(5+y)}{2}$ -= median of the second set. Since both median are equal, we can set the equations equal to each other. $\frac{(4+x)}{2} = \frac{(5+y)}{2}$. Multiply both sides by 2 and we get 4 + x =5 + y. we also know that 4 < x < 8 and 5 < y < 9, since the sets are arranged in ascending order. This narrows our options for x and y down significantly. Plugging in various values will eventually get you to x = 7 and y = 6, since 7 + 4 = 11 and 5 + 6 =11, and thus the median in both cases would be 5.5. thus, y-x = -1

Question 37

What is the median in the following set of numbers 16, 19, 16, 7, 2, 20, 9, 5.

(a) 2 (c) 4.5 (b) 16 (d) 12.5

Answer: d

Explanation:

16, 19, 16, 7, 2, 20, 9, 5

Order the numbers from smallest to largest.

2, 5, 7, 9, 16, 19, 20

The median is the number in the middle.

In this case, there is a 9 and 16 in the middle.

When that happens, take the average of the two numbers.

Question 38

Find the median: 4,4,4,4,6,7,9,9,12,12,12,12,12,12,12,18,76,90.

(a)11.9	(b) 9
(c) 76	(d) 12

Answer: d

Explanation:

To find the median, arrange the numbers from smallest to largest: 4,4,4,4,6,7,9,9,12,12,12,12,12,18,76,90

There are 17 numbers in total. Since 17 is an odd number, the median will be the middle number of the set. In this case, it is the 9th number, which is 12.

Question 39

There are 3,500 people in group A and 5,000 people in group B:

Car type	% in group A who own	% in group B who own
Motorbike	4	9
Sedan	35	25
Minivan	22	15
Van	9	12
Coupe	3	6

What is the median of the number of people in group B who own either a minivan.Van or coupe?

(a) 600	(b) 300
(c) 1500	(d) 750
	(4) / 80

Answer: A

Explanation:

Treat the percentage as a list, as we are including every demographic from the 3 vehicle types mentioned. If we do each 0.06(5000), 0.12(5000), and 0.15(5000) we note from observation that the median, or middle value, would have to be the 12% row

Since the sample size does not change. The question asks for EITHER of 3 categories, so we can ignore the other two. 0.12(5000) = 600(van) is the median of the 3 categories. 8, 12, 9, 8, 7, 11, 10, 6

Question 40

The grades on a test taken by 15 students are 50, 70, 87, 95, 100, 34, 56, 76, 43, 88, 92, 76, 82, 45, and 65 respectively. What was the medians score for this test?

(a) 73	(b) 76
(c) 70	(d) 89

Answer: b

Explanation:

To solve this problem, we must be aware of the definition of a median for a set of numbers. The median is defined as the number that is in middle of a set of numbers sorted from smallest to largest. Therefore, we must first sort the numbers from largest to smallest.

34,43,45,50,56,65,70,76,76,87,88,92,95,100 43,45,50,56,65,70,76,81,87,88,92,95 45,50,56,65,70,76,76,87,88,92 50, 56, 65, 70, 76,76,87,88 56, 65, 70,76,76,87 65, 70, 76, 76 70, 76, 76

Then by slowly eliminations the smallest and the largest numbers we find that the median score for this test is 76.

Ouestion 41 Set A = [-10, 4, 2, -14, -2] Quantity A: The mean of Set A Quantity B: The median of set A (a) Quantity B is greater. (b) Quantity A is greater. (c) The relationship cannot be (d) The two quantities are equal. determined Answer: a **Explanation**: Begin by reordering the set in numerical order: Set A = [-10, 4, 2, -14, -2] Then becomes Set A = [-14,-10,-2, 2, 4] Since there are an odd number of values, the median is the middle value.

Quantity B: -2 Now, to find the arithmetic mean, take the sum of values divided by the total number of values. -14 - 10 - 2 + 2 + 45 **Ouantity A: -4 Ouestion 42** The arithmetic mean of 2-x,3x2,7-15x,x2-8x+23 is -1 **Quantity A: 3** Quantity B: The median of 2, x, 1, 4, 10, 8,, 2, x, 1, 4, 10, 8 (a) Quantity B is greater. (b) Quantity A is greater (c) The relationship cannot be (d) The two quantities are equal. determined Answer: a **Explanation:** X is an unknown value, but it can be found given what we know about the mean of the set 2-x,3x2,7-15x,x2-8x+23: $\frac{(2-x) + (3x^2) + (7-15x) + (x^2 - 8x + 23)}{x^2 - 8x^2} = -1$ 4 $4x^2 - 24x + 32 = -4$ $x^2 - 6x + 8 = -1$ $x^2 - 6x + 9 = 0$ (X-3)(X-3)=0X=3 Now, Quantity B: is out of order; arrange in numerically: 1, 2, x=3, 4,8,10 Since, there is even number of values; the median is the mean of the two middle most values: Quantity B: $\frac{3+4}{2} = 3.5$ 3+42=3.5**Question 43** Bill runs for 30 minutes at 8 mph and then runs for 15 minutes at 13 mph. what was his average speed during his entire run? (b) $9\frac{2}{3}$ mph (d) $10\frac{1}{2}$ mph (a) 10 mph (c) 11 mph

Answer: b Explanation: Rate = distance/time.

Find the distance for each individual segment of the run (4 miles and 3.25 miles.). Then add total distance and divide by total time to get the average rate, while making sure the units are compatible (miles per hour not mils per minute), which means the total 45 minute run time needs to be converted to 0.75 of an hour ; therefore (4 miles + 3.25miles/0.75 hour) is the final answer.

Question 44

Find the mode for the follow	wing data.
------------------------------	------------

Age	0-6	6-12	12-18	18-24	24-30	30-36	36-42
Frequency	6	11	25	35	18	12	6

(a) 20.22	(b) 19.47
(c) 21.12	(d) 20.14

Answer: a Explanation:

Since, maximum class frequency is 35, so the mode class is 18-24.

Now, Mode = L + $\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$ 18+ $\left(\frac{35 - 25}{2 \times 35 - 25 - 18}\right) \times 6$ = 18+2.22 = 20.22

Question 45

Find the median for the following distribution of workers.

Daily wages	No. of workers	Daily wages	No. of workers		
1-3	6	9-11	21		
3-5	53	11-13	16		
5-7	85	13-15	4		
7-9	86	15-17	4		

(b) 6.84

(d) 5.57

(a) 7.14 (c) 5.92 **Answer: b Explanation:**

Daily wages	No. of workers	Cumulative frequency
		(cf)
1-3	6	6
3-5	53	59
5-7	85	144
7-9	86	230
9-11	21	251

6262969699

11-13	16	2677
13-15	4	271
15-17	4	275

Here, n = 275 $\frac{n}{2}$ = 137.5 Median class 5-7 Median = l + $\left(\frac{\frac{n}{2}c.f.}{f}\right)$ × h = 5 + $\left(\frac{137.5-59}{85}\right)$ × 2 = 5 + $\frac{78.5}{85}$ × 2 = 5 + 1.84 = 6.84

Question 46

In an examination of 675 candidates of maximum marks 100 the examiner supplied the following information.

7 39 95 201 381 545 631 675 ne percentage marks 2, 48, 22 3, 48, 22
95 201 381 545 631 675 ne percentage marks 2, 48, 22
201 381 545 631 675 ne percentage marks 2, 48, 22
381 545 631 675 ne percentage marks 2, 48, 22
545 631 675 ne percentage marks 2, 48, 22
631 675 ne percentage marks 2, 48, 22
675 ne percentage marks 2, 48, 22
ne percentage marks 2, 48, 22
2, 48, 22
Frequency
7
32
56
106
180
164
86
44

Here, n = 675

6262969699

 $\frac{n}{2} = 337.5$ So, median class 40-50 Median = $l + \left(\frac{\frac{n}{2} - c.f.}{f}\right) \times h$ 40 + 7.58 = 47.58 Now, maximum frequency is 180 So modal class is 40-50 Modes = $l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$ 40 + $\left(\frac{180 - 106}{2 \times 180 - 106 - 164}\right) \times 10$ 40 + $\frac{74}{90} \times 10 = 40 + 8.22 = 48.22$

Question 47

Find the mean, median and mode of the following data.

Classes	0-20	20-40	40- 60	60-80	80-100	100- 120	120- 140
Frequency	6	8	10	12	6	5	3
(a) 88				(b) 60			
(c) 65		(d) 100					
Answer: C							
Explanation	1:						
Class	(xi)		Freque	ency y	kifi	Cumu	lative
			(fi)			freque	encv (cf)

	()			
		(fi)		frequency (cf)
0-20	10	6	60	6
20-40	30	8	240	14
40-60	50	10	500	24
60-80	70	12	840	36
80-100	90	6	540	42
100-120	110	5	550	47
120-140	130	3	390	50
Total		$\Sigma fi = 50$	Σfixi = 3120	

$$Mean = \frac{\Sigma fixi}{\Sigma fi}$$

$$= \frac{3120}{50} = 62.4$$

$$n = 50, \frac{n}{2} = 25$$
Median class is 60-80
Median = $l + \frac{\left(\frac{n}{2} - c.f.\right)}{f} \times h$

$$= 60 + \left(\frac{25-24}{12}\right) \times 20$$

6262969699

= 60 + 1.67 Maximum frequency is 12, so modal class is 60-80 Mode = $l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$ 60 + $\left(\frac{12 - 10}{2 \times 12 - 10 - 6}\right) \times 20$ 60+5 = 65

<u>Question 48</u> The mean of 1, 3, 4, 5, 7, 4 is m. The numbers 3,2,2,4,3,3, p have mean m⁻¹ and median q. Then, p + q=

(b) 5 (a) 4 (c) 6 (d) 7 Answer: d **Explanation**: Mean of 1, 3, 4, 5, 7 and 4 is m. $\rightarrow \frac{1+3+4+5+7+4}{6} = m$ M = 4Now, mean of 3, 2, 2, 4, 3, 3 and p is m⁻¹ $\frac{3+2+2+4+3+3+p}{2} = 3$ $(: m = 4) \rightarrow 17 + p = 21$ \rightarrow p = 4 Arranging 3, 2, 2,4,3,3 and 4 in ascending order, we get 2,2,3,3,3,4,4 $\therefore \text{Median } (q) = n \left(\frac{7+1}{2}\right)^m \text{term} - 4^{\text{th}} \text{term} = 3$ $\therefore p + q = 4 + 3 = 7$

Question 49

The mean of six numbers is 21. If one number is excluded, then their mean is 19, the excluded number is ____.

(a) 31	(b) 26
(c) 28	(d) 25
Anciwori o	

Answer: a

Explanation:

Let the excluded number be x and the sum of rest of numbers be y. then, $21 = \frac{x+y}{c}$

→ 126 = x + y $19 = \frac{y}{5}$ → y = 95∴ From (i) x = 31

Question 50

If 7, 2, 9, and 5 occur with frequencies 2, 3, 6 and 4 respectively, then the arithmetic mean is -____.

(a) 6.25 (b) 6.75 (c) 6.27 **Answer: c Explanation:** Arithmetic mean = $\frac{x1f1+x2f2+\dots+xnfn}{f1+f2+\dots+fn}$ $(7 \times 2) + (2 \times 3) + (9 \times 6) + (5 \times 4)$ 2+3+6+4

 $\frac{14+6+54+20}{15} = \frac{94}{15} = 6.27$

Question 51

Find n such that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the geometric mean between a and b: (a) $\frac{1}{2}$ (b) 1 (c) $\frac{-1}{2}$ (d) 0 Answer: c

Explanation:

We know that geometric mean between a & b is a & b = \sqrt{ab} It is given that

G.M. between a & b =
$$\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$$

 $\sqrt{ab} = \frac{a^{n+1} + b^{n+1}}{a^n + b^n}$
 $ab^{\frac{1}{2}} = \frac{a^{n+1} + b^{n+1}}{a^n + b^n}$
 $(ab)^{\frac{1}{2}(a^n + b^n) = a^{n+1}} + b^{n+1}$
 $a^{\frac{1}{2}} b^{\frac{1}{2}} (a^n + b^n) = a^{n+1} + b^{n+1}$
 $\frac{1}{a^2} + n = \frac{b^n + \frac{1}{2} [\frac{1}{b^2} - \frac{1}{a^2}]}{\frac{1}{b^2} - \frac{1}{a^2}}$
 $\frac{1}{a^2} + n = 1$
 $\left(\frac{a}{b}\right)^{\frac{1}{2} + n} = \left(\frac{a}{b}\right)^0$
Comparing power
 $\frac{1}{2} + n = 0$
 $n = -\frac{1}{2}$

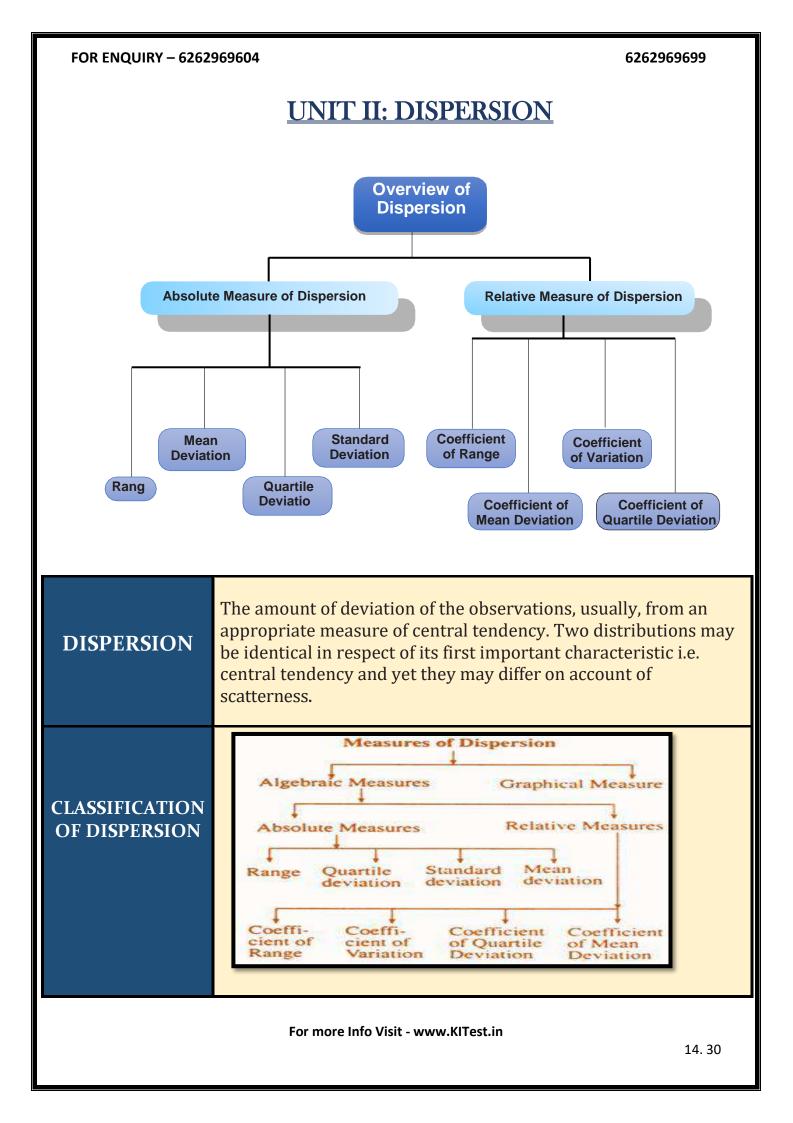
Ouestion 52 What is the mode of 10, 2, 8, 6, 7, 8, 9, 10, 10, 11 and 10? (b) 12 (a) 10 (c) 14 (d) 8 **Answer:** a **Explanation**: Mode = observation with the highest frequency = 10**Ouestion 52** The mean of the marks in statistics of 100 students in class x was 72. The mean of marks for boys was 75, while their number was 70. What is the mean of marks of girls in the class? (a) 35 (b) 65 (c) 68 (d) 86Answer: b **Explanation:** Total marks of boys Total number of girls $\frac{100 \times 72 - 75 \times 70}{200} = \frac{7200 - 5250}{100}$ 30 30 1950 $\frac{1}{30} = 65$ **Question 53** Which of the following is true about the mode of a given data? (a) It may or may not exist for a (b) It is always unique. Given data. (c) It is very difficult to compute (d) We cannot calculate mode without Mode. The empirical formula. Answer: a **Explanation:** Mode of a given data may or may not exist sometimes. Range = 22 - 6 = 16**Question 54** The A.M. of 12 observations is 15. If an observation 20 is removed, what is the arithmetic mean of the remaining observations? (b) 13 (a) 14.5 (c) 15 (d) 13.5

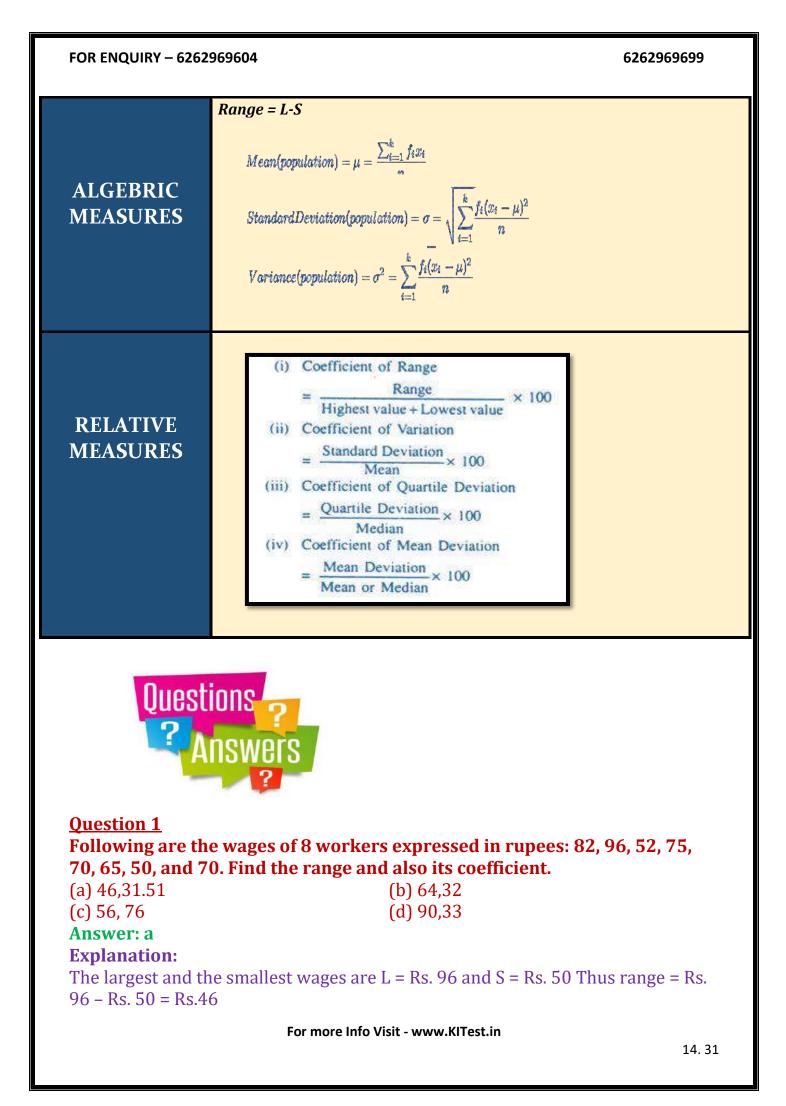
Answer: a
Explanation:
he A.M. of 12 observations is 15.
→ Sum of 12 observations = 12×15 = 180

An observation 20 is removed Mean of the remaining observations $= \frac{180-20}{(12-1)} = \frac{160}{11} = 14.5$

Question 55

If for a given data median is 125.6 and mean is 128, find mode.


(a) 120.8 (b) 128.0(c) 108.2 (d) 180.2**Answer: a Explanation:** Given median = 125.6 and mean = 128. Mode = 3 Median – 2 Mean = (3×125.6) - (2×128) = 376.8 - 256


= 120.8

Question 56

What is the arithmetic mean of a+2, a and a-2? (a) a+2 (b) a (c) a-2 (d) 3a Answer: b Explanation: $Mean = \frac{a+2+a+a-2}{3} = \frac{3a}{3} = a$

Question57Which of the following is not a measure of central tendency?(a) Mean(b) Median(c) Mode(d) Standard deviationAnswer: dExplanation:Mean, median and mode are the measures of central tendency.

Coefficient of range = $\frac{96-50}{96+50} \times 100$ = 31.51

Question 2What is the coefficient of range for the following distribution of weights?Weights in last50-5455-5060-6465-6070-74

Weights in kgs:	50-54	55-59	60-64	65-69	70-74
No. of students	12	18	23	10	3
(a) 20			(b) 21		
(c) 20.16			(d) 40.34		
Answer: c					
Explanation:					
The lowest class b	oundary	is 49.50 kg	gs. And the hig	hest class bou	ndary is 74.50
kgs.					
Thus we have					
Range = 74.50 kgs	5, - 49.50	kgs.			
=25 kgs.					
Coefficient of rang	$ge = \frac{74.50}{74.50}$	$\frac{-49.50}{140.50} \times 100$)		
	74.50-	+49.50			
$=\frac{25}{124} \times 100$					
= 20.16					

Question 3

Anubhav scored 85, 91, 88, 78, 85 for a series of exams. Calculate the mean deviation for his test scores?

(a) 3.28	(b) 5.78
(c) 6.89	(d) None
Answer: a	
Explanation:	
Given test score; 85, 91, 88, 78, 85	

Mean = $\frac{(85+91+88+78+85)}{5}$ = 85.4

X	Xi - X	$ x_i - x $
85	-0.4	0.4
91	5.6	5.6
88	2.6	2.6
78	-7.4	7.4
85	-0.4	0.4

Mean deviations = $\frac{16.4}{5}$ = 3.28

Ouestion 4

The wheat production (in kg) of 220 acres is given as: 1120, 1240, 1320, 1040, 1080, 1200, 1440, 1360, 1680, 1730, 1785, 1342, 1960, 1880, 1755, 1720, 1600, 1470, 1750, and 1885. Find the quartile deviation (a) 246.875 (b) 246 (c) 246.89 (d) 175 **Answer:** a **Explanation:** After arranging the observations in ascending order, we get 1040, 1080, 1120, 1200, 1240, 1320, 1342, 1360, 1440, 1470, 1600, 1680, 1720, 1730, 1750, 1755, 1785, 1880, 1885, 1960. Q1 = Value of $\left(\frac{n+1}{4}\right) th$ item = Value of $\left(\frac{20+1}{4}\right)$ th = Value of (5.25)th item $= 5^{\text{th}}$ item $+ 0.25(6^{\text{th}}$ item $- 5^{\text{th}}$ item) = 1240+0.25(1320-1240)01 = 1240 + 20 = 1260Q3 = value of $3\left(\frac{n+1}{4}\right)$ th item = value of $3\left(\frac{20+1}{4}\right)$ thitem = value of (15.75)th item = 15th item + 0.75(16th item - 15th item) = 1750 Q3=1750+3.75=1753.75 Q. D. $= \frac{Q_3 - Q_1}{2} = \frac{1753.75 - 1260}{2} = \frac{492.75}{2}$ = 246.875

Ouestion 5

Compute coefficient of variation from the following data:

Age :	under 10	under 20	under 30	under 40	under 50	under 60
No. of	10	18	30	45	60	80
persons						
dying:						
(a) 48.83			(b) 89	9.88		
(c) 756.34	(d) None					
Answer: a						
Explanatio	n:					
Age in	No. of	Mid	$\mathbf{d}_{i} = \mathbf{x}$	i - 25 f i	di	$\mathbf{f}_{i}\mathbf{d}_{i}^{2}$
years	persons	value	10			
class	dying	(X _i)				
interval	(f i)					
		For more l	nfo Visit - ww	w.KITest.in		
						1

6262969699

0-10	10	5	-2	-20	40
10-20	18-10=8	15	-1	-8	8
20-30	30-18=12	25	0	0	0
30-40	45-30=15	35	1	15	15
40-50	60-45=15	45	2	30	60
50-60	80-60=20	55	3	60	180
Total	80	-	-	77	303

The AM is given by: $\bar{\mathbf{x}} = \mathbf{A} + \frac{\Sigma f_i d_i}{N} \times \mathbf{C}$ $= 25 \left(\frac{77 \times 10}{80}\right)$ years = 34.63 years The standard deviation is

 $\sqrt{\frac{\Sigma f_i d_i}{N} - \left[\frac{\Sigma f_i d}{N}\right]^2} \times C$

 $CV = \frac{s}{x} \times 100$

 $\sqrt{\frac{303}{80} - \left[\frac{77}{80}\right]^2 \times 10 years}$ $\sqrt{3.79 - 0.93} \times 10 year$ = 16.91 years Thus the coefficient of variation is given by = $\frac{16.91}{34.63} \times 100$

= 48.83

Question 6

What is the mean deviation about mean for the following numbers? 5, 8, 10, 10, 12, 9.

(a) 1.74	(b) 1.67
(c) 1.87	(d) 1.47
Anowen h	

Answer: b Explanation:

The mean is given by $\overline{X} = \frac{5+8+10+10+12+9}{6}$

= 9

Computation of MD about AM

Xi	X _i - X
5	4
8	1
10	1
10	1

12	3
9	0
Total	10

Thus mean deviation about mean is given by

 $X_i - X = \frac{\Sigma 10}{6} = 1.67$

Question 7 From the above data calculate coefficient of mean deviation

(a) 12.45	(b) 123
(c) 989	(d) None
Answer: a	
Explanation:	
Coefficient of mean deviation =	$\frac{MD \ about \ Median}{MD \ about \ Median} \times 100$
	меалап 8714.28
	$\frac{0.01120}{70000} \times 100$
10.4	

= 12.4

Question 8

For a group of 60 boy5 students, the mean and SD of stats. Marks are 45 and 2 respectively. The same figures for a group of 40 girl students are 55 and 3 respectively. What is the SD of marks if the two groups are pooled together? (a) 5.44 (b) 5.48

(d) 3

(a) 5.44 (c) 49 **Answer: c Explanation:** $X = \frac{n_1 x_1 + n_2 x_2}{n_1 + n_2}$

 $\frac{60 \times 45 + 40 \times 55}{60 + 40}$

Question 9

From the above questions and expression find standard deviation of marks (a) 5.44 (b) 5.48 (c) 30 (d) 3 Answer: b Explanation: $d_1 = X_1 - X = 45 - 49 = -4$ $S = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}}$

6262969699

$d_1 = X_1 - X = 55 - 49 = 6$
$\sqrt{60 \times 2^2 + 40 \times 3^2 + 60 \times (-4)^2 + 40 + 6^2}$
60 + 40
$\sqrt{30} = 5.48$

Ouestion10

Calculate the mean deviation about median for the following data

					<u> </u>	
Class	0-10	10-20	20-30	30-40	40-50	50-60
Frequency	6	7	15	1	4	2
				6		
(a) 10.16	(b) 30.69					
(c) 28	(d) 30					

(c) 28

(d) 30

Answer: a **Explanation**:

▲			
Class	Frequency	Cumulative	Mid – point
		frequency	Xi
0-10	6	6	5
10-20	7	7 +6 = 13	15
20-30	15	13 + 15 = 28	25
30-40	16	28 + 16 = 44	35
40-50	4	44 + 4 = 48	45
50-60	2	48 + 2 = 50	55
	50		

 $N \Sigma f_i = 50$

Median Class
$$\left(\frac{N}{2}\right)^{th}$$
 term
 $\left(\frac{50}{2}\right)^{th}$ term
 25^{th}
In above data cumulative frequency of class 20-30 is 28 which is slightly greater
than 25.
 \therefore Median class = 20 - 30
Median = $1 + \frac{\frac{N}{2} - c}{f} \times h$
Where,
L = Lower limits of median class
N = Sum of frequencies
F = frequency of median class

C = Cumulative frequency of class before median class

Here, l = 20, N = 50, C = 13, h = 10, f = 15

Median = $1 + \frac{\frac{N}{2} - c}{f} \times h$

 $20 + \frac{\frac{50}{2} - 13}{15} \times 10$ $20 + \frac{12}{15} \times 10$ 20 + 8 = 28

Finding mean deviations about Median = $\frac{\Sigma f_{i|X_I - M|}}{\Sigma f_i}$

			- <u>-</u> J i		
Class	Frequency	Cumulative	Mid – point	$ x_i - M $	$f_i x_i - M $
		frequency	Xi		
0-10	6	6	5	5 —	6 × 23 =
				28 =23	138
10-20	7	7+6 = 13	15	15 -	7 × 13 = 91
				28 =13	
20-30	15	13+15 = 28	25	25 —	$15 \times 3 = 45$
				28 =3	
30-40	16	28+16=44	35	35 —	16 × 7 =
				28 =7	112
40-50	4	44+4=48	45	45 —	4 × 17 = 68
				28 =17	
50-60	2	48+2=50	55	55 —	2 × 27 = 54
				28 =27	
	$\Sigma f_i = 50$			$\Sigma f_i x_i - M $	508

 $\sum f_i = 50 \& |x_i - M| = 508$

 $\therefore \text{Mean deviation (M)} = \frac{\sum f_i |x_i - M|}{\sum f_i}$ $\frac{508}{50} = 10.16$

Question 11

5 students obtained following marks in statistics: 20, 35, 25, 30, 15 find out range and coefficient of range.

(a) 20, 0.4 (b) 20, 0.5 (c) 30, 10 (d) 30, 5 **Answer: a Explanation:** Here, Highest value (H) = 35 Lowest value (L) = 15 Range = Highest value –Lowest value i.e. R = H-LSubstituting the given values in the formula R = 35 - 15 = 20Coefficient of range is as follows:

 $CR = \frac{H-L}{H+L}$ Or, CR = $\frac{35-15}{35+15}$ $= \frac{20}{50}$

CR = 0.4

Hence, the range (R) of the above data is 20 and coefficient of Range (CR) is 0.4

Question 12

Prices of shares of a company were not as under from Monday through Saturday. Find out range and the coefficient of range.

Day	Mon.	Tues.	Wed.	Thu.	Fri	Sat.	
Price	200	210	208	160	220	250	
(a) 20, 0.4			(b)	90, 0.22			
(c) 30, 0.65	5		(d)	30, 5.69			
Answer: b	l.						
Explanation	on:						
Here,							
Highest va	lue among t	the prices	of shares =				
250 Lowes	t value amo	ong the pri	ces of share	es = 160			
Range (R)	= Highest v	alue (H) –	Lowest val	ue (L) or, R	= 250-160		
R = 90							
Coefficient of Range 9CR) = $\frac{H-L}{H+L}$							
Or, $CR = \frac{250 - 160}{250 + 160}$							
250+160 250+160							
$=\frac{90}{410}$ 250+160							
	or 0.22 (A)	oprox.)					

Question13

You know share market is going bullish during the last several months. Collect weekly data on the share price of any two important industries during the past six months. Calculate the range of share prices. Comment on how volatile is the share prices.

(a) Tata motors shares are more volatile as compared to the prices of Reliance shares.

(c) Tata motors shares are equal as a To the prices of Reliance shares.

(b) Tata motors shares are less volatile as compared to the prices of Reliance shares.

(d) None of these

Answer: b

Explanation:

Month	Price of shares Tata Motors	Price of shares
		Reliance
Oct.	325	913.35
Nov.	397	900.25
Dec.	405	750.90
Jan.	415	780.70
Feb.	420	799.25
Mar.	388	850.35

For TATA Motors Highest Value = 420 Lowest Value = 325 Range (R) = Highest Value (H) – Lowest Value (L) or, R₁ = 420-325 R₁ = 95 Coefficient of Range (CR) = $\frac{H-L}{H+L}$ Or, Cr = $\frac{420-325}{420+325}$ = $\frac{95}{745}$ = 0.127 For Reliance Highest Value = 913.35 Lowest value = 750.90 Range (R) = Highest Value (H) – lowest Value (L) or, R₂ = 913.25 – 750.90 R₂ = 162.45 Coefficient of Range (CR) = $\frac{H-L}{H+L}$ CR = $\frac{913.35-750.90}{913.35+750.90}$ = $\frac{162.45}{1664.25}$ = 0.097

From the above results we can observe that the price of the Tata Motors shares is less volatile as compared to the prices of Reliance shares.

Marks	10	20	30	40	50	60	70
No. of students	15	18	25	30	16	10	9
(a) 20,0.4				(b) 20,0	.5		
(c) 60,0.75				(d) 30,5			
Answer: c							
Explanation:							
Here,							
Highest value =	70						
Lowest value =	10						
		For	more Info	Visit - www.k	(ITest.in		

6262969699

Range (R) = Highest value (H) – Lowest Value (L) = 70 – 10 = 60 Coefficient of Range (CR) = $\frac{H-L}{H+L}$ $CR = \frac{70-10}{70+10} = \frac{60}{80} = 0.75$ Hence, the Range (R) of the above series is 60 and coefficient of Range (CR) is 0.75

Question15

Find the variance of the following data: 6, 8, 10, 12, 14, 16, 18, 20, 22, 24.(a) 33(b) 15(c) 10(d) 14

Answer: a

Explanation:

Explanation:			
Xi	$d_i = \frac{x_i - 14}{2}$	x_i - x	$(x_i - x)^2$
6	$\frac{6-14}{2} = -4$	6 - 15 = -9	$(-9)^2 = 81$
8	$\frac{\frac{6-14}{2} = -4}{\frac{8-14}{2} = 3}$ $\frac{10-14}{2} = -2$	8 - 15 = -7	$(-7)^2 = 49$
10	$\frac{10-14}{2} = -2$ $12-14$	10 -15 = -5	$(5)^2 = 25$
12	$\frac{12 - 14}{2} = -1$ $\frac{14 - 14}{2} = 0$	12 -15 = -3	$(-3)^2 = 9$
14	$\frac{1}{2} = 0$	14 - 15 = -1	$(-1)^2 = 1$
16	$\frac{16-14}{-1}$ - 1	16 - 15 = 1	$(1)^2 = 1$
18	$\frac{2}{18-14} = 2$	18 - 15 = 3	$(3)^2 = 9$
20	$\frac{\frac{10 - 14}{2} = 2}{\frac{20 - 14}{2} = 3}$	20 - 15 = 5	$(5)^2 = 25$
22	$\frac{-2}{2} = 3$ $\frac{22 - 14}{2} = 4$	22 - 15 = 7	$(7)^2 = 49$
24	$\frac{24-14}{2} = 5$	24 - 15 = 9	$(9)^2 = 81$
	$\sum_{i=1}^{2} \frac{1^{0}}{i} d_{i} = 5$		$\sum \frac{1^0}{1} (x_i - x)^2 =$
			330

Mean \overline{X} = assumed mean $\frac{\sum_{n=1}^{1^{0}} \times h}{n}$ Where a = assumed mean = 14

 $d_{i} = \frac{x_{i} - a}{h}$ h = class width = 8-6 = 2 n = number of observation = 10 Mean $\overline{X} = 14 + \frac{5}{10} \times 2 = 15$ Variance $(O^{2}) = \frac{1}{n} \Sigma (x_{i} - \overline{X})^{2}$ $\frac{1}{10} \times 330$ 33

Question16

Class	30-40	40-50	50-60	60-70	70-80	80-90	90- 100
Frequency	3	7	12	15	8	3	2
(a) 14				(b) 50			
(c) 62				(d) 14.17			
Answer: d							
Explanation	1:						
Class	F	requency]	Mid – poin	nt	$f_i x$	i
	(f_i)		(x_i))		-
30-40	3			35		$35 \times 3 = 10$	05
40-50	7		4	45		$45 \times 7 = 32$	15
50-60	1	2	!	55		55 × 12 = 0	660
60-70	1	5	(65		65 × 15 = 975	
70-80	8	8		75		75 × 8 = 600	
80-90	3	3		85		85 × 3 = 2	55
90-100	2		(95		95 × 2 = 19	90
		$\sum f_i = 1$	50			$\sum f_i x_i =$	= 3100

$$\sum_{i=1}^{n} f_i x_i = 3100$$

$$\sum_{i=1}^{n} f_i = 50$$
Mean $\bar{X} = \frac{\sum f_I x_i}{\sum f_i}$

$$\frac{3100}{50} = 62$$
Variance $(O'^2) = \frac{1}{n} \sum (x_i - \bar{X})^2$

$$\frac{1}{50} \times 10050 = 201$$

For more Info Visit - www.KITest.in

6262969699

6262969699

Standard deviation (O') = $\sqrt{201}$ (O') = 14.17

Questioin17

Estimate coefficient of quartile deviation of the following data:

Sr. No.	1	2	3	4	5	6	7	8	9	10	11
Data	8	9	11	12	13	17	20	21	23	25	27

(a) 3.53	(b) 0.353
(c) 0.689	(d) 0.591

Answer: b

Explanation:

In order to find the quartile deviation in case of individual series, we need to find out the values of third quartile and first quartile using the following equations:

$$Q_{1} = \text{size of} \left(\frac{N+1}{4}\right)^{th} \text{ item}$$

$$Q_{1} = \text{size of} \left(\frac{11+1}{4}\right)^{th} \text{ item}$$

$$Q_{1} = \text{size of 3th term}$$

$$Q_{1} = \text{size of 3th term}$$

$$Q_{1} = \text{size of 3} \left(\frac{N+1}{4}\right)^{th} \text{ item}$$

$$Q_{1} = \text{size of 3} \left(\frac{11+1}{4}\right)^{th} \text{ item}$$

$$Q_{1} = \text{size of 3} \left(\frac{11+1}{4}\right)^{th} \text{ item}$$

$$Q_{1} = \text{size of 3} \left(\frac{11+1}{4}\right)^{th} \text{ item}$$

$$Q_{1} = \text{size of 3th term}$$

$$Q_{1} = \text{size of 9th term}$$

$$Q_{1} = \text{size of 9th term}$$

$$Q_{2} = 23$$
Calculating Quartile Deviation and Coefficient of Quartile Deviation:
Quartile Deviation (Q.D.) \frac{Q_{3}-Q_{1}}{2}
$$Q.D. \frac{23-11}{2}$$

$$Q.D. \frac{12}{2}$$

$$Q.D. = 6$$
Coefficient of Quartile Deviation (Q.D.) \frac{Q_{3}-Q_{1}}{Q_{3}+Q_{2}} = \frac{23-11}{23+11} = \frac{12}{34} = 0.353

Question18

A measure of relative dispersion is given by the:

(a) Co-efficient of variance
(c) Quartile deviation
Answer: a
Explanation:

(b) Standard deviation (d) Variance

Co-efficient of variance: This term is used commonly to mean scatter, deviation, Fluctuation, Spread or variability of data. Relative Measures of Dispersion Relative measures of dispersion are also known as coefficient of dispersion are obtained as ratios or percentages.

Question19

The _____ is the easiest measure of dispersion to calculate.

s the custest measur	e of dispersion to calculate.			
Symbol Name	Meaning / definitions			
variance	variance of random variable X			
variance	variance of population values			
standard deviation	standard deviation of random variable X			
standard deviation	standard deviation value of random variable X			
rd Deviation	(b) Range			
(c) Mean absolute deviation (d) Variance				
Answer: b				
Explanation:				
Range is basically the difference between the lowest and highest values.				
Question20				
	Symbol Name variance variance standard deviation standard deviation rd Deviation bsolute deviation on: asically the difference			

Which of the following	g symbols represents the standard deviation of the
population?	
$(a) \Omega^2$	(\mathbf{h}) u

(a) 0 ²	(b) μ
(c) 0'	(d) \overline{X}
Answer: c	

Question21

The variance can never be	
(a) Larger than the standard	(b) Negative
deviation	
(c) Smaller than the standard	(d) Zero
deviation	

Answer: b

Explanation:

Sometimes (negative or positive number) squared is always a positive number, except zero squared which is still zero. Because the squared deviations are all positive numbers or zeroes, their smallest possible mean is zero. It can't be negative. This average of the squared deviations is in fact variance. Hence the variance can be negative.

Question22 The numerical value of the standard deviation can never be

(a) Negative

(c) Zero

Answer: a

Explanation:

Standard deviation formula is computed using squares of the numbers. Square of a number cannot be negative. Hence standard deviation cannot be negative. Here (x-mean) is squared, so, this cannot be negative. N, number of terms cannot be negative, hence SD cannot be negative.

(d) None

Ouestion23

The description measure of dispersion that is based on the concept of a deviation about the mean is

(a) The absolute value of the range

(b) Range (d) Inter quartile range

(b) Larger than the variance

Answer: c

Explanation:

(c) Standard deviation

A measure of dispersion is a numerical value describing the amount of variability present in a data set. The standard deviation (SD) is the most commonly used measures of dispersion. With the SD you can measure dispersion relative to the scatter of the values about their mean.

Ouestion24

When should measures of location and dispersion be computed from grouped data rather than from individual data values?

(a) Whenever computer packages for descriptive statistics are unavailable

(c) Only when the data are from a population

(b) As much as possible since computations are easier (d) Only when individual data values are unavailable

Answer: d

Explanation:

Only when individual data values are unavailable should measures of location and dispersion be computed from grouped data rather than from individual data values.

Ouestion25

Which information is false regarding Lorenz curve

(a) The Lorenz curve devised by Dr. Max (b) Used this technique to show 0. is a graphic method of studying **Dispersion**.

employment of a group of people

6262969699

(c) The Lorenz curve always lies below the line of equal distribution, unless the distribution is uniform (d) The area between the line of equal distribution and the plotted curve gives the extent of inequality in the items. The larger the area, more is the inequality

Answer: b

Explanation:

A graph on which the cumulative percentage of total national income (or some other variable) is plotted against the cumulative percentage of the corresponding population (ranked in increasing size of share). The extent to which the curve says below a straight diagonal line indicates the degree of inequality of distribution.

Question25

Adding a constant to each value in a data set does not change the distance between values so the standard deviations remains

(a) Constant

(c) Vary with multiple of prime

(b) Vary (d) None of the

(d) None of these

Answer: a

Explanation: For example, consider the following numbers

2,3,4,4,5,6,8,10 for this set odd data standard deviation would be

$$8 = \sqrt{\frac{\sum_{i=1}^{n} (x_i - x)^2}{n-1}}$$
$$8 = \sqrt{\frac{(2 - 5.25)^2 + (3 - 5.25)^2 + \dots + (10 - 5.25)^2}{8-1}}$$

8 = 2.65922

If we were to add 5 to each value in this data set. The new set of values would be 7, 8, 9, 9, 10, 11, 13,15

$$8 = \sqrt{\frac{(7-10.25)^2 + (8-10.25)^2 + \dots + (15-10.25)^2}{8-1}}$$

8 = 2.65922

As you can see the s.d. remains the same unless you multiply every value by a constant

PAST EXAMINATION QUESTIONS:

<u>MAY 2018</u>

Question1

FOR ENQUIRY – 6262969604	6262969699			
If the variables x and z are so related that $z = ax + b$ for each $x = x_1$ where a and b				
are constant, then $\overline{Z} = a\overline{X} + b$				
(a) True	(b) False			
(c) Both	(d) None			
Answer: a				
Explanation:				
If the variable 'X' and 'Z' are so related t	hat $Z = ax + b$ for each x			
= x; where and a and b are constant the	n Z=ax + b then it is true.			
Question2				
Relation between mean, median and	mode is:			
(a) Mean-mode = 2 (mean – median)	(b) Mean-median = 3(mean – mode)			
(c) Mean-median = 2 (mean - mode)	(d) Mean-mode = 3(mean- median)			
Answer: d				
Explanation:				
We know that				
Mode = 3 Median – 2 Mean				
Mode – Mean = 3 Median – 2 Mean – Me	an			
Mode – Mean = 3 (Median – Mean)				
Mode – Mean = 3 (Median – Mean)				
Mean – Mode = 3 (Mean – Median)				
Question3				
$\frac{\overline{(Q_3-Q_1)}}{(Q_3+Q_1)}$ is known as				
$\overline{(Q_3+Q_1)}$ is known as				
(a) Coefficient of Range	(b) Coefficient of Q.D			
(c) Coefficient of S.D	(d) Coefficient of M.D			
Answer: b				
Explanation:				
Coefficient of Q.D =. $\frac{(Q_3 - Q_1)}{(Q_3 + Q_1)}$				
(Q_3+Q_1)				
Question4				
If each item is reduced by 15 A. M is				
(a) Reduced by 15	(b) Increased by 15			
(c) Reduced by 10	(d) None			
Answer: a	(u) None			
Explanation:	A M is reduced because the shifting of origin			
	A.M. is reduced because the shifting of origin,			
the A.M. is changed.				
Question5				
For more Info Visit - www.KITest.in				
For more int	o visit - www.kilest.in 14.46			

6262969699

For 899, 999, 391, 384, 390, 480, 760, 111, 240 Rank of m is (a) 2.75 (b) 8.25

(c) 5.5

(0) 5.5

Answer: c

Explanation:

Write the terms in Ascending order 111, 240, 384, 391, 480, 590,760, 899, 999. Here No of observations (N) = 10

(d) none

Median $(m_e) = \left[\frac{n+1}{2}\right]^{th}$ term = $\left[\frac{10+1}{2}\right]^{th}$ term = 5.5th term

Rank of median $(m_e) = 5.5$

Question 6

The average of a series of overlapping averages, each of which is based on a certain number of item within a series is known as:

- (a) Moving average
- (c) Simple average

(b) Weighted average(d) None

Answer: a

Explanation:

The average of a series of over lapping averages, each of which based on a certain number of item within a series is known as Moving Average.

Question 7

If the S.D. of the 1 st n natural Nos. is $\sqrt{30}$. Then the value of n is
(a) 19 (b) 20
(c) 21 (d) None
Answer: a
Explanation:
S.D of first 'n' natural numbers
$= \sqrt{\frac{n^2 - 1}{12}} \\= \sqrt{30} = \sqrt{\frac{n^2 - 1}{12}}$
$=\sqrt{30}=\sqrt{\frac{n^2-1}{12}}$
On squaring both side $30 = \frac{n^2 - 1}{12}$
$360 = n^2 - 1$
$n^2 = 360 + 1$
$n^2 = 361$
$n = \sqrt{361}$
For more Info Visit - www.KITest.in

n = 19

Question 8
If the random variables x and v are related by Y=2-3x, then the SD of v is given by
(a) $3 \times SD$ of x (b) $-3 \times SD$ of x
(c) $9 \times SD$ of x (d) $2 \times SD$ of x
Answer: a
Explanation:
Given equation
Y = 2 - 3x
3x+y-2=0
$b = \frac{-coefficient of x}{coefficient of y} = \frac{-3}{1} = -3$
S.D of $y = b $ S.D of x
= -3 . SD of x
3 x SD of x
<u>NOV 2018</u>
Question 1
The median of the data 5, 6, 7, 7, 8, 9, 10, 11, 11, 12, 15, 18 and 19 is
(a) 10.5 (b) 10
(c 11 (d) 11.5
Answer: a
Explanation:
Write the term is Ascending 5, 6, 7, 7, 8, 9, 10, 11, 11, 12, 15, 18 and 19
Here, No. of terms $(N) = 14$
$Median = \frac{1}{2} \left[\frac{N^{th}}{2} term + \left[\frac{n+1}{2} \right]^{th} term \right]$
$\frac{1}{2} \left[\frac{14^{th}}{2} term + \left[\frac{14+1}{2} \right]^{th} term \right]$
$\frac{1}{2}$ $\frac{1}{2}$ term + $\frac{1}{2}$ term
1
$\frac{1}{2}$ [7th term + 8th term]
$\frac{1}{2}$ [10+11]
$\frac{1}{2} \times [21]$
10.5
Question2
The mean of 20 items of a data is 5 and if each item is multiplied by 3, then the
new mean will be
(a) 5 (b) 10
(c) 15 (d) 20
For more Info Visit - www.KITest.in
14.48

Answer: c

Explanation: By shifting the scale Mean is changed New mean = K x original mean = 5 K = 3 New mean= 3×5 = 15

Question 3

The Geometric mean of 3, 6, 24, and 48 is

Question 4

The Algebraic sum of the deviation of a set of values from their arithmetic mean is

- (a) >0
- (c) <0

(b) =0 (d) None

Answer: b Explanation:

The arithmetic sum of the deviation of a set of value from their A.M is always zero.

Question 5

Which one of the following is not a central tendency?

(a) Mean Deviation	(b) Arithmetic mean
(c) Median	(d) Mode
Answer: a	
Explanation:	

M.D is not a central tendency.

<u>Question 6</u>

If the range of a set of values is 65 and maximum value in the set is 83, then the minimum value in the set is

FOR ENQUIRY – 6262969604		6262969699
(a) 74 (c) 18 Answer: c Explanation: Maximum Value (L) = 83 Range (R) = 65 Minimum Value (S) =? Range (R) = L - S 65 = 83 - S S = 83 - 65 S = 18 Question 7 If total frequencies of three series are and 20 respectively, then the mean of (a) 16 (c) 16.5 Answer: c Explanation: $n_1 = 50$ $n_2 = 60$ and $n_3 = 90$ Compared mean $\bar{X} = \frac{n_1 \bar{X}_1 + n_2 \bar{X}_2 + n_3 \bar{X}_3}{n_1 + n_2 + n_3}$ $\frac{50 \times 12 + 60 \times 15 + 90 \times 12}{50 + 60 + 90}$ $\frac{600 + 900 + 1800}{200}$ $\frac{3300}{200} = 16.5$		ns are 12, 15,
Question 8 If the variance of 5, 7, 9 and 11 is 4, th (a) 15 (c) 17 Answer: b Explanation: Variance of 5, 7, 9 and 11 is 4. i.e. Variable = 4	en the coefficient of variation (b) 0.25 (d) 19	ı is:

6262969699

S.D (O') = \	$\sqrt{4} = 2$				
Mean $(\bar{X}) = \frac{\sum x}{N} = \frac{5+7+9+11}{4} = \frac{32}{4} = 8$					
	$CV = \frac{SD}{M} = \frac{2}{8} = \frac{1}{4} = 0.25$				
$CV = \frac{1}{M}$	$\frac{-}{8} = \frac{-}{4} = 0.$.25			
	_				
Question?		6			
				ied by a student i	n test in mathematic
-	J as 30, 35	5, 25, 20, 1			
(a) 25			-	b) $\sqrt{50}$	
(c) $\sqrt{30}$			((ł) 50	
Answer: b					
Explanati					
Given data					
15, 20, 25,		0.125.120.125	125		
Mean (\overline{X}) =	$=\frac{\sum X}{N}=\frac{15+20}{15+20}$	0+25+30+35	$=\frac{125}{5}=5$		
For S.D	1	J	5		
X	\overline{X}	$\mathbf{d} = \mathbf{x} - \overline{X}$	d ²]	
15	25	-10	100		
20	25	-5	25		
25	25	0	0		
30	25	5	25		
35	25	10	100		
N=5			$\sum d^2$		
			= 250		
$SD = \sum d^2$	_ 250 _ 1	$\sqrt{50}$			
$SD = \sqrt{\frac{\sum d^2}{N}} = \sqrt{\frac{250}{5}} = \sqrt{50}$					
Question1					
	-				le and mean are 32.1
and 35.4 respectively, then the value of the median is					
(a) 34.3			· · · · · · · · · · · · · · · · · · ·	o) 33.3	
(c) 34			((ł) 33	
Answer: a					
Explanati	on:				
Given	1 Madian	_2			
Mode = 32 $Mean = 35$.1, Median	-:			
	.4 Median – 2	Moon			
	$edian - 2 \times$				
	$edian - 2 \times 10^{10}$				
52.1 - 5 M	culali - 70.		r more lefe \"	cit ununu KITaat in	
		FO	r more into Vi	sit - www.KITest.in	14 51

Median = 32.1 + 70.8Median $\frac{102.9}{3} = 34.3$

Question11

If the standard deviation for the marks obtained by a student in monthly test is 36. Then the variance is:

(a) 7	(b) 5
(c) 8	(d) 11

Х	f	F. x
2	3	6
4	2	8
6	3	18
10	1	10
P+5		2P + 10
N = 11	\sum	fx = 2P + 52

Answer: a

Explanation: $\bar{X} = \frac{\sum fx}{N} = \frac{2P+52}{11}$ Given $\bar{X} = 6$ $\frac{6}{1} = \frac{2P+52}{11}$ 2P + 52 = 66 2P = 14 P = 7

<u>MAY 2019</u>

Question1

The AM of 15 observations is 9 and the AM of first 9 observations is 11 and the AM of remaining observation is

(a) 11	(b) 6
(c) 5	(d) 9
Answer: b	
Explanation:	
15 OBSERVATION = 9	
9 OBSERVATION = 11	
$\overline{x_1} \ of \ 15 = 9 = \frac{\Sigma_{x_1}}{9} = 9$	

6262969699

$\overline{x_2}of \ 9 = 11 = \frac{\Sigma_{x_2}}{9} = 11$
$\sum x_1 = 15 \times 9 = 135$
$\sum x_2 = 11 \times 9 = 199$
Remaining $\sum x_1 - \sum x_2 = 135 - 99 = 36$
$\bar{x}_{30} = \frac{36}{6} = 6$

Question2

In a moderately skewed distribution, the values of mean & median are 12 & 18 respectively. The value of mode is

(a) 6	(b) 12
(c) 15	(d) 30
A 1	

Answer: d

Explanation: Mean – mode = 3(Mean – Median) Put the value in this equation = 12 – mode = 3(12-18) = 30

Question3

Which of the following is p	ositional average?
(a) Median	(b) GM
(c) HM	(d) AM
American	

Answer: a

Explanation:

There are two types of positional average: the median and the mode. The median is the average value of the series in which half values are less than the median and half the values are greater than the median. The mode, the second positional average, shows a higher frequency in the series 2.

<u>Oues</u>	tion	<u>1</u>								
For t			ution	I			_			
Χ	1	2	3	4	5	6				
F	6	9	10	14	12	8				
The	value	e of m	edia	n is	L		1			
(a) 3	3.5						(b) 3			
(c) 4	ł						(d) 5			
Answ	ver: c									
Expla	anati	on:								
X					f			c f		
1					6			6		
	For more Info Visit - www.KITest.in									
									1	4. 53

2	9	15
3	10	25
4	14	39
5	12	51
6	8	59
Total	59	

 $\frac{N+1}{2} = 30$ So Median be 4

Question5

For a symmetric distribution

(a) Mean = Median = Mode (c) Mode = $\frac{1}{3}$ median = $\frac{1}{2}$ (b) Mode = 3 Median - 2 Mean(d) None

Answer: a

Explanation:

In a symmetric distribution, the mean, mode and median all fall at the same point. The mode is the most common number and it matches with the highest peak (the "mode" here is the different from the "mode" in bimodal or unimodal, which refers to the number of peaks).

Question6

If = (O^2) 100 and coefficient of variation = 20% then \overline{x} = (b) 70 (a) 60 (d) 50(c) 80 Answer: d **Explanation:** $O^2 = Variance$ To find SD = O' $SD = \sqrt{100} = 10$ Coef. Of V = $\frac{\sigma}{x}$ $20 = \frac{10}{x} \times 100$ $\bar{x} = \frac{10}{20} \times 100$ $\bar{x} = 50$ **Question7** Coefficient of quartile deviation is $\frac{1}{4}$ then $\frac{Q_3}{Q_1}$ is (a) $\frac{5}{2}$ (b)

6262969699

 $(d)\frac{3}{5}$

(c) $\frac{3}{4}$ Answer: a **Explanation:** $\frac{1}{4} = \frac{Q_3 - Q_1}{Q_3 + Q_1}$ Talking option a $Q_3 = 5 \& Q_1 = 3$ $\frac{5-3}{5+3} = \frac{2}{8} = \frac{1}{4}$

Question8

Standard deviation is _____ times of $\sqrt{MD \times QD}$ (b) $\frac{4}{5}$ (d) $\sqrt{\frac{8}{15}}$ (a) $\frac{2}{3}$ (c) $\sqrt{\frac{15}{8}}$

Answer: c **Evolution**

$$MD = \frac{4}{5} SD$$

$$4SD = 5MD = 6QD$$

$$SD = \frac{5}{4} MD = \frac{6}{4} QD$$

$$SD = \sqrt{\frac{5}{4} \times \frac{6}{4}} = \sqrt{\frac{30}{16}} = \sqrt{\frac{15}{8}}$$

<u>Question</u>9

n

Standard Deviation of first five natural numbers.

(a)
$$\sqrt{\frac{n^2+1}{6}}$$
 (b) $\sqrt{\frac{n^2-1}{12}}$
(c) $\sqrt{\frac{n^2-1}{12}}$ (d) $\sqrt{\frac{n^2-1}{6}}$
Answer: b
Explanation:
Mean, $u = \frac{(1+2+3.....+n)}{n}$
 $\therefore u = \frac{1}{2}(n + 1)$
Variance, $\sigma^2 = \frac{\sum(x_i - u)^2}{n} = \frac{\sum x_i^2}{n} - u^2$
 $\therefore \sigma^2 \frac{\sum n^2}{n} - \frac{1}{2}(n + 1)^2$
 $\therefore \sigma^2 \frac{1}{n} \frac{n(n+1)(2n+1)}{n} - (\frac{1}{2}(n + 1))^2$

$\therefore \sigma^2 = \frac{n^2 - 1}{12}$

Standard Deviation, S.D = $\sqrt{\sigma^2}$ \therefore S.D=\sqrt{\dfrac{n^2-1}{12}}

Ouestion10

(a) 12.5

(c) 13.5

The Q.D. of 6 numbers 15, 8, 36, 40, 38, 41 is equal to

Answer: c Explanation: (6+1) th (7) th (m+1) th

$$Q_{1} = \left(\frac{n+1}{2}\right) \text{ of } = \left(\frac{6+1}{4}\right) \text{ of } = \left(\frac{7}{4}\right) \text{ of } 1.75^{th}$$

$$8+0.75(15-8)$$

$$8+5.25$$

$$Q_{1} = 13.25$$

$$Q_{3} = 3\left(\frac{n+1}{2}\right)^{th} \text{ of } = 3\left(\frac{n+1}{2}\right)^{th} \text{ of } 3 \times \frac{7}{4} = 3 \times 1.75 = 5.25$$

$$Q_{3} = 5^{th} \text{ of } + 0.25(6^{th} - 5^{th})$$

$$40+0.25(41-40)$$

$$Q_{3} = 40.25$$

$$QD = \frac{Q_{3}-Q_{1}}{2} = \frac{40.25-13.25}{2}$$

$$13.5$$

NOV 2019

(b) 25 (d) 37

Question1 The approximate ratio of SD, MD, Q D is: (b) 2:3:4 (a) 3:4:5 (d) 5:6:7 (c) 15:12:10 **Answer: c Explanation**: (c) We know that 4SD = 5MD = 6QDNet 4SD = 5MD = 6QD = KSo. $SD = \frac{K}{4}, MD = \frac{K}{5}; QD = \frac{K}{6}$ Now, SD: MD: QD $= > \frac{K}{4} : \frac{K}{5} : \frac{K}{6}$ $= > \frac{30K}{120} : \frac{24K}{120} : \frac{20K}{120} [:: \text{ LCM } OF \text{ 4, 5,6 is 120}]$ => 30:24:20

6262969699

=> 15:12:10 so. SD:MD: QD = 15:12:10 **Ouestion2** The deviations are minimum when taken from: (a) Mean (b) Median (c) Mode (d) None **Answer: b Explanation**: (b) The sum of deviations are minimum when taken from median $\sum |x - Mean|$ $\sum |x - Median| \{Minimum\}$ $\sum |x - Mode|$ **Question3** If the AM & GM of two numbers are 30 and 24 respectively. Find the no's (a) 12 and 24 (b) 48 and 12 (c) 30 and 30 (d) 40 and 20 **Answer: b Explanation**: (b) Let the two no's be a and b GM = 24AM = 30 $\frac{a+b}{2} = 30$ $\sqrt{ab} = 24$ (-2) a + b = 60a = 60 - b(-1) put eq 1 in eq 2 $\sqrt{(60-b)b} = 24$ (on squaring both sides) (60 - b)b = 576 $60b - b^2 = 576$ $b^2 - 60 b + 576 = 0$ $b^2 - 48 b - 12 b + 576 = 0$ b (b - 48) - 12 (b - 48) = 0 (b-12)(b-48) = 0b = 12 or b = 48a = 60 - b a = 60 - 48a = 48 a = 12 (12, 48) or (48, 12) So the two no's are 48 and 12 # After Method [Do by hit and trial] i.e. try with the given options whether their AM is 30 and GM 24

Question4

Origin is shifted by 5, what will happen

(a) SD will increase by 5(c) MD will increase by 5

(b) QD will increase by 5(d) There will be no change

Answer: d

Explanation:

(d) SD is not affected of remains in changed by shifting of origin. So here if the origin is shifted by 5 there will be no change in SD.

Question5

Coefficient of variation is equal to:

(a) $\frac{SD}{}$	
S Mean	
(c) $\frac{Mean}{Mean} \times 1$	00
$(U)_{SD} \wedge I$.00

(b)
$$\frac{SD}{Mean} \times 100$$

(d) $\frac{Mean}{SD}$

Answer: b

Explanation:

(b) In probability theory and statistics the coefficient of variation also known as relative standard deviation is a standardized measure of dispersion of frequency distribution.

It is expressed as a percentage and defined as the ratio of SD and mean.

SD so. Coefficient of variation = $\frac{SD}{Mean} \times 100$

<u>Question6</u> Find mode of the following date

3 - 6	6 - 9	9 - 12	12 - 15	15 - 18	18 - 21
2	5	10	23	21	12
	•				
(a) 14			(b) 15		
(c) 16.5			(d) 14.6		
Answer: d					
Explanation	:				
(c) CI f					
3 - 6 2					
6 - 9 5					
9 – 12	10				
12 – 15 2		S			
15 – 18 2					
18 - 21 12					
	· · ·	uency, so 12 ·	– 15 is the mo	dal class.	
So, $f_1 = 23$, $f_0 =$	= 10, f ₂ = 21				

6262969699

L₁ = 12 i = 3 Mode = $L_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2}$ xi $= 12 + \frac{23 - 10}{2(23) - 10 - 21} \times 3$ $= 12 + \frac{13}{15} \times 3$ = 12 + 2.599= 14.59= 14.6 (approx) **Question7** Find SD of the following 1, 2, 3, 4, 5, 6, 7, 8, 9 (b) $\frac{60}{9}$ (a) 2.58 (c) $\frac{60}{3}$ (d) 3.20 **Answer:** a **Explanation**: (a) SD = $\sqrt{\frac{\Sigma X2}{N} - \left(\frac{\Sigma X}{N}\right)^2}$ Here N = 9 $x^2 = 1^2 + 2^2 + 3^2 + 4^2 + \dots 9^2$ = 285 $\frac{\sum X}{N} = \frac{1+2+3+4+5+6+7+8+9}{9} = 5$ Put in above formula, $SD = \sqrt{\frac{285}{9} - \frac{25}{1}}$ $SD = \frac{\sqrt{60}}{9}$ $SD = \sqrt{6.67}$ SD = 2.58**Question8** If mean = 200 and variance = 80. Find coefficient of variation. (a) 2.56 (b) 4.47 (d) 0.32(c) 32 **Answer: b Explanation:** (b) We know $CV = \frac{SD}{V_{corr}} \times 100$

6262969699

 $CV = \sqrt{\frac{Variance}{Mean}} \times 100$ $SD = \sqrt{Variance}$ $CV = \sqrt{\frac{80}{200}} \times 100$ CV = 4.47 (approx.) **Question9** Which of the following is affected by shifting of scale. (a) SD (b) MD (d) None of these (c) QD Answer: a **Explanation:** (a) Since SD, MD, QD are measures of absolute dispersion, So, a change in scale neither affect SD nor MD and QD. **Question10** Histogram is used for to represent (b) Median (a) Mode (c) Percentile (d) Quartile Answer: a **Explanation:** (a) Histogram is a graphical representation of grouped frequency distribution. It is used to locate mode. X – axis- class interval y-axis- frequency. **Ouestion11 Coefficient of variation is 80. Mean is 20. Find variance:** (a) 640 (b) 256 (c) 16 (d) 250**Answer: b Explanation:** (b) We know, Coefficient of variation (CV) = $\frac{SD}{Mean} \times 100$ Here mean = 20; CV = 80 $80 = \frac{S.D}{Mean} \times 100$ S.D. = 16 Variance = $(S.D.)^2$ Variance = $(16)^2 = 256$ **Question12**

Find the m	nedian of tl	he followir	ıg.			_	
CI	0 -10	10 - 20	20 - 30	30 - 40	40 - 50		
f	2	3	4	5	6		
(a) 35			(b)	32			
(c) 36				37.5			
Answer: b							
Explanatio	on:						
	CI		f			c.f	
	0-10		2			2	
	10-20		3			5	
	20-30		4		9		
	30-40		5		14		
4	40-50		6			20	
$\sum f = 20$							
N = 20							
So 30 – 40 is the median class							
L, = 30 C =Pre. Cof. of median class							
C => 9 F => 5							
$C \Rightarrow 9 F \Rightarrow 5$ Median = 4 + $\frac{\left(\frac{N}{2} - c\right)}{f} \times i$ = 30 + $\left(\frac{10 - 9}{5}\right) \times 10$							
$= 30 + \left(\frac{10-5}{5}\right)$	$\left(\frac{-9}{-9}\right) \times 10$						
- 20+2							

= 30 + 2= 32

Question13

Difference between upper limit and lower limit of a class is known

(a) Range

(b) Class mark

(c) Class size

(d) Class boundary

Answer: c

Explanation:

- (c) Difference between upper limit and lower limit of class is class size.
- Range = Largest value Smallest value
- Class mark = $\frac{(Lowest Limit+Upper Limit)}{(Lowest Limit+Upper Limit)}$
- 2
- Class boundary = Class interval of exclusive data series.

Question14

Find the made of the following:

0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60
7	14	22	34	20	19
(a) 32				(b) 34.61	

6262969699

(c) 25.42	(d) 35
Answer: b	
Explanation:	
CI	f
0 - 10	7
10 - 20	14
20 - 30	22
30 - 40	34
40 – 50	20
50 - 60	19

Since 34 is the highest frequency so, 30 – 40

 $F_1 = 34 f_0 = 22 f_2 = 20$

i=10

Mode = $L_1 + \frac{f_1 - f_0 \times i}{2f_1 - f_0 - f_2}$

$$= 30 + \frac{(34-22)}{2\times34-22-20} \times 10$$

 $= 30 + \frac{12}{26} \times 10$ = 34.61

Question15

Find the median of the following:

CI	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	
f	5	15	28	10	2	
(a) 10.57) 23.57					
(c) 25		(d) None				

Answer: b

Explanation:

CI	f	c.f
0 - 10	5	5
10 – 20	15	20
20 - 30	28	48*
30 - 40	10	58
40 - 50	2	60

$$\sum f = 60$$

 $\frac{N}{2} = \frac{60}{2} = 30$

 $\overline{\text{So } 20}$ – 30 is the median class

$L_1 = 20 L = 30$

6262969699

C - 20 f - 28 Median = $L_1 + \frac{\left(\frac{N}{2} - C\right)}{f} \times i$ $= 20 + \frac{(30-20)}{28} \times 10$ = 23.57**Question16** $\sum_{i=1}^{n} (x - x_i)$ is equal to (a) $x \sum_{i=1}^{n} \overline{xl}$ (b) n $\left(x \sum_{i=1}^{n} \overline{xl}\right)$ (c) $\bar{x} - n\bar{x}$ (d) zero Answer: d **Explanation:** (d) $\sum_{i=1}^{n} (x - x_i)$ Since the sum of deviations about their AM is always zero. **Question17** SD from numbers 1, 4, 5, 7, 8 is 2.45. If 10 is added to each them SD will be: (b) 24.5 (a) 12.45 (d) will not change (c) 12 Answer: d **Explanation:** (d) We know a change in origin of SD causes no change in SD So, New SD = Original SD when 10 will be added So, SD will not change. **DEC 2020 Question1** Given the weights for the numbers 1, 2, 3,.....n are respectively 1^2 , 2^2 , 3^2 ,.... n^2 . Then weighted HM is ____ (a) $\frac{2n+1}{4}$ (b) $\frac{2n+1}{6}$ (d) $\frac{2n+1}{2}$ (c) $\frac{2n+1}{3}$ Answer: c **Explanation:** Since the harmonic mean is the reciprocal of the average of reciprocals, the formula to define the harmonic mean "HM" is given as follows:

If x₁, x₂, x₃,..., x_n are the individual items up to n terms, then,

Harmonic Mean, HM = n / $[(1/x_1)+(1/x_2)+(1/x_3)+...+(1/x_n)]$. Hence = $\frac{2n+1}{2}$

Question2

FOR ENQUIRY – 6262969604		6262969699
Which measure is suitable for	open - end classificat	ion?
(a) Median	(b) Mean	
(c) Mode	(d) GM	
Answer: a		
Explanation:		
For open end classification media	an is the best measure	of central tendency. Median is
the most suitable central tendend		-
data distribution and also when t	there is a skewed data	set.
Question3		
50 th percentile is equal to		
(a) Median	(b) Mode	
(c) Mean	(d) None	
Answer: a		
Explanation:		
The 50th percentile is generally t		0
below). The 75th percentile is als	· · · · · · · · · · · · · · · · · · ·	tile. The difference between the
third and first quartiles is the int	erquartile range.	
Question4 For a distribution Mean, Media it is most likely skewed dis		4 and 25.5 respectively, then
(a) Positively	(b) Symmetrica	1
(c) Asymptotically	(d) Negatively	1
Answer: d	(u) rioganitory	
Explanation:		
For Negatively skewed means is	likelv to be less than m	ode and median
Question5		
If any two numbers are in AP, t		
(a) AM x HM	(b) AM + HM	
(c) M x Z	(d) AM x M	
Answer: a		
Explanation:		
The relationship between AM, GM	A and HM is given by:	
$AM \times HM = GM^2$		
Question6		
Two values yielded an arithme		harmonic mean of 6. The
geometric mean of these value		
(a) 8	(b) 12	
(c) 14	(d) 16	
For	more Info Visit - www.KITest	. .in 14. 64

6262969699

Answer: b

Explanation: $GM = \sqrt{AM \times HM}$ $GM = \sqrt{24 \times 6}$ $GM = \sqrt{144}$ GM = 12

Question 7

The HM of A and B is 1/3 and HM of C and D is 1/5. Then HM of A, B, C and D is

(a) $\frac{8}{15}$	(b) $\frac{1}{4}$
(c) $\frac{15}{8}$	(d) $\frac{4}{15}$
Answer: d	

Explanation:

AB-1/3 & CD-1/5	
HM of ABCD = $n/2$	
$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	4
$\frac{3+5}{5}(\frac{n}{2}) - \frac{8}{2} - \frac{1}{2}$	4
$\frac{\frac{1}{3} + \frac{1}{5}}{2} \left(\frac{n}{2}\right) = \frac{8}{30} =$	15

<u>Question 8</u>

Which one of these is least affected by extreme values?

(a) Mean	(b) Median
(c) Mode	(d) None

Answer: b Explanation:

Median is the middle most value of a given series that represents the whole class of the series. So since it is a positional average, it is calculated by observation of a series and not through the extreme values of the series which. Therefore, median is not affected by the extreme values of a series.

Question9

Ten matches' data is given. Then which of the following cannot be found?

(a) Least Score(c) Best Score

(b) Highest Score (d) Median Score

Answer: c

Explanation: From Best Score method we can do this

<u>Question10</u> If the AM and HM of two numbers are 6 and 9 respectively, then GM is_

6262969699

(a) 7.35	(b) 8.5
(c) 6.75	(d) None
Answer: a	
Explanation:	
	etic Mean, Harmonic Mean, and Geometric Mean
of Two Numbers:	
A.M. × H.M. = $(G.M.)^2$	
\Rightarrow G.M. = 7.35 .	
Question11	line and a shark to deviation of
_	lispersion is based on absolute deviations?
(a) Range	(b) SD (d) Quartile Deviation
(c) Mean Deviation	(d) Quartile Deviation
Answer: c	
Explanation:	nation than range on the Quantile Deviation as it
_	nation than range or the Quartile Deviation as it
	e Mean Deviation does not give undue weight to
-	d likely to be used in situation where such
deviations are likely to occur.	
I	AN 2021
Question1	
-	sold in a shop, one can compute the following
to determine the most preferred sh	
(a) Mean	(b) Median
(c) Mode	(d) Range
Answer: c	
Explanation:	
	n in a set of numbers. Example: in {6, 3, 9, 6, 6, 5,
9, 3} the Mode is 6	
Question2	
Which of the following measure doe	es not possess mathematical properties?
(a) Arithmetic mean	(b) Geometric mean
(c) Harmonic mean	(d) Median
Answer: d	
Explanation:	
	is fixed by its position and is not reflected by the
	n the median and the rest of the values is less
	t. Every array has a single median. Median cannot
be manipulated algebraically. Hence , I	Median does not possess mathematical
For more l	nfo Visit - www.KITest.in
	14.66

FOR ENQUIRY – 6262969604	6262969699
properties	
Question 3	
	llue is 20, then the mode for y-value is
(a) 3.225	(b) 12 (d) 02
(c) 24.5 Answer: d	(d) 93
Explanation:	
y = 3 + (4.5)x	
x is 20	
$y = 3 + 4.5 \times 20$	
y = 93	
Because Mode is affected by change of or	rigin & scale both
Question 4	
	observations and H ₁ and H ₂ are respective
harmonic means, then the harmonic \mathbf{n}_{n}	TT . TT
(a) $\frac{n_1H_1+n_2H_2}{n_1+n_2}$ (c) $\frac{n_1+n_2}{n_1H_1+n_2H_2}$	$(b)\frac{n_1H_1+n_2H_2}{H_1+H_2}$
(c) $\frac{n_1 + n_2}{n_1 + n_2}$	(d) $\frac{(n_1 + n_2)H_1H_2}{n_1H_2 + n_2H_1}$
	$ \begin{array}{c} (a) \\ n_1H_2 + n_2H_1 \end{array} $
Answer: d	
Explanation: $(n_1 + n_2)H_1H_2$	
$\frac{(n_1 + n_2)n_1n_2}{n_1H_2 + n_2H_1}$	
$n_1 n_2 + n_2 n_1$	
Question 5	
The best statistical measure used for	
(a) Mean absolute deviation	(b) Range
(c) Certificate of variation	(d) Standard deviation
Answer: c	
Explanation:	alculated by dividing the standard deviation of
	alculated by dividing the standard deviation of ing it by 100. It is regarded as the best measure
	eries because it is expressed in percentage.
Question 6	
	d Q-series is given by 2P – 3Q – 10. If the
range of P – series is 18. What would	
(a) 10	(b) 15
(c) 9	(d) 12
Answer: d	
For more Info	o Visit - www.KITest.in

Question 7

It is given that the mean (\overline{X}) is 10 and standard deviation (s.d.) is 3.2. If the observations are increased by 4, then the new mean and standard deviations are:

(a) $\bar{x} = 10$, s.d. = 7.2	(b) $\bar{x} = 10$, s.d. = 3.2
(c) $\bar{x} = 14$, s.d. = 3.2	(d) $\bar{x} = 14$, s.d. = 7.2
Answer: d	
Explanation:	
$\bar{x} + 4 = New Mean$	
$\bar{x} = 10 + 4 = 14$	
Mean is affect by change in origin	
S.D. = σ + 4	
S.D. = 3.2 + 4 = 3.2	
as SD is not affected by change of origin	
Question 8	
Which one of the following is a relativ	e measure of dispersion?
(a) Range	(b) Mean deviation
(c) Standard deviation	(d) Coefficient of quartile deviation
Answer: d	

Explanation:

The relative Measures of dispersion are: Coefficient of Variation, Coefficient of Quartile Deviation, Coefficient of Mean Deviation

Question 9

Find the coefficient of mean deviation about mean for the data: 5, 7, 8, 10, 11, 13, 19 (a) 17.29 (b) 29.57

(a) 17.28	(b) 28.57
(c) 32.12	(d) 18.56
Answer: c	

Explanation:

$$Mean\left(\overline{x}\right) = \frac{5+7+8+10+11+13+19}{7} = \frac{54}{7} = 7.714$$

	$ x_i - \overline{x} $
5	2.271
7	0.714
8	0.29
10	2.29
11	3.29

6262969699

13		5.29
	$\sum x_i - \overline{x} $	14.15

NOTE: The correct Ans is: 32.12

<u>JULY 2021</u>

<u>Question 1</u> Expenditures of a company (in Million Rupees) per item in various Years

Year		Iter	n of Expenditi	ares	
	Salary	Fuel and	Bonus	Interest on	Taxes
		Transport		Loans	
1998	288	98	3.00	23.4	83
1999	342	112	2.52	32.5	108
2000	324	101	3.84	41.6	74
2001	336	133	3.68	36.4	88
2002	420	142	3.96	49.4	98

What is average amount of interest per year which the company had to pay during this period?

(a) 33.66 (c) 31.66

(b) 36.66 (d) 39.66

Answer: Options (b)

Question 2

There are n numbers. When 50 is subtracted from each of these numbers the sum of the numbers so obtained is -10. When 46 is subtracted from each of the original n numbers, then the sum of numbers, so obtained is 70. What is the mean of the original n numbers?

0	
(a) 56.8	(b) 25.7
(c) 49.5	(d) 53.8
Answer: Options (c)	

Question 3

The mean of 'n' observation is 'X'. If k is added to each observation, then the new mean is _____

(a) X	(b) XK
(c) X - K	(d) X + K
Answer: Options (d)	
Explanation:	
Let us take n observation X ₁ X _n	

Question 4If $y = 3 + 1.9 x$, and mode of x is 15, then the mode of y is:(a) 15.9(b) 27.8(c) 35.7(d) 31.5Answer: Options (d)Question 5The mean deviation of the numbers 3, 10, 6, 11, 14,17,9,8,12 about the mean(correct to one decimal place)(a) 8.7(b) 4.2(c) 3.1(d) 9.8Answer: Options (c)Question 6The standard deviation of 1 to 9 natural number is(a) 6.65(b) 2.58(c) 6.75(d) 5.62Answer: Options (b)Question 7The probable value of mean deviation when $Q_3 = 40$ and $Q_1 = 15$ is(a) 15(b) 18.75(c) 17.50(d) 0Answer: Options (a)Explanation:Q3=40 Q1=15QD= Q3-Q1 / 2QD= 40-15 / 2=25 / 2	nis
Question 4If $y = 3 + 1.9 x$, and mode of x is 15, then the mode of y is:(a) 15.9(b) 27.8(c) 35.7(d) 31.5Answer: Options (d)Question 5The mean deviation of the numbers 3, 10, 6, 11, 14,17,9,8,12 about the mean(correct to one decimal place)(a) 8.7(b) 4.2(c) 3.1(d) 9.8Answer: Options (c)Question 6The standard deviation of 1 to 9 natural number is(a) 6.65(b) 2.58(c) 6.75(d) 5.62Answer: Options (b)Question 7The probable value of mean deviation when $Q_3 = 40$ and $Q_1 = 15$ is(a) 15(b) 18.75(c) 17.50(d) 0Answer: Options (a)Explanation:Q3=40 Q1=15QD= Q3-Q1 / 2	ın is
Question 4If $y = 3 + 1.9 x$, and mode of x is 15, then the mode of y is:(a) 15.9(b) 27.8(c) 35.7(d) 31.5Answer: Options (d)Question 5The mean deviation of the numbers 3, 10, 6, 11, 14,17,9,8,12 about the mean(correct to one decimal place)(a) 8.7(b) 4.2(c) 3.1(d) 9.8Answer: Options (c)Question 6The standard deviation of 1 to 9 natural number is(a) 6.65(b) 2.58(c) 6.75(d) 5.62Answer: Options (b)Question 7The probable value of mean deviation when $Q_3 = 40$ and $Q_1 = 15$ is(a) 15(b) 18.75(c) 17.50(d) 0Answer: Options (a)Explanation:(2) 3=40 Q1=15	ın is
Question 4If $y = 3 + 1.9 x$, and mode of x is 15, then the mode of y is:(a) 15.9(b) 27.8(c) 35.7(d) 31.5Answer: Options (d)Question 5The mean deviation of the numbers 3, 10, 6, 11, 14, 17, 9, 8, 12 about the mean(correct to one decimal place)(a) 8.7(a) 8.7(b) 4.2(c) 3.1(d) 9.8Answer: Options (c)Question 6The standard deviation of 1 to 9 natural number is(a) 6.65(b) 2.58(c) 6.75(d) 5.62Answer: Options (b)Question 7The probable value of mean deviation when $Q_3 = 40$ and $Q_1 = 15$ is(a) 15(b) 18.75(c) 17.50(d) 0Answer: Options (a)Explanation:	ın is
Question 4If $y = 3 + 1.9 x$, and mode of x is 15, then the mode of y is:(a) 15.9(b) 27.8(c) 35.7(d) 31.5Answer: Options (d)Question 5The mean deviation of the numbers 3, 10, 6, 11, 14, 17, 9, 8, 12 about the mean(correct to one decimal place)(a) 8.7(a) 8.7(b) 4.2(c) 3.1(d) 9.8Answer: Options (c)Question 6The standard deviation of 1 to 9 natural number is(a) 6.65(b) 2.58(c) 6.75(d) 5.62Answer: Options (b)Question 7The probable value of mean deviation when $Q_3 = 40$ and $Q_1 = 15$ is(a) 15(b) 18.75(c) 17.50(d) 0Answer: Options (a)	n is
Question 4If $y = 3 + 1.9 x$, and mode of x is 15, then the mode of y is:(a) 15.9(b) 27.8(c) 35.7(d) 31.5Answer: Options (d)Question 5The mean deviation of the numbers 3, 10, 6, 11, 14,17,9,8,12 about the mean(correct to one decimal place)(a) 8.7(b) 4.2(c) 3.1(d) 9.8Answer: Options (c)Question 6The standard deviation of 1 to 9 natural number is(a) 6.65(b) 2.58(c) 6.75(d) 5.62Answer: Options (b)Question 7The probable value of mean deviation when $Q_3 = 40$ and $Q_1 = 15$ is(a) 15(b) 18.75(c) 17.50(d) 0	ı n is
Question 4If $y = 3 + 1.9 x$, and mode of x is 15, then the mode of y is:(a) 15.9(b) 27.8(c) 35.7(d) 31.5Answer: Options (d)Question 5The mean deviation of the numbers 3, 10, 6, 11, 14, 17, 9, 8, 12 about the mean(correct to one decimal place)(a) 8.7(b) 4.2(c) 3.1(d) 9.8Answer: Options (c)Question 6The standard deviation of 1 to 9 natural number is(a) 6.65(b) 2.58(c) 6.75(d) 5.62Answer: Options (b)Question 7The probable value of mean deviation when $Q_3 = 40$ and $Q_1 = 15$ is(a) 15(b) 18.75	n is
Question 4If y =3 + 1.9 x, and mode of x is 15, then the mode of y is:(a) 15.9(b) 27.8(c) 35.7(d) 31.5Answer: Options (d)Question 5The mean deviation of the numbers 3, 10, 6, 11, 14,17,9,8,12 about the mean(correct to one decimal place)(a) 8.7(b) 4.2(c) 3.1(d) 9.8Answer: Options (c)Question 6The standard deviation of 1 to 9 natural number is(a) 6.65(b) 2.58(c) 6.75(d) 5.62Answer: Options (b)Question 7The probable value of mean deviation when Q3 = 40 and Q1 = 15 is	nis
Question 4 If y = 3 + 1.9 x, and mode of x is 15, then the mode of y is: (a) 15.9 (b) 27.8 (c) 35.7 (d) 31.5 Answer: Options (d) Question 5 The mean deviation of the numbers 3, 10, 6, 11, 14,17,9,8,12 about the mean (correct to one decimal place) (a) 8.7 (b) 4.2 (c) 3.1 (d) 9.8 Answer: Options (c) Question 6 The standard deviation of 1 to 9 natural number is (a) 6.65 (b) 2.58 (c) 6.75 (d) 5.62 Answer: Options (b) Question 7	n is
Question 4 If y =3 + 1.9 x, and mode of x is 15, then the mode of y is: (a) 15.9 (b) 27.8 (c) 35.7 (d) 31.5 Answer: Options (d) Question 5 The mean deviation of the numbers 3, 10, 6, 11, 14,17,9,8,12 about the mean (correct to one decimal place) (a) 8.7 (b) 4.2 (c) 3.1 (d) 9.8 Answer: Options (c) Question 6 The standard deviation of 1 to 9 natural number is (a) 6.65 (b) 2.58 (c) 6.75 (d) 5.62	ın is
Question 4 If y =3 + 1.9 x, and mode of x is 15, then the mode of y is: (a) 15.9 (b) 27.8 (c) 35.7 (d) 31.5 Answer: Options (d) Question 5 The mean deviation of the numbers 3, 10, 6, 11, 14,17,9,8,12 about the mean (correct to one decimal place) (a) 8.7 (b) 4.2 (c) 3.1 (d) 9.8 Answer: Options (c) Question 6 The standard deviation of 1 to 9 natural number is (a) 6.65 (b) 2.58 (c) 6.75 (d) 5.62	ı n is
Question 4 If y =3 + 1.9 x, and mode of x is 15, then the mode of y is: (a) 15.9 (b) 27.8 (c) 35.7 (d) 31.5 Answer: Options (d) Question 5 The mean deviation of the numbers 3, 10, 6, 11, 14,17,9,8,12 about the mean (correct to one decimal place) (a) 8.7 (b) 4.2 (c) 3.1 (d) 9.8 Answer: Options (c) Question 6 The standard deviation of 1 to 9 natural number is (a) 6.65 (b) 2.58	n is
Question 4 If y =3 + 1.9 x, and mode of x is 15, then the mode of y is: (a) 15.9 (b) 27.8 (c) 35.7 (d) 31.5 Answer: Options (d) Question 5 The mean deviation of the numbers 3, 10, 6, 11, 14,17,9,8,12 about the mean (correct to one decimal place) (a) 8.7 (b) 4.2 (c) 3.1 (d) 9.8 Answer: Options (c) Question 6 The standard deviation of 1 to 9 natural number is	n is
Question 4 If y = 3 + 1.9 x, and mode of x is 15, then the mode of y is: (a) 15.9 (b) 27.8 (c) 35.7 (d) 31.5 Answer: Options (d) Question 5 The mean deviation of the numbers 3, 10, 6, 11, 14,17,9,8,12 about the mean (correct to one decimal place) (a) 8.7 (b) 4.2 (c) 3.1 (d) 9.8 Answer: Options (c) Question 6	ın is
Question 4 If y = 3 + 1.9 x, and mode of x is 15, then the mode of y is: (a) 15.9 (b) 27.8 (c) 35.7 (d) 31.5 Answer: Options (d) Question 5 The mean deviation of the numbers 3, 10, 6, 11, 14,17,9,8,12 about the mean (correct to one decimal place) (a) 8.7 (b) 4.2 (c) 3.1 (d) 9.8 Answer: Options (c)	ı n is
Question 4 If y = 3 + 1.9 x, and mode of x is 15, then the mode of y is: (a) 15.9 (b) 27.8 (c) 35.7 (d) 31.5 Answer: Options (d) Question 5 The mean deviation of the numbers 3, 10, 6, 11, 14,17,9,8,12 about the mean (correct to one decimal place) (a) 8.7 (b) 4.2 (c) 3.1 (d) 9.8	ı n is
Question 4 If y = 3 + 1.9 x, and mode of x is 15, then the mode of y is: (a) 15.9 (b) 27.8 (c) 35.7 (d) 31.5 Answer: Options (d) Question 5 The mean deviation of the numbers 3, 10, 6, 11, 14,17,9,8,12 about the mean (correct to one decimal place) (a) 8.7 (b) 4.2 (c) 3.1 (d) 9.8	ın is
Question 4 If y =3 + 1.9 x, and mode of x is 15, then the mode of y is: (a) 15.9 (b) 27.8 (c) 35.7 (d) 31.5 Answer: Options (d) Question 5 The mean deviation of the numbers 3, 10, 6, 11, 14,17,9,8,12 about the mean (correct to one decimal place) (a) 8.7 (b) 4.2	ı n is
Question 4If y =3 + 1.9 x, and mode of x is 15, then the mode of y is:(a) 15.9(b) 27.8(c) 35.7(d) 31.5Answer: Options (d)Question 5The mean deviation of the numbers 3, 10, 6, 11, 14,17,9,8,12 about the mean (correct to one decimal place)	ın is
Question 4 If y =3 + 1.9 x, and mode of x is 15, then the mode of y is: (a) 15.9 (b) 27.8 (c) 35.7 (d) 31.5 Answer: Options (d) Question 5 The mean deviation of the numbers 3, 10, 6, 11, 14, 17, 9, 8, 12 about the mean	ın is
Question 4 If y =3 + 1.9 x, and mode of x is 15, then the mode of y is: (a) 15.9 (b) 27.8 (c) 35.7 (d) 31.5 Answer: Options (d) Question 5	
Question 4 If y =3 + 1.9 x, and mode of x is 15, then the mode of y is: (a) 15.9 (b) 27.8 (c) 35.7 (d) 31.5	
Question 4 If y =3 + 1.9 x, and mode of x is 15, then the mode of y is: (a) 15.9 (b) 27.8 (c) 35.7 (d) 31.5	
Question 4 If y =3 + 1.9 x, and mode of x is 15, then the mode of y is: (a) 15.9 (b) 27.8	
Question 4 If y =3 + 1.9 x, and mode of x is 15, then the mode of y is:	
Question 4	
$=\overline{X} + k$	
$=\overline{X}+\frac{1}{n}$. nk	
10 10	
$= \frac{1}{n} \sum_{i=1}^{n} X_{i} + \frac{1}{n} \sum_{i=1}^{n} k$	
$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} (X_i + k)$	
If \overline{Y} be the mean of the new observations. Then the observations becomes	
$X_i + k,, X_n + K$	
Add a constant k to each of the observations. Then the observations becomes	
$\Rightarrow \sum_{i=1}^{n} X_i = n\overline{X}$	
$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	
If \overline{X} be the mean of the n observation, then we have	

MD=15		
Question 8		
If the numbers are 5, 1, 8, 7, 2, then the	coefficient of variation is	
(a) 56.13%	(b) 59.13%	
(c) 48.13%	(d) 44.13%	
Answer: Options (b)		
Question 9		
If every observation is increased by 7 th	ien	
(a) Standard Deviation increases by 7	(b) Mean deviation increases by 7	
(c) Not affected at all	(d) Quartile Deviation increases by 7	
Answer: Options (c)		
Question 10		
If a school has 14 teachers, their heights	s (in cm) are:	
172, 173, 164, 178, 168, 169, 173, 172, 1	173, 164, 178, 168, 169, 173, then average	
deviation of this data is		
(a) 2.43 approx.	(b) 3.93 approx.	
(c) 3.43 approx.	(d) 2.92 approx.	
Answer: Options (c)		
Question 11		
	ven by 2x + 3y = 10 and the range of y is	
10, then what is the range of x?		
(a) 10	(b)18	
(c) 8	(d) 15	
Answer: Options (d)		
DEC 2021		
Question 1		
If there are 3 observations 15, 20, 25 th	en the sum of deviation of the	
observations from their AM is		
(a) 0	(b) 5	
(c) -5	(d) 10	
Answer: a		
Explanation:		
Sum of deviations from their Arithmetic Mean is always zero.		
For more Info Visit - www.KITest.in		
	14. 71	

=12.5

FOR ENQUIRY - 6262969604

WKT, 6QD=5MD=4SD MD= 6 * 12.5 /5

6262969699

Question 2		
If the AM and GM for 10 observations are both 15, then the value of HM is		
(a) less than 15	(b) more than 15	
(c) 15	(d) cannot be determined	
Answer:		
Explanation:		
If both AM and GM are 15, it means that all th	e observations are constant, i.e., 15.	
Therefore, HM will also be 15.		
Question 3		
If average mark for a group of 30 girls is 8		
average is 76, then how many are in the bo		
(a) 21	(b) 20	
(c) 22	(d) 19	
Answer: b		
Explanation:		
We have $n_1 = 30$; $\overline{X_1} = 80$; $n_2 = ?$; $\overline{X_2} = 70$; $=\overline{X} =$	76	
We know that $\bar{X} = \frac{n_1 \overline{X_1} + n_2 \overline{X_2}}{n_1 + n_2}$		
$(30 \times 80) + (n_2 \times 70)$		
Therefore, 76 = $\frac{(30 \times 80) + (n_2 \times 70)}{30 + n_2}$		
Now, try the options. $50 \pm n_2$		
Option (a) – 21		
$RHS = \frac{(30 \times 80) + (21 \times 70)}{30 + 21} = 75.88 \neq 76$		
Option (b) - 20		
$RHS = \frac{(30 \times 80) + (20 \times 70)}{20 + 20} = 76 = LHS$		
$RHS = \frac{30 + 20}{30 + 20} = 76 = LHS$		
Question 4		
If two variables a b and b are related by C		
(a) G.M. of a + G.M. of b	(b) G.M. of a x G.M. of b	
(c) G.M. of a - G.M. of b	(d) G.M. of a / G.M. of b	
Answer: b		
Explanation:		
If two variables a and b are related by $c = ab b$	then GM of $c = GM$ of $a \times GM$ of b	
Question 5		
For a moderately skewed distribution the median is twice the mean, then the		
mode is times the median.		
(a) 3	(b) 2	
For more Info Visit - www.KITest.in		
	14.72	

6262969699

(c) 2/3	(d) 3/2	
Answer: b		
Explanation:		
We know that for a moderately skewed distri	bution,	
Mode = 3 Median - 2Mean Eq. (1)		
Given:		
Median = 2 Mean		
Therefore, Mean = Median/ 2		
Putting		
the value of Mean = Median/ 2		
in Eq. (1), we get:		
Mode= 3 Median - 2 Median)		
Mode= 3 Median - Median = 2 Median		
Therefore, Mode is two times of Median.		
Question 6		
The median value of the set of observation	s 48, 36, 72, 87, 19, 66, 56, 91 is	
(a) 53	(b) 87	
(c) 61	(d) 19	
Answer: c		
Explanation:		
First, arrange the terms in ascending order:		
19, 36,48, 56, 66, 72, 87, 91		
Since the number of terms is even, i.e., 8, the r	nedian will be obtained by the average of	
the two middle terms, i.e., 56, and 66.		
Therefore,		
Median =56 + 66/2 = 61		
Question 7		
The marks secured by 5 students in a subj	ect are 82, 73, 69, 84, 66. What is the	
coefficient of Range		
(a) 0.12	(b) 12	
(c) 120	(d) 0.012	
Answer: b		
Explanation:		
Coefficient of Pango - Largest Observation - Small		
Largest Observation + Small		
Coefficient of Range = $\frac{84 - 66}{84 + 66} \times 100 = 12$		
Question 8		
For a data having odd number of values, the difference between the first and the		
middle value is equal to the difference between the last and the middle value;		
For more Info Visit - www.KITest.in		

FOR ENQUIRY – 6262969604	6262969699
similarly the difference between the second second last and middle value so on. There	-
(a) Half of the range	(b) Half of standard deviation
(c) Mode	(d) Mean
Answer: d	
Explanation:	
Here No. of data's = odd (let 3)	
i.e. a, b, c	
Difference b/w the 1 st and the middle value	
Diff. b/w the last and the middle value	
b-a=c-b	
2b = a + b	
$b = \frac{a+c}{2}$	
The middle value is known as mean and simi	larly other case is also satisfied.
Oregetien 0	
Question 9 One hundred participants supressed their	a opinion on recommending a new
One hundred participants expressed their product to their friends using the attribut	•
likely. The appropriate measure of centra	
(a) Mean	(b) Mode
(c) Geometric mean	(d) Harmonic mean
Answer: b	
Explanation:	
One hundred participants expressed their op	
their friends using the Attributes; most unlik	
appropriate measure of central tendency that	t can be used here is Mode.
Oreartian 10	
Question 10 A long a road there are 5 buildings of apar	rtmonts marked as 1 2 2 4 5 Number
of people residing in each building is avai	
of the buildings so that the total distance	
from their buildings must be kept minimu	· · · · · · · · · · · · · · · · · · ·
to find the position of the bus sto	
(a) Mean	(b) Mode
(c) Median	(d) Weighted mean
Answer:	
Explanation:	
'Median' The total distance walked by the res	sidents to the bus stop from their building
must DO kept minimum.	
Question 11	
For more Info Visit	- www.KITest.in

FOR ENQUIRY – 6262969604			6262969699
Given that Mean = 70.20 and Mode = 70.50, the Median is expected to be.			
(a) 70.15		(b) 70.20 (d) 70.25	
(c) 70.30 Answer:		(d) 70.35	
Explanation:			
Since Mean and Mode are di	fferent. this data	is clearly not symmetric.	
For moderately skewed data			
Therefore, Median = $\frac{Mode+2N}{3}$	lean		
Median = $\frac{70.50 + (2 \times 70.20)}{2} = 70$	20		
$Median = \frac{1}{3} = 70$.30		
		0000	
	<u>JUNE 2</u>	<u>2022</u>	
Question 1			
Which is not a measure of	central tendend	V	
(a) Mean		(b) Median	
(c) Quartile deviation		(d) Mode	
Answer: c			
Explanation:			
Quartile deviation is not a m	easure of central	tendency.	
Orrection 3			
Question 2 Mean Deviation of data 2	10 10 4 7 10 1	from modo is	
Mean Deviation of data 3, 1 (a) 4.39	10, 10, 4, 7, 10, 3	(b) 4.14	
(c) 4.70		(d) 5.24	
Answer: b		(u) 5.24	
Explanation:			
Mean deviation from mode of following data 3, 10, 10, 4, 7, 18, 5			
Here mode (Mo) = 10			
Table =			
х	Mode (Mo)	d = x - Mo	
3	10	7	
10	10	0	
10	10	0	
4	10	6	
7	10	3	
18	10	8	
5	10	5	
N= 7		Σ d = 29	

FOR ENQUIRY - 6262969604 6262969699 M.D- $\frac{\sum |d|}{N} = \frac{29}{7} = 4.14$ **Question 3** A M and Coefficient of variation of x is 10 and 40. What is the variance 30-2x (b) 56 (a) 64 (d) 81 (c) 49 Answer: a **Explanation**: A.M of x = 10C.v. of x = 40% $CV = \frac{S.D.}{10} \times 100$ $40 = \frac{S.D.}{10} \times 100$ S.D. = $\frac{40 \times 10}{100}$ S.D = 4i.e. S.D of x=4Here Let y = 30-2x2x+y-30=0 $B = \frac{Coeff \ of \ x}{Coeff \ of \ y} = \frac{-2}{1} = -2$ S.D of y = |b| of S.D of x $= |-2| \times 4 = 2 \times 4 = 8$ = Variance of $y = (8)^2 = 64$ **Question 4** Which of the following is based on absolute deviation? (a) Standard deviation (b) Mean deviation (c) Range (d) Quartile deviation **Answer: b Explanation:** M. D is known as absolute deviation **Question 5** When each value does not have equal importance then (a) A M (b) G M(d) Weighted Average (c) H M Answer: d **Explanation:** When each value does not have equal importance then we used weighted Average. **Question 6**

FOR ENQUIRY – 6262969604	6262969699
Following are the wages of 8 workers 82, 9	96, 52, 75, 70, 65, 50, 70. Find range
and coefficient of range?	
(a) 46, 32.70	(b) 43, 31.50
(c) 46, 31.50	(d) 43, 32.70
Answer: c	
Explanation:	
Here Smallest No $(S) = 50$	
Largest No (L) = 96	
Range = $L - S$	
= 96-50	
= 46	
Coeff. of Range = $\frac{L-S}{L+S} \times 100$	
$\frac{96-50}{960+50}$ × 100	
960+50 *100	
$=\frac{46}{146} \times 100$	
$^{146} = 31.50$	
- 51.50	
Question 7	
The mean of 20 observation is 38. If two o	hservation are taken as 84 and 36
instead of 48 and 63 find new means.	bservation are taken as of and so
(a) 38.45	(b) 41.15
(c) 37.55	(d) 40.05
Answer: c	(4) 10:00
Explanation:	
$\overline{X} = 38$	
No of observation (N) = 20	
RightValues (R.V) = $48 + 63 = 111$	
Wrong Values (W.V) = $84 + 36 = 120$	
New (correct) mean = original mean + $\frac{R.V-W.N}{N}$	V
IN	
$= 38 + \frac{(111 - 120)}{20}$ = 38 + $\frac{(-9)}{20}$	
-20 + (-9)	
$= 38 + \frac{1}{20}$	
= 38 + 0.45	
= 37.55	
Question 8	
The 3 rd decile for the numbers	
15, 10, 20, 25, 18, 11, 9, 12 is	
(a) 13	(b) 10.70

(c) 11.00	(d) 11.50
Answer: b	
Explanation:	
Write the terms in Ascending order 9, 10, 11,	12, 15, 18, 20, 25
Here $N = 8$	
$D_3 = \left[\frac{3(N+1)}{10}\right]^{th}$	
$D_{3} = \begin{bmatrix} 10 \end{bmatrix}$	
$\left[\frac{3(8+1)}{10}\right]^{th}$	
10	
[27] th	
$\left[\frac{27}{10}\right]^{th}$	
2.70 th term	
$= 2^{\text{th}} \text{term} + 0.70 \text{ (3th term - 2th term)}$	
=10 + 0.70 (11 - 10)	
$= 10 + 0.70 \times 1$	
= 10 + 0.70	
= 10.70	
2000	
Question 9	
Find the standard deviation and coefficien	t of variation for 1, 9, 8, 5, 7
(a) 2.828, 49.32	(b) 2.828, 47.13
(c) 2.828, 48.13	(d) 2.828, 50.13
Answer: c	(0) = 0 = 0, 0 = 0 = 0
Explanation:	
Given data	
1, 9, 8, 5, 7	
$\sum d^2 \sqrt{40}$	
Mean $(\bar{x}) = \frac{\sum d^2}{N} = \sqrt{\frac{40}{5}} = \sqrt{8}$	
$=2\sqrt{2}$	
= .828	
$C.V = \frac{S.D}{AM} \times 100$	
$A = AM \times 100$	
$\frac{2.828}{6} \times 100 = 47.13\%$	
6	